运筹学考试模拟题
- 格式:doc
- 大小:118.00 KB
- 文档页数:5
运筹模拟试题及答案
一、选择题
1. 进行运筹学研究时,下列哪种不是需要考虑的因素?
A. 成本
B. 时间
C. 资源
D. 颜色
答案:D
2. 运筹学中常用的优化方法包括以下哪种?
A. 贪心算法
B. 冒泡排序
C. 快速排序
D. 二分查找
答案:A
3. 下列哪种不是传统运筹学方法的代表性问题?
A. 线性规划
B. 背包问题
C. 旅行商问题
D. 贪心算法
答案:D
二、填空题
1. 运筹学最早是在(古代/近代)开始发展的。
答案:近代
2. 线性规划是运筹学中经典的(优化/排列)方法。
答案:优化
3. 旅行商问题是求解搜索过程中的最短(路径/时间)问题。
答案:路径
三、解答题
1. 请简要说明什么是线性规划,以及线性规划的基本原理。
答:线性规划是一种数学优化方法,用于找到使某种目标函数达到
最优的变量取值。
其基本原理是通过建立数学模型,确定决策变量和
约束条件,然后求解最优解,以达到最大化或最小化某项指标的目的。
2. 请简要介绍一下运筹学中的模拟方法以及其应用领域。
答:运筹学中的模拟方法是通过模拟系统的运行过程来进行决策分析和优化设计。
其应用领域包括生产调度、物流管理、金融风险分析等领域,在实际问题中具有广泛的应用。
以上为运筹模拟试题及答案,希望对您的学习和工作有所帮助。
如果还有其他问题,欢迎随时与我们联系。
祝您学习进步!。
运筹学(本)1412模拟卷2华东理工学院网络学院模拟考B卷2021华东理工大学网络教育学院(全部答在答题纸上,请写清题号,反面可用。
试卷与答题纸分开交)运筹学(本)1412模拟卷2一、判断题(共5题,每题2分,共10分)1. 线性规划的原问题有无穷多最优解,则其对偶问题也一定有无穷多最优解。
()(2分) ( )2. 对偶问题的对偶问题一定是原问题。
()(2分) ( )3. 顾客到达分布相同时,服务时间的方差越大,顾客的平均等待时间越长。
()(2分) ( )4. 表上作业法实质上就是求解运输问题的单纯形法。
()(2分) ( )5. 任何线性规划问题存在且具有唯一的对偶问题。
()(2分) ( )二、单选题(共5题,每题3分,共15分)1. 解决分配问题的算法是()。
(3分) A.单纯形法 B.对偶单纯形法 C.匈牙利法 D.表上作业法2. 在排队系统的符号表示[A/B/C]:[D/E/F]中,E对应的是()。
(3分)A.顾客到达的时间间隔分布B.服务时间的分布C.服务台数D.顾客源总体数目3. 线性规划在转化标准型时,转换约束条件时新增非负变量称为()。
(3分)A.决策变量B.松弛变量C.资源变量D.凸变量4. B是某最大化问题的基,X是对应于B的一个基本可行解,X是最优解的条件是()。
(3分)A. B.C.D.5. 去掉整数约数条件后得到的线性规划称为原整数规划的()。
(3分)A.松弛问题B.增益问题C.对偶问题D.反问题三、计算题(共5题,每题15分,共75分)第 1 页共 2 页1.某决策问题,某决策信息如下:使用乐观原则进行决策(15分)2. 某商品单位成本为10元,每天存贮费为成本的0.1%,每次订购费为50元,已知该商品的需求是每天200件,不允许缺货。
假设该商品的进货可随时实现。
求最佳订货批量Q,最小总费用C,最佳订货周期t。
(15分)。
二、计算题(60分)1、 已知线性规划(20分) MaxZ=3X 1+4X 2 X 1+X 2≤5 2X 1+4X 2≤12 3X 1+2X 2≤8 X 1) 写出该线性规划的对偶问题。
2) 若C2从4变成5, 最优解是否会发生改变, 为什么? 若b2的量从12上升到15, 最优解是否会发生变化, 为什么?如果增加一种产品X6, 其P6=(2,3,1)T, C6=4该产品是否应该投产?为什么? 解:1)对偶问题为Minw=5y1+12y2+8y3 y1+2y2+3y 3≥3y1+4y2+2y 3≥4 y1,y2≥02)当C2从4变成5时, σ4=-9/8 σ5=-1/4由于非基变量的检验数仍然都是小于0的, 所以最优解不变。
3)当若b 2的量从12上升到15 X =9/8 29/8 1/4由于基变量的值仍然都是大于0的, 所以最优解的基变量不会发生变化。
4)如果增加一种新的产品, 则 P6’=(11/8,7/8, -1/4)T σ6=3/8>0所以对最优解有影响,该种产品应该生产计算检验数由于存在非基变量的检验数小于0, 所以不是最优解, 需调整 调整为:重新计算检验数所有的检验数都大于等于0, 所以得到最优解3、某公司要把4个有关能源工程项目承包给4个互不相关的外商投标者, 规定每个承包商只能且必须承包一个项目, 试在总费用最小的条件下确定各个项目的承包者, 总费用为多少?各承包商对工程的报价如表2所示:X= 0 1 0 0 1 0 0 00 0 0 1总费用为504.考虑如下线性规划问题(24分)Max z=-5x1+5x2+13x3s.t..-x1+x2+3x3≤2012x1+4x2+10x3≤90x1, x2, x3≥0回答以下问题:1)求最优解2)求对偶问题的最优解3)当b1由20变为45, 最优解是否发生变化。
4)求新解增加一个变量x6, c6=10, a16=3, a26=5, 对最优解是否有影响5)c2有5变为6, 是否影响最优解。
运筹学学习与考试指导模拟考试试题(一)一、单项选择题(从下列各题四个备选答案中选出一个正确答案,答案选错或未选者,该题不得分.每小题2分,共10分)1。
博弈论中,局中人从一个博弈中得到的结果常被称为( ): A. 效用; B. 支付; C. 决策; D 。
利润。
2.设线性规划的约束条件为⎪⎩⎪⎨⎧≥=++=++0,,,4223421421321x x x x x x x x x则基本可行解为( ). A 。
(0,0,4,3) B.(3,4,0,0) C 。
(2,0,1,0) D 。
(3,0,4,0) 3.minZ=3x1+4x2, x1+x2≥4, 2x1+x2≤2, x1、x2≥0,则( ). A.无可行解B 。
有唯一最优解C 。
有多重最优解D 。
有无界解4.互为对偶的两个线性规划问题的解存在关系( ). A.原问题无可行解,对偶问题也无可行解 B 。
对偶问题有可行解,原问题也有可行解 C.若最优解存在,则最优解相同D.一个问题有无界解,则另一个问题无可行解5.下列图形中阴影部分构成的集合是凸集的是( ):二、判断题(你认为下列命题是否正确,对正确的打“√”;错误的打“×”。
每小题2分,共20分)1。
线性规划问题的每一个基本可行解对应可行域的一个顶点。
( )2. 如果在单纯形表中,所有的检验数都为正,则对应的基本可行解就是最优解。
( )3. 在可行解的状态下,原问题与对偶问题的目标函数值是相等的。
4.可行解集非空时,则在极点上至少有一点达到最优值。
( ) 5.原问题具有无界解,则对偶问题不可行。
( )6.互为对偶问题,或者同时都有最优解,或者同时都无最优解。
( ) 7.加边法就是避圈法.( )8.一对正负偏差变量至少一个大于零.( ) 9.要求不超过目标值的目标函数是minZ=d+。
( )10.求最小值问题的目标函数值是各分枝函数值的下界。
( ) 三、填空(1分/空,共5分)1.原问题的第1个约束方程是“="型,则对偶问题相应的变量是 变量. 2.若原问题可行,但目标函数无界,则对偶问题 。
可编辑修改精选全文完整版运筹学自测题第一套题一、判断题(T-正确,F-错误)1.图解法同单纯形法虽然求解的形式不同,但从几何上理解,两者是一致的。
2.若线性规划问题存在最优解,则最优解一定对应可行域边界上的一个点。
3.一旦一个人工变量在迭代中变为非基变量后,该变量及相应列的数字可以从单纯形表中删除,而不影响计算结果。
4.线性规划问题的可行解如为最优解,则该可行解一定是基可行解。
5.任何线性规划问题存在并具有唯一的对偶问题。
6.运输问题是一种特殊的线性规划模型,因而求解结果也可能出现下列四种情况之一:有唯一最优解,有无穷多最优解,无界解,无可行解。
7.整数规划的目标函数值一般优于其相应的线性规划问题的解的目标函数值。
8.分枝定界法在需要分枝时必须满足:分枝后的各子问题必须容易求解;各子问题解的集合必须包含原问题的解。
9.整数割平面法每次只割去问题的部分非整数解。
10.线性规划问题是目标规划问题的一种特殊形式。
11.目标规划模型中,应同时包含系统约束(绝对约束)与目标约束。
12.图论中的图不仅反映了研究对象之间的关系,而且是真实图形的写照,因而对图中点与点的相对位置、点与点连线的长短曲直等都要严格注意。
13.网络图中代表两点之间的距离长短的数字,其含义也可以是时间或费用。
14.在制定网络计划时,将一个任务分解成若干个独立的工作单元,称为任务的分解。
二、选择题1.线性规划数学模型的特征是:________都是线性的。
A. 目标函数和决策变量B. 决策变量和约束条件C. 目标函数和约束条件D. 目标函数、约束条件及决策变量2.关于剩余变量,下列说法错误的是:A. 为将某个大于等于约束化为等式约束,在该约束中减去一个剩余变量B. 剩余变量在实际问题中表示超过收益的部分C. 剩余变量在目标函数中的系数为零D. 在用单纯形法求解线性规划问题时,剩余变量一般作为初始基变量。
A. 任意m 个列向量组成的矩阵B. 任意m 阶子矩阵C. 前m 个列向量组成的矩阵D. 任意m 个线性无关的列向量组成的矩阵A. mB. n-mC. 至少mD. 至少n-m5.如果是求极大值的线性规划问题,单纯形法的每次迭代意味着其目标函数值将( A)必然增加;(B)必然减少;(C)可能增加;(D)可能减少6.单纯形法求解线性规划问题时,如何判断问题存在无界解?(A)全部变量的检验数非负;(B)某个检验数为正的非基变量,其系数列向量不存在正分量;(C)最终的单纯形表中含有人工变量,且其取值不为零;(D)非基变量全部非正,且某个非基变量的检验数为零。
《运筹学》课程考试试卷试题(含答案)一、选择题(每题5分,共25分)1. 运筹学的核心思想是()A. 最优化B. 系统分析C. 预测D. 决策答案:A2. 在线性规划中,约束条件可以用()表示。
A. 等式B. 不等式C. 方程组D. 矩阵答案:B3. 以下哪个不是运筹学的基本模型?()A. 线性规划B. 整数规划C. 非线性规划D. 随机规划答案:D4. 在目标规划中,以下哪个术语描述的是决策变量的偏离程度?()A. 目标函数B. 约束条件C. 偏差变量D. 权重系数答案:C5. 在动态规划中,以下哪个概念描述的是在决策过程中,某一阶段的最优决策对后续阶段的影响?()A. 最优子结构B. 无后效性C. 最优性原理D. 阶段性答案:B二、填空题(每题5分,共25分)1. 运筹学是一门研究在复杂系统中的______、______和______的科学。
答案:决策、优化、实施2. 在线性规划中,若目标函数为最大化,则其标准形式为______。
答案:max z = c^T x3. 在非线性规划中,若目标函数和约束条件均为凸函数,则该规划问题为______。
答案:凸规划4. 在目标规划中,若决策变量x_i的权重系数为w_i,则目标函数可以表示为______。
答案:min Σ(w_i d_i^+ + w_i d_i^-)5. 在动态规划中,若状态变量为s_n,决策变量为u_n,则状态转移方程可以表示为______。
答案:s_{n+1} = f(s_n, u_n)三、判断题(每题5分,共25分)1. 线性规划问题的最优解一定在可行域的顶点处取得。
()答案:正确2. 在整数规划中,若决策变量为整数,则目标函数和约束条件也必须为整数。
()答案:错误3. 目标规划中的偏差变量可以是负数。
()答案:正确4. 在动态规划中,最优策略具有最优子结构。
()答案:正确5. 在非线性规划中,若目标函数为凸函数,则约束条件也必须为凸函数。
一、选择题(本题共5小题,每小题3分,满分15分,把答案填在题后括号内.) 1.使用人工变量法求解极大化线性规划问题时,当所有的检验数0j σ≤,在基变量中仍含有非零的人工变量,表明该线性规划问题( C )A. 有唯一的最优解;B. 有无穷多个最优解;C. 无可行解;D. 为无界解 2、对偶单纯形法解最大化线性规划问题时,每次迭代要求单纯形表中( D ) A .b 列元素不小于零 B .检验数都大于零C .检验数都不小于零D .检验数都不大于零3、对于线性规划问题,下列说法正确的是( D )A 线性规划问题可能没有可行解B 在图解法上,线性规划问题的可行解区域都是“凸”区域C 线性规划问题如有最优解,则最优解可在可行解区域顶点上到达D 上述说法都正确4、如果要使目标规划实际实现值不超过目标值。
则相应的偏离变量应满足( B )A. 0d +> B. 0d += C. 0d -= D. 0,0d d -+>>5、下列说法正确的为( D )A .如果线性规划的原问题存在可行解,则其对偶问题也一定存在可行解B .如果线性规划的对偶问题无可行解,则原问题也一定无可行解C .在互为对偶的一对原问题与对偶问题中,不管原问题是求极大或极小,原问题可 行解的目标函数值都一定不超过其对偶问题可行解的目标函数D .如果线性规划问题原问题有无界解,那么其对偶问题必定无可行解 二、判断题:正确的在括号内打“√”,错误的打“×”。
(本题共5小题,每小题3分,满分15分,) 1、如线性规划问题存在最优解,则最优解一定对应可行域边界上的一个点。
( √ ) 2、单纯形法计算中,如不按最小比列原则选取换出变量,则在下一个解中至少有一个基变量的值为负。
( √ ) 3、任何线性规划问题存在并具有惟一的对偶问题。
( √ ) 4、目标规划模型中,应同时包含绝对约束与目标约束。
( × )5、如果线性规划的原问题存在可行解,则其对偶问题一定存在可行解。
运筹学考试试卷及答案一、选择题(每题2分,共20分)1. 线性规划问题的标准形式是:A. 所有变量都非负B. 目标函数是最大化C. 所有约束条件都是等式D. 所有约束条件都是不等式答案:A2. 单纯形法中,如果某个变量的检验数为负数,那么:A. 该变量可以增大B. 该变量可以减小C. 该变量保持不变D. 该变量不能进入基答案:A3. 在运输问题中,如果某种资源的供应量大于需求量,那么应该:A. 增加供应量B. 减少需求量C. 增加需求量D. 减少供应量答案:C4. 动态规划的基本原理是:A. 递归B. 迭代C. 回溯D. 分解答案:D5. 决策树中,每个节点代表:A. 一个决策B. 一个状态C. 一个结果D. 一个概率答案:A6. 排队论中,M/M/1队列的特点是:A. 到达时间服从泊松分布,服务时间服从指数分布,且只有一个服务台B. 到达时间服从指数分布,服务时间服从泊松分布,且只有一个服务台C. 到达时间服从泊松分布,服务时间服从指数分布,且有两个服务台D. 到达时间服从指数分布,服务时间服从泊松分布,且有两个服务台答案:A7. 网络流问题中,最大流最小割定理说明:A. 最大流等于最小割B. 最大流小于最小割C. 最大流大于最小割D. 最大流与最小割无关答案:A8. 整数规划问题中,分支定界法的基本思想是:A. 将问题分解为多个子问题B. 将问题转化为线性规划问题C. 将问题转化为非线性规划问题D. 将问题转化为动态规划问题答案:A9. 在多目标决策中,如果目标之间存在冲突,通常采用的方法是:A. 目标排序B. 目标加权C. 目标合并D. 目标替换答案:B10. 敏感性分析的目的是:A. 确定最优解的稳定性B. 确定最优解的唯一性C. 确定最优解的可行性D. 确定最优解的最优性答案:A二、填空题(每题2分,共20分)1. 线性规划问题的可行域是由所有_________约束条件构成的集合。
答案:可行2. 在单纯形法中,如果目标函数的系数都是正数,则该问题为_________问题。
二、设一线性规划问题为(25分)⎧⎨⎪⎩⎪m a x ,,z x x x x x x x x x j j =-+++≤-+≤≥=27624013123121232 目标函数变为max z x x x =++23123;3 约束条件右端项由(6,4)T 变为(3,5)T;4 增加一个约束条件-+≥x x 1322三、某种产品今后四周的需求量分别为300,700,900,600件,必须得到满足。
已知每件产品的成本在起初两周是10元,以后两周是15元。
工厂每周能生产这种产品700件,且在第二、三周能加班生产。
加班后,每周可增产200件产品,但成本每件增加5元。
产品如不能在本周交货,则每件每周存贮费是3元。
问如何安排生产计划,使总成本最小,要求建立运输问题数学模型求解。
(25分)四、某校蓝球队准备从以下6名预备队员中选拔3名为正式队员,并使平均身高尽可能高,这6名预备队员情况如下表所示,试建立数学模型。
(20分)队员的挑选要满足下列条件: 2 少补充一名后卫队员;3 大李或小田中间只能入选一名;4 最多补充一名中锋;5 如果大李或小赵入选,小周就不能入选。
五、某高校拟开设文学、艺术、音乐、美术四个学术讲座。
每个讲座每周下午举行一次。
经调查知,每周星期一至星期五不能出席某一讲座的学生数如下表:(20分)学生总数。
六、某飞行队有5名正驾驶员和5名副驾驶员。
由于种种原因,某些正、副驾驶员不能同机飞行,某些则可以,如下表所示。
每架飞机出航时需正,副驾驶员各一人。
问最多能有几架飞机同时出航?应如何安排正,副驾驶员?用图论方法求解。
(20分)七、填空:(20分)1.某工程公司拟从四个项目中选择若干项目,若令11,2,3,40i i i ix ìïï==íïïïî,第个项目被选中;,第个项目未被选中;用i x 的线性表达式表示下列要求:(1)从1,2,3项目中至少选2个: ;(2)只有项目2被选中,项目4才能被选中: ;2.用表上作业法求解某运输问题,若已计算出某空格的检验数为-2,则其经济意义是 ,若从该空格出发进行调整,设调整量为2,则调后可使总运费下降 ;3. 动态规划中的Bellman 最优性原理是。
模拟试题一一、单项选择题:(共7题,35分)1、在线性规划模型中,没有非负约束的变量称为(C)A. 多余变量B. 松弛变量C. 自由变量D. 人工变量2、约束条件为AX=b,X≥0的线性规划问题的可行解集是(B ) A. 补集 B. 凸集 C. 交集 D. 凹集3、线性规划的图解法适用于( B )A. 只含有一个变量的线性规划问题B. 只含有2~3个变量的线性规划问题C. 含有多个变量的线性规划问题D. 任何情况4、单纯形法作为一种常用解法,适合于求解线性规划(A )A. 多变量模型B. 两变量模型C. 最大化模型D. 最小化模型5、在单纯性法计算中,如果检验数都小于等于零,而且非基变量的检验数全为负数,则表明此问题有(D )。
A. 无穷多组最优解B. 无最优解??C. 无可行解D. 唯一最优解6、在线性规划中,设约束方程的个数为m,变量个数为n,m<n时,可以把变量分为基变量和非基变量两部分,基变量的个数为m个,非基变量的个数为(C )A. m个B. n个C. n-m个D. 0个7、使用人工变量法求解极大化线性规划问题时,当所有的检验数在基变量中仍含有非零的人工变量,表明该线性规划问题(D ) A. 有唯一的最优解 B. 有无穷多最优解 C. 为无界解 D. 无可行解二、填空题:(共5题,25分)1、运筹学是一门研究如何有效地组织和管理决策的科学.2、线性规划是一种合理利用资源、合理调配资源的应用数学方法,其基本特点是模型中的目标函数和约束方程都是线性表达式.3、线性规划模型由三个要素构成:决策变量、目标函数、约束条件。
4、可行域中任意两点间联结线段上的点均在可行域内,这样的点集叫凸集。
5、线形规划的标准形式有如下四个特点:目标函数的最大化、约束条件为等式、决策变量费非负、右端常数项非负。
三、简答题:(共3题,40分)1、简述线性规划模型的三个基本特征。
(1)每一个问题都有一个极大或极小的目标且能用有一组线性函数表示出来。
一、单项选择题
1.线性规划模型三个要素中不包括()
A.决策变量
B.目标函数
C.基
D.约束条件
2.线性规划问题有可行解,则()
A.必有基可行解
B.必有唯一最优解
C.无基可行解
D.无唯一最优解
3.在单纯形表的终表中,若非基变量的检验数有0,那么最优解()
A.不存在 B.唯一 C.无穷多 D.无穷大
4.求目标函数为极大的线性规划问题时,若全部非基变量的检验数≤O,且基变量中有人工变量时该问题有()
A.无界解 B.无可行解 C.唯一最优解 D.无穷多最优解5.若X﹡和Y﹡分别是线性规划的原问题和对偶问题的最优解,则CX﹡与Y﹡B的关联关系为()
A.CX﹡≥Y﹡B B.CX﹡≤Y﹡B C.CX﹡= Y﹡B D.CX﹡≦Y﹡B 6.如果原问题的某个变量无约束,则对偶问题中对应的约束条件应为()
A.等式 B.严格不等式 C.大于等于 D.小于等于
7.如果线性规划的原问题增加一个约束条件,相当于其对偶问题增加一个()
A.倍数
B.变量
C.系数
D.约束
8.用分枝定界法求极大化的整数规划问题时,任何一个可行解的目标函数值是该问题目标函数值的()
A.原解
B.上界
C.下界
D.最优解
9.在应用匈牙利法求解分配问题时,最终求得的分配元应是()
A.零元素
B.独立零元素
C.1元素
D.独立1元素
10.如果要使目标规划实际实现值不超过目标值。
则相应的偏离变量应满足()
A.d+>0 B.d+=0 C.d-=0 D.d->0,d+>9
二、多项选择题
1.线性规划问题的标准型最本质的特点是()
A.目标要求是极小化 B.变量可以取任意值
C.变量和右端常数要求非负 D.约束条件一定是等式形式
可能为()
2.在线性规划的一般表达式中,变量x
ij
A.大于等于0
B.小于等于0
C.大于0
D.小于0
E.等于0
3.求解线性规划问题解的结果可能有()
A.唯一最优解
B.无可行解
C.无穷多最优解
D.无界解
E.无最优
4.下列解中可能成为最优解的有()
A.基可行解
B.迭代一次的改进解
C.迭代两次的改进解
D.迭代三次的改进解
E.所有检验数均小于等于0
且解中无人工变量
5.在线性规划问题的标准形式中,可能存在的变量是()
A.可控变量
B.松驰变量
C.剩余变量
D.人工变量
E.非
基变量
6.若线性规划问题有可行解,则()
A. 其可行域一定有界
B. 其可行域无界
C.其可行域是一凸多
边形
D. 其可行域可能有界也可能无界
7.设X(1),X(2)是用单纯形法求得的某一线性规划问题的最优解,则说明() A.此问题有无穷多最优解 B.该问题是退化问题C.此问题的全部最优解可表示为λX(1)+(1一λ)X(2),其中0≤λ≤1 D.X(1),X(2)是两个基可行解 E.X(1),X(2)的基变量个数相同
8.如线性规划的原问题为求极大值型,则下列关于原问题与对偶问题的关系中正
确的有()
A.原问题的约束条件“≥”,对应的对偶变量“≥0”
B.原问题的约束条件为“=”,对应的对偶变量为自由变量
C.原问题的变量“≥0”,对应的对偶约束“≥” D.原问题的变量“≤O”对应的对偶约束“≤”
E.原问题的变量无符号限制,对应的对偶约束“=”
9.对于某一整数规划可能涉及到的解题内容为()
A.求其松弛问题
B.在其松弛问题中增加一个约束方程
C. 应用单形
或图解法D.割去部分非整数解 E.多次切割
10.若线性规划问题最优基中某个基变量的目标系数发生变化,则下列结论中不
成立的有()
A.该基变量的检验数发生变化 B.其他基变量的检验数发生变化C.所有非基变量的检验数发生变化 D.所有变量的检验数都发生变化
E. 目标最优解发生变化
三、填空题
1.除图解法外,常用的求解线性规划问题的方法是_______________法。
2、用单纯形法求解线性规划问题时,须将不等式约束化为等式,设不等号右边
的常量为非负,则当不等号是小于等于时,应;当不等号是大于等于时,应
3. 在用图解法求解线性规划问题时,如果取得极值的等值线与可行域的一段边界重合,则
该问题有___________解。
4.线性规划的右端常数项其对偶问题的____________;线性规划的第i个约束条
件为方程则其对偶问题______________________。
四、用图解法求解下列线性规划问题。
maxZ=3x
1+5x
2
x
1
≤15
s·t 2x
2
≤12
3x
1+2x
2
≤18
x 1,x
2
≥0
五、已知线性规划问题
已知线性规划问题
(1)写出其对偶问题
(2)已知原问题最优解为X﹡=(2,2,4,0)T,试根据对偶理论,直接求出对偶问题的最优解。
六、一个公司经理要分派4个推销员去4个地区推销某种商品。
4个推销员各有不同的经验和能力,因而他们在每一地区能获得的利润不同,其估计值如下表所示:
问:公司经理应怎样分派4个推销员才使总利润最大?
七、根据以下条件建立线性规划数学模型
某工厂生产A、B、C三种产品,每种产品的原材料消耗量、机械台时消耗量
根据客户订货,三种产品的最低月需要量分别为210,250和100件,最大月销售量分别为250,280和120件。
月销售分别为250,280和120件,问如何安排生产计划,使总利润最大?
八、设有5个工件需在机床A、B上加工,加工的顺序是先A后B,每个工件所需要加工时间(单位:小时)如下表所示。
问如何安排加工顺序,使机床连续加工完所有工件的加工总时间最少?并求出总加工时间。
加工时间/小时
工件号码
1
2
3
4
5
A
3
8
4
5
7
B
5
2
7
3
4机床
九
用表上作业法求给出的运输问题的最优解。
十、求下列网络的最大流与最小截集。
弧旁的数字为其容量。