高二物理动能定理 同步练习 人教版
- 格式:doc
- 大小:144.00 KB
- 文档页数:6
人教版(2019)物理必修第二册同步练习8.3动能和动能定理一、单选题1.下列对功和动能等关系的理解正确的是( )A.所有外力做功的代数和为负值,物体的动能就减少B.物体的动能保持不变,则该物体所受合外力一定为零C.如果一个物体所受的合外力不为零,则合外力对物体必做功,物体的动能一定要变化D.只要物体克服阻力做功,它的动能就减少2.一个25kg的小孩从高度为3.0m的滑梯顶端由静止开始滑下,滑到底端时的速度为2.0m/s。
取2,g m s10/关于力对小孩做的功,以下结果正确的是( )A.支持力做功50JB.阻力做功500JC.重力做功500JD.合外力做功50J3.质量为m的小球被系在轻绳的一端,在竖直平面内做半径为R的圆周运动,运动过程中小球受到空气阻力的作用,设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg,此后小球继续做运动,经过半个圆周恰能通过最高点,则在此过程中小球克服空气阻力所做的功为( )A. 14mgR B.13mgR C.12mgR D. mgR4.物体在合外力作用下做直线运动的v t 图象如图所示.下列表述正确的是( )A.在0~1s内,合外力做正功B.在0~2s内,合外力总是做负功C.在1~2s内,合外力不做功D.在0~3s内,合外力总是做正功二、多选题5.一质量为1 kg的质点静止于光滑水平面上,从t=0时起,第1 s内受到2 N的水平外力作用,第2 s内受到同方向的1 N的外力作用。
下列判断正确的是( )A.0~2 s内外力的平均功率是94WB.第2 s内外力所做的功是54JC.第2 s末外力的瞬时功率最大D.第1 s内与第2 s内质点动能增加量的比值是456.人通过滑轮将质量为m 的物体,沿粗糙的斜面由静止开始匀加速地由底端拉上斜面,物体上升的高度为h ,到达斜面顶端的速度为v ,如图所示。
则在此过程中( )A.物体所受的合外力做功为212mgh mv + B.物体所受的合外力做功为212mv C.人对物体做的功为mgh D.人对物体做的功大于mgh 三、计算题7.如图所示,质量10m kg =的物体放在水平地面上,物体与地面间的动摩擦因数0.4μ=,g 取102/? m s ,今用50F N =的水平恒力作用于物体上,使物体由静止开始做匀加速直线运动,经时间8t s =后,撤去F .求:1.力所做的功;2.8s 末物体的动能;3.物体从开始运动到最终静止的过程中克服摩擦力所做的功.8.如图所示,粗糙水平轨道AB与半径为R的光滑半圆形轨道BC相切于B点,现有质量为m的小物块(可看做质点)以初速度06v gR,从A点开始向右运动,并进入半圆形轨道,若小物块恰好能到达半圆形轨道的最高点C,最终又落于水平轨道上的A点,重力加速度为g,求:1.小物块落到水平轨道上的A点时速度的大小v A;2.水平轨道与小物块间的动摩擦因数μ。
高二物理动能定理试题答案及解析1.质量为m的物体从静止以的加速度竖直上升h,关于该过程下列说法中正确的是()A.物体的机械能增加B.物体的机械能减小C.重力对物体做功D.物体的动能增加【答案】D【解析】物体从静止以的加速度竖直上升h,重力做了,故重力势能增加为,故A、C选项错误;牛顿第二定律,解得,故F做的功为,故物体的机械能增加了,B选项错误;由动能定理知,解得物体的动能增加,故D选项正确。
【考点】牛顿第二定律动能定理重力做功与重力势能的关系机械能的电场加速后从中心进入一个平行板2.带电量为Q,质量为m的原子核由静止开始经电压为U1电容器,进入时速度和电容器中的场强方向垂直。
已知:电容器的极板长为L,极板间距为d,,重力不计,求:两极板的电压为U2(1)经过加速电场后的速度;(2)离开电容器电场时的偏转量。
【答案】(1);(2)【解析】试题分析: (1)粒子在加速电场加速后,由动能定理得速度为(2)进入偏转电场,粒子在平行于板面的方向上做匀速运动在垂直于板面的方向做匀加速直线运动,加速度因此离开电容器电场时的偏转。
【考点】动能定理,带电粒子在匀强电场中的运动3.如图所示,在点电荷Q的电场中,已知a、b两点在同一等势面上,c、d两点在同一等势面上,无穷远处电势为零。
甲、乙两个带粒子经过a点时动能相同,甲粒子的运动轨迹为acb,乙粒子的运动轨迹为adb.由此可以判定:A.甲粒子经过c点与乙粒子经过d点时的动能相等B.甲、乙两粒子带同种电荷C.甲粒子经过b点时的动能小于乙粒子经过b点时的动能D.甲粒子经过c点时的电势能小于乙粒子经过d点时的电势能【答案】 D【解析】试题分析: ac两点和ad两点之间的电势差相等,因为两电荷的电量大小未知,则无法比较电场力做功,根据动能定理,无法比较粒子在c点和d点的动能大小.故A错误;根据轨迹的弯曲知,乙电荷受到的斥力,甲电荷受到的是引力.所以两粒子的电性相反.故B错误;a到b,不管沿哪一路径,电场力做功为零,动能不变.故C错误;因为甲粒子受到的引力作用,电场力做正功,电势能减少,乙粒子受到的是斥力作用,电场力做负功,电势能增加,所以甲粒子经过c点时的电势能小于乙粒子经过d点时的电势能.故D正确;【考点】等势面;动能定理的应用;电势能4.如图所示,粗糙程度均匀的绝缘斜面下方O点处有一正点电荷,带负电的小物体以初速度从M点沿斜面上滑,到达N点时速度为零,然后下滑回到M点,此时速度为.若小物体电荷量保持不变,OM=ON,则 ( )A.小物体上升的最大高度为B.从N到M的过程中,小物体的电势能逐渐减小C.从M到N的过程中,电场力对小物体先做负功后做正功D.从N到M的过程中,小物体受到的摩擦力和电场力均是先减小后增大.【答案】A【解析】对小物体,从M到N再到M,由动能定理可知:,从M到N,由动能定理可知:,联立解得:,故选项A正确;从N到M,电场力对小球先做正功再做负功,电势能先减小再增大,故选项BC错误;从N到M,电场力先增大再减小,故选项D错误.【考点】本题考查动能定理的应用、摩擦力及电场力做功的特点,涉及能量变化的题目一般都要优先考虑动能定理的应用,并要求学生能明确几种特殊力做功的特点,如摩擦力、电场力、洛仑兹力等.5.如图所示,光滑绝缘杆竖直放置,它与以正点电荷Q为圆心的某一圆周交于B、C两点,质量为m,带电量为的有孔小球从杆上A点无初速下滑,已知q<<Q,AB=h,小球滑到B点时速度大小为,则小球从A运动到B的过程中,电场力做的功为:______________;A、C 两点间电势差为 ____________.【答案】;【解析】试题分析: 设小球由A到B电场力所做的功为WAB ,由动能定理得mgh+WAB=解得:WAB=由于B、C在以Q为圆心的圆周上,所以φB =φC,所以UAC=UAB==【考点】动能定理的应用,,电势能。
2018-2019学年人教版高中物理必修二7.7 动能动能定理同步练习(共20题;共20分)1.(1分)关于物体的动能,下列说法正确的是()A.质量大的物体,动能一定大B.速度大的物体,动能一定大C.速度方向变化,动能一定变化D.物体的质量不变,速度变为原来的两倍,动能将变为原来的四倍2.(1分)改变汽车的质量和速度,都能使汽车的动能发生改变,在下列几种情况下,汽车的动能可以变为原来4倍的是()A.质量不变,速度增大到原来2倍B.速度不变,质量增大到原来2倍C.质量减半,速度增大到原来4倍D.速度减半,质量增大到原来4倍3.(1分)某物体做变速直线运动,在t1时刻速率为v,在t2时刻速率为nv,则在t2时刻的动能是t1时刻的()A.n倍B.n/2倍C.n2倍D.n2/4倍4.(1分)子弹以水平速度v射入静止在光滑水平面上的木块M,并留在其中,则()A.子弹克服阻力做功与木块获得的动能相等B.阻力对子弹做功小于子弹动能的减少C.子弹克服阻力做功与子弹对木块做功相等D.子弹克服阻力做功大于子弹对木块做功5.(1分)下列关于运动物体所受合外力做功和动能变化的关系正确的是()A.如果物体所受合外力为零,则合外力对物体做的功一定为零B.如果合外力对物体所做的功为零,则合外力一定为零C.物体在合外力作用下做变速运动,动能一定发生变化D.物体的动能不变,所受合外力一定为零6.(1分)关于做功和物体动能变化的关系,正确的是()A.只有动力对物体做功时,物体动能可能减少B.物体克服阻力做功时,它的动能一定减少C.动力和阻力都对物体做功,物体的动能一定变化D.外力对物体做功的代数和等于物体的末动能和初动能之差7.(1分)用起重机将质量为m的物体匀速地吊起一段距离,那么作用在物体上各力的做功情况应该是下面的哪种说法()A.重力做正功,拉力做负功,合力做功为零B.重力做负功,拉力做正功,合力做正功C.重力做负功,拉力做正功,合力做功为零D.重力不做功,拉力做正功,合力做正功8.(1分)若物体在运动过程中受到的合外力不为零,则()A.物体的动能不可能总是不变的B.物体的加速度一定变化C.物体的速度方向一定变化D.物体所受合外力做的功可能为零9.(1分)质量不等,但具有相同初动能的两个物体,在摩擦系数相同的水平地面上滑行,直到停止,则()A.质量大的物体滑行的距离大B.质量小的物体滑行的距离大C.它们滑行的距离一样大D.它们克服摩擦力所做的功一样多10.(1分)两个材料相同的物体,甲的质量大于乙的质量,以相同的初动能在同一水平面上滑动,最后都静止,它们滑行的距离是()A.乙大B.甲大C.一样大D.无法比较11.(1分)质量为m的物体静止在粗糙的水平地面上,若物体受水平力F的作用从静止起通过位移s时的动能为E1,当物体受水平力2F作用,从静止开始通过相同位移s,它的动能为E2,则()A.E2=E1B.E2=2 E1C.E2>E1D.E1<E2<2 E112.(1分)质量为m,速度为v的子弹,能射入固定的木板L深。
随堂小练〔16〕动能和动能定理1、关于动能的理解,如下说法错误的答案是......()A.但凡运动的物体都具有动能B.动能不变的物体,一定处于平衡状态C.重力势能可以为负值,动能不可以为负值D.一定质量的物体,动能变化时,速度一定变化,但速度变化时,动能不一定变化2、某同学在练习足球时,将足球朝竖直的墙壁踢出。
假设足球的质量为m=0.5kg、足球与墙壁碰撞的瞬间速度大小为v=5m/s,如果以足球被踢出的速度方向为正,足球与墙壁碰后以等大的速度反弹。
如此( )A.速度的变化量为-10m/sB.速度的变化量为10m/sC.动能的变化量为25JD.动能的变化量为03、从地面竖直向上抛出一只小球,小球运动一段时间后落回地面.忽略空气阻力,该过程中小E与时间t的关系图象是( )球的动能kA. B.C. D.4、物体在做平抛运动的过程中,始终不变的是〔〕A.物体的速度B.物体的加速度C.物体的动能D.物体竖直向下的分速度5、一质点开始时做匀速直线运动,从某时刻起受到一恒力F作用。
此后,该质点的动能可能〔〕A.—直增大B.先逐渐减小至零,再逐渐增大C.先逐渐增大至某一最大值,再逐渐减小D.先逐渐减小至某一非零的最小值,再逐渐增大6、关于物体所受合外力做功和动能变化的关系,如下说法正确的答案是〔〕A.如果物体所受合外力为零,如此合外力对物体所做的功一定为零B.如果合外力对物体所做的功为零,如此合外力一定为零C.物体在合外力作用下做变速运动,动能一定发生变化D.如果合外力对物体所做的功不为零,如此动能一定变化7、如下列图,质量m=1kg、长L=0.8m的均匀矩形薄板静止在水平桌面上,其右端与桌子边缘相平。
板与桌面间的动摩擦因数为µ=0.4。
现用F=5N的水平力向右推薄板,使它翻下桌子,力F的功至少为〔g取210m/s)〔〕A.18、如下列图,一木块沿着高度一样、倾角不同的三个斜面由顶端静止滑下,假设木块与各斜面间的动摩擦因数都一样,如此滑到底端的动能大小关系是( )A.倾角大的动能最大B.倾角小的动能最大C.倾角等于45°的动能最大D.三者的动能一样大9、篮球赛非常精彩,吸引了众多观众.经常有这样的场面:在临终场前0.1s,运动员把球投出且准确命中,获得比赛的胜利.如果运动员投篮的过程中对篮球做的功为W,出手高度(相对地面)为h1,篮筐距地面高度为h2,球的质量为m,空气阻力不计.如下说法中正确的答案是( )A.篮球出手时的动能为W+mgh1B.篮球进框时的动能为W+mgh1-mgh2C.篮球从出手到进框的过程中,其重力势能增加了mgh1-mgh2D.篮球从出手到进框的过程中,重力对它做的功为mgh 2-mgh 110、质量为m 的物体放在水平面上,它与水平面间的动摩擦因数为μ,重力加速度为g 。
完整版)高中物理动能定理典型练习题(含答案)1.正确答案是D。
对于一个物体来说,只有在速度大小(速率)发生变化时,它的动能才会改变。
速度的变化是一个矢量,它可以完全由于速度方向的变化而引起,例如匀速圆周运动。
速度变化的快慢是指加速度,加速度大小与速度大小之间没有必然的联系。
2.一个物体从高度为H的地方自由落体,落到高度为h的沙坑中停止。
假设物体的质量为m,重力加速度为g,根据动能定理,当物体速度为v时,mgH = 1/2mv^2,因此v =sqrt(2gH)。
在沙坑中,重力做正功,阻力做负功,根据动能定理,1/2mv^2 - Fh = mgh,其中F为物体在沙坑中受到的平均阻力。
解方程得到F = (H + h)mg / (gh)。
3.一个物体沿一曲面从A点无初速度滑下,滑至曲面的最低点B时,下滑高度为5m,物体质量为1kg,速度为6m/s。
假设物体在滑行过程中克服了摩擦力,设摩擦力为F,根据动能定理,mgh - W = 1/2mv^2,其中W为物体克服阻力所做的功。
解方程得到W = 32J。
课后创新演练:1.滑块的质量为1kg,初速度为4m/s,水平力方向向左,大小未知。
在一段时间内,水平力方向变为向右,大小不变为未知。
根据动能定理,水平力所做的功等于滑块动能的变化量,即1/2mv^2 - 1/2mu^2,其中v和u分别为滑块在水平力作用下的末速度和初速度。
根据题意,v = u = 4m/s,解方程得到水平力所做的功为16J。
2.两个物体的质量之比为1:3,高度之比也为1:3.根据动能定理,物体的动能等于1/2mv^2,其中v为物体的速度。
假设两个物体在落地时的速度分别为v1和v2,则v1 : v2 =sqrt(h1) : sqrt(h2),其中h1和h2分别为两个物体的高度。
因此,v1^2 : v2^2 = h1 : h2 = 1 : 9,即它们落地时的动能之比为1:9.3.物体沿长为L的光滑斜面下滑,速度达到末速度的一半时,物体沿斜面下滑的距离为L。
高中物理动能与动能定理及其解题技巧及练习题(含答案) 一、高中物理精讲专题测试动能与动能定理1.如图所示,圆弧轨道AB是在竖直平面内的14圆周,B点离地面的高度h=0.8m,该处切线是水平的,一质量为m=200g的小球(可视为质点)自A点由静止开始沿轨道下滑(不计小球与轨道间的摩擦及空气阻力),小球从B点水平飞出,最后落到水平地面上的D 点.已知小物块落地点D到C点的距离为x=4m,重力加速度为g=10m/s2.求:(1)圆弧轨道的半径(2)小球滑到B点时对轨道的压力.【答案】(1)圆弧轨道的半径是5m.(2)小球滑到B点时对轨道的压力为6N,方向竖直向下.【解析】(1)小球由B到D做平抛运动,有:h=12gt2x=v B t解得:10410/220.8Bgv x m sh==⨯=⨯A到B过程,由动能定理得:mgR=12mv B2-0解得轨道半径R=5m(2)在B点,由向心力公式得:2Bv N mg mR -=解得:N=6N根据牛顿第三定律,小球对轨道的压力N=N=6N,方向竖直向下点睛:解决本题的关键要分析小球的运动过程,把握每个过程和状态的物理规律,掌握圆周运动靠径向的合力提供向心力,运用运动的分解法进行研究平抛运动.2.如图所示,斜面ABC下端与光滑的圆弧轨道CDE相切于C,整个装置竖直固定,D是最低点,圆心角∠DOC=37°,E、B与圆心O等高,圆弧轨道半径R=0.30m,斜面长L=1.90m,AB部分光滑,BC部分粗糙.现有一个质量m=0.10kg的小物块P从斜面上端A点无初速下滑,物块P与斜面BC部分之间的动摩擦因数μ=0.75.取sin37°=0.6,cos37°=0.8,重力加速度g =10m/s 2,忽略空气阻力.求:(1)物块第一次通过C 点时的速度大小v C .(2)物块第一次通过D 点时受到轨道的支持力大小F D . (3)物块最终所处的位置.【答案】(1)32m/s (2)7.4N (3)0.35m 【解析】 【分析】由题中“斜面ABC 下端与光滑的圆弧轨道CDE 相切于C”可知,本题考查动能定理、圆周运动和机械能守恒,根据过程分析,运用动能定理、机械能守恒和牛顿第二定律可以解答. 【详解】(1)BC 长度tan 530.4m l R ==o ,由动能定理可得21()sin 372B mg L l mv -=o代入数据的32m/s B v =物块在BC 部分所受的摩擦力大小为cos370.60N f mg μ==o所受合力为sin 370F mg f =-=o故32m/s C B v v ==(2)设物块第一次通过D 点的速度为D v ,由动能定理得2211(1cos37)22D C mgR mv mv -=-o 有牛顿第二定律得2D D v F mg m R-= 联立解得7.4N D F =(3)物块每次通过BC 所损失的机械能为0.24J E fl ∆==物块在B 点的动能为212kB B E mv =解得0.9J kB E = 物块经过BC 次数0.9J=3.750.24Jn =设物块最终停在距离C 点x 处,可得()sin 37(3+)0mg L x f l x --=o代入数据可得0.35m x =3.如图所示,质量为m=1kg 的滑块,在水平力F 作用下静止在倾角为θ=30°的光滑斜面上,斜面的末端处与水平传送带相接(滑块经过此位置滑上皮带时无能量损失),传送带的运行速度为v 0=3m/s ,长为L=1.4m ,今将水平力撤去,当滑块滑到传送带右端C 时,恰好与传送带速度相同.滑块与传送带间的动摩擦因数μ=0.25,g=10m/s 2.求(1)水平作用力F 的大小; (2)滑块开始下滑的高度h ;(3)在第(2)问中若滑块滑上传送带时速度大于3m/s ,求滑块在传送带上滑行的整个过程中产生的热量Q . 【答案】(1) (2)0.1 m 或0.8 m (3)0.5 J【解析】 【分析】 【详解】解:(1)滑块受到水平推力F 、重力mg 和支持力F N 处于平衡,如图所示:水平推力①解得:②(2)设滑块从高为h处下滑,到达斜面底端速度为v下滑过程由机械能守恒有:,解得:③若滑块冲上传送带时的速度小于传送带速度,则滑块在带上由于受到向右的滑动摩擦力而做匀加速运动;根据动能定理有:④解得:⑤若滑块冲上传送带时的速度大于传送带的速度,则滑块由于受到向左的滑动摩擦力而做匀减速运动;根据动能定理有:⑥解得:⑦(3)设滑块在传送带上运动的时间为t,则t时间内传送带的位移:s=v0t由机械能守恒有:⑧⑨滑块相对传送带滑动的位移⑩相对滑动生成的热量⑪⑫4.如图所示,光滑水平平台AB与竖直光滑半圆轨道AC平滑连接,C点切线水平,长为L=4m的粗糙水平传送带BD与平台无缝对接。
物理动能与动能定理练习题20篇含解析一、高中物理精讲专题测试动能与动能定理1.如图所示,圆弧轨道AB 是在竖直平面内的14圆周,B 点离地面的高度h =0.8m ,该处切线是水平的,一质量为m =200g 的小球(可视为质点)自A 点由静止开始沿轨道下滑(不计小球与轨道间的摩擦及空气阻力),小球从B 点水平飞出,最后落到水平地面上的D 点.已知小物块落地点D 到C 点的距离为x =4m ,重力加速度为g =10m /s 2.求:(1)圆弧轨道的半径(2)小球滑到B 点时对轨道的压力. 【答案】(1)圆弧轨道的半径是5m .(2)小球滑到B 点时对轨道的压力为6N ,方向竖直向下. 【解析】(1)小球由B 到D 做平抛运动,有:h=12gt 2 x =v B t 解得: 10410/220.8B g v xm s h ==⨯=⨯ A 到B 过程,由动能定理得:mgR=12mv B 2-0 解得轨道半径 R =5m(2)在B 点,由向心力公式得:2Bv N mg m R-=解得:N =6N根据牛顿第三定律,小球对轨道的压力N =N =6N ,方向竖直向下点睛:解决本题的关键要分析小球的运动过程,把握每个过程和状态的物理规律,掌握圆周运动靠径向的合力提供向心力,运用运动的分解法进行研究平抛运动.2.如图所示,水平地面上一木板质量M =1 kg ,长度L =3.5 m ,木板右侧有一竖直固定的四分之一光滑圆弧轨道,轨道半径R =1 m ,最低点P 的切线与木板上表面相平.质量m =2 kg 的小滑块位于木板的左端,与木板一起向右滑动,并以0v 39m /s =的速度与圆弧轨道相碰,木板碰到轨道后立即停止,滑块沿木板冲上圆弧轨道,后又返回到木板上,最终滑离木板.已知滑块与木板上表面间的动摩擦因数μ1=0.2,木板与地面间的动摩擦因数μ2=0.1,g 取10 m/s 2.求: (1)滑块对P 点压力的大小;(2)滑块返回木板上时,木板的加速度大小; (3)滑块从返回木板到滑离木板所用的时间.【答案】(1)70 N (2)1 m/s 2 (3)1 s 【解析】 【分析】 【详解】(1)滑块在木板上滑动过程由动能定理得:-μ1mgL =12mv 2-1220mv 解得:v =5 m/s在P 点由牛顿第二定律得:F -mg =m 2v r解得:F =70 N由牛顿第三定律,滑块对P 点的压力大小是70 N (2)滑块对木板的摩擦力F f 1=μ1mg =4 N 地面对木板的摩擦力 F f 2=μ2(M +m )g =3 N对木板由牛顿第二定律得:F f 1-F f 2=Ma a =12f f F F M-=1 m/s 2(3)滑块滑上圆弧轨道运动的过程机械能守恒,故滑块再次滑上木板的速度等于v =5 m/s 对滑块有:(x +L )=vt -12μ1gt 2 对木板有:x =12at 2 解得:t =1 s 或t =73s(不合题意,舍去) 故本题答案是: (1)70 N (2)1 m/s 2 (3)1 s 【点睛】分析受力找到运动状态,结合运动学公式求解即可.3.如图所示,半径为R 的四分之三圆周轨道固定在竖直平面内,O 为圆轨道的圆心,D 为圆轨道的最高点,圆轨道内壁光滑,圆轨道右侧的水平面BC 与圆心等高.质量为m 的小球从离B 点高度为h 处(332R h R ≤≤)的A 点由静止开始下落,从B 点进入圆轨道,重力加速度为g ).(1)小球能否到达D 点?试通过计算说明; (2)求小球在最高点对轨道的压力范围;(3)通过计算说明小球从D 点飞出后能否落在水平面BC 上,若能,求落点与B 点水平距离d 的范围.【答案】(1)小球能到达D 点;(2)03F mg ≤'≤;(3)()()21221R d R ≤≤【解析】 【分析】 【详解】(1)当小球刚好通过最高点时应有:2Dmv mg R =由机械能守恒可得:()22Dmv mg h R -=联立解得32h R =,因为h 的取值范围为332R h R ≤≤,小球能到达D 点; (2)设小球在D 点受到的压力为F ,则2Dmv F mg R ='+ ()22Dmv mg h R ='- 联立并结合h 的取值范围332R h R ≤≤解得:03F mg ≤≤ 据牛顿第三定律得小球在最高点对轨道的压力范围为:03F mg ≤'≤(3)由(1)知在最高点D 速度至少为min D v gR =此时小球飞离D 后平抛,有:212R gt =min min D x v t =联立解得min 2x R R =>,故能落在水平面BC 上,当小球在最高点对轨道的压力为3mg 时,有:2max 3Dv mg mg m R+=解得max 2D v gR = 小球飞离D 后平抛212R gt =', max max D x v t ='联立解得max 22x R =故落点与B 点水平距离d 的范围为:()()21221R d R -≤≤-4.如图所示,倾角为θ=45°的粗糙平直导轨与半径为R 的光滑圆环轨道相切,切点为B ,整个轨道处在竖直平面内.一质量为m 的小滑块从导轨上离地面高为h=3R 的D 处无初速下滑进入圆环轨道.接着小滑块从圆环最高点C 水平飞出,恰好击中导轨上与圆心O 等高的P 点,不计空气阻力.求:(1)滑块运动到圆环最高点C 时的速度的大小; (2)滑块运动到圆环最低点时对圆环轨道压力的大小; (3)滑块在斜面轨道BD 间运动的过程中克服摩擦力做的功. 【答案】(1)Rg (2)6mg (3)12mgR 【解析】 【分析】 【详解】(1)小滑块从C 点飞出来做平抛运动,水平速度为v 0,竖直方向上:,水平方向上:,解得(2)小滑块在最低点时速度为v C 由机械能守恒定律得牛顿第二定律:由牛顿第三定律得:,方向竖直向下(3)从D 到最低点过程中,设DB 过程中克服摩擦力做功W 1,由动能定理h=3R【点睛】对滑块进行运动过程分析,要求滑块运动到圆环最低点时对圆环轨道压力的大小,我们要知道滑块运动到圆环最低点时的速度大小,小滑块从圆环最高点C 水平飞出,恰好击中导轨上与圆心O 等高的P 点,运用平抛运动规律结合几何关系求出最低点时速度.在对最低点运用牛顿第二定律求解.5.如图甲所示为某一玩具汽车的轨道,其部分轨道可抽象为图乙的模型.AB 和BD 为两段水平直轨道,竖直圆轨道与水平直轨道相切于B 点,D 点为水平直轨道与水平半圆轨道的切点.在某次游戏过程中,通过摇控装置使静止在A 点的小车以额定功率启动,当小车运动到B 点时关闭发动机并不再开启,测得小车运动到最高点C 时对轨道的压力大小5.6N N F =,小车通过水平半圆轨道时速率恒定.小车可视为质点,质量400g m =,额定功率20W P =,AB 长1m l =,BD 长0.75m s =,竖直圆轨道半径25cm R =,水平半圆轨道半径10cm r =.小车在两段水平直轨道所受的阻力大小均为4N f =,在竖直圆轨道和水平半圆轨道所受的阻力均忽略不计,重力加速度取210m/s g =.求:(1)小车运动到C 点时的速度大小; (2)小车在BD 段运动的时间; (3)水平半圆轨道对小车的作用力大小;(4)要使小车能通过水平半圆轨道,发动机开启的最短时间. 【答案】(16m/s ;(2)0.3s ;(3)42N .;(4)0.35s . 【解析】 【详解】(1)由小车在C 点受力得:2N c v F mg m R+=解得:C v =(2)从C 点到B 点,由动能定理得:2211222B C mgR mv mv =-解得:4m/s B v =小车在BD 段运动的加速度大小为:210m/s fa m== 由运动学公式:212B s v t at =-解得:0.3s t =(3)从B 点到D 点,由运动学公式:D B v v at =-,解得:1m/s D v =小车在水平半圆轨道所需的向心力大小:2Dn v F m r=,代入数据可得:4N n F =()222n F F mg =+水平半圆轨道对小车的作用力大小为:F =.(4)设小车恰能到C 点时的速度为1v ,对应发动机开启的时间为1t ,则:21v mg m R=211122Pt fl mgR mv --=解得10.325s t =.在此情况下从C 点到D 点,由动能定理得:211222D C mgR Fs mv mv -=-解得2 2.5Dv=-即小车无法到达D点.设小车恰能到D点时对应发动机开启的时间为2t,则有:() 20Pt f l s-+=,解得20.35st=.6.如图所示,两个半圆形的光滑细管道(管道内径远小于半圆形半径)在竖直平面内交叠,组成“S”字形通道.大半圆BC的半径R=0.9m,小半圆CD的半径r=0.7m.在“S”字形通道底部B连结一水平粗糙的细直管AB.一质量m=0.18kg的小球(可视为质点)从A点以V0=12m/s的速度向右进入直管道,经t1=0.5s 到达B点,在刚到达半圆轨道B点时,对B 点的压力为N B=21.8N.(取重力加速度g=10m/s2)求:(1)小球在B点的速度V B及小球与AB轨道的动摩擦因数μ ?(2)小球到达“S”字形通道的顶点D后,又经水平粗糙的细直管DE,从E点水平抛出,其水平射程S=3.2m.小球在E点的速度V E为多少?(3)求小球在到达C点后的瞬间,小球受到轨道的弹力大小为多少?方向如何?【答案】(1)V B=10m/s ,μ=0.4(2)V E=S/ t=4m/s(3) N C=18.25N 方向向上【解析】【详解】(1)根据牛顿第二定律有N B-mg=mV B2/RV B=10m/sa=(V0-V B)/t=4m/s2μmg=m a a =mg μ=0.4(2)H=2R+2r=3.2m2HgV E=S/ t=4m/s(3)N C- mg=mV C2/r1 2m V B2=2mg R+12m V C2N C=18.25N 方向向上7.如图所示,将一根弹簧和一个小圆环穿在水平细杆上,弹簧左端固定,右端与质量为m 的小圆环相接触,BC 和CD 是由细杆弯成的1/4圆弧,BC 分别与杆AB 和弧CD 相切,两圆弧的半径均为R .O 点为弹簧自由端的位置.整个轨道竖直放置,除OB 段粗糙外,其余部分均光滑.当弹簧的压缩量为d 时释放,小圆环弹出后恰好能到达C 点,返回水平杆时刚好与弹簧接触,停在O 点,(已知弹簧弹性势能与压缩量的平方成正比,小球通过B 处和C 处没有能量损失),问:(1)当为弹簧的压缩量为d 时,弹簧具有的弹性势能P E 是多少?(2)若将小圆环放置在弹簧的压缩量为2d 时释放,求小圆环到达最高点D 时,轨道所受到的作用力.(3)为了使物块能停在OB 的中点,弹簧应具有多大的弹性势能?【答案】(1)P 2E mgR =(2)9mg ,方向竖直向上(3)''P 1=()2E n mgR + (n =0、1、2) 【解析】 【分析】 【详解】(1)设小圆环与OB 之间的摩擦力为f ,OB=L ;从释放到回到O 点,由能量关系可知,当弹簧的压缩量为d 时,弹簧具有的弹性势能P 2E fL =小圆环从释放能到达C 点到,由能量关系可知0P E fL mgR --=可得:P 2E mgR =(2)因弹簧弹性势能与压缩量的平方成正比,则弹簧的压缩量为2d 时弹性势能为E P ´=4E P =8mgR小圆环到达最高点D 时:'2P D 122E mv mg R fL =+⋅+解得D 10v gR =在最高点D 时由牛顿第二定律:2Dv N mg m R+=解得N =9mg ,方向竖直向下由牛顿第三定律可知在D 点时轨道受到的作用为9mg ,方向竖直向上;(3)为了使物块能停在OB 的中点,则要求滑块到达的最高点为D 点,然后返回,则''P 23E fL mgR mgR ≤+=为了使物块能停在OB 的中点,同时还应该满足:''P 1(21)()22L E n f n mgR =+⋅=+ 则只能取n =0、1、2;8.如图为一水平传送带装置的示意图.紧绷的传送带AB 始终保持 v 0=5m/s 的恒定速率运行,AB 间的距离L 为8m .将一质量m =1kg 的小物块轻轻放在传送带上距A 点2m 处的P 点,小物块随传送带运动到B 点后恰好能冲上光滑圆弧轨道的最高点N .小物块与传送带间的动摩擦因数μ=0.5,重力加速度g =10 m/s 2.求:(1)该圆轨道的半径r ;(2)要使小物块能第一次滑上圆形轨道达到M 点,M 点为圆轨道右半侧上的点,该点高出B 点0.25 m ,且小物块在圆形轨道上不脱离轨道,求小物块放上传送带时距离A 点的位置范围.【答案】(1)0.5r m =(2)77?.5,05?.5m x m x m ≤≤≤≤ 【解析】 【分析】 【详解】试题分析:(1)小物块在传送带上匀加速运动的加速度25/a g m s μ==小物块与传送带共速时,所用的时间01v t s a== 运动的位移02.52v x m a∆==<L -2=6m 故小物块与传送带达到相同速度后以05/v m s =的速度匀速运动到B ,然后冲上光滑圆弧轨道恰好到达N 点,故有:2Nv mg m r=由机械能守恒定律得22011(2)22N mv mg r mv =+,解得0.5r m = (2)设在距A 点x 1处将小物块轻放在传送带上,恰能到达圆心右侧的M 点,由能量守恒得:1()mg L x mgh μ-= 代入数据解得17.5?x m = 设在距A 点x 2处将小物块轻放在传送带上,恰能到达右侧圆心高度,由能量守恒得:2()mg L x mgR μ-=代入数据解得27?x m =则:能到达圆心右侧的M 点,物块放在传送带上距A 点的距离范围;同理,只要过最高点N 同样也能过圆心右侧的M 点,由(1)可知38 2.5 5.5?x m m m -== 则:0 5.5x m ≤≤.故小物块放在传送带上放在传送带上距A 点的距离范围:77?.505?.5m x m x m ≤≤≤≤和 考点:考查了相对运动,能量守恒定律的综合应用9.如图所示,ABC 为竖直面内一固定轨道,AB 段是半径为R 的14光滑圆弧,水平段与圆弧轨道相切于B ,水平段BC 长度为L ,C 端固定一竖直挡板.一质量为m 的小物块自A 端从静止开始沿圆轨道下滑,与挡板共发生了两次碰撞后停止在水平段B 、C 之间的某处,物块每次与挡板碰撞不损失机械能(即碰撞前、后速率相同).不计空气阻力,物块与水平段BC 间的动摩擦因数为μ,重力加速度为g .试求物块 (1)第一次与挡板碰撞时的速率; (2)在水平轨道上滑行的总路程;(3)最后一次滑到圆轨道底端B 处对圆轨道的压力.【答案】(1) 12()v g R L μ-RS μ=(3) 物块最后一次滑到底端B 处对圆轨道的压力可能为43L mg R μ骣琪-琪桫或83L mg R μ骣琪-琪桫 【解析】 【详解】(1)对物块第一次从A 到C 过程,根据动能定理:2112mgR mgL mv -=μ ① 解得第一次碰撞挡板的速率12()v g R L μ-(2)设物块质量为m ,在水平轨道上滑行的总路程为S ,对物块从开始下滑到停止在水平轨道上的全过程,根据动能定理:mgR -μmg ·S =0③解得RS μ=④(3)设物块最后一次经过圆弧轨道底端B 时的速率为v 2,对圆轨道的压力为FN ,则:22N v F mg m R-= ⑤第一种可能情况:物块与挡板第二次碰撞后,向右运动还未到B 点时即停下,则:22122mgR mg L mv -⋅=μ⑥由⑤⑥解得43N L F mg R ⎛⎫=- ⎪⎝⎭μ ⑦第二种可能情况:物块与挡板第二次碰撞后,向右可再一次滑上光滑圆弧轨道,则:22142mgR mg L mv -⋅=μ ⑧由⑤⑧解得83N L F mg R μ⎛⎫=- ⎪⎝⎭⑨物块最后一次滑到底端B 处对圆轨道的压力可能为43L mg R μ骣琪-琪桫或83Lmg R μ骣琪-琪桫10.在粗糙的水平桌面上有两个静止的木块A 和B ,两者相距为d .现给A 一初速度,使A 与B 发生弹性正碰,碰撞时间极短.当两木块都停止运动后,相距仍然为d .已知两木块与桌面之间的动摩擦因数均为μ. B 的质量为A 的2倍,重力加速度大小为g .求A 的初速度的大小.【解析】 【详解】设在发生碰撞前的瞬间,木块A 的速度大小为v 0;在碰撞后的瞬间,A 和B 的速度分别为v 1和v 2.在碰撞过程中,由能量守恒定律和动量守恒定律,得2220121112222mv mv mv =+⋅ 0122mv mv mv =+ ,式中,以碰撞前木块A 的速度方向为正,联立解得:13v v =-,2023v v = 设碰撞后A 和B 运动的距离分别为d 1和d 2,由动能定理得21112mgd mv μ=, 2221222m gd mv μ=⋅() .按题意有:21d d d =+ . 联立解得:0185v gd =μ11.如图所示,AB 为倾角37θ=︒的斜面轨道,BP 为半径R =1m 的竖直光滑圆弧轨道,O 为圆心,两轨道相切于B 点,P 、O 两点在同一竖直线上,轻弹簧一端固定在A 点,另一端在斜面上C 点处,轨道的AC 部分光滑,CB 部分粗糙,CB 长L =1.25m ,物块与斜面间的动摩擦因数为μ=0.25,现有一质量m =2kg 的物块在外力作用下将弹簧缓慢压缩到D 点后释放(不栓接),物块经过B 点后到达P 点,在P 点物块对轨道的压力大小为其重力的1.5倍,sin370.6,37cos 0.8︒︒==,g=10m/s 2.求:(1)物块到达P 点时的速度大小v P ; (2)物块离开弹簧时的速度大小v C ;(3)若要使物块始终不脱离轨道运动,则物块离开弹簧时速度的最大值v m . 【答案】(1)5m/s P v = (2)v C =9m/s (3)6m/s m v = 【解析】 【详解】(1)在P 点,根据牛顿第二定律:2PP v mg N m R+=解得: 2.55m/s P v gR ==(2)由几何关系可知BP 间的高度差(1cos37)BP h R =+︒物块C 至P 过程中,根据动能定理:2211sin37cos37=22BP P C mgL mgh mgL mv mv μ-︒--︒-联立可得:v C =9m/s(3)若要使物块始终不脱离轨道运动,则物块能够到达的最大高度为与O 等高处的E 点, 物块C 至E 过程中根据动能定理:21cos37sin 37sin 53=02m mgL mgL mgR mv μ-︒-︒-︒-解得:6m/s m v =12.如图所示,物块B 静止放置在水平面上,物块A 以一定的初速度v 0冲向B ,若在物块A 、B 正对的表面加上粘合剂,则物块A 、B 碰后一起沿水平面运动的最大距离为l ;若在物块A 、B 正对的表面加上弹性装置,则两物块将发生弹性正碰,碰后两物块间的最大距离为5l 。
第八章 第三节请同学们认真完成 [练案15]合格考训练(25分钟·满分60分)一、选择题(本题共8小题,每题6分,共48分)1.在水平路面上,有一辆以36 km/h 行驶的客车,在车厢后座有一位乘客甲,把一个质量为4 kg 的行李以相对客车5 m/s 的速度抛给前方座位的另一位乘客乙,则以地面为参考系行李的动能和以客车为参考系行李的动能分别是( B )A .200 J 50 JB .450 J 50 JC .50 J 50 JD .450 J 450 J解析:行李相对地面的速度v =v 车+v 相对=15 m/s ,所以行李的动能E k =12m v 2=450 J 。
行李相对客车的速度v ′=5 m/s , 所以行李的动能E k ′=12m v ′2=50 J2.如图所示,两个质量相同的物体a 和b 处于同一高度,a 自由下落,b 沿固定光滑斜面由静止开始下滑,不计空气阻力。
两物体到达地面时,下列表述正确的是( C )A .a 的速率大B .b 的速率大C .动能相同D .速度方向相同解析:根据动能定理有:mgh =12m v 2-0知:高度相同,所以末动能相等,速度的大小相等,但方向不同。
故本题选C 。
3.某同学用200 N 的力将质量为0.44 kg 的足球踢出,足球以10 m/s 的初速度沿水平草坪滚出60 m 后静止,则足球在水平草坪上滚动过程中克服阻力做的功是( B )A.4.4 J B.22 J C.132 J D.12 000 J解析:根据动能定理,W=12m v2=12×0.44×102 J=22 J。
4.如图所示,一物体以6 J的初动能从A点沿AB圆弧下滑,滑到B点时动能仍为6 J,若物体以8 J的初动能从A点沿同一路线滑到B点,则物体到B点时的动能是(A)A.小于8 J B.等于8 JC.大于8 J D.不能确定解析:当物体以6J的初动能从A点沿AB圆弧下滑,滑到B点时动能仍为6 J,根据动能定理有:W G+W f=0,当以8 J的初动能从A点下滑时,由于物体沿圆弧下滑,指向圆心的合力提供向心力,由于速度变大,圆弧轨道给物体的弹力变大,根据滑动摩擦力大小的计算式:f=μF N,可得物体受到的摩擦力增大,在从A到B的过程中,物体通过的圆弧长度不变,所以物体在从A到B的过程中,克服摩擦力做功增大,重力做功不变,所以到达B点时动能小于8 J,故A正确,BCD错误。
高一下学期期末专项训练---动能定理
一、选择题
1.下列说法中正确的有
A.运动物体所受的合外力不为零,合外力必做功,物体的动能肯定要变化
B.运动物体的合外力为零,则物体的动能肯定不变
C.运动物体的动能保持不变,则该物体所受合外力一定为零
D.运动物体所受合外力不为零,则该物体一定做变速运动,其动能肯定要变化
2.如图所示,物体A 和物体B 与地面的动摩擦因数相同,A 和B 的质量相等,在力F 的作用
下,一起沿水平地面向右移动s .则
A.摩擦力对A 、B 做的功相等
B.A 、B 动能的增量相同
C.F 对A 做的功与A 对B 做的功相等
D.合外力对A 做的功与合外力对B 做的功不相等
3.跳伞运动员在刚跳离飞机、其降落伞尚未打开的一段时间内,下列说法中正确的是
A.空气阻力做正功
B.重力势能增加
C.动能增加
D.空气阻力做负功
4.雨滴在空中运动时所受阻力与其速度的二次方成正比,若有两个雨滴从同一高度落下,其质量分别为M 和m,落至地面前已做匀速直线运动,则落地前其重力的瞬时功率之比为( ) A.M:m B.m M : C.m:M D.33:m M
5.在离地面高为h 处竖直上抛一质量为m 的物块,抛出时的速度为v 0,当它落到地面时速
度为V ,用g 表示重力加速度,则在此过程中物块克服空气阻力所做的功等于 ( )
A .mgh 21-
mV 221-mv 02 B .21-mV 22
1-mv 02-mgh C .mgh+
21mv 0221-mV 2 D .mgh+21mV 221-mv 02 6.在平直公路上,汽车由静止开始做匀加速运动,当速度达到v m
后立即关闭发动机直到停止,v -t 图象如图所示.设汽车的牵引
力为F,摩擦力为F f,全过程中牵引力做功W1,克服摩擦力做功W2,则
A.F∶F f=1∶3
B.F∶F f=4∶1
W2=1∶1 D.W1∶W2=1∶3
C.W
7.如图图 2-2-1所示,一个物体以初速度v1由A点开始运动,沿水
平面滑到B点时的速度为v2,该物体以相同大小的初速度v′1由A′点
沿图示的A′C和CB′两个斜面滑到B′点时的速度为v′2,若水平面、
斜面和物体间的动摩擦因数均相同,且A′B′的水平距离与AB相等,
那么v2与v′2之间大小关系为( )
A.v2= v′2 B.v2>v′2 C.v2<v′2 D.无法确定
8.水平传送带匀速运动,速度大小为v,现将一小工件放到传送带上。
设工件初速为零,当它在传送带上滑动一段距离后速度达到v而与传送带保持相对静止。
设工件质量为m,它与传送带间的滑动摩擦系数为μ,则在工件相对传送带滑动的过程中()A.滑摩擦力对工件做的功为mv2/2
B.工件的动能增量为mv2/2
C.工件相对于传送带滑动的路程大小为v2/2μg
D.传送带对工件做功为零
9.如图2-2-3所示,一物体(可看作质点)以5m/s的初速度从A点沿
AB圆弧下滑到B点,速度仍为5m/s,若物体以6m/s的初速度从A点沿同
一路径滑到B点,则物体到达B点时的速率为 ( )
A.大于6m/s B.小于6m/s C.等于6m/s D.不能确定
10.如图所示,小球在竖直向下的力F作用下,将竖直轻弹簧压缩,若将力F撤去,小球
将向上弹起并离开弹簧,直到速度为零时为止,则小球在上升过程中正确的说法是
A.小球的动能先增大后减小
B.小球在离开弹簧时动能最大
C.小球动能最大时弹性势能为零
D.小球动能减为零时,重力势能最大
11.如图所示,质量为M的木块放在光滑的水平面上,质量为m的子弹以速度v0沿水平射中木块,并最终留在木块中与木块一起以速度v运动.已知当子弹相对木块静止时,木块前进距离
L ,子弹进入木块的深度为s .若木块对子弹的阻力f 视为恒定,则下列关系式中正确的是
A.F f L =
21Mv 2 B.F f s=2
1mv 2 C.F f s=21mv 02-2
1(M +m )v 2 D.F f (L +s )=21mv 02-21mv 2 12.一个质量为0.3 kg 的弹性小球,在光滑水平面上以6 m/s 的速度垂直撞到墙上,碰撞后
小球沿相反方向运动,反弹后的速度大小与碰撞前相同.则碰撞前后小球速度变化量的大小Δ
v 和碰撞过程中墙对小球做功的大小W 为
①Δv =0 ②Δv =12 m/s ③W =0 ④W =10.8 J
A.①③
B.②④
C.①④
D.②
13.如图 2-1-3为健身用的“跑步机”.质量为m 的运动员踩在与水平
面成α角的静止皮带上,运动员用力向后蹬皮带,使皮带以速度v 匀
速向后运动,设皮带在运动过程中受到的摩擦阻力恒为f .则在运动过程中,下列说法中正确的是
A .人脚对皮带的摩擦力是皮带运动的动力
B .人对皮带不做功
C .人对皮带做功的功率为mg v
D .人对皮带做功的功率为f v
二、填空题
14.如图所示,质量为m 的物体,由高h 处无初速滑下,至平面上A
点静止,不考虑B 点处能量转化,若施加平行于路径的外力使物体由
A 点沿原路径返回C 点,则外力至少做功为_____2mgh____________
15.如图2-1-2所示,在光滑的水平薄板中心有一个小孔O ,在孔
内穿过一条质量不计的细线,线的一端系一小球,小球以O 为圆心在板
上做匀速圆周运动,半径为R ,此时线的拉力为F .若逐渐增大拉力至
8F 时,小球仍以O 为圆心,做半径为R /2的匀速圆周运动。
则在上述过程中,
拉力做的______________
16.如图所示,一粗细均匀的U 形管内装有同种液体竖直放置,右管口用盖板
A
密闭一部分气体,左管口开口,两液面高度差为h,U形管中液柱总长为4h.现拿去盖板,液柱开始流动,当两侧液面恰好相齐时右侧液面下降的速度大小为________.
三、计算题
17.(10分)质量为5g的子弹,以300m/s的速度射入厚度为4cm的木板,
如图所示,射穿后的速度是100m/s,子弹射穿木板的过程中受到的平均阻
力是多大?
18.如图 2-1-4所示,摩托车做腾跃特技表演,以速度v
0=10m/s
的初速度冲向顶部水平的高台,然后从高台上水平飞出。
若摩托
车在冲上高台的过程中以额定功率1.8kw行驶,所经历时间为
0.5s,人和车的总质量为180kg,当高台的高度为h时,人和车
飞离高台时的速度?试分析:当高台高h为多大时,人和车飞出的水平距离s最远,且最远距离是多少?(不计空气阻力,摩擦力对摩托车做的功可以忽略不计)
19.如图所示,m
A=4kg,m B=1kg,A与桌面间的动摩擦因数
μ=0.2,B与地面间的距离s=0.8m,A、B原来静止,
求:(1)B落到地面时的速度为多大;
(2)B落地后,A在桌面上能继续滑行多远才能静止下来。
(g取10m/s2)
20.如图2-2-5所示,用汽车通过定滑轮拉动水平平台上的货物,若货物的质量为m,与平台间的动摩擦因数为μ,汽车从静止开始把货物从A拉到B的过程中,汽车从O到达C 点处时速度为v,若平台的高度为h,滑轮的大小和摩擦不计,则这一过程中汽车对货物
做的功?
动能定理参考答案
1B ,2B ,3,4,5C ,6,7A ,8ABC ,9B ,10,11,12D ,13AD
17.gh 81(或4
2gh ) 18. (10分)解:设平均阻力为f ,根据动能定理21222121mv mv W -=
有 N N v v s m f v v m fs 3222322212122105)100300(10
42105)(2)(21180cos ⨯=-⨯⨯⨯=-=-=︒-- 19.(1)由动能定理得 P t -mgh=221mv -202
1mv ,人和车飞离高台时的速度 v =h 20110-. (2) 在空中做平抛运动: t =g h 2, s = vt =2422h h -,当 h =2.75m 时水平距离最远 s =5.5m .
20、(15分)
(1)(7分)以A 、B 物体构成的系统为对象,B 物体所受重力m B g 做正功,mA 物
体所受的摩擦力对系统做负功,由动能定理得:
0.8m/s 144)0.2-(18.0102m m m m gs 2V 0-)V m (m 21gs m -gs m B A A B B 2B A A B =+⨯⨯⨯⨯=+-+=
)(=即: μμ (2)(8分)设B 物体落地后A 物体能滑行的距离为S’,则根据动能定理得: m 16.010
2.08.021s V m 2
1-0s g m 2A A A =⨯⨯='='m μ- 21.对货物由动能定理得: W -μmgs =2
21B mv -0 ①,货物的位移 s =030sin h -h =h ②,
在C 点时对汽车速度进行分解得货物的速度 v B =v ·cos300=v 23③,由①②③得 W =μmgh +243mv .。