真空镀膜基础知识.共44页
- 格式:ppt
- 大小:4.14 MB
- 文档页数:44
学校:龙岩学院院系:物理与机电工程学院专业:机械设计制造及其自动化班级: 11级机械(本)1班姓名:柯建坤学号: 2011043523简介真空镀膜在真空中制备膜层,包括镀制晶态的金属、半导体、绝缘体等单质或化合物膜。
虽然化学汽相沉积也采用减压、低压或等离子体等真空手段,但一般真空镀膜是指用物理的方法沉积薄膜。
真空镀膜有三种形式,即蒸发镀膜、溅射镀膜和离子镀。
蒸发镀膜通过加热蒸发某种物质使其沉积在固体表面,称为蒸发镀膜。
这种方法最早由M.法拉第于1857年提出,现代已成为常用镀膜技术之一。
蒸发镀膜设备结构如图1。
蒸发物质如金属、化合物等置于坩埚内或挂在热丝上作为蒸发源,待镀工件,如金属、陶瓷、塑料等基片置于坩埚前方。
待系统抽至高真空后,加热坩埚使其中的物质蒸发。
蒸发物质的原子或分子以冷凝方式沉积在基片表面。
薄膜厚度可由数百埃至数微米。
膜厚决定于蒸发源的蒸发速率和时间(或决定于装料量),并与源和基片的距离有关。
对于大面积镀膜,常采用旋转基片或多蒸发源的方式以保证膜层厚度的均匀性。
从蒸发源到基片的距离应小于蒸气分子在残余气体中的平均自由程,以免蒸气分子与残气分子碰撞引起化学作用。
蒸气分子平均动能约为0.1~0.2电子伏。
蒸发镀膜的类型蒸发源有三种类型。
①电阻加热源:用难熔金属如钨、钽制成舟箔或丝状,通以电流,加热在它上方的或置于坩埚中的蒸发物质(图1[蒸发镀膜设备示意图])电阻加热源主要用于蒸发Cd、Pb、Ag、Al、Cu、Cr、Au、Ni等材料。
②高频感应加热源:用高频感应电流加热坩埚和蒸发物质。
③电子束加热源:适用于蒸发温度较高(不低于2000[618-1])的材料,即用电子束轰击材料使其蒸发。
蒸发镀膜与其他真空镀膜方法相比,具有较高的沉积速率,可镀制单质和不易热分解的化合物膜。
为沉积高纯单晶膜层,可采用分子束外延方法。
生长掺杂的GaAlAs单晶层的分子束外延装置如图2[ 分子束外延装置示意图]。
真空镀膜技术深圳微普真空系统集成有限公司真空“真空”这一术语译自拉丁文Vacuo,其意义是虚无。
其实真空应理解为气体较稀薄的空间。
在指定的空间内,低于一个大气压力的气体状态统称为真空。
真空状态下气体稀薄程度称为真压力的气体状态统称为真空真空状态下气体稀薄程度称为真空度,通常用压力值表示。
真空技术是基本实验技术之自从真空技术是基本实验技术之一。
自从1643年托里拆利做了著名的有关大气压力实验,发现了真空现象以后,真空技术迅速发展。
现在,真空技术已经成为一门独立的前言学科。
它的基本内容包括:真空物理、真空的获得、真空的测量和检漏、真空系统的设计和计算等。
随着表面科学、空间科学高能粒子加速器、微电子学、薄膜技术、冶金工业以及材料学等尖端科技的发展,真空技术在近代尖端科学技术中的地位越来越重要。
真度单位真空量度单位1标准大气压=760mmHg=760(Torr) 1标准大气压=1.013x105Pa1Torr1333Pa1Torr=133.3Pa真空区域的划分目前尚无统一规定,常见的划分为:35−−粗真空低真空)10760(1010Torr pa )1010(1010313Torr pa −−−−高真空)1010(10108361Torr pa −−−−−−超高真空极高真空)1010(1010128106Torr pa −−−−−−)10(101210Torr pa −−<<真空获得—真空泵1654年,德国物理学家葛利克发明了抽气泵,做了著名的马德堡半球试验。
的马德堡半球试验原理:当泵工作后,形成压差,p1>p2,实现了抽气。
真空泵的分类气体传输泵:是一种能将气体不断地吸入并排出泵外以达到抽气目的的真空泵,例如旋片机械泵、油扩散泵、涡轮分子泵。
气体捕集泵:是一种使气体分子短期或永久吸附、凝结在泵内表面的真空泵,例如分子筛结在泵内表面的真空泵例如分子筛吸附泵、鈦升华泵、溅射离子泵、低温泵和吸气剂泵。
真空镀膜技术基础1.采用什么镀膜机?光学镀膜机多是基于PVD,即物理气相沉积的镀膜机。
国产机以南光和北仪为代表,进口机以德国的莱宝机,美国的Vecco机和日本的光驰机、昭和机为代表。
2.采用什么样的膜料气汽化方式?对于物理气相沉积型真空镀膜机,有三种汽化方式:热蒸发,溅射,离子镀。
目前国内在光学真空镀膜方面多采用热蒸发的方式。
溅射技术以磁控溅射为代表,溅射和离子镀的方式在大批量生产的表面处理、太阳能电池板生产中应用较多。
热蒸发又分为四种方式:电阻加热,电子束加热,电磁感应加热和激光束加热。
四种方式各有特点和优势,电磁感应加热适合大规模连续型设备,并且只能镀金属膜料;激光束加热方式目前尚不成熟;电阻加热方式使用最早,但不适合高熔点膜料,自动化程度低,适合镀制金属膜和膜层较少的膜系;电子束加热方式使用电子枪产生电子束通过聚焦集中于膜料上进行加热,该方法应用最广,自动化程度高,技术成熟。
3.如何精确控制膜层厚度?膜层厚度的控制方法有:目视法、光电极值法,石英晶振法和全光谱在线控制法等。
目视法最早应用,适合于膜层较少的可见光波段的膜系,人为误差较大;全光谱在线控制法适合宽波段膜系的镀制,可以实时反馈及时修正误差,但目前上不普及;光电极值法适合镀制单点要求的膜系,自动化程度不高;石英晶振法自动化程度最高,应用最为普及,他采用石英晶体的振动频率和质量的相关性来测定膜层的质量,从而根据密度换算成物理厚度。
采用石英晶振法控制膜层厚度,和电子束加热的方式相配合,可以实现镀制过程的高度自动化,确保工艺的重复性。
采用美国生产的360石英晶体控制仪,石英晶体探头表面镀金,其振动信号转换成电信号后,经后续电路处理,输入360石英晶体控制仪,实时输出结果,并反馈调节电子束能量,形成闭环控制,确保膜厚控制的精度。
4.如何加强曲面镀膜均匀性?理论上,当蒸发源为点源时,被镀件和蒸发源距离一样时满足均匀性,即蒸发源位于球心,被镀件位于同一球面;当蒸发源为面源时,符合余弦分布,既蒸发源和被镀件位于同一球面。