动能定理应用探微第一期
- 格式:pdf
- 大小:100.63 KB
- 文档页数:2
一.必备知识精讲 1. 动能〔1〕定义:物体由于运动而具有的能。
〔2〕公式:E k =12mv 2。
(3)标矢性:动能是标量,只有正值,动能与速度方向无关。
(4)状态量:动能是状态量,因为v 是瞬时速度。
(5)相对性:由于速度具有相对性,所以动能也具有相对性。
(6)动能的变化:物体末动能与初动能之差,即ΔE k =12mv 22-12mv 21。
动能的变化是过程量。
2. 动能定理(1)内容:力在一个过程中对物体做的功,等于物体在这个过程中动能的变化。
(2)表达式W =ΔE k ; W =E k2-E k1; W =12mv 22-12mv 21。
3.物理意义:合力的功是物体动能变化的量度。
4.适用范围广泛(1)既适用于直线运动,也适用于曲线运动。
(2)既适用于恒力做功,也适用于变力做功。
(3)力可以是各种性质的力,既可以同时作用,也可以不同时作用。
5. 动能定理的理解和应用(1)做功的过程就是能量转化的过程,动能定理表达式中的“=〞的意义是一种因果关系在数值上相等的符号。
因果关系:合力做功是引起物体动能变化的原因。
数量关系:合力做功与动能变化具有等量代换的关系。
单位关系:国际单位制中功和能的单位都是焦耳。
(2)动能定理表达中所说的“力〞,既可以是重力、弹力、摩擦力,也可以是静电力、磁场力或其他力;既可以是恒力,也可以是变力。
(3)动能定理中涉及的物理量有F 、l 、α、m 、v 、W 、E k ,在处理含有上述物理量的问题时,优先考虑使用动能定理。
6.应用动能定理的考前须知(1)应用动能定理解题应抓好“两状态,一过程〞。
“两状态〞即明确研究对象的始、末状态的速度或动能情况,“一过程〞即明确研究过程,确定这一过程研究对象的受力情况和位置变化或位移信息。
(2)动能定理中的位移和速度必须是相对于同一个参考系的,一般以地面或相对地面静止的物体为参考系。
(3)应用动能定理的关键在于对研究对象进行准确的受力分析及运动过程分析,并画出运动过程的草图,借助草图理解物理过程之间的关系。
动能定理的应用一、动能定理应用的思路动能定理中涉及的物理量有F 、l 、m 、v 、W 、E k 等,在处理含有上述物理量的力学问题时,可以考虑使用动能定理。
由于只需从力在各段位移内的功和这段位移始末两状态动能变化去研究,无需注意其中运动状态变化的细节,又由于功和动能都是标量,无方向性,无论是对直线运动或曲线运动,计算都会特别方便。
当题给条件涉及力的位移效应,而不涉及加速度和时间时,用动能定理求解一般比用牛顿第二定律和运动学公式求解简便。
用动能定理还能解决一些用牛顿第二定律和运动学公式难以求解的问题,如变力作用过程、曲线运动等问题。
二、动能定理的内容外力对物体所做功的代数和等于物体动能的增量。
其数学表达式为:W mv mv 总=-12122212三、应用动能定理时必须注意以下几点:(1)应用动能定理解题时,在分析过程的基础上,无须深究物体运动状态过程中变化的细节,只须考虑整个过程中各个力做的总功及物体的初动能和末动能。
(2)动能定理的研究对象是单个物体,作用在物体上的外力包括所有的力,因此必须对物体进行受力分析。
(3)动能定理中的位移和速度必须是相对于同一个参照系,一般以地面为参照系。
(4)求总功可分为下述两种情况:①若各恒力同时作用一段位移,可先求出物体所受的合外力,再求总功;也可用总功等于各力所做功的代数和的方法求。
②若各力不同时对物体做功,总功应为各阶段各力做功的代数和。
动能定理是功能基本关系之一,凡是涉及力所引起的位移而不涉及加速度的问题,应用动能定理分析讨论,常比牛顿第二定律简捷。
四、应用动能定理解题的一般步骤:① 确定研究对象和研究过程。
② 分析物理过程,分析研究对象在运动过程中的受力情况,画受力示意图,及过程状态草图,明确各力做功情况,即是否做功,是正功还是负功。
③ 找出研究过程中物体的初、末状态的动能(或动能的变化量)④ 根据动能定理建立方程,代入数据求解,对结果进行分析、说明或讨论。
动能定理的几种典型应用应用一:动能定理解决匀变速直线运动问题例1、一个质量m=2kg 的小物体由高h=1.6m 倾角︒=30α的斜面顶端从静止开始滑下,物体到达斜面底端时速率是4m/s ,那么物体在下滑的过程中克服摩擦力做功是多少焦耳?由公式20222v v aS -=可知222022/5.22.3242s m S v v a =⨯=-= 对物体受力分析并由牛顿第二定律可知:ma f mg =-αsin 所以N N ma mg f 55.2221102sin =⨯-⨯⨯=-=α J J fS W f 16)1(2.35180cos -=-⨯⨯=︒= 解法二:由动能定理221mv W mgh f =+ 可得:J J mgh mv W f 166.110242212122-=⨯⨯-⨯⨯=-= 应用二:动能定理解决曲线运动问题例2、在离地面高度h=10m 的地方,以s m v /50=水平速度抛出,求:物体在落地时的速度大小? 解法一:由221gt h =得 s s g h t 2101022=⨯== 所以s m s m gt v y /210/210=⨯== 所以s m s m v v v y /15/)210(522220=+=+=解法二:由动能定理可得 20222121mv mv mgh -=所以:s m s m v gh v /15/51010222202=+⨯⨯=+= 两种方法计算的结果完全一致,可见:动能定理同样适用于曲线运动。
并且可以求变力的功,如下题。
例3.质量m=2kg 的物体从高h=1.6m 的曲面顶部静止开始下滑,到曲面底部的速度大小为4m/s 。
求物体在下滑过程中克服摩擦力所做的功?应用3:利用动能定理求解多个力做功的问题例4、如图所示,物体置于倾角为37度的斜面的底端,在恒定的沿斜面向上的拉力的作用下,由静止开始沿斜面向上运动。
F 大小为2倍物重,斜面与物体的动摩擦因数为0.5,求物体运动5m 时速度的大小。
动能定理的应用(知识梳理)动能定理的应用【学习目标】1.进一步深化对动能定理的理解。
2.会用动能定理求解变力做功问题。
3.会用动能定理求解单物体或多物体单过程问题以及与其他运动形式的结合问题。
4.知道用动能定理解题的一般步骤。
【要点梳理】要点一、动能定理的推导要点诠释:1.推导过程:一个运动物体,在有外力对它做功时,动能会发生变化。
设一个质量为m 的物体,原来的速度是1v ,动能是21112k E mv =,在与运动方向相同的恒定外力F 的作用下,发生一段位移l ,速度增加到2v ,动能增加到22212k E mv =。
在这一过程中外力F 对物体所做的功W Fl =。
根据牛顿第二定律F ma =和运动学公式22212v v al -=得到22212v v l a -= 所以22222121()11222ma v v W Fl mv mv a -===- 或21k k W E E =-2.关于公式的几点说明(1)上面我们设外力方向与运动方向相同,导出了关系式21k k W E E =-,这时外力做正功,动能增加。
外力方向与运动方向相反时,上式同样适用,这时外力所做的功是负值,动能的变化也是负值;(2)外力对物体做负功,往往说成物体克服这个力做了功。
因此,对这种情形,也可以说物体克服阻力所做的功等于动能的减少;(3)如果物体不只受到一个力,而是受到几个力,上述结论仍旧正确。
只是外力所做的功是指各个力所做的功的代数和,即外力所做的总功。
3.动能定理的实质动能定理揭示了外力对物体所做的总功与物体动能变化之间的关系,即外力对物体做的总功,对应着物体动能的变化,变化的大小由做功的多少来量度。
动能定理的实质是反映其它形式的能通过做功而和动能转化之间的关系,只不过在这里其它形式的能并不一定出现,而是以各种性质的力所做的机械功(等式左边)的形式表现出来而已。
要点二、对动能定理的进一步理解要点诠释:1.动能定理的计算式为标量式,计算外力对物体做的总功时,应明确各个力所做功的正负,然后求其所有外力做功的代数和;求动能变化时,应明确动能没有负值,动能的变化为末动能减去初动能。
《动能定理的应用》讲义一、什么是动能定理在物理学中,动能定理是一个非常重要的概念。
动能定理表述为:合外力对物体所做的功等于物体动能的变化量。
动能是物体由于运动而具有的能量。
其表达式为$E_{k} =\frac{1}{2}mv^2$,其中$m$是物体的质量,$v$是物体的速度。
那么动能定理具体怎么理解呢?我们可以想象一个物体在力的作用下运动。
力对物体做功,会使物体的速度发生变化,从而导致动能的改变。
而动能定理就是描述这个做功与动能变化之间的定量关系。
二、动能定理的表达式动能定理的表达式为:$W_{合} =\Delta E_{k}$,其中$W_{合}$表示合外力做的功,$\Delta E_{k}$表示动能的变化量。
如果物体受到多个力的作用,那么合外力做的功就是这些力做功的代数和。
例如,一个物体受到力$F_1$、$F_2$、$F_3$……的作用,它们分别做的功为$W_1$、$W_2$、$W_3$……,则合外力做的功$W_{合} = W_1 + W_2 + W_3 +\cdots$。
动能的变化量$\Delta E_{k} = E_{k2} E_{k1}$,其中$E_{k2}$表示末动能,$E_{k1}$表示初动能。
三、动能定理的应用场景1、求变力做功在很多情况下,物体所受的力是变化的,直接求力做的功比较困难。
这时利用动能定理就可以通过计算动能的变化来间接求出变力做的功。
例如,一个小球在一根弹簧的作用下运动。
弹簧的弹力是一个变力,我们无法直接计算弹力做的功。
但是,我们可以通过测量小球的初末速度,计算出动能的变化,从而得出弹力做的功。
2、解决多过程问题当物体经历多个运动过程时,每个过程可能受力情况不同。
如果分别对每个过程用牛顿运动定律和运动学公式来求解,会非常复杂。
而动能定理可以将整个过程作为一个整体来考虑,大大简化了计算。
比如,一个物体先在粗糙水平面上匀加速运动一段距离,然后进入光滑斜面继续运动。
我们可以用动能定理直接求出整个过程中合外力做的功,从而得出物体动能的变化。
高中物理专题汇编物理动能定理的综合应用(一)及解析一、高中物理精讲专题测试动能定理的综合应用1.由相同材料的细杆搭成的轨道如图所示,其中细杆AB 、BC 、CD 、DE 、EF ……长均为 1.5m L =,细杆OA 和其他细杆与水平面的夹角都为()37sin370.6,cos370.8β︒︒︒===,一个可看成质点的小环套在细杆OA 上从图中离轨道最低点的竖直高度 1.32m h =处由静止释放,小环与细杆的动摩擦因数都为0.2μ=,最大静摩擦力等于相同压力下的滑动摩擦力,在两细杆交接处都用短小曲杆相连,不计动能损失,使小环能顺利地经过,重力加速度g 取210m /s ,求: (1)小环在细杆OA 上运动的时间t ; (2)小环运动的总路程s ; (3)小环最终停止的位置。
【答案】(1)1s ;(2)8.25m ;(3)最终停在A 点 【解析】 【分析】 【详解】(1)因为sin cos mg mg βμβ>,故小环不能静止在细杆上,小环下滑的加速度为2sin cos 4.4m/s mg mg a mβμβ-==设物体与A 点之间的距离为0L ,由几何关系可得0 2.2m sin37hL ︒== 设物体从静止运动到A 所用的时间为t ,由2012L at =,得 1s t =(2)从物体开始运动到最终停下的过程中,设总路程为s ,由动能定理得cos3700mgh mgs μ︒=--代入数据解得s =8.25m(3)假设物体能依次到达B 点、D 点,由动能定理有201(sin37)cos37()2B mg h L mg L L mv μ︒︒+=-- 解得20B v <说明小环到不了B 点,最终停在A 点处2.小明同学根据上海迪士尼乐园游戏项目“创极速光轮”设计了如图所示的轨道。
一条带有竖直圆轨道的长轨道固定在水平面上,底端分别与两侧的直轨道相切,其中轨道AQ 段粗糙、长为L 0=6.0m ,QNP 部分视为光滑,圆轨道半径R =0.2m ,P 点右侧轨道呈粗糙段、光滑段交替排列,每段长度都为L =0.5m 。
高考物理动能定理的综合应用(一)解题方法和技巧及练习题一、高中物理精讲专题测试动能定理的综合应用1.质量 1.5m kg =的物块(可视为质点)在水平恒力F 作用下,从水平面上A 点由静止开始运动,运动一段距离撤去该力,物块继续滑行 2.0t s =停在B 点,已知A 、B 两点间的距离 5.0s m =,物块与水平面间的动摩擦因数0.20μ=,求恒力F 多大.(210/g m s =)【答案】15N 【解析】 设撤去力前物块的位移为,撤去力时物块的速度为,物块受到的滑动摩擦力对撤去力后物块滑动过程应用动量定理得由运动学公式得对物块运动的全过程应用动能定理由以上各式得 代入数据解得思路分析:撤去F 后物体只受摩擦力作用,做减速运动,根据动量定理分析,然后结合动能定律解题试题点评:本题结合力的作用综合考查了运动学规律,是一道综合性题目.2.一个平板小车置于光滑水平面上,其右端恰好和一个光滑圆弧轨道AB 的底端等高对接,如图所示.已知小车质量M=3.0kg ,长L=2.06m ,圆弧轨道半径R=0.8m .现将一质量m=1.0kg 的小滑块,由轨道顶端A 点无初速释放,滑块滑到B 端后冲上小车.滑块与小车上表面间的动摩擦因数.(取g=10m/s 2)试求:(1)滑块到达B 端时,轨道对它支持力的大小; (2)小车运动1.5s 时,车右端距轨道B 端的距离;(3)滑块与车面间由于摩擦而产生的内能.【答案】(1)30 N (2)1 m (3)6 J 【解析】(1)滑块从A 端下滑到B 端,由动能定理得(1分)在B 点由牛顿第二定律得(2分)解得轨道对滑块的支持力N (1分)(2)滑块滑上小车后,由牛顿第二定律对滑块:,得m/s2 (1分)对小车:,得m/s2 (1分)设经时间t后两者达到共同速度,则有(1分)解得s (1分)由于s<1.5s,故1s后小车和滑块一起匀速运动,速度v="1" m/s (1分)因此,1.5s时小车右端距轨道B端的距离为m (1分)(3)滑块相对小车滑动的距离为m (2分)所以产生的内能J (1分)3.我国将于2022年举办冬奥会,跳台滑雪是其中最具观赏性的项目之一.如图1-所示,质量m=60 kg的运动员从长直助滑道AB的A处由静止开始以加速度a=3.6 m/s2匀加速滑下,到达助滑道末端B时速度v B=24 m/s,A与B的竖直高度差H=48 m.为了改变运动员的运动方向,在助滑道与起跳台之间用一段弯曲滑道衔接,其中最低点C处附近是一段以O为圆心的圆弧.助滑道末端B与滑道最低点C的高度差h=5 m,运动员在B、C间运动时阻力做功W=-1530 J,g取10 m/s2.(1)求运动员在AB段下滑时受到阻力F f的大小;(2)若运动员能够承受的最大压力为其所受重力的6倍,则C点所在圆弧的半径R至少应为多大?【答案】(1)144 N (2)12.5 m【解析】试题分析:(1)运动员在AB上做初速度为零的匀加速运动,设AB的长度为x,斜面的倾角为α,则有v B2=2ax根据牛顿第二定律得mgsinα﹣F f=ma 又sinα=H x由以上三式联立解得 F f=144N(2)设运动员到达C点时的速度为v C,在由B到达C的过程中,由动能定理有mgh+W=12mv C2-12mv B2设运动员在C 点所受的支持力为F N ,由牛顿第二定律得 F N ﹣mg=m 2Cv R由运动员能承受的最大压力为其所受重力的6倍,即有 F N =6mg 联立解得 R=12.5m 考点:牛顿第二定律;动能定理【名师点睛】本题中运动员先做匀加速运动,后做圆周运动,是牛顿第二定律、运动学公式、动能定理和向心力的综合应用,要知道圆周运动向心力的来源,涉及力在空间的效果,可考虑动能定理.4.如图所示,小物体沿光滑弧形轨道从高为h 处由静止下滑,它在水平粗糙轨道上滑行的最远距离为s ,重力加速度用g 表示,小物体可视为质点,求:(1)求小物体刚刚滑到弧形轨道底端时的速度大小v ; (2)水平轨道与物体间的动摩擦因数均为μ。