多目标线性规划的一种交互式单纯形算法
- 格式:pdf
- 大小:84.88 KB
- 文档页数:3
线性规划与单纯形法线性规划(Linear Programming)是一种在资源有限的情况下,通过最优化目标函数来确定最佳解决方案的数学优化方法。
而单纯形法(Simplex Method)则是一种常用的求解线性规划问题的算法。
本文将介绍线性规划与单纯形法的基本概念和运算步骤,以及实际应用中的一些注意事项。
一、线性规划的基本概念线性规划的基本思想是在一组线性不等式约束条件下,通过线性目标函数的最小化(或最大化)来求解最优解。
其中,线性不等式约束条件可表示为:```a1x1 + a2x2 + ... + anxn ≤ b```其中,x1、x2、...、xn为决策变量,a1、a2、...、an为系数,b为常数。
目标函数的最小化(或最大化)可表示为:```min(c1x1 + c2x2 + ... + cnxn)```或```max(c1x1 + c2x2 + ... + cnxn)```其中,c1、c2、...、cn为系数。
二、单纯形法的基本思想单纯形法是由乔治·丹尼尔·丹齐格尔(George Dantzig)于1947年提出的求解线性规划问题的算法。
其基本思想是通过逐步迭代改进当前解,直至达到最优解。
三、单纯形法的运算步骤1. 初等列变换:将线性规划问题转化为标准型,即将所有约束条件转化为等式形式,并引入松弛变量或人工变量。
2. 初始化:确定初始可行解。
通常使用人工变量法来获得一个初始可行解。
3. 检验最优性:计算当前基础解的目标函数值,若目标函数值小于等于零,则该基础解即为最优解。
否则,进入下一步。
4. 基本可行解的变换:选择一个入基变量和一个出基变量,并进行基本变换,得到新的基础解。
5. 迭代求解:根据目标函数值是否小于等于零,判断是否达到最优解。
若达到最优解,则算法终止;若未达到最优解,则返回步骤3进行下一轮迭代。
四、单纯形法的实际应用注意事项1. 线性规划问题的约束条件必须是线性的,且可行解集合必须是有界的。
线性规划与单纯性法线性规划是现代运筹学领域中的一个研究方向,旨在寻找最大化或最小化目标函数的最优解,同时满足一系列约束条件。
线性规划得到广泛应用于经济、工程、工业、交通等各个领域。
在实际应用中,通常使用单纯性法求解线性规划问题。
一、线性规划一个典型的线性规划问题可以表示为下面的标准形式:$$\begin{aligned}\text{minimize}\quad &f(\mathbf{x})=\mathbf{c}^\top \mathbf{x} \\\text{subject to}\quad &\mathbf{A}\mathbf{x}=\mathbf{b}, \\&\mathbf{x} \ge \mathbf{0}.\end{aligned}$$其中 $\mathbf{x}=(x_1,x_2,\dots,x_n)^\top$ 是 $n$ 个决策变量的向量,$f(\mathbf{x})$ 是目标函数,$\mathbf{c}=(c_1,c_2,\dots,c_n)^\top$ 是目标函数系数向量,$\mathbf{A}$ 是一个 $m\times n$ 的系数矩阵,$\mathbf{b}=(b_1,b_2,\dots,b_m)$ 是一个约束条件向量。
在线性规划问题中,约束条件通常是线性不等式或等式的形式。
这种形式的约束条件通常都可以使用求解器进行求解。
二、单纯性法单纯性法是一种求解线性规划问题的有效算法,它是由美国数学家 George Dantzig 提出的,其基本思想是以单纯六面体逐步逼近最优解。
对于常见的标准形式,单纯性法的基本步骤如下:1. 将约束条件转化为等式形式并引入松弛变量。
$$\begin{aligned}\text{minimize}\quad &f(\mathbf{x})=\mathbf{c}^\top \mathbf{x} \\\text{subject to}\quad&\mathbf{A}\mathbf{x}+\mathbf{s}=\mathbf{b}, \\&\mathbf{x},\mathbf{s} \ge \mathbf{0}.\end{aligned}$$其中 $\mathbf{s}=(s_1,s_2,\dots,s_m)^\top$ 是松弛变量,它们的值可以取任意正实数。
多目标线性规划多目标线性规划(MOLP)是一种数学规划方法,旨在解决多个目标之间存在冲突或相互关联的问题。
在MOLP中,同时考虑了多个目标函数,并通过设定不同的权重或约束来对这些目标进行优化。
MOLP的目标函数可以是线性函数,即目标函数可以用一组线性等式或不等式表示。
例如,假设我们有两个目标函数f1(x)和f2(x),其中x是决策变量。
我们的目标是在给定一组约束条件的情况下找到一个最优解,使得f1(x)最小化并且f2(x)最小化。
这样的问题可以表示为:minimize f1(x)minimize f2(x)subject to:g(x) <= 0h(x) = 0其中g(x)和h(x)分别是一组不等式约束和等式约束。
在解决MOLP问题时,我们必须明确指定目标函数之间的优先级关系。
这可以通过设定不同的权重来实现。
例如,如果我们认为f1(x)的重要性更高,我们可以将其权重设置为更大的值,以便在优化过程中更加侧重于最小化f1(x)。
另一种方法是使用约束来定义目标之间的关系。
例如,我们可以将一个目标函数作为主目标,并将其他目标函数作为线性等式约束加入到问题中。
这样,在优化过程中,系统将尽量满足主目标,并同时满足其他目标的约束条件。
MOLP的解决方法通常是使用线性规划的方法,如单纯形法等。
然而,在多目标优化中,由于目标之间的冲突和相互关联,可能不存在一个单一的最优解,而是存在一组最优解,称为非支配解(non-dominated solutions)或帕累托最优解(Pareto optimal solutions)。
这些解构成了一个称为帕累托前沿(Pareto frontier)或帕累托集合(Pareto set)的曲线或体。
总结来说,多目标线性规划是一种用于解决多个目标之间冲突和相互关联的数学规划方法。
通过设定不同的权重或约束,可以在给定一组约束条件下找到一组最优解,这些解构成了一个称为帕累托前沿的曲线或体。
线性规划模型的求解方法线性规划是数学中的一个分支,是用来解决优化问题的方法。
一般来说,它适用于那些具有一定限制条件,但是希望达到最优解的问题。
在实际应用中,无论是在工业、商业还是管理等领域,都可以使用线性规划模型来进行求解。
本文将详细介绍线性规划模型的求解方法,包括单纯形算法、内点法和分支定界法。
1、单纯形算法单纯形算法是线性规划求解中最常用的方法,它是基于不等式约束条件的优化算法,主要是通过这些不等式约束来定义一些可行域并寻找最优解。
单纯形算法的基本思路是将约束条件重写为等式,然后再将变量从这些等式中解出来,最后根据这些解来判断是否找到最优解。
举例来说,假设有如下线性规划的问题:$$\begin{aligned}\text { maximize } \quad &60 x_{1}+40 x_{2} \\\text { subject to } \quad &x_{1}+x_{2} \leq 100 \\&2 x_{1}+x_{2} \leq 150 \\&x_{1}+2 x_{2} \leq 120 \\&x_{1}, x_{2} \geq 0\end{aligned}$$我们可以将这些约束条件重写为等式:$$\begin{aligned}x_{3} &=100-x_{1}-x_{2} \\x_{4} &=150-2 x_{1}-x_{2} \\x_{5} &=120-x_{1}-2 x_{2}\end{aligned}$$然后我们可以利用这些等式来解出每个变量的取值,从而得到最优解。
通常情况下,单纯形算法利用较小的限制空间集合来缩小可行的解空间集合,并通过一定的规则,比如说乘子法则来找到最优的解。
2、内点法内点法则是比单纯形算法更快的一个线性规划求解方法,它通过不停地迭代,将可行域中的点从内部向最优解方向移动,从而找到最优解。
在实际应用中,内点法通常能够达到非常高的精确度,而且与单纯型算法相比,它在数值计算方面更加稳定。
第一章线性规划及单纯形法6.6单纯形法小结Drawingontheexampl,thetwoaxisinterceptsareplotted.2、求初始基可行解并进行最优性检验Cj比值CBXBb 检验数?jx1x2x3x4x53500081010012020103634001x3x4x5000035000令非基变量x1=0,x2=0,找到一个初始基可行解:x1=0,x2=0,x3=8,x4=12,x5=36,σj>0,此解不是最优(因为z=3x1+5x2+0x3+0x4+0x5)即X0=(0,0,8,12,36)T,此时利润Z=03、寻找另一基可行解Cj比值CBXBb检验数?jx1x2x3x4x53500081010012020103634001x3x4x5000035000-12/2=636/4=9主元首先确定入基变量再确定出基变量检验数?j81010060101/2012300-21x3x2x5050-30300-5/20Cj比值CBXBb检验数?jx1x2x3x4x53500081010012020103634001x3x4x5000035000-12/2=636/4=9令x1=0,x4=0,得x2=6,x3=8,x5=12,即得基可行解X1=(0,6,8,0,12)T此时Z=30σ1=3>0,此解不是最优迭代4、寻找下一基可行解Cj比值CBXBb检验数?jx1x2x3x4x53500081010060101/2012300-21x3x2x5050-30300-5/208-4检验数?j40012/3-1/360101/204100-2/31/3x3x2x1053-42000-1/2-1令x4=0,x5=0,得x1=4,x2=6,x3=4,即X0=(4,6,4,0,0)T?j<0最优解:X=(4,6,4,0,0)T最优值:Z=42小结:单纯形表格法的计算步骤①将线性规划问题化成标准型。
②找出或构造一个m阶单位矩阵作为初始可行基,建立初始单纯形表。