搅拌器的结构与设计
- 格式:ppt
- 大小:1.02 MB
- 文档页数:62
卧式搅拌机的结构设计摘要卧式搅拌机具有悠久的历史,它的应用范围极其广泛,在化学,机械,建筑,轻工业,重金属领域都会看见搅拌机的应用。
从不同的角度可以把搅拌机分为立式和卧式两种,其中卧式搅拌机主要是指搅拌机的轴线与搅拌机回旋轴线都在水平的位置。
本文设计的卧式搅拌器在分析国内外搅拌机械的发展的基础上,设计一种新的卧式搅拌器,这种新的新的结构设计可用于面粉,饲料等粒状物质的搅拌和混合,相比传统的搅拌装置更加快速简单并且工作效率高。
设计的搅拌器具有两个水平的传送方式,第一个是V型皮带和齿轮结合的第一主变速器,以实现混合操作。
第二个是采用楔带和凸轮组成的传动方式,以提高搅拌工作效率。
在该课题中,对卧式搅拌器的基本结构,基本尺寸的详细设计和对搅拌器结构的建模和运动模拟,更为真实简单的体现设计的过程和结构分析,再进行安全分析校核的计算,搅拌器结构设计,参数计算,功率检查,从而确保该搅拌器稳定可靠的运转。
关键词卧式搅拌器;混合设备;搅拌机;上料装置- I -Structure Design of Horizontal MixerAbstractThis design introduced the development course of the domestic and foreign mixer machinery and domestic and foreign research trends,and the design of the mixer. Based on this topic agitator in the domestic and foreign research and development,design a new with vibratory mixing and row material function of horizontal agitator structure design scheme to be used for dry mixing operation.The horizontal mixer has two transmission systems,the first main drive system uses V belt and gear drive to achieve mixing operation.In this paper, the design of horizontal agitator in the analysis of the domestic and foreign mixing based on the development of mechanical, design a new horizontal mixer, this new structure design can be used for flour, feed and other particulate matter and stir the mixture compared to the traditional stirring device is more simple and fast and high work efficiency. The design of the mixer has two levels of transmission, the first is the V type belt and gear combination of the first main transmission, in order to realize the mixed operation. The second is the use of the drive mode of the wedge and the cam to improve the efficiency of mixingIn the paper, the basic structure of horizontal agitator, the detailed design of the basic dimensions and the agitator structure modeling and motion simulation, more simple and true embodiment of the design process and structural analysis, and security analysis and checking calculation, agitator structure design,- II -parameter calculation, check power, so as to ensure the stirrer is stable and reliable operation.Keywords Horizontal mixer, mixing equipment, mixer, feeding device- III -目录摘要 (I)Abstract (II)第1章绪论 (1)1.1课题研究意义 (1)1.2 搅拌器国内外发展现状 (2)1.3 卧式搅拌器发展趋势 (4)1.4 论文主要研究内容 (5)1.5 本章小结 (5)第2章总体方案设计及参数设计 (6)2.1 传动机构方案设计 (6)2.2搅拌机容量确定 (7)2.3搅拌机结构参数确定 (8)2.4 搅拌功率的计算 (11)2.5 传动装置工作参数计算 (13)2.6带传动的计算 (14)2.7本章小结 (20)第3章卧式搅拌机零件设计 (21)3.1 搅拌轴的设计 (21)3.2 搅拌轴的校核 (23)3.3 搅拌机结构设计 (25)3.4 三维建模 (27)3.5 本章小结 (28)结论 (29)致谢 (30)参考文献 (31)附录............................................................................................................... - 33 -- IV -第1章绪论1.1课题研究意义工程添加混合物在整个搅拌过程中的重点和被称为卧式搅拌机自动完成的机械装置,搅拌机在各个行业具有广泛应用,在食品行业更是必不可少的。
一、搅拌机结构与组成组成:搅拌器电动机 减速器 容器 排料管 挡板适用物料:低粘度物料二、混合机理利用低粘度物料流动性好的特性实现混合 1、对流混合在搅拌容器中.通过搅拌器的旋转把机械能传给液体物料造成液体的流动.属强制对流。
包括两种形式:(1)主体对流:搅拌器带动物料大范围的循环流动 (2)涡流对流:旋涡的对流运动液体层界面 强烈剪切 旋涡扩散主体对流 宏观混合 涡流对流 2、分子扩散混合液体分子间的运动 微观混合 作用:形成液体分子间的均匀分布 对流混合可提高分子扩散混合 3、剪切混合剪切混合:搅拌桨直接与物料作用.把物料撕成越来越薄的薄层.达到混合的目的。
高粘度过物料混合过程.主要是剪切作用。
三、混合效果的度量 1、调匀度I设A 、B 两种液体.各取体积vA 及vB 置于一容器中.则容器内液体A 的平均体积浓度CA0为: (理论值) 经过搅拌后.在容器各处取样分析实际体积浓度CA.比较CA0 、CA . 若各处 CA0=CA 则表明搅拌均匀若各处 CA0=CA 则表明搅拌尚不均匀.偏离越大.均匀程度越差。
引入调匀度衡量样品与均匀状态的偏离程度 定义某液体的调匀度 I 为:(当样品中CA CA0时)或 (当样品中CA CA0时)显然 I ≤1若取m 个样品.则该样品的平均调匀度为当混合均匀时2、混合尺度设有A 、B 两种液体混合后达到微粒均布状态。
混合尺度分 设备尺度 微团尺度 分子尺度 对上述两种状态:在设备尺度上:两者都是均匀的(宏观均匀状态) 在微团尺度上:两者具有不同的均匀度。
在分子尺度上:两者都是不均匀的(当微团消失.称分子尺度的均匀或微观均 匀) 如取样尺寸远大于微团尺寸.则两种状态的平均调匀度接近于己于1。
如取样尺寸小到与b 中微团尺寸相近时.则b 状态调匀度下降.而a 状态调匀度不变。
即:同一个混合状态的调匀度随所取样品的尺寸而变化.说明单平调匀度不能反映混合物的均匀程度四、搅拌机主要结构 1、搅拌器搅拌器由电动机带动.物料按一定规律运动(主体对流).桨型不同.物料产生的流型不同。
1绪论1.1 搅拌器的概述1.1.1搅拌器的应用范围机械搅拌反应器适用于各种物性(如粘度、密度)和各种操作条件(温度、压力)的反应过程,广泛应用于合成材料、合成纤维、合成橡胶、医药、农药、化肥、染料、涂料、食品、冶金、废水处理等行业。
如实验室的搅拌反应器可小至数十毫升,而污水处理、湿法冶金、磷肥等工业大型反应器的容积可达数千立方米。
除用作化学反应器和生物反应器外,搅拌反应器还可大量用于混合、分散、溶解、结晶、萃取、吸收或解吸、传热等操作。
搅拌反应器由搅拌容器和搅拌机两大部分组成。
搅拌容器包括筒体、换热元件及内构件。
搅拌器、搅拌轴、及其密封装置、传动装置等统称为搅拌机。
1.1.2搅拌器的工作原理通常搅拌装置由作为原动机的马达(电动、风动或液压),减速机与其输出轴相连的搅拌抽,和安装在搅拌轴上的叶轮组成减速机体通过一个支架或底板与搅拌容器相连。
当容器内部有压力时,搅拌轴穿过底板进入容器时应有一个密封装置,常用填料密封或机械密封。
通常马达与密封均外购,研究的重点是叶轮。
叶轮的搅拌作用表现为“泵送”和涡流”,即产生流体速度和流体剪切,前者导至全容器中的回流,介质易位,防止固体的沉淀并产生对换热热管束 (如果有)的冲刷;剪切是一种大回流中的微混合,可以打碎气泡或不可溶的液滴,造成“均匀”。
1.1.3化工反应中的搅拌设备根据搅拌器叶轮的形状可以分成直叶桨式、开启涡轮式、推进式、圆盘涡轮式、锚式、螺带式、螺旋式等}根据处理的掖体牯度不同可以分为低粘度液搅拌器。
低粘度液搅拌器,如:三叶推进式、折叶桨叶,6直叶涡轮式、超级混合叶轮式 HR 100,HV 100等;中高粘度液搅拌器如:锚式、螺杆叶轮式、双螺旋螺带叶轮型,MR 205,305超混合搅拌器等等。
1.2化工搅拌器的适应条件和构造1.2.1化工搅拌器的适应条件搅拌加速传热和传质,在化工设备中广泛运用。
化工搅拌器的作用使化工生产中的液体充分混合,以满足化学反应能够最大程度的进行,该设备可以代替手动搅拌对人体有毒或对皮肤有伤害的化工原料减少对人体的危害,同时通过电动机带动轴加速搅拌,提高生产率。
搅拌器设计选型绪论搅拌可以使两种或多种不同的物质在彼此之中互相分散,从而达到均匀混合;也可以加速传热和传质过程。
在工业生产中,搅拌操作时从化学工业开始的,围绕食品、纤维、造纸、石油、水处理等,作为工艺过程的一部分而被广泛应用。
搅拌操作分为机械搅拌与气流搅拌。
气流搅拌是利用气体鼓泡通过液体层,对液体产生搅拌作用,或使气泡群一密集状态上升借所谓上升作用促进液体产生对流循环。
与机械搅拌相比,仅气泡的作用对液体进行的搅拌时比较弱的,对于几千毫帕·秒以上的高粘度液体是难于使用的。
但气流搅拌无运动部件,所以在处理腐蚀性液体,高温高压条件下的反应液体的搅拌时比较便利的。
在工业生产中,大多数的搅拌操作均系机械搅拌,以中、低压立式钢制容器的搅拌设备为主。
搅拌设备主要由搅拌装置、轴封和搅拌罐三大部分组成。
其结构形式如下图:一搅拌装置结构图第一章搅拌装置第一节搅拌装置的使用范围及作用搅拌设备在工业生产中的应用范围很广,尤其是化学工业中,二很多的化工生产都或多或少地应用着搅拌操作。
搅拌设备在许多场合时作为反应器来应用的。
例如在三大合成材料的生产中,搅拌设备作为反应器约占反应器总数的99%。
搅拌设备的应用范围之所以这样广泛,还因搅拌设备操作条件(如浓度、温度、停留时间等)的可控范围较广,又能适应多样化的生产。
搅拌设备的作用如下:①使物料混合均匀;②使气体在液相中很好的分散;③使固体粒子(如催化剂)在液相中均匀的悬浮;④使不相溶的另一液相均匀悬浮或充分乳化;⑤强化相间的传质(如吸收等);⑥强化传热。
搅拌设备在石油化工生产中被用于物料混合、溶解、传热、植被悬浮液、聚合反应、制备催化剂等。
例如石油工业中,异种原油的混合调整和精制,汽油中添加四乙基铅等添加物而进行混合使原料液或产品均匀化。
化工生产中,制造苯乙烯、乙烯、高压聚乙烯、聚丙烯、合成橡胶、苯胺燃料和油漆颜料等工艺过程,都装备着各种型式的搅拌设备。
第二节搅拌物料的种类及特性搅拌物料的种类主要是指流体。
第二节搅拌桨叶的设计和选型一、搅拌机结构与组成组成:搅拌器电动机减速器容器排料管挡板适用物料:低粘度物料二、混合机理利用低粘度物料流动性好的特性实现混合1、对流混合在搅拌容器中.通过搅拌器的旋转把机械能传给液体物料造成液体的流动.属强制对流。
包括两种形式:(1)主体对流:搅拌器带动物料大范围的循环流动(2)涡流对流:旋涡的对流运动液体层界面强烈剪切旋涡扩散主体对流宏观混合涡流对流2、分子扩散混合液体分子间的运动微观混合作用:形成液体分子间的均匀分布对流混合可提高分子扩散混合3、剪切混合剪切混合:搅拌桨直接与物料作用.把物料撕成越来越薄的薄层.达到混合的目的。
高粘度过物料混合过程.主要是剪切作用。
电动机减速器搅拌器容器排料管三、混合效果的度量 1、调匀度I设A 、B 两种液体.各取体积vA 及vB 置于一容器中.则容器内液体A 的平均体积浓度CA0为: (理论值) 经过搅拌后.在容器各处取样分析实际体积浓度CA.比较CA0 、CA . 若各处 CA0=CA 则表明搅拌均匀若各处 CA0=CA 则表明搅拌尚不均匀.偏离越大.均匀程度越差。
引入调匀度衡量样品与均匀状态的偏离程度 定义某液体的调匀度 I 为:(当样品中CA < CA0时)或 (当样品中CA > CA0时)显然 I ≤1若取m 个样品.则该样品的平均调匀度为当混合均匀时2、混合尺度设有A 、B 两种液体混合后达到微粒均布状态。
BA A A V V V C +=00A A C C I =011A A C CI --=m I I I I m+⋯⋯++=-211=-IA BAB (a)(b)混合尺度分设备尺度微团尺度分子尺度对上述两种状态:在设备尺度上:两者都是均匀的(宏观均匀状态)在微团尺度上:两者具有不同的均匀度。
在分子尺度上:两者都是不均匀的(当微团消失.称分子尺度的均匀或微观均匀)如取样尺寸远大于微团尺寸.则两种状态的平均调匀度接近于己于1。
立式搅拌机结构设计与性能分析一、引言立式搅拌机是一种常见的工业设备,广泛应用于食品加工、化工、制药等行业。
本文将从结构设计和性能分析两个角度对立式搅拌机进行探讨,旨在分析其设计原理及性能特点,为工程师和研究人员提供参考和指导。
二、立式搅拌机的结构设计1. 框架结构: 立式搅拌机的主要框架结构通常由底座、立柱和上部支撑平台组成。
底座用于支撑整个设备,立柱则连接底座和上部支撑平台,以实现整体的稳定性和刚性。
2. 搅拌槽设计: 立式搅拌机的搅拌槽通常由圆筒形结构组成,底部设计为锥形,以便搅拌物料的混合和流动。
搅拌槽内还可设置搅拌器,以提高搅拌效果和混合均匀度。
3. 搅拌器设计: 搅拌器是立式搅拌机的核心部件,其设计直接影响到搅拌效果和性能。
常见的搅拌器形式包括单层涡臂式、双层涡臂式、锚形式等。
在选择搅拌器时,需考虑搅拌物料的性质和工艺要求。
4. 传动系统设计: 立式搅拌机的传动系统通常由电机、减速器和轴承组成。
电机通过减速器将转速降低后传递给搅拌器,轴承则支撑转轴的旋转。
在传动系统设计中,需注意选用合适的电机和减速器,以确保设备的稳定运行和可靠性。
5. 安全保护设计: 立式搅拌机在设计中应考虑到安全保护措施,例如设置防护罩、急停按钮、过载保护装置等,以避免意外事故的发生。
此外,设备的易维护性和清洁性也是结构设计中应考虑的因素。
三、立式搅拌机的性能分析1. 搅拌效果: 立式搅拌机的主要目的是将不同性质的物料混合均匀,搅拌效果直接影响到产品质量。
通过调整搅拌器的转速和形状,可以实现不同物料的适应性搅拌和全面混合。
2. 能耗性能: 立式搅拌机在工作过程中需要消耗一定的能量。
优化设备结构和传动系统可以降低能耗,提高能源利用效率。
此外,合理设计的搅拌器形状和大小也可以减少能耗。
3. 运行稳定性: 立式搅拌机在工作过程中需要保持稳定的运行,避免震动和噪音。
合理的结构设计和选用优质的传动系统可以提高设备的运行稳定性,减少故障率。
┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊摘要本次设计的JS1000混凝土搅拌机是目前比较主流的机型,它是强制式卧轴混凝土搅拌机中的一种,强制式混凝土搅拌机不仅能搅拌干硬性混凝土,而且能搅拌轻骨料混凝土,能使混凝土达到强烈的搅拌作用,搅拌非常均匀、生产率高、质量好、成本低。
另外作为国内新型搅拌机的一种,它整机结构紧凑、外型美观。
JS1000主要组成结构包括:搅拌装置、传动系统、上料系统、卸料系统、机架、电气控制系统、润滑系统等。
这些系统之间的连接要求紧凑,工作可靠。
本次设计主要是对搅拌装置、传动系统、上料系统以及卸料系统的设计,主要包括:搅拌装置方案的确定、搅拌轴的设计计算、传动系统的设计计算、轴承的校核、上料系统的设计以及液压卸料系统的设计,最后完成搅拌机总成图及零部件图。
关键词:混凝土搅拌机,强制式双卧轴,搅拌装置,传动系统,上料系统┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊ABSTRACTThe design of the JS1000 concrete mixer is the mainstream design model at present. It is a kind of compulsory horizontal axis concrete mixers, compulsory mixing concrete mixer can stir both hard concrete and lightweight aggregate concrete. In addition ,concrete can achieve a strong role in stirring and stirring can be very uniformly, high productivity, high quality as well as low cost. It is a new type of domestic mixers with compact structure and nice appearance.The main components it is consisted of include: mixing device, drive system, feeding system, unloading system, rack, electrical control system and lubrication system,and they are connected compactly as well as working stably. The main design of the JS1000 concrete mixer is the mixing device, the drive system, the feeding system and the unloading system, including scheme determination of the mixing device, the design calculation of mixer shaft, the check of bearing, the design of the feeding system and hydraulic unloading. Eventually, assembly drawing and parts drawings will be completed.KEY WORDS: concrete mixer, forced horizontal shafts,mixing equipment, drive system,feeding system┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊目录第一章绪论 (1)1.1课题研究背景 (1)1.2混凝土搅拌技术 (1)1.2.1搅拌机理 (1)1.2.2混凝土搅拌站设备 (2)1.3搅拌机概述 (3)1.3.1 国外搅拌机发展水平及现状 (3)1.3.2国内搅拌机发展水平及现状 (3)1.3.3搅拌机发展趋势 (4)1.4课题设计的主要内容 (4)第二章总体方案的确定 (5)2.1不同厂家同型号产品方案归纳 (5)2.2不同厂家JS1000主要参数对比分析 (7)2.3总体方案确定 (8)2.3.1搅拌装置方案 (8)2.3.2搅拌叶片方案 (11)2.3.3传动方案及同步方式 (12)2.3.4上料方案 (13)2.3.5卸料门运动方案及卸料方式 (14)第三章搅拌装置结构设计 (18)3.1搅拌装置组成 (18)3.1.1搅拌筒 (18)3.1.2搅拌轴 (19)3.1.3搅拌臂 (19)3.1.4搅拌叶片 (19)3.1.5轴端密封和支承 (19)3.2搅拌装置基本参数 (19)3.2.1生产率 (20)3.2.2出料容积 (20)┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊3.2.3搅拌器工作循环时间 (20)3.2.4搅拌器尺寸参数计算 (21)3.2.5部分参数经验公式 (23)3.3搅拌轴设计 (23)3.3.1搅拌轴转速 (23)3.3.2搅拌轴结构设计原则 (25)3.3.3搅拌轴尺寸确定 (25)3.3.4搅拌轴的挠度计算与校核 (27)3.3.5搅拌轴按弯扭合成强度条件校核 (28)3.4搅拌臂设计 (30)3.4.1搅拌臂尺寸参数计算 (30)3.4.2搅拌臂排列关系 (31)3.5搅拌叶片设计 (32)3.5.1叶片结构尺寸 (32)3.5.2叶片安装角 (33)3.6密封与支承结构的设计 (36)3.6.1密封装置设计 (36)3.6.2轴承的设计与校核 (37)第四章传动系统设计 (40)4.1电动机确定 (40)4.1.1电动机功率计算公式 (40)4.1.2部分厂家同型号搅拌机所选的电动机 (41)4.1.3电动机参数 (42)4.1.4电动机底架的设计 (42)4.2传动比分配 (43)4.2.1总传动比 (43)4.2.2减速机的传动比 (43)4.3减速机的选型 (43)4.4联轴器选型 (44)4.5 带传动的设计计算 (45)4.5.1带传动类型确定 (45)4.5.2.V带的设计计算 (46)┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊第五章上料与卸料系统 (48)5.1上料系统工作原理 (48)5.2上料系统结构设计 (49)5.2.1卷扬机构 (49)5.2.2上料架结构 (49)5.2.3料斗结构 (50)5.2.4台板 (52)5.3卸料系统工作原理 (53)5.4卸料门的结构形式 (53)5.5液压卸料系统 (54)结论 (55)致谢 (56)主要参考文献 (57)┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊第一章绪论1.1课题研究背景经济全球化以来,我国经济腾飞,从而导致了城市化进程的加快,随着基础设施的大规模建设,工程施工中不可缺少的一种商品——商品混凝土的需求量就在不断增加,混凝土作为当今最大宗的建筑材料,广泛地用于工业、农业、交通、国防、水利、市政和民用等基本建设工程中,在国民经济中占有重要地位。
轴封轴封是搅拌设备的重要组成部分。
轴封属于动密封,其作用是保证搅拌设备内处于一定的正压或真空状态,防止被搅拌的物料逸出和杂质的渗入,因而不是所有的转轴密封型式都能用于搅拌设备。
在搅拌设备中,最常用的轴封有液封、填料密封和机械密封等。
4.1 液封当搅拌设备内工作压力为常压,轴封的作用仅是为了防止灰尘与杂质进人内部工作介质,或者隔离工作介质与搅拌设备周围的环境介质相互接触时,可选用液封。
液封结构简单,没有与传动轴直接接触引起摩擦的零件。
但为保证圆柱形壳体或静止元件与旋转元件之间的间隙符合设计要求,其密封部位零件的加工、安装要求较高。
同时,受结构特点的影响,液封的使用范围较窄。
一般适用于工作介质为非易燃易爆或毒性程度轻度危害,设备内工作压力等于大气压力,且温度范围在20-80℃的场合。
值得注意的是,液体工作介质不可充满搅拌设备;而且封液应尽可能采用搅拌设备内工作介质,或与工作介质不发生物理化学作用的中性液体,同时必须极少挥发且不污染大气。
4.2填料密封是搅拌设备较早采用的一种转轴密封结构,具有结构简单、制造要求低、维护保养方便等优点。
但其填料易磨损,密封可靠性较差,一般只适用于常压或低压低转速、非腐蚀性和弱腐蚀性介质,并允许定期维护的搅拌设备。
4.3 机械密封机械密封是把转轴的密封面从轴向改为径向,通过动环和静环两个端面的相互贴合,并作相对运动达到密封的装置,又称端面密封。
机械密封的泄漏率低,密封性能可靠,功耗小,使用寿命长,无需经常维修,且能满足生产过程自动化和高温、低温、高压、高真空、高速以及各种易燃、易爆、腐蚀性、磨蚀性介质和含固体颗粒介质的密封要求。
与填料密封相比,机械密封具有以下优点:1、密封可靠,在长期运转中密封状态稳定,泄漏量很小,其泄漏量仅为填料密封的1%左右;2、使用寿命长,在油、水介质中一般可达1-2年或更长,在化工介质中一般能工作半年以上;3、摩擦功率消耗低,其摩擦功率仅为填料密封的10-50%;4、轴或轴套基本上不磨损;5、维修周期长,端面磨损后可自动补偿,一般情况下不需经常性维修;6、抗振性好,对旋转轴的振动、偏摆以及轴对密封腔的偏斜不敏感;7、适用范围广,能用于高温、低温、高压、真空、不同旋转频率,以及各种腐蚀性介质和含磨粒介质的密封。
摘要搅拌设备使用历史悠久,应用范围广,大量应用于化工、石化、轻工、医药、食品、采矿、造纸、冶金等行业中。
搅拌设备可以从各种不同角度进行分类,如按照搅拌装置的安装形式简单分为立式和卧式,其中卧式主要是指搅拌容器轴线与搅拌器回转轴线都处于水平位置。
本课题在国内外搅拌器的研究与发展的基础上,设计了一种新的带有搅拌和振动排料功能的卧式搅拌器结构设计方案以进行用于食品工业的面粉搅拌操作.该卧式搅拌器具有两条传动系统,第一条主传动系统采用V带和齿轮传动实现搅拌操作,第二条传动系统采用多楔带和凸轮组合传动实现搅拌箱体的振动运动.本文对卧式搅拌器的基本结构、基本尺寸进行了详细设计,并利用PRO/ENGINEER对搅拌器结构进行三维建模和运动仿真,以便更直观地展现设计思想和进行结构分析;然后,对设计零件进行了分析校核,保证搅拌器的可靠运行。
关键词:卧式搅拌器;混合设备;面粉加工;食品工业ABSTRACTMixing equipment has been used long time ago, and applied widely in the traditional processing industry such as chemical,petrochemical,light industry, medical industry,food, mining, papermaking,metallurgy and so on. Mixing equipment can be classified by many means。
Horizontal type and vertical type can be classified according to the shaft seal’s fixing method。
Of the two type,the horizontal type means both the tank's axes and the shaft's spin axis are horizontal。
叶后掠式搅拌器的结构设计及应用南凤娟,(化部第一设计院),—●—_-_一三叶后掠式搅拌器, 是目前台成塑料及其他高分子化工生产中大型聚台釜或反应器所采用的一种新型高效搅拌 器其特点为:1,前切力较大,足以使单体物料分散为细滴.并能均匀的悬浮于液相中.便于聚台 而不致附聚堆积成块.2,搅拌液流循环特性好,能使液体同时产生轴向和径向运动.以使液体进 行充分的循环来消除温度的不均匀性.传热效果好.3,排出量大.釜内液相循环每分钟可达 5~ 10 次.传质效果好,能使釜内反应均匀一致.4,能适应聚台操作过程中比重的变化 5,能以一层搅 拌桨叶代替数层其他型式的浆叶.使结构简单化.维修方便.由于三叶后掠搅拌器具备以上特 点,所以它的使用和发展愈来愈广泛本文结台 1984 年在天津光明油漆厂丙烯酸树脂工程中的 使用.筒谈它的结构设计和应用如下:一,三叶后掠式搅拌器在国内外的发展和应用此搅拌器 最早是美国法武都拉公司开发(所以亦称法武都拉型或法多拉型()搅拌器),并伴随着聚氯乙 烯工业的发展而闻名.在聚台过程粘壁问题是一个很突出的问题.因此美国法武都拉公司对三 叶后掠涡轮搅拌器进行研究,并在四十年代和搪玻璃反应器配台研究.首先在塑料生产中应用. 同时也促进了搪玻璃反应器向大型化发展,因为这种搅拌器一】 一阳;/.能在大型容器中产生 2 较好的搅拌效果日本神钢法武都拉公司已可以生产 100 搪玻璃反应器.早在 1954 年.日本神户 制钢所与美国法武都拉公司台作建立神钢法武都拉公司,继续对此搅拌器进行研制.并在反应 器中应用,由于该型搅拌器对粘性物料有较大的适应性.单位动力所排出的液体比平板涡轮搅 拌器大而功耗小.所以研究和应用该叶型具有极大的实际意义.西德/公司在 200 的聚台釜中应 用了该型搅拌器,并放大到 400 的釜中应用.美国公司,公司.法国[公司等都有相当多的研究日 率阪和化工机械株式会社,池袋珐郎工业服务公司制定出了系列标准图罗马尼亚国家标准 5454—76 也制定了三叶后掠式叶轮标准以上国家在这方面卓有成效的工作,对三叶后掠式搅 拌器的发展和扩大应用起到了重要的促进作用.而我国对这种新型搅拌器也正进行研究和探 讨,并在搪磁釜中应用,制定了搪玻璃叶轮的标准系列 5—279—793..一 500(略).北京化工学院 传递教研组对不同截面的叶片进行了试验.可以说为其他材质的际准系列图的制定打好了基 础.我院 1985 年也准备作系列图进行了调查(当时我也参加了这一工作.但由于某种原因暂停). 我相信随着化工原料生产的不断发展.这拜搅拌器的应用会更加广泛.所以制定出这种新型搅 拌器的标准系列是非常必要的(由于近几年无直接搞设计是否已有系列图不详).二,适用范围, 在含有固体颗粒目以下.浓度不大于 5.粘度在厘泊以下时的一些聚合反立中均可采用.2,转数 在 8~150 转/分.一般用的线速度在米/秒以下.最高可迭 4~5 米/秒(与挡板配合使用效果更为 显着).3,液面的高度与釜内径的比值即/:=1.0~1.5 的范围内效果最佳这也就是说在矮胖型的 容器内更适用在以上的范围内对于某些悬浮,传热,混台,气体吸收,浮化等搅拌操作过程中可 应用在靠近部分液如配有能加大为湍流消失.三,流体特性四,凡阿足寸参见图 2./一 0.5~ 0.671/=6~0/一 0.4/一 2 可用 2.5;50.8=0;0 或 0:09 根据搅拌过程中的需要而定,釜内介质以传 热为控制因素时.为了釜内舟质各点的温度均匀,可取=0 国外准荐值).可加大轴向循环.当釜内 介质牯度为控制因素时.=0:(0.325~0.335)或一(0.34~0.324)』当桨叶中心线通过搅拌轴中心 线时如图 3.图图 3 图 4 一 0.326 一 0.337 见图 4(由于装叶的上挠角一 15.故:'-5.的关系式)当浆 叶 外 表 面 通 过 搅 拌 轴 的 中 心 时 一 50 ~ 150( 可 到 160. 过 大 不 利 于 固 体 悬 浮 小 釜 使 用 值).=300(可到 530,过大不利于固体悬浮大釜使用值)符号说明一釜(槽)体内径,[][11.;一釜体 内液面的高度,1[1;一搅拌桨叶组装后的直径.;一不考虑偏转角的最大直径,][];一搅拌桨叶的 宽度.;搅拌桨叶的厚度,;一搅拌桨叶的弯曲半径.后掠角(即搅拌叶外表面端点与中心连线和 通过该点切线方同的夹角);上挠角;8--搅拌叶厚度的中心线与搅拌轴中心线的夹角;桨叶距釜 底的距离.[]]五,搅拌桨÷断面形状对功率的影响采用的叶片断面有四种:矩千臣,长圆形,椭圆 形,圆形在达到同样循环次数情况下.圆形最省功率,其次是椭圆千臣和长圆形.最费功率的则 为矩形从下表可看出此表中数据为某单位试验结果.供参考 1 要形状囝 0 兰试验证明:以上叶 片截面高度相同,搅拌直径相同,搅拌效果基本相同至于选用何种截面的叶片.要综合考虑各方面因素,比如;材质利用,制造方便,结构紧凑合理等一】4 一六,搅拌器结构设誉例:功率计算 和其他搅拌器计算相同(略)搅拌器的工艺条件如下:温度一 170"搅拌功率一 7.干瓦搅拌转数 一 85 转/分 0 逆时针旋转-搅拌釜体内径=1600 搅拌直径一 960 材质为!89 搅拌介质粘度为 800 厘泊为固体悬浮物.要求醋丙聚合时釜内的温度要均匀.根据以上条件选用三叶后掠式搅拌浆 叶较为合适.几何尺寸按三叶后掠式搅拌器推荐的进行设计;断面的确定从制造简单焊接方便 上看属矩形.但由于材霞为不锈钢,价格贵.取厚锕板制造不经济,所以选用不锈钢管压扁制造. 用钢管压成椭圆形难度大,圆截面用的钢管直径加大而叶架的直径加大,影响搅拌效果.所以 选用长圆形截面为最好.口一 50.8 一 5.—600 一(0.5~0.67)一 8001072();=960 符台上述要求 6 一一~96()16096(.一=一~取;20()一导或一 6.或 48()依据和的尺寸选用 4'95×4 的不锈钢管/, 制造桨叶(见图 5)管子中径的周长—'95—4);285.7()设压扁后管子的直径:70()压扁后的圆半径 为.圆的周长一一 2=285.7—2×70=145.7()—一一一 46.4()一 464—4—50.4()取一 50 符合要求 说明设的对(若第一次不对可再假设)叶架的确定.搅拌轴一 65搅拌器系列 直叶圆盘蜗轮搅拌器 直叶圆盘蜗轮搅拌器 圆盘蜗轮搅拌器 圆盘蜗轮搅拌器斜叶式搅拌器 斜叶式搅拌器消泡式搅拌器 消泡式搅拌器弯叶后掠式搅拌器 弯叶后掠式搅拌器搪玻璃锚式搅拌器 搪玻璃锚式搅拌器四叶可拆开启式搅拌 器 四叶可拆开启式搅拌 器四斜叶搅拌器 四斜叶搅拌器。
超声波搅拌机原理与结构搅拌机工作原理超声波液体搅拌器由两部分构成:超声波搅拌系统和超声波驱动系统(超声波发生器)。
超声波液体搅拌器紧要包括超声波换能器、超声波变幅杆、超声波工具头用于产生超声波振动,并将此振动能量向液体中发射。
超声波换能器将输入的电能转换成机械能表现形式是换能器在纵向作来回伸缩运动,振幅一般在几个微米。
超声波变幅杆由于超声波换能器产生的振幅不够需要连接超声波变幅杆,按设计需要放大振幅,隔离反应溶液和超声波换能器,同时也起到固定整个超声波振动设备的作用。
超声波工具头与变幅杆相连,变幅杆将超声波能量振动传递给工具头,再由工具头将超声波能量发射到化学反应液体中。
超声波发生器产生高频高功率电流,驱动超声波振动部件工作。
超声波发生器的功率可调,以适应不同的工作状态。
发生器内还可依据需要集成有时序掌控器,设定掌控超声波发振时间和间歇时间。
电动搅拌机的型号解释近期有个别电动搅拌器用户在电话报修时,总是只描述了搅拌器大约的异常情况,没有说明实在的搅拌器型号;所以,这一报修方法是错误的,虽然有很多电动搅拌器可能在外观、尺寸、功能上存在很多相同点;但是,一般厂家在搅拌器生产时都会依据型号的不同,在一些零配件选用上会有差异,例如,MY3000—6N电动搅拌器和MY3000—6B搅拌器,这两种搅拌器在外观设计、尺寸上看似一样,但其实它的配件选用是不一样的,所以我建议大家,后续,在搅拌器报时,请确定先搞清楚搅拌器的实在型号,便利厂家予以适时处理。
那么,一般我们要怎么查看电动搅拌器型号呢?查看电动搅拌器型号方法:1、第一种方法也是比较简单的方法就是“看出厂标签”,MY—6系列的全部搅拌器在仪器左边都会张贴明确搅拌器出厂标签,包括搅拌器型号、出厂时间、出厂编号、厂家情况等信息。
2、第二种方法就是,”看使用说明书”,MY—6的每一款搅拌器都会有对应型号的使用说明书,用户可依据封面第一页便可得知。
3、第三种方法:“看售后保修服务单”,一般保修务单除了为后期保修证明起到紧要的作用外,其实在单子上面都会有明确的产品名称、型号等信息。
第二节搅拌桨叶的设计和选型一、搅拌机结构与组成组成:搅拌器电动机减速器容器排料管挡板适用物料:低粘度物料二、混合机理利用低粘度物料流动性好的特性实现混合1、对流混合在搅拌容器中,通过搅拌器的旋转把机械能传给液体物料造成液体的流动,属强制对流。
包括两种形式:(1)主体对流:搅拌器带动物料大范围的循环流动(2)涡流对流:旋涡的对流运动液体层界面强烈剪切旋涡扩散主体对流宏观混合涡流对流2、分子扩散混合液体分子间的运动微观混合作用:形成液体分子间的均匀分布对流混合可提高分子扩散混合3、剪切混合剪切混合:搅拌桨直接与物料作用,把物料撕成越来越薄的薄层,达到混合的目的。
高粘度过物料混合过程,主要是剪切作用。
电动机减速器搅拌器容器排料管三、混合效果的度量 1、调匀度I设A 、B 两种液体,各取体积vA 及vB 置于一容器中,则容器内液体A 的平均体积浓度CA0为: (理论值)经过搅拌后,在容器各处取样分析实际体积浓度CA ,比较CA0 、CA , 若各处 CA0=CA 则表明搅拌均匀若各处 CA0=CA 则表明搅拌尚不均匀,偏离越大,均匀程度越差。
引入调匀度衡量样品与均匀状态的偏离程度 定义某液体的调匀度 I 为:(当样品中CA < CA0时)或 (当样品中CA > CA0时)显然 I ≤1若取m 个样品,则该样品的平均调匀度为当混合均匀时2、混合尺度设有A 、B 两种液体混合后达到微粒均布状态。
BA A A V V V C +=00A A C C I =011A AC C I --=m I I I I m+⋯⋯++=-211=-IA BAB (a)(b)混合尺度分设备尺度微团尺度分子尺度对上述两种状态:在设备尺度上:两者都是均匀的(宏观均匀状态)在微团尺度上:两者具有不同的均匀度。
在分子尺度上:两者都是不均匀的(当微团消失,称分子尺度的均匀或微观均匀)如取样尺寸远大于微团尺寸,则两种状态的平均调匀度接近于己于1。