八年级下册期中考试数学试卷(有答案)-新
- 格式:doc
- 大小:478.52 KB
- 文档页数:17
湖北省武汉市湖北华宜寄宿学校2023-2024学年八年级(下)期中数学试卷一、单选题(共10小题,每小题3分,共30分)1.(3分)下列二次根式是最简二次根式的是( )A.B.C.D.2.(3分)下列各组数中,是勾股数的是( )A.9,16,25B.1,1,C.1,,2D.8,15,173.(3分)在式子5,x=2,a,a+b,,m+n>0,中,属于代数式的有( )A.3B.4C.5D.64.(3分)在下列给出的条件中,能判定四边形ABCD是平行四边形的是( )A.AB∥CD,AD=BC B.∠A=∠B,∠C=∠DC.AD∥BC,AD=BC D.AB=AD,CD=BC5.(3分)下列各命题的逆命题成立的是( )A.菱形四条边相等B.如果两个实数相等,那么它们的绝对值相等C.等边三角形是锐角三角形D.全等三角形的对应角相等6.(3分)已知,那么a应满足什么条件( )A.a>0B.a≥0C.a=0D.a任何实数7.(3分)矩形和菱形都一定具有的性质是( )A.对角线互相垂直B.对角线互相平分C.对角线长度相等D.对角线平分一组对角8.(3分)如图所示,平面直角坐标系中,已知三点A(﹣1,0),B(2,0),C(0,1),若以A、B、C、D为顶点的四边形是平行四边形,则D点的坐标不可能是( )A.(3,1)B.(﹣3,1)C.(1,3)D.(1,﹣1)9.(3分)如图是一个6×6的正方形网格,每个小正方形的顶点都是格点,Rt△ABC的顶点都是图中的格点,其中点A、点B的位置如图所示,则点C可能的位置共有( )A.9个B.8个C.7个D.6个10.(3分)如图,AF平分∠BAD,E为矩形ABCD的对角线BD上的一点,EC⊥BD于点E,EC的延长线与AG的延长线交于点F,若BD=10,则CF的值是( )A.6B.7C.8D.10二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)化简:= .12.(3分)在平行四边形ABCD中,∠A=60°,AD=BD=2,则平行四边形ABCD的面积等于 .13.(3分)与最接近的整数为: .14.(3分)如图,四边形ABCD中,AB∥DC,∠A=90°,AB=AE=4,CD=DE=3.点F为BC的中点,则EF的长度为 .15.(3分)2023年暑假,我校顺利完成了大门改造,新大门气势磅礴,宏伟壮观,彰显着非凡的尊贵气息.小蓝为了测量大门的高度AB,采取了以下方法:在校门口D点处测得大门顶A点处的仰角为45°,步行过马路后,马路宽度约为12米,在马路对面的F点处测得大门顶A点处的仰角为30°,已知小蓝的眼睛距离地面高度为CD=EF=1.6米,则大门高度AB约为 米.(仰角:是从低处向高处观察目标时,视线与水平线所形成的角度.结果保留2位小数,参考数据:≈1.732)16.(3分)如图,在△ABC中,∠ABC=15°,∠ACB=37.5°,点D是边BC上的一点,且∠BAD=52.5°,S△ACD=3,则S△ABD= .三、解答题(共8小题,共72分)17.计算:(1)2﹣6+3;(2)(+3)(﹣5).18.已知a=2+,b=2﹣,求值:a2+b2.19.如图,将▱ABCD的对角线BD向两个方向延长,分别至点E和点F,且使BE=DF.求证:四边形AECF 是平行四边形.20.如图是由边长为1的小正方形构成的8×8格,每个小正方形的点叫做格点.四边形ABDC的顶点是格点,点M是边AB与格线的交点,仅用无刻度的直尺在给定网格中按步骤完成下列画图,画图过程用虚线表示,画图结果用实线表示.(1)过点C画线段CE,使CE∥AB,且CE=AB;(2)在边AB上画一点F,使直线DF平分四边形ABEC的面积;(3)过点M画线段MN,使MN∥CD,且MN=CD.21.把一张长方形的纸片ABCD沿对角线BD折叠,折叠后,边BC的对应边BE交AD于F.(1)求证:BF=DF;(长方形各内角均为90°)(2)若AB=6,BC=8.求DF的长.22.如图,在△ABC中,∠C=90°,∠BAC,∠ABC的角平分线交于点G,GE⊥BC于点E,GF⊥AC于点F.(1)求证:四边形GECF是正方形;(2)若AC=4,BC=3,求四边形GECF的面积.23.(1)问题背景:小刚遇到一个这样问题:如图1,两条相等的线段AB,CD交于点O,∠AOC=60°,连接AC,BD,求证:AC+BD≥CD.通过尝试他发现通过平移可以解决这个问题.证明:过点C作AB∥CE且使AB=CE,连接BE,∴四边形ABEC为平行四边形,则AC= ,∵AB∥CE、∴∠DCE=∠ =60°,又∵CD=AB=CE,∴△DCE为等边三角形,∴CD= ,∴AC+BD=BE+BD≥DE=CD,即AC+BD≥CD.请完成证明中的三个填空.并参考小刚同学思考的方法,解决下列问题:(2)类比运用:如图2,AB与CD相交于点O,AC=3,BD=4,AB=5,∠AOC=30°,∠ACD+∠ABD =240°,求线段CD的长;(3)联系拓展:如图3,△ABC的三条中线分别为AD,BE,CF.三条中线的交点为G.若△BDG的面积为3,则以AD,BE,CF的长度为三边长的三角形的面积等于 (请直接写出答案).24.在平面直角坐标系中,四边形OABC为矩形,A(a,0),C(0,c),且.点E 从B点出发沿BC运动,点F从B点出发沿BA运动,点G从O点出发沿OC运动.(1)如图1,将△AOF沿OF折叠,点A恰好落在点E处,则E点的坐标为 ,F点的坐标为 ;(2)如图2,若E,F两点以相同的速度同时出发运动,使∠EOF=45°,求OC+CE的值;(3)如图3,已知点D为AO的中点,若F,G两点以相同的速度同时出发运动,连接FG,作AH⊥FG于H,直接写出DH的最大值.参考答案与试题解析一、单选题(共10小题,每小题3分,共30分)1.(3分)下列二次根式是最简二次根式的是( )A.B.C.D.【解答】解:(A)原式=2,故A不选;(C)原式=2,故C不选;(D)原式=,故D不选;故选:B.2.(3分)下列各组数中,是勾股数的是( )A.9,16,25B.1,1,C.1,,2D.8,15,17【解答】解:A、92+162≠252,不是勾股数,故此选项不合题意;B、不是正整数,不是勾股数,故此选项不合题意;C、不是正整数,不是勾股数,故此选项不合题意;D、82+152=172,都是正整数,是勾股数,故此选项符合题意;故选:D.3.(3分)在式子5,x=2,a,a+b,,m+n>0,中,属于代数式的有( )A.3B.4C.5D.6【解答】解:在式子5,x=2,a,a+b,,m+n>0,中,属于代数式的有5,a,a+b,,共4个,故选:B.4.(3分)在下列给出的条件中,能判定四边形ABCD是平行四边形的是( )A.AB∥CD,AD=BC B.∠A=∠B,∠C=∠DC.AD∥BC,AD=BC D.AB=AD,CD=BC【解答】解:A、由AB∥CD,AD=BC,不能判定四边形ABCD为平行四边形,故选项A不符合题意;B、由∠A=∠B,∠C=∠D,不能判定四边形ABCD为平行四边形,故选项B不符合题意;C、∵AD∥BC,AD=BC,∴四边形ABCD是平行四边形,故选项C符合题意;D、AB=AD,CB=CD,由不能判定四边形ABCD为平行四边形,故选项D不符合题意;故选:C.5.(3分)下列各命题的逆命题成立的是( )A.菱形四条边相等B.如果两个实数相等,那么它们的绝对值相等C.等边三角形是锐角三角形D.全等三角形的对应角相等【解答】解:A、逆命题为:四条边相等的四边形是菱形,成立,符合题意;B、逆命题为:如果两个实数的绝对值相等,那么这两个实数也相等,不成立,不符合题意;C、逆命题为:锐角三角形是等边三角形,不成立,不符合题意;D、逆命题为:对应角相等的三角形全等,不成立,不符合题意.故选:A.6.(3分)已知,那么a应满足什么条件( )A.a>0B.a≥0C.a=0D.a任何实数【解答】解:∵()2=a≥0且a≥0,=|a|≥0,∴|a|=a,∴a≥0.故选:B.7.(3分)矩形和菱形都一定具有的性质是( )A.对角线互相垂直B.对角线互相平分C.对角线长度相等D.对角线平分一组对角【解答】解:矩形的性质是:①矩形的四个角度数直角,②矩形的对边相等且互相平行,③矩形对角线相等且互相平分;菱形的性质是:①菱形的四条边都相等,菱形的对边互相平行;②菱形的对角相等,③菱形的对角线互相平分且垂直,并且每条对角线平分一组对角,所以矩形和菱形都具有的性质是对角线互相平分,故选:B.8.(3分)如图所示,平面直角坐标系中,已知三点A(﹣1,0),B(2,0),C(0,1),若以A、B、C、D为顶点的四边形是平行四边形,则D点的坐标不可能是( )A.(3,1)B.(﹣3,1)C.(1,3)D.(1,﹣1)【解答】解:当以BC为对角线时:CD=AB=3,此时D(3,1);当以AC为对角线时,CD=AB=3,此时(﹣3,1);当以AB为对角线时,AD=BC==,此时点D(1,﹣1).∴D点的坐标不可能是:(1,3).故选:C.9.(3分)如图是一个6×6的正方形网格,每个小正方形的顶点都是格点,Rt△ABC的顶点都是图中的格点,其中点A、点B的位置如图所示,则点C可能的位置共有( )A.9个B.8个C.7个D.6个【解答】解:如图:符合条件的点C一共有9个.故选:A.10.(3分)如图,AF平分∠BAD,E为矩形ABCD的对角线BD上的一点,EC⊥BD于点E,EC的延长线与AG的延长线交于点F,若BD=10,则CF的值是( )A.6B.7C.8D.10【解答】解:过A作AH⊥BD于H,连接AC,∵AF平分∠BAD,∴∠BAG=∠DAG∵四边形ABCD是矩形,∴AC=BD=10,∠BAD=90°,OA=OD,∴∠BAH+∠DAH=∠ADB+∠DAH=90°,∴∠BAH=∠ADH,∵OA=OD,∴∠ADH=∠DAC,∴∠BAH=DAC,∴∠BAG﹣∠BAH=∠DAG﹣∠DAC,∴∠GAH=∠CAH,∵EC⊥BD,AH⊥BD,∴AH∥CE,∴∠F=∠GAH,∴∠F=∠CAH,∴CF=AC=10.故选:D.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)化简:= 5 .【解答】解:=5.故答案为:5.12.(3分)在平行四边形ABCD中,∠A=60°,AD=BD=2,则平行四边形ABCD的面积等于 6 .【解答】解:如图,过点B作BE⊥AD于点E.∵AD=DB=2,∠A=60°,∴△ABD是等边三角形,∴AB=BD=2,∵BE⊥AD,∴AE=ED=,∴BE===3,∴平行四边形ABCD的面积=2×3=6.故答案为:6.13.(3分)与最接近的整数为: 7 .【解答】解:∵=6.5,=7,且<<,∴6.5<<7,∴与最接近的整数为7,故答案为:7.14.(3分)如图,四边形ABCD中,AB∥DC,∠A=90°,AB=AE=4,CD=DE=3.点F为BC的中点,则EF的长度为 .【解答】解:连接DF并延长交AB的延长线于H,过点C作CM⊥AB于M,如下图所示:∵AB∥DC,∠DAB=90°,AB=AE=4,CD=DE=3,∴四边形ADCM为矩形,∴CM=AD=AE+DE=7,AM=CD=3,∴BM=AB﹣AM=4﹣3=1,在Rt△CMB中,由勾股定理得:BC===,∵点F为BC的中点,∴CF=BF=BC=,∵DC∥AB,∴∠1=∠H,∠DCF=∠HBF,在△DCF和△HBF中,∠1=∠H,∠DCF=∠HBF,CF=BF,∴△DCF≌△HBF(AAS),∴CD=BH=3,DF=HF,∴AH=AB+BH=4+3=7,∴AD=AH,∴∠2=∠H,∴∠1=∠2,在△DCF和△DEF中,CD=DE,∠1=∠2,DF=DF,∴△DCF≌△DEF(SAS),∴EF=CF=.故答案为:.15.(3分)2023年暑假,我校顺利完成了大门改造,新大门气势磅礴,宏伟壮观,彰显着非凡的尊贵气息.小蓝为了测量大门的高度AB,采取了以下方法:在校门口D点处测得大门顶A点处的仰角为45°,步行过马路后,马路宽度约为12米,在马路对面的F点处测得大门顶A点处的仰角为30°,已知小蓝的眼睛距离地面高度为CD=EF=1.6米,则大门高度AB约为 7.06 米.(仰角:是从低处向高处观察目标时,视线与水平线所形成的角度.结果保留2位小数,参考数据:≈1.732)【解答】解:在Rt△ADG中,∵∠ADG=45°,∴∠DAG=45°=∠ADG,∴AG=DG,在Rt△AEG中,∠AEG=30°,GE=DG+DE=12+AG,tan∠AEG=,∴AG=GE•tan30°,∴AG=(12+AG)解得AG≈5.46(米),由题意知四边形BFEG是矩形,∴BG=EF=1.6米,∴AB=AG+BG=5.46+1.6=7.06(米).答:大门高度AB约为7.06米.故答案为:7.06.16.(3分)如图,在△ABC中,∠ABC=15°,∠ACB=37.5°,点D是边BC上的一点,且∠BAD=52.5°,S△ACD=3,则S△ABD= .【解答】解:以点A为圆心,AB为半径画弧交BC的延长线于E,连接AE,则AB=AE,把△ABD绕点A逆时针旋转150°得到△AEF,连接CF,过点C作CH⊥EF于H,设CH=a,如下图所示:由旋转的性质可知:∠DAF=150°,∠AEF=∠B=15°,BD=EF,AD=AF,在△ABE中,AB=AE,∴∠AEB=∠B=15°,∴∠CEF=∠AEB+∠AEF=30°,在△ABC中,∠B=15°,∠ACB=37.5°,∴∠BAC=180°﹣(∠B+∠ACB)=180°﹣(15°+37.5°)=127.5°,又∵∠BAD=52.5°,∴∠DAC=∠BAC﹣∠BAD=127.5°﹣52.5°=75°,∴∠FAC=∠DAF﹣∠DAC=150°﹣75°=75°,即∠DAC=∠FAC,在△DAC和△FAC中,,∴△DAC≌△FAC(SAS),∴∠DCA=∠FCA=37.5°,CD=CF,即∠DAF=∠DCA+∠FCA=75°,∴∠FCE=180°﹣∠DAF=180°﹣75°=105°,在Rt△CEH中,∠CEF=30°,CH=a,∴∠HCE=60°,CE=2CH=2a,由勾股定理得:EH==,∴∠FCH=∠FCE﹣∠HCE=105°﹣60°=45°,∴△FCH为等腰直角三角形,即FH=CH=a,由勾股定理得:CF==,∴CD=CF=,BD=EF=EH+FH==,∴=,∵△ABD的边BD和△ACD的边CD上的高相同,∴得=,又∵S△ACD=,∴S△ABD==.故答案为:.三、解答题(共8小题,共72分)17.计算:(1)2﹣6+3;(2)(+3)(﹣5).【解答】解:(1)原式=4﹣2+12=14;(2)原式=2﹣5+3﹣15=﹣13﹣2.18.已知a=2+,b=2﹣,求值:a2+b2.【解答】解:∵a=2+,b=2﹣,∴a+b=4,ab=1,∴a2+b2=(a+b)2﹣2ab=42﹣2×1=14.19.如图,将▱ABCD的对角线BD向两个方向延长,分别至点E和点F,且使BE=DF.求证:四边形AECF 是平行四边形.【解答】证明:连接AC,设AC与BD交于点O.如图所示:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,又∵BE=DF,∴OE=OF.∴四边形AECF是平行四边形.20.如图是由边长为1的小正方形构成的8×8格,每个小正方形的点叫做格点.四边形ABDC的顶点是格点,点M是边AB与格线的交点,仅用无刻度的直尺在给定网格中按步骤完成下列画图,画图过程用虚线表示,画图结果用实线表示.(1)过点C画线段CE,使CE∥AB,且CE=AB;(2)在边AB上画一点F,使直线DF平分四边形ABEC的面积;(3)过点M画线段MN,使MN∥CD,且MN=CD.【解答】解:(1)如图,线段CE即为所求.(2)如图,直线DF即为所求.(3)如图,线段MN即为所求.21.把一张长方形的纸片ABCD沿对角线BD折叠,折叠后,边BC的对应边BE交AD于F.(1)求证:BF=DF;(长方形各内角均为90°)(2)若AB=6,BC=8.求DF的长.【解答】(1)证明:由折叠的性质知,CD=ED,BE=BC.∵四边形ABCD是矩形,在△ABF和△EDF中,,∴△ABF≌△EDF(AAS),∴BF=DF;(2)解:∵四边形ABCD是矩形,∴∠A=90°,AD=BC=8,∴,由(1)知BF=DF,∴AF=8﹣DF=8﹣BF,∵AB2+AF2=BF2,∴62+(8﹣BF)2=BF2,∴,22.如图,在△ABC中,∠C=90°,∠BAC,∠ABC的角平分线交于点G,GE⊥BC于点E,GF⊥AC于点F.(1)求证:四边形GECF是正方形;(2)若AC=4,BC=3,求四边形GECF的面积.【解答】(1)证明:过G作GD⊥AB于D,∵∠CAB、∠CBA的角平分线交于G点,GE⊥BC于点E,GF⊥AC于点F,∴DG=EG,DG=FG,∴EG=FG,∵△ABC是直角三角形,∠C=90°,GE⊥BC,GF⊥AC,∴∠C=∠CEG=∠CFG=90°,∴四边形GECF是矩形,∵EG=FG,∴四边形GECF为正方形;(2)解:如图2,连接CG,过G作GD⊥AB于D,由勾股定理得:AB==5,设EG=x,则DG=FG=x,∵S△ABC=S△AGB+S△AGC+S△BCG,∴×3×4=•5x+•4x+•3x,∴x=1,∴四边形GECF的面积=EG2=1.23.(1)问题背景:小刚遇到一个这样问题:如图1,两条相等的线段AB,CD交于点O,∠AOC=60°,连接AC,BD,求证:AC+BD≥CD.通过尝试他发现通过平移可以解决这个问题.证明:过点C作AB∥CE且使AB=CE,连接BE,∴四边形ABEC为平行四边形,则AC= BE ,∵AB∥CE、∴∠DCE=∠ AOC =60°,又∵CD=AB=CE,∴△DCE为等边三角形,∴CD= DE ,∴AC+BD=BE+BD≥DE=CD,即AC+BD≥CD.请完成证明中的三个填空.并参考小刚同学思考的方法,解决下列问题:(2)类比运用:如图2,AB与CD相交于点O,AC=3,BD=4,AB=5,∠AOC=30°,∠ACD+∠ABD =240°,求线段CD的长;(3)联系拓展:如图3,△ABC的三条中线分别为AD,BE,CF.三条中线的交点为G.若△BDG的面积为3,则以AD,BE,CF的长度为三边长的三角形的面积等于 (请直接写出答案).【解答】(1)证明:过点C作AB∥CE且使AB=CE.连接BE.∴四边形ABEC为平行四边形,则AC=BE.∵AB∥CE,∴∠DCE=∠AOC=60°.又∵CD=AB=CE,∴△DCE为等边三角形,∴CD=DE.∴AC+BD=BE+BD≥DE=CD,即AC+BD≥CD.故答案为:BE、AOC、DE;(2)解:过A作AF∥CD,过D作DF∥AC,两直线交于F,连接BF,则四边形AFDC是平行四边形,所以∠FAB=∠AOC=30°,∠C=∠AFD,AC=DF=3,∵∠ABD+∠C=240°,∴∠ABD+∠DFA=240°,∴∠FDB=360°﹣240°﹣30°=90°,∴△FDB是直角三角形,∵DF=3,BD=4,∴由勾股定理得:FB=5,∴AB=FB,∴∠BAF=∠AFB=45°,∴∠ABF=90°,∴由勾股定理得:AF=5,∵四边形AFDC是平行四边形,∴CD=AF=5.(3)解:平移AF到PE,可得AF∥PE,AF=PE,∴四边形AFEP为平行四边形,∴AE与PF互相平分,即M为PF的中点,又∵AP∥FN∥BC,F为AB的中点,∴N为PC的中点,∴E为△PFC各边中线的交点,∴△PEC的面积为△PFC面积的,连接DE,可知DE与PE在一条直线上,∴△EDC的面积是△ABC面积的,∴S△PFC=3S△CFE=3S△EDC=,∵△BDG的面积为3,∴S△ABG=2S△BDG=6,∴S△ABC=2S△ABD=18,所以△PFC的面积是18×=,∴以AD、BE、CF的长度为三边长的三角形的面积等于,故答案为:.24.在平面直角坐标系中,四边形OABC为矩形,A(a,0),C(0,c),且.点E 从B点出发沿BC运动,点F从B点出发沿BA运动,点G从O点出发沿OC运动.(1)如图1,将△AOF沿OF折叠,点A恰好落在点E处,则E点的坐标为 (6,8) ,F点的坐标为 (10,5) ;(2)如图2,若E,F两点以相同的速度同时出发运动,使∠EOF=45°,求OC+CE的值;(3)如图3,已知点D为AO的中点,若F,G两点以相同的速度同时出发运动,连接FG,作AH⊥FG 于H,直接写出DH的最大值.【解答】解:(1)∵,≥0,(c﹣8)2≥0,∴10﹣a=0,c﹣8=0,∴a=10,c=8.∴A(10,0),C(0,8).∴OA=10,OC=8.∵四边形OABC为矩形,∴AB=OC=8,BC=OA=10.∵将△AOF沿OF折叠,点A恰好落在点E处,∴EF=FA,OE=OA=4,∴CE==6,∴E(6,8);∴BE=BC﹣CE=4,设EF=FA=x,则BF=8﹣x,∵BE2+BF2=EF2,∴42+(8﹣x)2=x2,∴x=5.∴AF=5.∴F(10,5).故答案为:(6,8);(10,5);(2)延长EF交x轴于点G,延长FE交y轴于点D,过点O作OH⊥OF,使OH=OF,连接EH,HD ,如图,∵OH⊥OF,∠EOF=45°,∴∠HOE=∠FOE=45°.在△OEH和△OEF中,,∴△OEH≌△OEF(SAS),∴HE=EF.∵∠HOF=∠COA=90°,∴∠HOD=∠FOG.∵E,F两点以相同的速度同时出发运动,∴BE=BF,∴△BEF为等腰直角三角形,∴∠BEF=∠BFE=45°,∴∠DEC=∠BEF=∠AFG=∠BFE=45°,∴△CED和△AFG为等腰直角三角形,∴DC=CE,AF=AG,∠AGF=∠ADE=45°,∴DE2=2CE2,FG2=2AF2,△ODG为等腰直角三角形,∴OD=OG.在△ODH和△OGF中,,∴△ODH≌△OGF(SAS),∴DH=FG,∠HDO=∠FGA=45°,∴∠HDE=∠HDO+∠CDE=45°+45°=90°,DH2=2AF2,∴DH2+DE2=EF2.∴2AF2+2CE2=2BE2,∴AF2+CE2=BE2,设CE=m,则BE=BF=10﹣m,∴AF=AB﹣BF=m﹣2,∴(m﹣2)2+m2=(10﹣m)2,∴m2+16m﹣96=0.∴m=﹣8(负数不合题意,舍去),∴CE=4﹣8,∴OC+CE=8+4﹣8=4.(3)连接OB,交GF于点K,连接KD,AK,取AK的中点M,连接MD,MH,如图,∵F,G两点以相同的速度同时出发运动,∴OG=BF.∵OG∥AB,∴∠KGO=∠KFB.在△OGK和△BFK中,,∴△OGK≌△BFK(AAS),∴KO=KB,即点K为矩形OABC的中心,∴AK=OK=BK=BO===,∵点D为AO的中点,M为AK的中点,∴DM=OK=.∵AH⊥FG,M为AK的中点,∴MH=AK=.∵DH≤DM+NH,∴当点D,M,H三点在一条直线上时,DH取得最大值=DM+NH,∴DH的最大值为.。
湘西自治州2024年上学期期中教学质量检测试卷八年级数学注意事项:1.本卷为试题卷,考生应在答题卡上做答,在试题卷、草稿纸上答题无效.2.答题前,考生须先将自己的姓名、准考证号分别在试卷和答题卡上填写清楚.3.答题完成后,将试卷、答题卡、草稿纸放在桌上,由监考老师统一收回.4.本学科试卷共三道大题,26道小题,考试时量120分钟,满分120分.一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题意要求的.1.下列二次根式中,是最简二次根式的是()A.B.C.D.2.下列计算中,正确的是()A. B.C.D.3.用下列长度的线段a ,b ,c 首尾相连构成三角形,其中能构成直角三角形的个数是()①,,;②,,;③④,,(为大于1的正整数)A.1B.2C.3D.44.在下列给出的条件中,可以判定四边形ABCD 为平行四边形的条件是()A.,B.,C., D.,5.下列命题的逆命题是真命题的是() A.若,则B.如果两个实数相等,那么它们的绝对值相等C.如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么D.邻补角互补. 6.二次根式中的x 的取值范围是()A.B.C.D.7.如图,在高为5m ,坡面长为13m 的楼梯表面铺地毯,地毯的长度至少需要()A.17mB.18mC.25mD.26m8.已知一个菱形的两条对角线长分别是12,,则这个菱形的面积为()A. B. C. D.369.如图,对折矩形纸片ABCD,使得AD与BC重合,得到折痕EF;把纸片展平,再折一次纸片,使得折痕经过点B,得到折痕BM,同时使得点A的对称点N落在EF上,如果,则()A.6B.C.2D.10.如图,四边形是边长为1的正方形,以对角线为边作第二个正方形,连接,得到;再以对角线为边作第三个正方形,连接,得到;再以对角线为边作第四个正方形,连接,得到;….设的面积分别为依此下去,则的值为()A. B. C. D.二、填空题:本大题共8个小题,每小题3分,共24分.11.比较大小:_________.(用“>”,“<”,“=”填空)12.计算的结果为_____________.13.如图,在中,,,BE平分,则____________.14.如图,菱形ABCD的周长为40,对角线AC,BD相交于点O,若点E是CD的中点,则OE的长是___________.15.如图所示,如果正方形A的面积为625,正方形B的面积为400,则正方形C的边长为_________.16.直角三角形的两条直角边的比为3:4,斜边长为20,则斜边上的高为________.17.古希腊几何学家海伦和我国宋代数学家秦九韶先后研究出利用三角形的三边长求面积的公式,后人合称为海伦-秦九韶公式:如果一个三角形的三边长分别是a,b,c,记,那么三角形的面积为.如果在中,,,所对的边分别记为a,b,c,若,,,则的面积为_______.18.如图所示,将一根30cm长的细木棒放入长、宽、高分别为8cm、6cm和24cm的长方体无盖盒子中,则细木棒露在盒外面的最短长度是______cm.三、解答题:本大题共8个小题,共66分.19.(本题满分6分)计算:.20.(本题满分6分)已知,,求代数式的值.21.(本题满分8分)学以致用:勾股定理刚学完,有同学想利用升旗的绳子、卷尺,测算出学校旗杆的高度.如图:洋洋抢先设计了这样一个方案:将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端5米处,发现此时绳子底端距离打结处约1米.请你设法帮洋洋算出旗杆的AC的高度.22.(本题满分8分)如图,等边三角形网格中,每一个小等边三角形边长均为1,A,B两点在三角形的顶点处,且,按照要求用无刻度直尺或圆规作图,不要求写画法,但是要保留作图痕迹.(画图过程用虚线表示,结果用实线表示).(1)以点A,B为顶点,在图1中作一个等边三角形ABC.(2)以线段AB为边,在图2中作一个最大的矩形ABEF.(3)那么这个最大矩形ABEF的面积是_________.23.(本题满分9分)如图,在中,按如下步骤尺规作图:①以点A为圆心,AC长为半径画弧;②以点B为圆心,BC长为半径画弧,两弧相交于点D;③连接CD,与AB交于点E,连接AD,BD.(1)图中吗?为什么?(2)分析线段AB,CD的位置关系;(3)当时,请探究四边形ACBD是什么特殊四边形,并证明你的结论;(4)当AB 16cm,CD=12cm,现将四边形ACBD通过割补,拼成一个正方形,那么这个正方形的边长是多少?24.(本题满分9分)如图所示,在中,点E,F在BD上,且.(1)写出图中所有的全等三角形;(2)连接AF,CE,请补全图形,四边形AFCE是平行四边形吗?为什么?(3)延长AE交BC的延长线于G,延长CF交DA的延长线于H.请补全图形,并证明四边形AGCH是平行四边形.25.(本题满分10分)学生安全是近几年社会关注的重大问题,其中交通安全隐患主要是超速.如图,某校门前一条直线公路建成通车,在该路段MN限速5m/s,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观点C测得一小车从点A到达点B行驶了10s.若测得,,.此车超速了吗?请说明理由.26.(本题满分10分)阅读材料:小明的数学兴趣小组在深度学习过程中,对“完全平方数(式)”有了更深刻的全面了解.他们先回顾“有理数”,知道1,4,,0.25,…,等这样的数,可以写成,,,,…他们称它们为完全平方数;然后回顾“整式的乘法与因式分解”这个章节,掌握了,等这样的整式,可以写成,,,…,他们称它们为完全平方式,他们发现这些数式的变形有时能给问题解决提供方便.现在,小明团队学习了“二次根式”后,能熟练把任意一个非负数改写成一个非负数的平方形式,如,,,,…,等,小明他们类比称这些非负数(式)为二次根式中的完全平方数(式).下面,请跟随他们探究、解答下列问题:(1)请分解因式:________________.(2).反之,()2,()2.(3)仿上例,化简:.(4)继续进行以下探索:设(其中a、b、m、n均为整数),则有:.∴,.这样就找到了一种把类似的式子化为完全平方式的方法.方法迁移:当a、b、m、n均为正整数时,若,用含m、n的式子分别表示a、b,得:__________,__________;利用上述探索的结论,找一组正整数a、b、m、n,使得:________,________,_________,_________;(6)若,且a、m、n均为正整数,求a的值.湘西州2024年上学期期中质量监测试卷参考答案及评分标准八年级数学一、选择题:本大题共10道小题,每小题3分,共计30分.12345678910D B D B C D A B C C二、填空题:本大题共8小题,每小题3分,共24分.11.>12.1013.214.515.1516.17.18.4三、解答题:本大题共8小题,共66分.每个题目都要求在答题卡的相应位置写出计算、解答或证明的主要步骤.19.解:原式.20.(本题满分6分)解:由已知得,将其代入(方法不唯一,按步骤相应给分)21.(本题满分8分)解:设旗杆高度为x米,则绳子长为米由勾股定理得解得答:旗杆高度为12米.22.(本题满分8分)解:(1)如图1所示.(2)如图2所示(3).图1图223.(本题满分9分)解:(1)相等.易证(2).三线合一.(3)菱形.四边相等.(4)则,∴正方形边长为24.(本题满分9分)解:(1)共3组:与,与,与;(2)如图所示,四边形AGCH是平行四边形.方法不唯一,正确即可;(3)如图所示;方法不唯一,正确即可.25.(本题满分10分)解:过点C作于点H.则,∴∴小车平均速度而∴此车没有超速.26.(本题满分10分)(1);(2)或,;;,;,,,;(答案不唯一).(6)∵∴,即;∵m、n均为正整数∴或∴或14.。
人教版八年级第二学期期中考试试卷数学试题校区 班级 姓名本试卷考试时间为:90分钟 满分为:100分一、选择题(每题3分,共24分)1.下列各组数据中的三个数,可作为三边长构成直角三角形的是A .4,5,6B .2,3,4C .11,12,13D .8,15,17 2.方程0)1()23(22=++--x x x 的一般形式是A .0552=+-x x B . 0552=++x x C . 05-52=+x x D . 052=+x 3.用配方法解方程2410x x --=,方程应变形为A .2(2)3x +=B .2(2)5x += C .122=-)(x D .2(2)5x -=4.2016年国内某地产公司投资破8亿元,连续两年增长后,2018年国内地产投资破9.5亿元, 设这两年平均地产投资年平均增长率为x ,根据题意,所列方程中正确的是A .819.52=+)(xB .8-19.52=)(xC .9.5218=+)(xD .9.5182=+)(x 5.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,且DE ∥AC ,CE ∥BD ,若AC =2,则四边形OCED的周长为A .16B .8C .4D .25题图 6题图 7题图6.如图,△ABC 中,AB =AC =12,BC =8,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE ,则△CDE 的周长是A .20B .16C .13D .127.如图,在平行四边形ABCD 中,AB=3,AD =5,∠BCD 的平分线交BA 的延长线于点E ,则AE 的长为 A .3 B .2.5 C .2 D .1.58.为了研究特殊四边形,李老师制作了这样一个教具(如下左图):用钉子将四根木条钉成一个平行四边形框架ABCD ,并在A 与C 、 B 与D 两点之间分别用一根橡皮筋拉直固定. 课上,李老师右手拿住木条BC ,用左手向右推动框架至AB ⊥BC (如下右图). 观察所得到的四边形,下列判断正确的是 A .∠BCA =45° B .BD 的长度变小 C .AC =BD D .AC ⊥BDA BCDDCBA →二、填空题(每题3分,共24分)9.若关于x 的方程042=-+-a x x 有两个不相等的实数根,写出一个满足条件的整数a 的值:a =____________.10.如下图,作一个以数轴的原点为圆心,长方形对角线为半径的圆弧,交数轴于点A ,则点A 表示的数是____________.11.在平面直角坐标系中,四边形AOBC 是菱形。
数学八下期中考试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.5B. √2C. 0.33333...D. 3答案:B2. 一个正数的平方根是它本身,这个数是:A. 0B. 1C. -1D. 2答案:A3. 已知一个三角形的两边长分别为3和4,第三边长x满足的条件是:A. 1 < x < 7B. 0 < x < 7C. 1 < x < 5D. 0 < x < 5答案:A4. 函数y=2x+3的图象不经过第几象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:C5. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 10答案:A6. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 0D. 5或-5答案:D7. 下列哪个选项是偶数?A. 2B. 3C. 5D. 7答案:A8. 一个数的倒数是1/3,那么这个数是:A. 3B. 1/3C. 3/1D. 1答案:A9. 一个数的平方是9,那么这个数可能是:A. 3B. -3C. 9D. 3或-3答案:D10. 一个数的立方是-8,那么这个数是:A. 2B. -2C. 8D. -8答案:B二、填空题(每题4分,共20分)1. 一个数的平方根是4,那么这个数是______。
答案:162. 一个数的立方根是2,那么这个数是______。
答案:83. 一个数的倒数是2,那么这个数是______。
答案:1/24. 一个数的绝对值是5,那么这个数可能是______。
答案:5或-55. 一个数的相反数是-7,那么这个数是______。
答案:7三、解答题(共50分)1. 解方程:2x - 3 = 7。
(10分)答案:x = 52. 计算:(3x^2 - 2x + 1) - (x^2 + 3x - 4)。
(10分)答案:2x^2 - 5x + 53. 已知一个三角形的两边长分别为5和12,求第三边长的取值范围。
2023年部编版八年级数学下册期中考试题及完整答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.在平面直角坐标系中,点()3,5P --关于原点对称的点的坐标是( )A .()3,5-B .()3,5-C .()3,5D .()3,5--3.若关于x 的一元二次方程(k ﹣1)x 2+2x ﹣2=0有两个不相等的实数根,则k 的取值范围是( )A .k >12B .k ≥12C .k >12且k ≠1D .k ≥12且k ≠1 4.当22a a +-有意义时,a 的取值范围是( ) A .a ≥2 B .a >2 C .a ≠2 D .a ≠-25.如果2(21)12a a -=-,则a 的取值范围是( )A .12a <B .12a ≤C .12a >D .12a ≥ 6.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =7.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是( )A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+18.如图,在平行四边形ABCD 中,∠DBC=45°,DE ⊥BC 于E ,BF ⊥CD 于F ,DE,BF相交于H,BF与AD的延长线相交于点G,下面给出四个结论:①=;②∠A=∠BHE;③AB=BH;④△BCF≌△DCE,其中正确的结论2BD BE是()A.①②③B.①②④C.②③④D.①②③④9.如图,把一个矩形纸片ABCD沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′为().A.70°B.65°C.50°D.25°10.如图在△ABC中,BO,CO分别平分∠ABC,∠ACB,交于O,CE为外角∠ACD 的平分线,BO的延长线交CE于点E,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是()A.①②③B.①③④C.①④D.①②④二、填空题(本大题共6小题,每小题3分,共18分)-,4.则a的取值范围是________.1.三角形三边长分别为3,2a12.如果一个直角三角形的两条直角边的长分别为5、12,则斜边上的高的长度为__________.3.如果实数a,b满足a+b=6,ab=8,那么a2+b2=________.4.如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是________.5.如图,在△ABC 中,AB =5,AC =13,BC 边上的中线AD =6,则△ABD 的面积是________.6.如图,ABCD 的对角线相交于点O ,且AD ≠CD ,过点O 作OM ⊥AC ,交AD 于点M .如果CDM 的周长为8,那么ABCD 的周长是_____.三、解答题(本大题共6小题,共72分)1.解分式方程:2311x x x x +=--.2.先化简,再求值:2443(1)11m m m m m -+÷----,其中22m =.3.若方程组3133x y m x y m +=+⎧⎨+=-⎩的解满足x 为非负数,y 为负数. (1)请写出x y +=_____________;(2)求m 的取值范围;(3)已知4m n +=,且2n >-,求23m n -的取值范围.4.在▱ABCD 中,∠BAD 的平分线交直线BC 于点E ,交直线DC 于点F(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG 的度数.5.如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.6.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、B5、B6、C7、B8、A9、C10、C二、填空题(本大题共6小题,每小题3分,共18分) 1、1a 4<<2、60133、204、x=25、156、16三、解答题(本大题共6小题,共72分)1、x=32、22mm -+ 1. 3、(1)1;(2)m >2;(3)-2<2m -3n <184、(1)略;(2)45°;(3)略.5、(1)略;(2)四边形ACEF 是菱形,理由略.6、(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.。
八年级数学(答题时间120分钟,满分150分)温馨提示:本卷共八大题,计23小题,满分150分,考试时间120分钟。
一、选择题(本题共10小题,每小题4分,共40分)1.下列各式中,计算正确的是().A.B.C.D.2.下列各式中属于最简二次根式的是().A.B.C.D.3.估计的值应在().A.4和5之间B.5和6之间C.6和7之间D.7和8之间4.如图,一架靠墙摆放的梯子长5米,底端离墙脚的距离为3米,则梯子顶端离地面的距离为().A.5米B.4米C.3米D.2米5.勾股定理从被发现到现在已有五千年的历史,人们对这个定理的证明找到了很多方法.我国数学家刘徽利用“出入相补”原理(一个平面图形从一处移到另一处,面积不变;又若图形分成若干块,则各部分的面积和等于原来图形的面积)也证明了勾股定理,如图所示,这种证法体现的数学思想是().A.数形结合思想B.分类思想C.函数思想D.归纳思想6.在一个三角形地块中分出一块(阴影部分)种植花草,尺寸如图,则PQ的长度是().A.1m B.2m C.3m D.4m7.如图,在四边形ABCD中,对角线AC和BD交于点O,下列条件能判定四边形ABCD为平行四边形的是().A.,B.,C.,D.,8.如图,在“V”字形图形中,,,,,,若要求出这个图形的周长,则需添加的一个条件是().A.BE的长B.DE的长C.AB的长D.AB与BE的和9.如图所示,有一块直角三角形纸片,,,,将斜边AB翻折,使得点B 恰好落在直角边AC的延长线上的点E处,折痕为AD,则BD的长为().A.2cm B.C.D.5cm10.如图,在中,,,,D为AB边上一动点(不与点A重合),为等边三角形,过点D作DE的垂线,F为垂线上任意一点,连接EF,G为EF的中点,连接BG、CG,则的最小值是().A.B.C.D.10二、填空题(本大题共4小题,每小题5分,满分20分)11.请写出一组勾股数______.12.已知:,,则=______.13.我国南宋著名的数学家秦九韶,曾提出利用三角形的三边求面积的“秦九韶公式”(三斜求积术):若一个三角形的三边长分别为a,b,c,则这个三角形的面积.若一个三角形的三边长a,b,c分别为,,,则这个三角形的面积为______.14.如图,C为平行四边形ABDG外一点,连接BC,DC,分别交边AG于点F,E,使,,,若,,则(1)CE的长为______;(2)AB的长为______.三、(本大题共2小题,每小题8分,满分16分)15.已知实数a在数轴上的对应点位置如图,化简.16.在平面直角坐标系中,按要求完成下列各题:(1)描出下列各点,,,将这些点依次用线段连接,并写出点C关于y轴对称的点的坐标为______;(2)在y轴上有点D,则的最小值为______;(3)证明:是直角三角形.四、(本大题共2小题,每小题8分,满分16分)17.请观察式子:,.仿照上面的方法解决下列问题:(1)化简:①=______;②=______;③=______.(2)把中根号外的因式移到根号内,化简的结果是______.18.如图,在平行四边形ABCD中,∠ABC、∠BCD的角平分线交于边AB上一点E,且.(1)求证:;(2)求线段CE的长.五、(本大题共2小题,每小题10分,满分20分)19.如图,在平行四边形ABCD中,点E在BA的延长线上,点F在DC的延长线上,连接BF、DE、EF,EF交AD于点G,交BC于点H,.求证:四边形EBFD是平行四边形.20.定义:若一个三角形一边上的中线、高线与这条边均有交点,则这两个交点之间的距离称为这条边上的“中高距”.如图,中,AD为BC边上的中线,AE为BC边上的高线,则DE的长称为BC边上的“中高距”.(1)若BC边上的“中高距”为0,则的形状是______三角形;(2)若∠B=30°,∠C=45°,AB=4,求BC边上的“中高距”.六、(本题满分12分)21.高空抛物是一种不文明的危险行为,据研究,从高处坠落的物品,其下落的时间t(s)和高度h(m)近似满足公式(不考虑空气阻力的影响).(1)求物体从40m的高空落到地面的时间;(2)已知从高空坠落的物体所带能量(单位:J)E=10×物体质量(kg)×高度(m),某质量为0.05kg的鸡蛋经过6s落在地上,这个鸡蛋在下落过程中所带能量有多大?你能得到什么启示?(注:65J的能量就可以杀伤无防护的人体)七、(本题满分12分)22.如图,在中,,延长AC到点D,在BC边上取一点H,连接HD,设E和F 分别是AB和HD的中点,连接EF,若EF恰好与BC垂直,垂足为K.已知,试求EF的长.八、(本题满分14分)23.在和中,点D在BC边上,,.(1)若.①如图1,当时,连接EC,证明:;②如图2,当时,过点A作DE的垂线,交BC边于点F,若,,求线段CF的长;(2)如图3,已知,作∠DAE的角平分线交BC边于点H,若,,当时,请直接写出线段BD的长.八年级数学参考答案一、选择题(本大题共10小题,每小题4分,共40分)题号12345678910答案C D D B A B B C B A第10题解析取的中点,连接,则三点共线,进而得到点在直线上运动,作点关于的对称点,连接,得到,进而得到三点共线时,的值最小,作,∵,,∴.即的最小值是.二、填空题(本大题共4小题,每小题5分,满分20分)11.3,4,5(不唯一);12.4;13.;14.(1)2(2分);(2)(3分)三、(本大题共2小题,每小题8分,满分16分)15.解:由图知:,,.(4分)原式.(8分)16.(1)解:如下左图(2分)点关于轴对称的点的坐标为(4分)(2)解:如上右图,点D即为所求(5分)此时.(6分)(3)解:,,,∴,∴是直角三角形.(8分)四、(本大题共2小题,每小题8分,满分16分)17.(1)解:①,②,③.(6分)(2).(8分)(注:只写最后结果不扣分)18.(1)证明:四边形是平行四边形,,,,,,、的角平分线交于边上一点,,,..即.(4分)(2)解:∵,,,,,,由(1)可知.(8分)五、(本大题共2小题,每小题10分,满分20分)19.证明:在平行四边形ABCD中,,,∴,∵∴,即.在和中,∴.(8分)∴,又,∴四边形是平行四边形.(10分)20.解:(1)等腰(4分)(2)在中,,,∴,∴.在中,,,∴,∴.(8分)∵点D为的中点,∴,∴.(10分)六、(本题满分12分)21.解:(1)∵,,∴.(4分)(2)∵,,∴,∴(8分)∴,∴.(10分)严禁高空抛物.(12分)七、(本题满分12分)22.解:如图,分别取AC,CD的中点P、Q,连接PE,FQ,作垂足为M.(2分)∵点、F分别为、的中点,∴分别是、的中位线,∴,.∴,.∵,∴.∵P、Q分别为的中点,∴.∴.∴.∴.(10分)∵,,∴,∵,∴,又∵,∴四边形为平行四边形,∴.(12分)八、(本题满分14分)23.(1)①证明:,,在和中,,.(2分),,,,.(4分)②解:如图2,连接,作交的延长线于点G,,,,,、都是等边三角形,在和中,,.(6分),,,,,,,,,,是的垂直平分线,.(8分)设,则,在中,,即,解得,即线段的长为.(10分)线段的长为5.6.(14分)具体过程如下:如图3,延长至N,使,连接,交的延长线于点M,连接,作于P,,.,,,,在和中,,,,,,,.中,,,,即,.,,.,是的角平分线,,是线段的垂直平分线,.设,则,,在中,,即,解得,.(说明:以上解答方法不唯一,只要合理,均要赋分)。
人教版数学八年级下册期中考试试卷一、单选题1.下列条件中,不能判断四边形ABCD 是平行四边形的是()A .∠A=∠C ,∠B=∠DB .AB ∥CD ,AB=CDC .AB=CD ,AD ∥BCD .AB ∥CD ,AD ∥BC2.下列各组长度的线段能组成直角三角形的是().A .a =2,b =3,c =4B .a =4,b =4,c =5C .a =5,b =6,c =7D .a =5,b =12,c =133.下列各式中,最简二次根式是()AB C .D 4.若式子在实数范围内有意义,则x 的取值范围是()A .x≤﹣3B .x≥﹣3C .x <﹣3D .x >﹣35.平行四边形ABCD 中,若2B A ∠=∠,则C ∠的度数为().A .120︒B .60︒C .30︒D .15︒6.下列命题中,正确的是().A .有一组邻边相等的四边形是菱形B .对角线互相平分且垂直的四边形是矩形C .两组邻角相等的四边形是平行四边形D .对角线互相垂直且相等的平行四边形是正方形7.如图,矩形ABCD 中,AB=3,两条对角线AC 、BD 所夹的钝角为120°,则对角线BD 的长为A .B .C .33D .38.如图,在矩形ABCD 中,84AB BC ==,,将矩形沿对角线AC 折叠,则重叠部分AFC △的面积为()A .12B .10C .8D .69.如图,正方形ABCD 的两条对角线AC ,BD 相交于点O ,点E 在BD 上,且BE =CD ,则∠BEC 的度数为()A .22.5°B .60°C .67.5°D .75°10.如图,点P 是正方形ABCD 的对角线BD 上一点,PE ⊥BC ,PF ⊥CD ,垂足分别为点E ,F ,连接AP ,EF ,给出下列四个结论:①AP=EF;②∠PFE=∠BAP;③2EC;④△APD 一定是等腰三角形.其中正确的结论有().A .1个B .2个C .3个D .4个二、填空题11.在研究了平行四边形的相关内容后,老师提出这样一个问题:“四边形ABCD 中,AD ∥BC ,请添加一个条件,使得四边形ABCD 是平行四边形”.经过思考,小明说“添加AD=BC”,小红说“添加AB=DC”.你同意________的观点,理由是________.12.如图,菱形ABCD 中,若BD=24,AC=10,则AB 的长等于________,该菱形的面积为____________.13.在Rt △ABC 中,a ,b 均为直角边且其长度为相邻的两个整数,若1a b <<,则该直角三角形斜边上的高为____________.14.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a ,b ,c ,则该三角形的面积为.现已知△ABC 的三边长分别为1,2ABC的面积为______.15.已知:,x y为实数,且4y <,则4y --果为_______.16.如图以直角三角形ABC 的斜边BC 为边在三角形ABC 的同侧作正方形BCEF ,设正方形的中心为O,连结AO,如果AB=4,,则AC=________三、解答题17.计算:(1+;(2.18.如图,已知 ABCD,E,F是对角线BD上的两点,且DE=BF.求证:四边形AECF是平行四边形.19.如图所示,已知平行四边形ABCD,对角线AC,BD相交于点O,∠OBC=∠OCB.(1)求证:平行四边形ABCD是矩形;(2)请添加一个条件使矩形ABCD为正方形.20.如图,P是正方形ABCD对角线AC上一点,点E在BC上,且PE=PB.(1)求证:PE=PD;(2)连接DE,试判断∠PED的度数,并证明你的结论.21.如图,菱形ABCD的对角线AC和BD交于点O,分别过点C.D作CE∥BD,DE∥AC,CE和DE交于点E.(1)求证:四边形ODEC是矩形;(2)当∠ADB=60°,AD=23EA的长。
20232024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)(考试时间:90分钟,满分:100分)一、选择题(每题2分,共20分)1. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=62. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=63. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=64. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8D. 4x2y=65. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=66. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=67. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=68. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=69. 下列哪个选项是正确的?A. 3x+5y=10C. 5x+3y=15D. 4x2y=610. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=6二、填空题(每题2分,共20分)1. 2x+3y=6,求x的值。
2. 3x+5y=10,求y的值。
3. 4x2y=6,求x的值。
4. 5x+3y=15,求y的值。
5. 2x4y=8,求x的值。
6. 3x+5y=10,求y的值。
7. 4x2y=6,求x的值。
8. 5x+3y=15,求y的值。
9. 2x4y=8,求x的值。
10. 3x+5y=10,求y的值。
三、解答题(每题5分,共25分)1. 解方程组:2x+3y=63x+5y=102. 解方程组:5x+3y=153. 解方程组:2x4y=83x+5y=104. 解方程组:3x+5y=104x2y=65. 解方程组:5x+3y=152x4y=8四、计算题(每题10分,共30分)1. 计算:2x+3y=63x+5y=102. 计算:4x2y=65x+3y=153. 计算:2x4y=83x+5y=10五、应用题(每题10分,共20分)1. 应用题:2x+3y=62. 应用题: 4x2y=6 5x+3y=15答案解析:一、选择题1. A2. B3. C4. D5. A6. B7. C8. D9. A10. B二、填空题1. x=12. y=23. x=24. y=35. x=26. y=27. x=28. y=39. x=210. y=2三、解答题1. x=1, y=22. x=2, y=33. x=2, y=24. x=2, y=35. x=2, y=2四、计算题1. x=1, y=22. x=2, y=33. x=2, y=2五、应用题1. x=1, y=22. x=2, y=38. 简答题(每题5分,共25分)1. 简述一元二次方程的一般形式。
八年级数学第一部分选择题一、选择题(本大题共10小题,每小题3分,共30分,每小题有四个选项,其中只有一个是正确的)1. 若分式:有意义,则x 的取值范围是( )A.x≠-5B.x=5C.x≠2D.x=22.下列手机手势解锁图案中,是中心对称图形的是( )●A. B. C. D.3. 下列各式从左到右的变形,因式分解正确的是( )A.3ab²-12a=3a(b²-4)B.a²+ab-2=a(a+b)-2C. D.a²-2a-8=(a+2)(a-4)4. 已知点P(m-3,m-1) 在第二象限,则m 的取值范围在数轴上表示正确的是( )A. B.C. D.5. 如图是脊柱侧弯的检测示意图,在体检时为方便测出Cobb 角∠O 的大小,需将∠O 转化为与它相等的角,则图中与∠O 相等的角是( )A. ∠BEAB. ∠DEBC. ∠ECAD. ∠ADO6. 如图,有a 、b 、c 三户家用电路接入电表,相邻电路的接点距离相等,相邻电表的距离相等,且相邻电路的接点距离等于相邻电表接入点的距离,电线对应平行排列,则三户所用电线( )A.a 户最长B.b 户最长C.c 户最长D. 三户一样长7. 下列说法,错误的是( )A. 三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等B. 有两个角都是60°的三角形是等边三角形C. 三角形的三边分别为a 、b 、c, 若满足a²-b²=c², 那么该三角形是直角三角形D. 用反证法证明“三角形的三个内角中最多有一个直角”应假设“三角形的三个内角中没有直角”8. 宝安凤凰山森林公园位于“宝安第一山”凤凰山脚下,公园树木丰茂,景色优美,所以小青想带她初三的表姐去游玩放松释放压力,计划15点10分从学校出发,已知两地相距5.1千米,她们跑步的平均速度为190米/分钟,步行的平均速度为80米/分钟,若她们要在16点之前到达,那么她们至少需要跑步多少分钟?设他跑步的时间为x 分钟,则列出的不等式为( )A.190x+80(50-x)≥5100B.190x+80(50-x)≤5100C.190x+80(50-x)≥5.1D.190x+80(50-x)≤5.19. 如图,E 为AC 上一点,连接BE,CD 平分∠ACB 交BE 于点D, 且BE ⊥CD,∠A=∠ABE,AC=10,BC=6, 则 BD 的长为( )A.1.2B.1.5C.2D.310. 如图,在等腰直角三角形ABC 中 ,AB=BC,∠CBA=90°, 将边AB 绕点A 逆时针旋转至AB', 连接BB',CB',A.√5C.2√5若∠CB'B=90°,AB=5,B.4D.5则线段B'B 的长度为( )第二部分 非选择题二、填空题(本大题共5小题,每小题3分,共15分)11. 一个多项式,把它因式分解后有一个因式为(x-1), 请你写出一个符合条件的多项式:12. 已知点A(-2,b) 与B(a,3) 点关于原点对称,则a+b=13. 如图,在△ABC 中,∠B=30°,BC 的垂直平分线交AB 于点E, 垂足为D,CE 平分∠ACB,若 BE=4, 则AE 的长为14.2024年春晚,刘谦表演的扑克牌魔术“约瑟夫环”,是数学与神奇的完美结合,通过一定指令的操作。
2022-2023学年度下学期期中质量测评八年级数学试卷温馨提示:1.答题前,考生务必将自己所在学校、姓名、考号填写在试卷上指定的位置.2.选择题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;非选择题的答案必须写在答题卡的指定位置,在本卷上答题无效.3.本试卷满分120分,考试时间120分钟.一、精心选一选,相信自己的判断!(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中只有一项是符合题目要求的,不涂、错涂或涂的代号超过一个,一律得0分)1.下列各式中,一定是二次根式的是A6B5-C38D a2.下列各组数中,能构成勾股数的是A.1,12B.132C.6,8,10D.5,12,153.平行四边形ABCD中,若∠A=50°,则∠B的度数为A.40°B.50°C.120°D.130°4.设一个直角三角形的两直角边分别是a,b,斜边是c.用一把最大刻度是10cm的直尺,可以一次直接测得c的长度,则a,b的长可能是A.a=5,b=12B.a=6,b=8C.a=4,b=10D.a=3,b=11 5.下列命题的逆命题成立的是A.平行四边形的对角线相等B.菱形的对角线互相垂直C.矩形的对角线互相平分且相等D.对顶角相等6244-+=2-a成立的条件是a aA.a≥2B.a≤2C.a≥-2D.a≤-27.如图,AB=BC=CD=DE=EF=1,AB⊥BC,AC⊥CD,AD⊥DE,AE⊥EF,则AF的长为A2B3C.2D58.如图,在菱形ABCD 中,连接AC ,AB =AC ,点E 、F 分别是AB 、BC 上的点,且AE =BF ,连接AF 、CE 交于点H ,连接DH 交AC 于点O .则下列结论:①AF =CE ;②∠CHF =60°;③DH 平分∠AHC ;④若AB =1,则S 菱形ABCD =32.其中正确的个数是A .4B .3C .2D .1二、细心填一填,试试自己的身手!(本大题共8小题,每小题3分,共24分.请将结果直接填写在答题卡相应位置上)91x -有意义,则x 的取值是★.(写一个正确即可)10.已知一个直角三角形的两直角边的长分别为6cm ,8cm ,那么这个直角三角形斜边上中线的长为★cm .11.已知a ,b 为两个连续整数,且a7<b ,则a +b =★.12.如图,数轴上点A 表示的数为a ,化简式子:a +442+-a a 的结果为★.13.如图,已知OA =OB ,∠C =90°,OC =1,BC =2.数轴上点A 表示的数是★.14.如图,在平行四边形ABCD 中,以点A 为圆心,AB 的长为半径画弧交AD 于点E ,再分别以点B 、E 为圆心,大于12BE 的长为半径画弧,两弧交于点H ,连接AH 并延长交BC 于点F ,连接EF ,AF 与BE 相交于点O ,如果BE =8,AB =5,那么四边形AEFB 的面积为★.15.勾股定理相传最早出现在商高的《周髀算经》:“勾广三,股修四,经隅五”.观察下列勾股数组:3,4,5;5,12,13;7,24,25;….这类勾股数的特点是:勾为奇数,弦与股相差为1.柏拉图研究了勾为偶数,弦与股相差为2的一类勾股数,如:6,8,10;8,15,17;….若此类勾股数的勾为2m (m ≥3,m 为正整数),则其弦是★.(结果用含m 的式子表示)16.如图,Rt △ABC 中,∠C =90°,AC =4,BC =6,D 是AB 的中点,P 是BC 边上的一动点,则PA +PD 的最小值为★.三、用心做一做,显显自己的能力!(本大题共8小题,满分72分.解答写在答题卡上)17.(本题满分8分=4分+4分)计算(1)(2)×4+318.(本题满分8分=3分+5分)如图,在4×4的正方形网格中,每个小格的顶点叫做格点,设顶点在格点上的三角形为格点三角形,按下列要求画图.(1)请你在网格图中画出边长为AB=,BC,AC=的格点三角形;(2)判断△ABC的形状,说明理由,并求出△ABC的面积.19.(本题满分8分=4分+4分)如图,在△ABC中,点D,E,F分别是AB,AC,BC的中点,连接DE,BE,FE.(1)求证:四边形BDEF为平行四边形;(2)若∠BEC=90°,BC=8,求四边形BDEF的周长.20.(本题满分8分)春天到了,奇奇和妙妙一同去春游.如图,有一座景观桥AB,他俩一同坐在离桥头A100m 的凉亭D处,准备从桥的不同方向到达景点C.奇奇先走到桥尾B到岸边后再坐船到景点C,妙妙先走到桥头A到岸边,再沿与桥AB垂直的小路AC走200m到达景点C,若距离均以直线计算,且两人所经过的距离相等,请利用所学知识计算桥AB的长是多少?21.(本题满分8分=2分+2分+4分)学习完《二次根式》后,思思发现了下面这类有趣味的试题,请你根据她的探索过程,解答下列问题:(1)具体运算,发现规律-1=2……=★;计算(2)观察归纳,写出结论=★;(n≥1且n为正整数)(3)灵活运用,提升能力++1).计算:22.(本题满分10分=2分+4分+4分)如图1,在硬纸板□ABCD中,过点D作DE⊥BC于点E,沿DE剪下△DEC,平移至△AFB处.(1)四边形ADEF的形状为★;(2)已知AD=10,□ABCD的面积为60.在(1)中的四边形ADEF的EF边上取一点M,使EM=8,如图2,剪下△DME,平移至△AHF处,拼成四边形AHMD.①求证:四边形AHMD是菱形;②求四边形AHMD的两条对角线的长.23.(本题满分10分=5分+3分+2分)如图1,在矩形ABCD中,点E为对角线AC上的一点(不与点A重合).将△ADE沿射线AB方向平移到△BCF的位置,点E的对应点为点F.过点E作EG∥BC,交FB的延长线于点G,连接AG.(1)求证:△EGA≌△BCF;(2)求证:四边形ACFG是平行四边形;(3)如图2,连接CG,若AB=4,BC=2,当CF最小时,则CG的长为★.24.(本题满分12分=4分+4分+4分)如图,矩形ABCD中,CD=4,∠CBD=30°.一动点P从B点出发沿对角线BD方向以每秒2个单位长度的速度向点D匀速运动,同时另一动点Q从D点出发沿DC方向以每秒1个单位长度的速度向点C匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点P、Q运动的时间为t秒(t>0).过点P作PE⊥BC于点E,连接EQ,PQ.(1)求证:PE=DQ;(2)四边形PEQD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.(3)当t为何值时,△PQE为直角三角形?请说明理由.2022-2023学年度下学期期中质量测评八年级数学参考答案及评分说明一、选择题:题号12345678答案ACDBCBDB二、填空题:9.1(答案不唯一)10.511.512.21314.2415.m 2+116.3三、解答题:17.解:(1)22×……………3分=-……………4分(2)×4+32×4+3×……………7分=8×3+3×2=30;……………8分18.解:(1)如图所示.……………3分(2)△ABC 是直角三角形.理由如下:……………4分∵()2)22,∴AB 2+AC 2=BC 2……………5分∴△ABC 是直角三角形……………6分∴S △ABC =12×2……………7分∴△ABC 的面积为2.……………8分19.解:(1)证明:∵点D ,E 分别是AB ,AC 的中点,∴DE ∥BC ,DE =12BC ……………1分又∵点F 是BC 的中点,∴BF =12BC ,……………2分∴DE =BF .……………3分∵DE ∥BF ,∴四边形BDEF 为平行四边形.……………4分(2)∵∠BEC=90°,点F是BC的中点,∴EF=12BC=BF=4……………5分又∵四边形BDEF为平行四边形,∴四边形BDEF为菱形.……………6分∴四边形BDEF的周长=4×4=16……………7分∴四边形BDEF的周长为16.……………8分20.解:设桥AB长为x米,则BD=(x-100)米,由题可知,……………1分AD+AC=BD+BC,……………2分∴100+200=x-100+BC,……………3分∴BC=400-x,……………4分∵△ABC为直角三角形,∴AB2+AC2=BC2,……………5分∴x2+2002=(400-x)2,……………6分解得x=150,……………7分答:桥AB长150米.……………8分21.解:(1)-……………2分(2)……………4分(3)+1)=(-1+1)…5分=(-+1)……………6分=2024-1……………7分=2023……………8分22.解:(1)矩形;……………2分(2)①∵在硬纸板□ABCD中,AD=10,□ABCD的面积为60,∴AD×DE=10DE=60,DE=6,……………3分∵△AHF是由△DME平移得到,∴AH∥DM,AH=DM,∴四边形AHMD是平行四边形,……………4分在Rt△DEM中,DM……………5分=10=AD,∴平行四边形AHMD是菱形.……………6分②如图,连接AM ,DH ,……………7分在Rt △AFM 中,FM =EF ―EM =10―8=2,∴AM……………8分在Rt △DEH 中,HE =MH +EM =10+8=18,∴DH,……………9分∴四边形AHMD 的两条对角线的长分别为、……………10分23.(1)证明:由平移可知:AE =BF ,AE ∥BF ,∴∠ACB =∠FBC ,……………1分∵EG ∥BC ,∴∠AEG =∠ACB ,∴∠AEG =∠FBC ,……………2分∵EG ∥BC ,CE ∥BG ,∴四边形CEGB 是平行四边形,∴EG =BC……………3分在△EGA 和△BCF 中AE BF AEG FBC EG BCì=ïïÐ=Ðíï=ïî……………4分∴△EGA ≌△BCF (SAS )……………5分(2)证明:∵四边形CEGB 是平行四边形,∴CE =GB .∵AE =BF ,∴CE +AE =GB +BF .∴AC =GF ,……………6分∵△EGA ≌△BCF ∴GA =CF……………7分∴四边形ACFG 是平行四边形.……………8分(3)5……………10分24.解:(1)证明:∵PE ⊥BC ,∴∠BEP =90°,……………1分在Rt △BEP 中,BP =2t ,……………2分∵∠CBD =30°,∴PE =t ,……………3分又∵DQ =t ,∴PE =DQ .……………4分(2)能.理由如下:……………5分∵四边形ABCD为矩形,PE⊥BC,∠BEP=∠C=90°,∴PE∥DQ,由(1)知,PE=DQ,∴四边形PEQD为平行四边形,……………6分在Rt△CBD中,CD=4,∠CBD=30°,∴BD=2CD=8,∵BP=2t,∴PD=BD-BP=8-2t,若使平行四边形PEQD为菱形,则需PD=DQ,即8-2t=t,……………7分∴t=8 3,即当t=83时,四边形PEQD为菱形.……………8分(3)①当∠EPQ=90°时,四边形EPQC为矩形,∴PE=QC,∵PE=t,QC=4-t,∴t=4-t,即t=2;……………9分②当∠PQE=90°时,∠DPQ=∠PQE=90°,在Rt△DPQ中,∠PQD=90°-60°=30°,∴DQ=2DP,∵DQ=t,DP=8-2t,∴t=2(8-2t),即t=165.……………10分③当∠PEQ=90°时,此种情况不存在.……………11分综上所述,当t=2或165时,△PQE为直角三角形.……………12分注:1.按照评分标准分步评分,不得随意变更给分点;2.第17题至第24题的其它解法,只要思路清晰,解法正确,都应按步骤给予相应分数.。
人教版八年级下册数学期中考试试卷一、单选题1.下列式子中,属于最简二次根式的是()AB CD 2.下列运算正确的是()A .=B=C2=-D 2÷=3)A .﹣3B C .﹣3D 4.如图,将长方形纸片折叠,使A 点落在边BC 上的F 处,折痕为BE ,若沿EF 剪下,则折叠部分展开是一个正方形,其数学原理是()A .有一组邻边相等的矩形是正方形B .对角线相等的菱形是正方形C .两个全等的直角三角形构成正方形D .轴对称图形是正方形5.如图,在Rt ABC △中,1AB BC ==,90ABC ∠=︒,点A ,B 在数轴上对应的数分别为1,2,以点A 为圆心,AC 长为半径画弧,交数轴负半轴于点D ,则与点D 对应的数是()A 1B .1C D .6.有下列四个命题:其中正确的为()A .两条对角线互相平分的四边形是平行四边形;B .两条对角线相等的四边形是菱形;C .两条对角线互相垂直的四边形是正方形;D .两条对角线相等且互相垂直的四边形是正方形.7.如图,将▱ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若ABD 48∠= ,CFD 40∠= ,则E ∠为()A .102B .112C .122D .928.已知四个三角形分别满足下列条件:①三角形的三边之比为1:12;②三角形的三边分别是9、40、41;③三角形三内角之比为1:2:3;④三角形一边上的中线等于这边的一半.其中直角三角形有()个A .4B .3C .2D .19.如图是一圆柱形玻璃杯,从内部测得底面直径为12cm ,高为16cm ,现有一根长为25cm 的吸管任意放入杯中,则吸管露在杯口外的长度最少是()A .6cmB .5cmC .9cmD .25273cm-10.如图,在矩形ABCD 中,5AB =,3AD =,动点Р满足3PAB ABCD S S = 矩形,则点Р到A 、B 两点距离之和PA PB +的最小值为()A 29B 34C .52D 41二、填空题11在实数范围内有意义,则x的取值范围是_________12.如图,在Rt △ABC 中,CD 是斜边AB 上的中线,∠A =20°,则∠BCD =________.13.如图,M 是ABC 的边BC 的中点,AN 平分BAC ∠,BN AN ⊥于点N ,延长BN 交AC 于点D ,已知10AB =,15BC =,3MN =,则ABC 的周长为______.14.勾股定理a 2+b 2=c 2本身就是一个关于a ,b ,c 的方程,满足这个方程的正整数解(a ,b ,c )通常叫做勾股数组.毕达哥拉斯学派提出了一个构造勾股数组的公式,根据该公式可以构造出如下勾股数组:(3,4,5),(5,12,13),(7,24,25),….分析上面勾股数组可以发现,4=1×(3+1),12=2×(5+1),24=3×(7+1),…分析上面规律,第5个勾股数组为_____.15.如图,在矩形ABCD 中,5AB =,6BC =,点M ,N 分别在AD ,BC 上,且13AM AD =,13BN BC =,E 为直线BC 上一动点,连接DE ,将DCE 沿DE 所在直线翻折得到DC E ' ,当点C '恰好落在直线MN 上时,CE 的长为______.三、解答题16.计算:(1)23-(2)22111244a a a a a ---÷+++其中1a =17.如图,在△ABC 中,AB=BC ,BD 平分∠ABC ,四边形ABED 是平行四边形,DE 交BC 于点F ,连接CE求证:四边形BECD 是矩形.18.如图,在四边形ABCD 中,//AD BC ,对角线BD 的垂直平分线与边AD 、BC 分别相交于点M 、N .(1)求证:四边形BNDM 是菱形;(2)若菱形BNDM 的周长为52,10MN =,求菱形BNDM 的面积.19.台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形气旋风暴,有极强的破坏力,此时某台风中心在海域B 处,在沿海城市A 的正南方向240千米,其中心风力为12级,每远离台风中心25千米,台风就会减弱一级,如图所示,该台风中心正以20千米/时的速度沿北偏东30°方向向C 移动,且台风中心的风力不变,若城市所受风力达到或超过4级,则称受台风影响.试问:(1)A 城市是否会受到台风影响?请说明理由.(2)若会受到台风影响,那么台风影响该城市的持续时间有多长?(3)该城市受到台风影响的最大风力为几级?20.如图,已知正方形ABCD连接AC ,BD 交于点O ,CE 平分ACD ∠交BD 于点E .(1)求DE 的长;(2)过点E 作EF CE ⊥,交AB 于点F ,求证:BF DE =.21.如图,在矩形ABCD 中,M ,N 分别是边AD ,BC 的中点,E ,F 分别是线段BM ,CM 的中点.(1)求证:ABM DCM △≌△;(2)四边形MENF 是__________;(3)当:AB AD =______时,四边形MENF 是正方形.22.在菱形ABCD 中,60ABC ∠=︒,点P 是射线DB 上一动点,以CP 为边向左侧作等边CPE △.点E 的位置随着点P 的位置变化而变化.(1)如图1,当点E 在菱形ABCD 内部或边上时,连接AE ,则DP 与AE 的数量关系是______,AE 与CB 的位置关系是______;(2)当点E 在菱形ABCD 外部时,(1)中的结论是否成立?若成立,请选择图2或图3中的一种情况予以证明;若不成立,请说明理由.(3)如图4,当点P 在线段DB 的延长线上时,连接DE ,若AB =DE =出四边形CBPE 的面积.23.阅读材料,回答问题:1()中国古代数学著作图1《周髀算经》有着这样的记载:“勾广三,股修四,经隅五.”.这句话的意思是:“如果直角三角形两直角边为3和4时,那么斜边的长为5.”.上述记载表明了:在Rt ABC 中,如果C 90∠=︒,BC a =,AC b =,AB c =,那么a ,b ,c 三者之间的数量关系是:______.2()对于这个数量关系,我国汉代数学家赵爽根据“赵爽弦图”(如图2,它是由八个全等直角三角形围成的一个正方形),利用面积法进行了证明.参考赵爽的思路,将下面的证明过程补充完整:证明:ABC 1S ab 2= ,2ABCD S c =正方形,MNPQ S =正方形______.又 ______=______,221(a b)4ab c 2∴+=⨯+,整理得222a 2ab b 2ab c ++=+,∴______.3()如图3,把矩形ABCD 折叠,使点C 与点A 重合,折痕为EF ,如果AB 4=,BC 8=,求BE 的长.参考答案1.A【解析】最简二次根式要满足两个条件:被平方数中不含有开得尽方的因数或因式;被开方数中不含分母.依据这两条判断即可.【详解】A 、是最简二次根式,故符合题意;B 、8中有因数4可以开方,故不符合题意;C 、被开方数中含有分母,故不符合题意;D 、被开方数中有开得尽方的因式,故不符合题意;故选:A .【点睛】本题考查了最简二次根式的含义,关键把握最简二次根式的两个条件.2.D【解析】根据二次根式的运算及性质即可完成.【详解】A、被平方数不相同的两个最简二次根式不能相加,故错误;B≠C2=,故错误;D÷===,故正确;2故选:D.【点睛】本题考查了二次根式的加法和除法运算、二次根式的性质,掌握运算法则及性质是关键,同时在二次根式的学习中避免犯类似错误.3.C【解析】【详解】试题解析:原式=.故选C.考点:二次根式的乘除法.4.A【解析】【分析】将长方形纸片折叠,使A点落BC上的F处,可得到BA=BF,折痕为BE,沿EF剪下,故四边形ABFE为矩形,且有一组邻边相等,故四边形ABFE为正方形.【详解】解:∵将长方形纸片折叠,A落在BC上的F处,∴BA=BF,∵折痕为BE,沿EF剪下,∴四边形ABFE为矩形,∴四边形ABEF为正方形.故用的判定定理是;邻边相等的矩形是正方形.故选;A.【点睛】本题考查了正方形的判定定理,关键是根据邻边相等的矩形是正方形和翻折变换解答.5.B【解析】【分析】由勾股定理可得AC的长,从而得AD=AC,则由点A表示的数示得点D表示的数.【详解】在Rt△ABC中,AB=BC=1,则由勾股定理得:AC==∵以点A为圆心,AC长为半径画弧,交数轴负半轴于点D∴∴D点表示的实数为:1故选:B.【点睛】本题考查了实数与数轴、勾股定理等知识,熟知实数与数轴上的点一一对应关系是解答此题的关键.6.A【解析】【分析】利用平行四边形的判定、菱形的判定及正方形的判定逐一判断后即可确定正确的选项.【详解】解:A.两条对角线互相平分的四边形是平行四边形,正确;B.两条对角线互相垂直平分的四边形是菱形,故错误;C.两条对角线互相垂直平分且相等的四边形是正方形,故错误;D.两条对角线相等且互相垂直平分的四边形是正方形,故错误.故选:A.【点睛】本题考查了命题与定理的知识,了解平行四边形的判定、菱形的判定及正方形的判定是解答本题的关键,难度较小.7.B【解析】【分析】由平行四边形的性质和折叠的性质,得出ADB BDF DBC ∠∠∠==,由三角形的外角性质求出1BDF DBC DFC 202∠∠∠=== ,再由三角形内角和定理求出A ∠,即可得到结果.【详解】AD //BC ,ADB DBC ∠∠∴=,由折叠可得ADB BDF ∠∠=,DBC BDF ∠∠∴=,又DFC 40∠= ,DBC BDF ADB 20∠∠∠∴=== ,又ABD 48∠= ,ABD ∴ 中,A 1802048112∠=--= ,E A 112∠∠∴== ,故选B .【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理的综合应用,熟练掌握平行四边形的性质,求出ADB ∠的度数是解决问题的关键.8.A【解析】【详解】①设三角形三边分别为x 、x ,则x 2+x 2=x )2,∴此三角形是直角三角形;②92+402=412,∴此三角形是直角三角形;③设三角形三个内角分别为x°、2x°、3x°,则x+2x+3x=180,解得x=30,3x=90,所以此三角形是直角三角形;④如图,∵CD=AD=BD ,∴∠A=∠ACD ,∠B=∠BCD ,∴∠ACD+∠BCD=90°,∴△ABC 是直角三角形.故选A.9.B【解析】【分析】吸管露出杯口外的长度最小,则在杯内的长度最长,此时若沿杯子的底面直径纵向切开,则当吸管在矩形的对角线所在直线上时,杯内吸管最长,然后用勾股定理即可解决.【详解】如图,沿杯子的底面直径纵向切开,则当吸管在矩形的对角线所在直线上时,杯内吸管最长,22121620+=(cm)所以吸管露出杯口外的长度最少为25-20=5(cm)故选:B .【点睛】本题考查了勾股定理在实际生活中的应用,关键是构造直角三角形,利用勾股定理解答.10.D【解析】【分析】由3PAB ABCD S S = 矩形,可得△PAB 的AB 边上的高h=2,表明点P 在平行于AB 的直线EF 上运动,且两平行线间的距离为2;延长FC 到G ,使FC=CG ,连接AG 交EF 于点H ,则点P 与H 重合时,PA+PB 最小,在Rt △GBA 中,由勾股定理即可求得AG 的长,从而求得PA+PB 的最小值.【详解】设△PAB 的AB 边上的高为h∵3PAB ABCDS S = 矩形∴132AB h AB AD ⨯= ∴h=2表明点P 在平行于AB 的直线EF 上运动,且两平行线间的距离为2,如图所示∴BF=2∵四边形ABCD 为矩形∴BC=AD=3,∠ABC=90゜∴FC=BC-BF=3-2=1延长FC 到G ,使CG=FC=1,连接AG 交EF 于点H∴BF=FG=2∵EF ∥AB∴∠EFG=∠ABC=90゜∴EF 是线段BG 的垂直平分线∴PG=PB∵PA+PB=PA+PG≥AG∴当点P 与点H 重合时,PA+PB 取得最小值AG在Rt △GBA 中,AB=5,BG=2BF=4,由勾股定理得:AG ===即PA+PB 故选:D .【点睛】本题是求两条线段和的最小值问题,考查了矩形的性质,勾股定理,线段垂直平分线的性质、两点之间线段最短等知识,难点在于确定点P 运动的路径,路径确定后就是典型的将军饮马问题.11.x≤5.【解析】【详解】解:由题意得:50x -≥,解得5x ≤,故答案为5x ≤.考点:二次根式有意义的条件.12.70°【解析】【分析】根据直角三角形两锐角互余求得∠B=70°,然后根据直角三角形斜边上中线定理得出CD=BD ,求出∠BCD=∠B 即可.【详解】解:在Rt △ABC 中,∵∠A=20°,∴∠B=90°-∠A=70°,∵CD 是斜边AB 上的中线,∴BD=CD ,∴∠BCD=∠B=70°,故答案为70°.【点睛】本题考查了直角三角形斜边上的中线性质,等腰三角形性质等知识点的理解和运用,能求出BD=CD=AD 和∠B 的度数是解此题的关键.13.41【解析】【分析】证明△ABN ≌△ADN ,得到AD =AB =10,BN =DN ,根据三角形中位线定理求出CD ,计算即可.【详解】解:∵AN 平分BAC ∠,∴∠BAN=∠DAN在△ABN 和△ADN 中,BAN DAN AN AN ANB AND ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABN ≌△ADN ,∴AD =AB =10,BN =DN ,∵M 是△ABC 的边BC 的中点,BN =DN ,∴CD =2MN =6,∴△ABC 的周长=AB+BC+CA =41,故答案为:41.【点睛】本题考查的是三角形的中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.14.(11,60,61)【解析】【分析】由勾股数组:(3,4,5),(5,12,13),(7,24,25)…中,4=1×(3+1),12=2×(5+1),24=3×(7+1),…可得第5组勾股数中间的数为:5×(11+1)=60,进而得出(11,60,61).【详解】由勾股数组:(3,4,5),(5,12,13),(7,24,25)…中,4=1×(3+1),12=2×(5+1),24=3×(7+1),…可得第4组勾股数中间的数为4×(9+1)=40,即勾股数为(9,40,41);第5组勾股数中间的数为:5×(11+1)=60,即(11,60,61).故答案为(11,60,61).【点睛】本题主要考查了勾股数,关键是找出数据之间的关系,掌握勾股定理.15.52或10【解析】【分析】分两种情况:E 点在BC 上;点E 在CB 的延长线上.分别由折叠性质勾股定理,矩形的性质进行解答.【详解】解:设CE=x,则C′E=x,当E点在线段BC上时,如图1,∵矩形ABCD中,AB=5,∴CD=AB=5,AD=BC=6,AD∥BC,∵点M,N分别在AD,BC上,且3AM=AD,3BN=BC,∴DM=CN=4,∴四边形CDMN为平行四边形,∵∠NCD=90°,∴四边形MNCD是矩形,∴∠DMN=∠MNC=90°,MN=CD=5由折叠知,C′D=CD=5,===,∴MC′3∴C′N=5﹣3=2,∵EN=CN﹣CE=4﹣x,∴C′E2﹣NE2=C′N2,∴x2﹣(4﹣x)2=22,解得,x=2.5,即CE=2.5;当E点在CB的延长线上时,如图2,∵矩形ABCD 中,AB =5,∴CD =AB =5,AD =BC =6,AD ∥BC ,∵点M ,N 分别在AD ,BC 上,且3AM =AD ,3BN =BC ,∴DM =CN =4,∴四边形CDMN 为平行四边形,∵∠NCD =90°,∴四边形MNCD 是矩形,∴∠DMN =∠MNC =90°,MN =CD =5由折叠知,C′D =CD =5,∴MC′2222'543C D MD =-=-=,∴C′N =5+3=8,∵EN =CE ﹣CN =x ﹣4,C′E 2﹣NE 2=C′N 2,∴x 2﹣(x ﹣4)2=82,解得,x =10,即CE =10;综上,CE =2.5或10.故答案为:2.5或10.【点睛】本题主要考查了矩形的性质与判定,勾股定理,折叠的性质,关键是分情况讨论.16.(1)1132;(2)11a -+,22.【解析】【分析】(1)直接利用二次根式的性质分别化简得出答案;(2)先根据分式混合运算的法则把原式进行化简,再把a 的值代入进行计算即可.【详解】(1)原式==(2)原式21(1)(1)12(2)a a a a a -+-=-÷++21(2)12(1)(1)a a a a a -+=-⋅+-+211a a +=-+1211a a a a ++=-++11a =-+当1a =时,原式2=-.【点睛】本题考查了二次根式的加减混合运算以及分式的化简求值,熟知运算的法则是解答此题的关键.17.证明见解析【解析】【分析】根据已知条件易推知四边形BECD 是平行四边形.结合等腰△ABC“三线合一”的性质证得BD ⊥AC ,即∠BDC=90°,所以由“有一内角为直角的平行四边形是矩形”得到▱BECD 是矩形.【详解】证明:∵AB=BC ,BD 平分∠ABC ,∴BD ⊥AC ,AD=CD .∵四边形ABED 是平行四边形,∴BE ∥AD ,BE=AD ,∴四边形BECD 是平行四边形.∵BD ⊥AC ,∴∠BDC=90°,∴▱BECD 是矩形.【点睛】本题考查矩形的判定,掌握有一个角是直角的平行四边形是矩形是本题的解题关键.18.(1)见解析;(2)120【解析】【分析】(1)证△MOD ≌△NOB (AAS ),得出OM=ON ,由OB=OD ,证出四边形BNDM 是平行四边形,进而得出结论;(2)由菱形的周长得到菱形的边长BM=13,由菱形的性质及MN=10得到OM=5,在Rt BOM △中由勾股定理得到OB 的长,进而得到BD 的长,利用菱形的面积公式即可求得BNDM 的面积【详解】(1)证明:∵//AD BC ,∴DMO BNO ∠=∠.∵直线MN 是对角线BD 的垂直平分线,∴OB OD =,MN BD ⊥.在MOD 和NOB 中,DMO BNO MOD NOB OD OB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴(AAS)MOD NOB ≌△△,∴OM ON =,∵OB OD =,∴四边形BNDM 是平行四边形,∵MN BD ⊥,∴四边形BNDM 是菱形;(2)∵菱形BNDM 的周长为52,∴13BN ND DM MB ====,∴12OM ON MN ==,又10MN =,∴5OM =在Rt BOM △中,由勾股定理得12OB ===,故24BD =,故菱形BNDM 面积11202MN BD =⨯⨯=.【点睛】本题考查了菱形的判定与性质、平行四边形的判定与性质、全等三角形的判定与性质、勾股定理等知识;熟练掌握菱形的判定与性质,证明三角形全等是解题的关键.19.(1)该城市会受到这次台风的影响;(2)16;(3)7.2.【解析】【详解】试题分析:(1)过A 作AD ⊥BC 于D ,利用30°角所对边是斜边一半,求得AD,与200比较.(2)以A 为圆心,200为半径作⊙A 交BC 于E 、F,勾股定理计算弦长EF.(3)AD 距台风中心最近,计算风力级别.试题解析:(1)该城市会受到这次台风的影响.理由是:如图,过A 作AD ⊥BC 于D .在Rt △ABD 中,∵∠ABD=30°,AB=240,∴AD=12AB=120,∵城市受到的风力达到或超过四级,则称受台风影响,∴受台风影响范围的半径为25×(12﹣4)=200,∵120<200,∴该城市会受到这次台风的影响.(2)如图以A 为圆心,200为半径作⊙A 交BC 于E 、F,则AE=AF=200,∴台风影响该市持续的路程为:EF=2DE=2∴台风影响该市的持续时间t=320÷20=16(小时).(3)∵AD 距台风中心最近,∴该城市受到这次台风最大风力为:12﹣(120÷25)=7.2(级).20.(1)22(2)见解析【解析】【分析】(1)根据正方形的性质,CE 平分ACD ∠,可得122.52ACE DCE ACD ∠=∠=∠=︒,从而67.5∠=︒BCE ,根据三角形的内角和定理可得BEC BCE ∠=∠,从而2BE BC =利用勾股定理求出2BD =,即可求解;(2)根据EF CE ⊥,可得∠=∠FEB DCE ,又有45FBE CDE ∠=∠=︒,BE BC CD ==,可证≌FEB ECD △△,即可求证.【详解】解:(1)∵四边形ABCD 是正方形,∴90ABC ADC BCD ∠=∠=∠=︒,45DBC BCA ACD ABD CDB ∠=∠=∠=∠=∠=︒.∵CE 平分DCA ∠,∴122.52ACE DCE ACD ∠=∠=∠=︒,∴4522.567.5BCE BCA ACE ∠=∠+∠=︒+︒=︒,∵45DBC ∠=︒,∴18067.54567.5BEC BCE ∠=︒-︒-︒=︒=∠,∴2BE BC ==在Rt BCD 中,由勾股定理得()()22222BD =+=,∴22DE BD BE =-=(2)∵EF CE ⊥,∴90CEF ∠=︒,∴9067.522.5FEB CEF CEB DCE ∠=∠-∠=︒-︒=︒=∠,∵45FBE CDE ∠=∠=︒,BE BC CD ==,∴(ASA)FEB ECD ≌△△,∴BF DE =.【点睛】本题主要考查了正方形的性质,三角全等的判定和性质,等腰三角形的判定,三角形内角定理,勾股定理等知识,证明三角形全等是解题的关键.21.(1)见解析;(2)菱形;(3)当:1:2AB AD =时,四边形MENF 是正方形.【解析】【分析】(1)在矩形ABCD 中,可得AB DC =,90A D ∠=∠=︒,再根据M 为AD 中点,得AM DM =,即可求证;(2)由(1)ABM DCM △≌△,得BM CM =,再由E ,F 分别是线段BM ,CM 的中点,可得EM FM =,然后N 分别是边BC 的中点,根据三角形中位线定理可得EN MF =,FN EM =,得到四边形MENF 是平行四边形,即证;(3)当:1:2AB AD =时,有12AB AD =,可得45ABM AMB ︒∠=∠=,同理45DMC ︒∠=,可得90EMF ︒∠=,即可求解.【详解】(1)证明:∵四边形ABCD 是矩形,∴AB DC =,90A D ∠=∠=︒,∵M 为AD 中点,∴AM DM =,在ABM 和DCM △,AM DM =,A D ∠=∠,AB CD =,∴()SAS ABM DCM ≌△△;(2)由(1)ABM DCM △≌△,∴BM CM =,∵E ,F 分别是线段BM ,CM 的中点,∴12BE EM BM ==,12CF MF MC ==,∴EM FM =,∵N 分别是边BC 的中点,∴12EN MC =,12FN BM =,∴EN MF =,FN EM =,∴四边形MENF 是平行四边形,∵EM FM =,∴四边形MENF 是菱形;(3)解:当:1:2AB AD =时,四边形MENF 是正方形;理由如下:当:1:2AB AD =时,有12AB AD =,∵M 为AD 中点,∴AB AM =,∴ABM AMB ∠=∠,∵90A ︒∠=,∴45ABM AMB ︒∠=∠=,同理45DMC ︒∠=,∴180180454590EMF AMB DMC ︒︒︒︒︒∠=-∠-∠=--=,由(2)四边形MENF 是菱形,∴四边形MENF 是正方形,∴当:1:2AB AD =时,四边形MENF 是正方形.【点睛】本题主要考查了矩形的性质,三角形全等的判定和性质,菱形的判定,正方形的判定,三角形的中位线定理,熟练掌握相关性质定理,判定定理是解题的关键.22.(1)①DP AE =,②AE CB ⊥;(2)(1)中的结论仍然成立,理由见解析;(3)四边形CBPE 【解析】【分析】(1)连接AC ,根据菱形的性质,可得到ADC 、ABC 是等边三角形,再由PCE 是等边三角形,可得CP CE =,DCP ACE ∠=∠,可证得CDP CAE ≌△△,从而DP AE =,30︒∠=∠=CAE CDP ,利用等边三角形三线合一可证得AE CB ⊥;(2)连接AC ,根据菱形的性质,可得到ADC 、ABC 是等边三角形,再由PCE 是等边三角形,可得CP CE =,DCP ACE ∠=∠,可证得CDP CAE ≌△△,从而DP AE =,30︒∠=∠=CAE CDP ,利用等边三角形三线合一可证得AE CB ⊥;(3)连结AC 交BD 与点O ,过点E 作EM PC ⊥于点M ,则12PM PC =,由(2)知AE AD ⊥,DP AE =,利用菱形的性质和勾股定理可求得7==DP AE ,3BO =,从而1PB PD BD =-=,4PO =,利用勾股定理求得PE PC ==EM =,即可得到四边形CBPE 的面积等于CPE PBC S S + ,即可求解.【详解】(1)①DP AE =②AE CB ⊥理由如下:如图,连接AC ,∵在菱形ABCD 中,AB BC CD DA ===,60ADC ABC ∠=∠=︒,1302CDP ADC ︒∠=∠=,∴ADC 、ABC 是等边三角形,∴AC CD =,60ACD ∠=︒,60BAC ︒∠=.∵PCE 是等边三角形,∴CP CE =,60PCE ∠=︒,∴∠-∠=∠-∠ACD ACP PCE ACP ,即DCP ACE ∠=∠,∴CDP CAE ≌△△,∴DP AE =,30︒∠=∠=CAE CDP ,∴30BAE CAE ︒∠=∠=,即AE 平分BAC ∠,∴AE CB ⊥;(2)(1)中的结论仍然成立,理由如下:如图,连接AC ,∵在菱形ABCD 中,AB BC CD DA ===,60ADC ABC ∠=∠=︒,∴ADC 是等边三角形,∴AC CD =,60ACD ∠=︒.∵PCE 是等边三角形,∴CP CE =,60PCE ∠=︒,∴ACD ACP PCE ACP ∠+∠=∠+∠,即DCP ACE ∠=∠,∴CDP CAE ≌△△,∴DP AE =,CAE CDP ∠=∠.∵在菱形ABCD 中,1302CDP ADC ∠=∠=︒,60ACB ∠=︒,∴30CAE CDP ∠=∠=︒,∴90DAE ∠=︒,即AE AD ⊥,∵//AD BC ,∴AE CB ⊥.(3)如图,连结AC 交BD 与点O ,过点E 作EM PC ⊥于点M ,则12PM PC =,由(2)知AE AD ⊥,DP AE =,在菱形ABCD 中,AC BD ⊥,23AB BC AD ===,12AO CO AC ==,12BO BD =,∵DE =,∴7AE ===,∴7==DP AE ,∵60ABC ∠=︒,∴ABC 是等边三角形,∴1302ABO ABC ︒∠=∠=,AC AB ==,∴12AO CO AC ===3BO ==,∴6BD =,∴1PB PD BD =-=,4PO =,∴PC ===,∴2PM =,PE PC ==∴2EM ==,∴四边形CBPE 的面积是11111222224CPE PBC S S PC EM PB CO +=⋅+⋅=⨯⨯+⨯⨯= .【点睛】本题主要考查了菱形的性质,等边三角形的性质和判定,全等三角形的判定与性质,勾股定理,解题的关键是找到全等三角形,利用全等三角形的性质解答问题.23.(1)222+=a b c ;(2)()2a b +,正方形的面积=四个全等直角三角形的面积的面积+正方形AEDB 的面积,222+=a b c ;(3)3.【解析】【分析】(1)根据勾股定理解答即可;(2)根据题意、结合图形,根据完全平方公式进行计算即可;(3)根据翻折变换的特点、根据勾股定理列出方程,解方程即可.【详解】解:(1)在Rt ABC 中,90C ∠=︒,BC a =,AC b =,AB c =,由勾股定理得,222+=a b c ,故答案为:222+=a b c ;(2)12ABC S ab ∆= ,2ABCD S c =正方形,2()MNPQ S a b =+正方形;又 正方形的面积=四个全等直角三角形的面积的面积+正方形AEDB 的面积,221()42a b ab c ∴+=⨯+,整理得,22222a ab b ab c ++=+,222a b c ∴+=,故答案为:2()a b +;正方形的面积;四个全等直角三角形的面积的面积+正方形AEDB 的面积;222+=a b c ;(3)设BE x =,则8EC x =-,由折叠的性质可知,8AE EC x ==-,在Rt ABE △中,222AE AB BE =+,则222(8)4x x -=+,解得,3x =,则BE 的长为3.【点睛】本题考查的是正方形和矩形的性质、勾股定理、翻折变换的性质,正确理解勾股定理、灵活运用数形结合思想是解题的关键.。
人教版八年级下册数学期中考试试卷一、选择题(本大题共12个小题;每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.要使式子有意义,则x的取值范围是()A.x≤﹣2B.x≤2C.x≥2D.x≥﹣22.下列二次根式中,最简二次根式是()A.B.C.D.3.下列二次根式中,与之积为无理数的是()A.B.C.D.4.若(m﹣1)2+=0,则m+n的值是()A.﹣1B.0C.1D.25.以下列长度为三角形边长,不能构成直角三角形的是()A.5,12,13B.4,5,6C.1,,D.7,24,256.如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2B.∠BAD=∠BCD C.AB=CD D.AC⊥BD7.如图,是由三个正方形组成的图形,则∠1+∠2+∠3等于()A.60°B.90°C.120°D.180°8.如图,在△ABC中,∠C=90°,AB=17cm,AC=8cm,若BE=3cm,则矩形CBEF 的面积是()A.9cm2B.24cm2C.45cm2D.51cm29.设n为正整数,且n<<n+1,则n的值为()A.5B.6C.7D.810.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形11.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的()A.B.C.D.12.如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A.2B.4C.4D.8二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)13.计算:=.14.相邻两边长分别是2+与2﹣的平行四边形的周长是.15.等腰三角形的腰为13cm,底边长为10cm,则它的面积为.16.已知▱ABCD中,∠A+∠C=240°,则∠B的度数是.17.若菱形的两条对角线长分别是6和8,则此菱形的周长是,面积是.18.如图所示,平行四边形ABCD中,顶点A、B、D在坐标轴上,AD=5,AB=9,点A的坐标为(﹣3,0),则点C的坐标为.19.如图,在平行四边形ABCD中,DE平分∠ADC,AD=8,BE=4,则平行四边形ABCD的周长是.20.如图所示的一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,这块地的面积为.三、解答下列各题(本题有7个小题,共60分)21.计算:(1)4+﹣+4(2)(﹣2)2÷(+3﹣)22.(1)先化简,再求值:÷(﹣),其中x=+,y=﹣.(2)在数轴上画出表示的点.(要求画出作图痕迹)(3)如图,左边是由两个边长为2的小正方形组成,沿着图中虚线剪开,可以拼成右边的大正方形,求大正方形的边长.23.如图,平行四边形ABCD,点E,F分别在BC,AD上,且BE=DF,求证:四边形AECF是平行四边形.24.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.25.观察下列等式:①==;②==;③==…回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++…+.26.如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.27.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.参考答案与试题解析一、选择题(本大题共12个小题;每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.要使式子有意义,则x的取值范围是()A.x≤﹣2B.x≤2C.x≥2D.x≥﹣2【考点】二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于或等于0,列不等式,即可求出x的取值范围.【解答】解:由题意得:2+x≥0,解得:x≥﹣2,故选D.【点评】本题考查了二次根式有意义的条件,难度不大,解答本题的关键是掌握二次根式的被开方数为非负数.2.下列二次根式中,最简二次根式是()A.B.C.D.【考点】最简二次根式.【分析】根据最简二次根式的概念进行判断即可.【解答】解:=a,A错误;=,B错误;=3,C错误;是最简二次根式,D正确,故选:D.【点评】本题考查的是最简二次根式的概念,最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.3.下列二次根式中,与之积为无理数的是()A.B.C.D.【考点】二次根式的乘除法.【分析】根据二次根式的乘法进行计算逐一判断即可.【解答】解:A、,不是无理数,错误;B、,是无理数,正确;C、,不是无理数,错误;D、,不是无理数,错误;故选B.【点评】此题考查二次根式的乘法,关键是根据法则进行计算,再利用无理数的定义判断.4.若(m﹣1)2+=0,则m+n的值是()A.﹣1B.0C.1D.2【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的性质列式求出m、n的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,m﹣1=0,n+2=0,解得m=1,n=﹣2,所以,m+n=1+(﹣2)=﹣1.故选A.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.5.以下列长度为三角形边长,不能构成直角三角形的是()A.5,12,13B.4,5,6C.1,,D.7,24,25【考点】勾股定理的逆定理.【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、52+122=132,故是直角三角形,故正确;B、42+52≠62,故不是直角三角形,故错误;C、12+()2=()2,故是直角三角形,故正确;D、72+242=252,故是直角三角形,故正确.故选B.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.6.如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2B.∠BAD=∠BCD C.AB=CD D.AC⊥BD【考点】平行四边形的性质.【分析】根据平行四边形的性质,平行四边形对边平行以及对边相等和对角相等分别判断得出即可.【解答】解:∵在平行四边形ABCD中,∴AB∥CD,∴∠1=∠2,(故A选项正确,不合题意);∵四边形ABCD是平行四边形,∴∠BAD=∠BCD,(故B选项正确,不合题意);AB=CD,(故C选项正确,不合题意);无法得出AC⊥BD,(故D选项错误,符合题意).故选:D.【点评】此题主要考查了平行四边形的性质,熟练掌握相关的性质是解题关键.7.如图,是由三个正方形组成的图形,则∠1+∠2+∠3等于()A.60°B.90°C.120°D.180°【考点】三角形内角和定理;正方形的性质.【分析】根据三角形内角和为180°,得到∠BAC+∠BCA+∠ABC=180°,又∠4=∠5=∠6=90°,根据平角为180°,即可解答.【解答】解:如图,∵图中是三个正方形,∴∠4=∠5=∠6=90°,∵△ABC的内角和为180°,∴∠BAC+∠BCA+∠ABC=180°,∵∠1+∠4+∠BAC=180°,∠2+∠6+∠ABC=180°,∠3+∠5+∠ACB=180°,∴∠1+∠4+∠BAC+∠2+∠6+∠ABC+∠3+∠5+∠ACB=540°,∴∠1+∠2+∠3=540°﹣(∠4+∠5+∠6+∠BAC+∠ABC+∠ACB)=540°﹣90°﹣90°﹣90°﹣180°=90°,故选:B.【点评】本题考查了三角形内角和定理,解决本题的关键是运用三角形内角和为180°,正方形的内角为90°以及平角为180°,即可解答.8.如图,在△ABC中,∠C=90°,AB=17cm,AC=8cm,若BE=3cm,则矩形CBEF 的面积是()A.9cm2B.24cm2C.45cm2D.51cm2【考点】勾股定理;矩形的性质.【专题】计算题.【分析】在直角三角形ABC中,由AB与AC的长,利用勾股定理求出BC的长,再由BE的长,求出矩形CBEF的面积即可.【解答】解:在Rt△ABC中,AB=17cm,AC=8cm,根据勾股定理得:BC==15cm,则矩形CBEF面积S=BC•BE=45cm2.故选C【点评】此题考查了勾股定理,以及矩形的性质,熟练掌握勾股定理是解本题的关键.9.设n为正整数,且n<<n+1,则n的值为()A.5B.6C.7D.8【考点】估算无理数的大小.【分析】首先得出<<,进而求出的取值范围,即可得出n的值.【解答】解:∵<<,∴8<<9,∵n<<n+1,∴n=8,故选;D.【点评】此题主要考查了估算无理数,得出<<是解题关键.10.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形【考点】勾股定理的逆定理.【分析】对原式进行化简,发现三边的关系符合勾股定理的逆定理,从而可判定其形状.【解答】解:∵原式可化为a2+b2=c2,∴此三角形是直角三角形.故选:C.【点评】解答此题要用到勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.11.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的()【考点】矩形的性质.【分析】本题主要根据矩形的性质,得△EBO ≌△FDO ,再由△AOB 与△OBC 同底等高,△AOB 与△ABC 同底且△AOB 的高是△ABC 高的得出结论.【解答】解:∵四边形为矩形,∴OB=OD=OA=OC ,在△EBO 与△FDO 中,∵,∴△EBO ≌△FDO (ASA ),∴阴影部分的面积=S △AEO +S △EBO =S △AOB ,∵△AOB 与△ABC 同底且△AOB 的高是△ABC 高的,∴S △AOB =S △OBC =S 矩形ABCD .故选:B .【点评】本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.12.如图,在平行四边形ABCD 中,AB=4,∠BAD 的平分线与BC 的延长线交于点E ,与DC 交于点F ,且点F 为边DC 的中点,DG ⊥AE ,垂足为G ,若DG=1,则AE 的边长为()【考点】平行四边形的性质;等腰三角形的判定与性质;含30度角的直角三角形;勾股定理.【专题】计算题;压轴题.【分析】由AE为角平分线,得到一对角相等,再由ABCD为平行四边形,得到AD与BE 平行,利用两直线平行内错角相等得到一对角相等,等量代换及等角对等边得到AD=DF,由F为DC中点,AB=CD,求出AD与DF的长,得出三角形ADF为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由三角形ADF与三角形ECF全等,得出AF=EF,即可求出AE的长.【解答】解:∵AE为∠DAB的平分线,∴∠DAE=∠BAE,∵DC∥AB,∴∠BAE=∠DFA,∴∠DAE=∠DFA,∴AD=FD,又F为DC的中点,∴DF=CF,∴AD=DF=DC=AB=2,在Rt△ADG中,根据勾股定理得:AG=,则AF=2AG=2,∵平行四边形ABCD,∴AD∥BC,∴∠DAF=∠E,∠ADF=∠ECF,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴AF=EF,则AE=2AF=4.故选:B【点评】此题考查了平行四边形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)13.计算:=6.【考点】二次根式的混合运算.【专题】计算题.【分析】先把化简,然后把括号内合并后进行二次根式的乘法运算即可.【解答】解:原式=(+2)×=3×=6.故答案为6.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.14.相邻两边长分别是2+与2﹣的平行四边形的周长是8.【考点】二次根式的应用.【分析】根据平行四边形的周长等于相邻两边的和的2倍进行计算即可.【解答】解:平行四边形的周长为:(2++2﹣)×2=8.故答案为:8.【点评】本题考查的是平行四边形的周长的计算和二次根式的加减,掌握平行四边形的周长公式和二次根式的加减运算法则是解题的关键.15.等腰三角形的腰为13cm,底边长为10cm,则它的面积为60cm2.【考点】勾股定理;等腰三角形的性质.【分析】根据题意画出图形,过点A作AD⊥BC于点D,根据BC=10cm可知BD=5cm.由勾股定理求出AD的长,再由三角形的面积公式即可得出结论.【解答】解:如图所示,过点A作AD⊥BC于点D,∵AB=AC=13cm,BC=10cm,∴BD=5cm,∴AD===12cm,∴S△ABC=BC•AD=×10×12=60(cm2).故答案为:60cm2.【点评】本题考查的是勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.16.已知▱ABCD中,∠A+∠C=240°,则∠B的度数是60°.【考点】平行四边形的性质.【分析】由平行四边形的性质得出∠A=∠C,∠A+∠B=180°,再由已知条件求出∠A,即可得出∠B.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠A+∠B=180°,∵∠A+∠C=240°,∴∠A=120°,∴∠B=60°;故答案为:60°.【点评】本题考查了平行四边形的性质;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.17.若菱形的两条对角线长分别是6和8,则此菱形的周长是20,面积是24.【考点】菱形的性质.【分析】首先根据题意画出图形,然后由菱形的两条对角线长分别是6和8,可求得OA=4,OB=3,再由勾股定理求得边长,继而求得此菱形的周长与面积.【解答】解:如图,菱形ABCD中,AC=8,BD=6,∴OA=AC=4,OB=BD=3,AC⊥BD,∴AB==5,∴此菱形的周长是:5×4=20,面积是:×6×8=24.故答案为:20,24.【点评】此题考查了菱形的性质以及勾股定理.注意菱形的面积等于对角线积的一半.18.如图所示,平行四边形ABCD中,顶点A、B、D在坐标轴上,AD=5,AB=9,点A的坐标为(﹣3,0),则点C的坐标为(9,4).【考点】平行四边形的性质;坐标与图形性质.【分析】由平行四边形的性质得出CD=AB=9,由勾股定理求出OD,即可得出点C的坐标.【解答】解:∵四边形ABCD是平行四边形,∴CD=AB=9,∵点A的坐标为(﹣3,0),∴OA=3,∴OD===4,∴点C的坐标为(9,4).故答案为:(9,4).【点评】本题考查了平行四边形的性质、坐标与图形性质、勾股定理;熟练掌握平行四边形的性质,由勾股定理求出OD是解决问题的关键.19.如图,在平行四边形ABCD中,DE平分∠ADC,AD=8,BE=4,则平行四边形ABCD的周长是24.【考点】平行四边形的性质.【分析】由在平行四边形ABCD中,DE平分∠ADC,易证得△CDE是等腰三角形,继而求得CD的长,则可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,BC=AD=8,∴∠ADE=∠DEC,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠CDE=∠DEC,∴CD=CE=BC﹣BE=8﹣4=4,∴AB=CD=4,∴平行四边形ABCD的周长是:AD+BC+CD+AB=24.故答案为:24.【点评】此题考查了平行四边形的性质以及等腰三角形的判定与性质.注意证得△CDE是等腰三角形是关键.20.如图所示的一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,这块地的面积为24m2.【考点】勾股定理的应用.【分析】连接AC,利用勾股定理可以得出三角形ACD和ABC是直角三角形,△ABC的面积减去△ACD的面积就是所求的面积.【解答】解:如图,连接AC由勾股定理可知AC===5,又AC2+BC2=52+122=132=AB2故三角形ABC是直角三角形故所求面积=△ABC的面积﹣△ACD的面积==24(m2).【点评】考查了直角三角形面积公式以及勾股定理的应用.三、解答下列各题(本题有7个小题,共60分)21.计算:(1)4+﹣+4(2)(﹣2)2÷(+3﹣)【考点】二次根式的混合运算.【专题】计算题.【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先把各二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算.【解答】解:(1)原式=4+3﹣2+4=7+2;(2)原式=4×12÷(5+﹣4)=48÷(2)=8.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.22.(1)先化简,再求值:÷(﹣),其中x=+,y=﹣.(2)在数轴上画出表示的点.(要求画出作图痕迹)(3)如图,左边是由两个边长为2的小正方形组成,沿着图中虚线剪开,可以拼成右边的大正方形,求大正方形的边长.【考点】图形的剪拼;实数与数轴;分式的化简求值;勾股定理.【分析】(1)首先将括号里面通分,进而利用分式的除法运算法则化简,进而将已知代入求出答案;(2)直接利用勾股定理结合数轴得出的位置;(3)直接利用勾股定理得出大正方形的边长即可.【解答】解:(1)原式=÷=×=,当x=+,y=﹣时,原式==;(2)因为30=25+5,则首先作出以5和为直角边的直角三角形,则其斜边的长即是.如图所示:;(3)如图所示:∵左边是由两个边长为2的小正方形组成,∴大正方形的边长为:=2.【点评】此题主要考查了分式的混合运算以及无理数的确定方法以及勾股定理、图形的剪拼,正确应用勾股定理是解题关键.23.如图,平行四边形ABCD,点E,F分别在BC,AD上,且BE=DF,求证:四边形AECF是平行四边形.【考点】平行四边形的判定与性质.【专题】证明题.【分析】根据平行四边形的性质得出AD∥BC,AD=BC,求出AF=CE,根据平行四边形的判定得出即可.【解答】证明:四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵DF=BE,∴AF=CE,∴四边形AECF是平行四边形.【点评】本题考查了平行四边形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键.24.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.【考点】翻折变换(折叠问题).【专题】计算题.【分析】根据矩形的性质得DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,再根据折叠的性质得AF=AD=10,DE=EF,在Rt△ABF中,利用勾股定理计算出BF=6,则FC=4,设EC=x,则DE=EF=8﹣x,在Rt△EFC中,根据勾股定理得x2+42=(8﹣x)2,然后解方程即可.【解答】解:∵四边形ABCD为矩形,∴DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,∵折叠矩形的一边AD,使点D落在BC边的点F处∴AF=AD=10,DE=EF,在Rt△ABF中,BF===6,∴FC=BC﹣BF=4,设EC=x,则DE=8﹣x,EF=8﹣x,在Rt△EFC中,∵EC2+FC2=EF2,∴x2+42=(8﹣x)2,解得x=3,∴EC的长为3cm.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.25.观察下列等式:①==;②==;③==…回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++…+.【考点】分母有理化.【专题】规律型.【分析】(1)根据观察,可发现规律;=,根据规律,可得答案;(2)根据二次根式的性质,分子分母都乘以分母两个数的差,可分母有理化.【解答】解:(1)原式==;(2)原式=+++…+=(﹣1).【点评】本题考查了分母有理化,分子分母都乘以分母两个数的差是分母有理化的关键.26.如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.【考点】正方形的判定;全等三角形的判定与性质.【专题】证明题.【分析】(1)根据角平分线的性质和全等三角形的判定方法证明△ABD≌△CBD,由全等三角形的性质即可得到:∠ADB=∠CDB;(2)若∠ADC=90°,由(1)中的条件可得四边形MPND是矩形,再根据两边相等的四边形是正方形即可证明四边形MPND是正方形.【解答】证明:(1)∵对角线BD平分∠ABC,∴∠ABD=∠CBD,在△ABD和△CBD中,,∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB;(2)∵PM⊥AD,PN⊥CD,∴∠PMD=∠PND=90°,∵∠ADC=90°,∴四边形MPND是矩形,∵∠ADB=∠CDB,∴∠ADB=45°∴PM=MD,∴四边形MPND是正方形.【点评】本题考查了全等三角形的判定和性质、角平分线的性质、矩形的判定和性质以及正方形的判定,解题的关键是熟记各种几何图形的性质和判定.27.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.【考点】矩形的判定;正方形的判定.【专题】压轴题.【分析】(1)利用平行四边形的判定首先得出四边形AEBD是平行四边形,进而由等腰三角形的性质得出∠ADB=90°,即可得出答案;(2)利用等腰直角三角形的性质得出AD=BD=CD,进而利用正方形的判定得出即可.【解答】(1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,∴四边形AEBD是平行四边形,∵AB=AC,AD是∠BAC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴平行四边形AEBD是矩形;(2)当∠BAC=90°时,理由:∵∠BAC=90°,AB=AC,AD是∠BAC的角平分线,∴AD=BD=CD,∵由(1)得四边形AEBD是矩形,∴矩形AEBD是正方形.【点评】此题主要考查了正方形的判定以及矩形的判定和等腰直角三角形的性质等知识,熟练掌握正方形和矩形的判定是解题关键.。
八年级数学下册期中测试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( )A .2k <B .2k >C .0k >D .0k <2.已知:将直线y=x ﹣1向上平移2个单位长度后得到直线y=kx+b ,则下列关于直线y=kx+b 的说法正确的是( )A .经过第一、二、四象限B .与x 轴交于(1,0)C .与y 轴交于(0,1)D .y 随x 的增大而减小3.若正多边形的一个外角是60︒,则该正多边形的内角和为( )A .360︒B .540︒C .720︒D .900︒4.若x ,y 均为正整数,且2x +1·4y =128,则x +y 的值为( )A .3B .5C .4或5D .3或4或55.对于任意的x 值都有227221x M N x x x x +=++-+-,则M ,N 值为( ) A .M =1,N =3B .M =﹣1,N =3C .M =2,N =4D .M =1,N =46.如图,有一块直角三角形纸片,两直角边6cm AC =,8cm BC =.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .2cmB .3cmC .4cmD .5cm7.关于x 的一元二次方程2(1)210k x x +-+=有两个实数根,则k 的取值范围是( )A .0k ≥B .0k ≤C .0k <且1k ≠-D .0k ≤且1k ≠-8.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( )A .B .C .D .9.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC .若点A ,D ,E 在同一条直线上,∠ACB=20°,则∠ADC 的度数是( )A .55°B .60°C .65°D .70°10.如图,AB ∥EF ,CD ⊥EF ,∠BAC=50°,则∠ACD=( )A .120°B .130°C .140°D .150°二、填空题(本大题共6小题,每小题3分,共18分)1.若△ABC 三条边长为a ,b ,c ,化简:|a -b -c |-|a +c -b |=__________.2.已知222246140x y z x y z ++-+-+=, 则()2002x y z --=_______.3.因式分解:a 2-9=_____________.4.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________5.如图是一张长方形纸片ABCD ,已知AB=8,AD=7,E 为AB 上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP ),使点P 落在长方形ABCD 的某一条边上,则等腰三角形AEP 的底边长是_____________.6.如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,BC=12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为_______cm .三、解答题(本大题共6小题,共72分)1.解下列分式方程:(1)32111x x =+-- (2)2531242x x x-=---2.先化简,再求值:2222222a ab b a ab a b a a b-+-÷--+,其中a ,b 满足2(2)10a b -+=.3.已知28x px ++与23x x q -+的乘积中不含3x 和2x 项,求,p q 的值.4.如图,Rt △ABC 中,∠C=90°,AD 平分∠CAB ,DE ⊥AB 于E ,若AC=6,BC=8,CD=3.(1)求DE 的长;(2)求△ADB 的面积.5.如图,某市有一块长为()3a b +米,宽为()2a b +米的长方形地块,规划部门计划将阴影部分进行绿化,中间修建一座雕像,求绿化的面积是多少平方米?并求出当3,2a b ==时的绿化面积?6.在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y (千克)与该天的售价x (元/千克)满足如下表所示的一次函数关系. 销售量y (千克) …34.8 32 29.6 28 … 售价x (元/千克) … 22.6 24 25.2 26 …(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、C5、B6、B7、D8、D9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2b-2a2、03、(a+3)(a ﹣3)4、135°5、56、42.三、解答题(本大题共6小题,共72分)1、(1)x=2;(2)32x =- 2、1a b-+,-1 3、3p =,1q =.4、(1)DE=3;(2)ADB S 15∆=.5、(5a 2+3ab )平方米,63平方米6、(1)当天该水果的销售量为33千克;(2)如果某天销售这种水果获利150元,该天水果的售价为25元.。
新人教版八年级数学下册期中试卷及答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2020的倒数是()A.﹣2020 B.﹣12020C.2020 D.120202.若关于x的方程3m(x+1)+5=m(3x-1)-5x的解是负数,则m的取值范围是()A.m>-54B.m<-54C.m>54D.m<543.在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3| B.﹣2 C.0 D.π4.若关于x的方程333x m mx x++--=3的解为正数,则m的取值范围是()A.m<92B.m<92且m≠32C.m>﹣94D.m>﹣94且m≠﹣345.已知一次函数y=kx+b随着x的增大而减小,且kb<0,则在直角坐标系内它的大致图象是()A.B.C.D.6.如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是()A.x=2 B.x=0 C.x=﹣1 D.x=﹣37.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙B.甲和丁C.乙和丙D.乙和丁8.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ABCD为菱形的是()A.AB=BC B.AC=BC C.∠B=60°D.∠ACB=60°9.如图,在平面直角坐标系中,反比例函数y=kx(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N两点.△OMN的面积为10.若动点P在x轴上,则PM+PN的最小值是()A.62B.10 C.226D.22910.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20°B.35°C.40°D.70°二、填空题(本大题共6小题,每小题3分,共18分)1.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a ﹣b|+2()a b +的结果是________.2.比较大小:23________13.3.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是________.4.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b ++=________.5.如图,在平面直角坐标系中,△AOB ≌△COD ,则点D 的坐标是__________.6.已知:在▱ABCD 中,对角线AC 、BD 相交于点O ,过点O 的直线EF 分别交AD于E 、BC 于F ,S △AOE =3,S △BOF =5,则▱ABCD 的面积是_____.三、解答题(本大题共6小题,共72分)1.解下列方程组(1)203216x y x y -=⎧⎨+=⎩ (2)410211x y x y -=⎧⎨+=⎩2.化简求值:(1)27x -48×4x +23x ; (2)2(53)(113)(113)-++-.3.已知方程组137x y ax y a -=+⎧⎨+=--⎩中x 为非正数,y 为负数.(1)求a 的取值范围;(2)在a 的取值范围中,当a 为何整数时,不等式221ax x a ++>的解集为1x <?4.如图,直角坐标系xOy 中,一次函数y=﹣12x+5的图象l 1分别与x ,y 轴交于A ,B 两点,正比例函数的图象l 2与l 1交于点C (m ,4). (1)求m 的值及l 2的解析式; (2)求S △AOC ﹣S △BOC 的值;(3)一次函数y=kx+1的图象为l 3,且11,l 2,l 3不能围成三角形,直接写出k 的值.5.如图,在△ABC 中,AB=BC ,BD 平分∠ABC ,四边形ABED 是平行四边形,DE 交BC 于点F ,连接CE求证:四边形BECD是矩形.6.去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、B4、B5、A6、D7、D8、A9、C 10、B二、填空题(本大题共6小题,每小题3分,共18分)1、﹣2b2、<3、13k <<.4、()()2a b a b ++.5、(-2,0)6、32三、解答题(本大题共6小题,共72分)1、(1)42x y =⎧⎨=⎩;(2)61x y =⎧⎨=-⎩.2、(12)3、(1)a 的取值范围是﹣2<a ≤3;(2)当a 为﹣1时,不等式2ax+x >2a+1的解集为x <1.4、(1)m=2,l 2的解析式为y=2x ;(2)S △AOC ﹣S △BOC =15;(3)k 的值为32或2或﹣12. 5、略6、(1)饮用水和蔬菜分别为200件和120件 (2)设计方案分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆; ③甲车4辆,乙车4辆(3)运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元。
2023-2024学年度下学期期中考试八年级数学试题2024.04注意事项:1.本试卷共8页,两个大题25个小题,考试时间120分钟.2.答题前请将答题纸上的考生信息项目填写清楚,然后将试题答案书写在答题纸的规定位置.3.请认真书写,规范答题;考试结束,只交答题纸.一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,把正确答案序号填在答题纸相应的位置)1.下列计算正确的是()A.B.C.D.2.下列二次根式中,与是同类二次根式的是()A.B.C.D.3.若分式有意义,则的取值范围是()A.B.C.D.4.已知,则的值为()A.3B.8C.24D.115.关于侧一元二次方程的根的情况是()A.没有实数根B.有两个不相等的实数根C.有两个相等的实数根D.实数根的个数与实数的取值有关6.实数在数轴上的位置如图所示,则化简的结果正确的是()A.B.C.D.7.对于实数定义新运算:,若关于的方程有两个不相等的实数根,则的取值范围()A.B.C.且D.且8.电影《热辣滚烫》上映以来,全国票房连创佳绩.据不完全统计,某市第一天票房约2亿元,以后每天票房按相同的增长率增长,三天后累计票房收入达18亿元,将增长率记作,则方程可以列为()A.B.C.D.9.如图,在矩形中,点的坐标是,则的长是()A.3B.C.D.410.如图,矩形内有两个相邻的正方形,其面积分别为2和8,则图中阴影部分的面积为()A.2B.C.4D.611.如图,四边形是菱形,于,则等于()A.B.C.5D.412.如图,正方形的边长为,动点从点出发,沿的路径以每秒的速度运动(点不与点、点重合),设点运动时间为秒,四边形的面积为,则下列图象能大致反映与的函数关系的是()A.B.C.D.二、填空题(本大题共6小题,只要求填写结果)13.已知最简二次根式与二次根式是同类二次根式,则的值为______.14.若是关于的方程似一个根,则的值是______15.已知三角形的两边长分别是5和8,第三边的长是一元二次方程的一个实数根,则该三角形的周长是______.16.将一元二次方程配方成的形式,则的值为______.17.如图,矩形纸片中,,将沿折叠,使点落在点处,交于点,则的长等于______.18.已知,如图,,作正方形,周长记作;再作第二个正方形,周长记作,继续作第三个正方形,周长记作;点,在射线上,点在射线上,依此类推,则第个正方形似周长的大小为______.三、解答题(本大题共7个小题,要写出必要的计算、推理、解答过程)19.计算下列各题(1);(2);20.按要求解下列方程(1)(用配方法)(2)(用自己喜欢的方法)(3)(用自己喜欢的方法)21.已知关于的一元二次方程有两个实数根.(1)求的取值范围;(2)设方程的两个实数根为,且,求的值.22.泰安市公安交警部门提醒市民:“出门戴头盔,放心平安归”,某商店统计了某品牌头盔的销售量,2月份售出150个,4月份售出216个,且从2月份到4月份月增长率相同。
江西省吉安市十校联盟2023-2024学年八年级下学期期中数学试题说明:满分120分、考试时间:120分钟一、选择题(本大题共6小题,每小题3分,共18分)1.下面的图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是( )A.赵爽弦图B.笛卡尔心形线C.科克曲线D.斐波那契螺旋线2.若,则下列不等式一定成立的是( )A. B. C. D.3.等腰三角形的一个内角是,则这个等腰三角形的底角是( )A. B. C.或 D.或4.如图:中,AD平分于点,则( )A.4B.5C.3D.25.如图,在平面直角坐标系中第二象限内,顶点的坐标是,先把向右平移4个单位得到,再作关于轴对称图形,则顶点的坐标是( )A. B. C. D.6.如图,在平面直角坐标系中,将边长为的正方形OABC绕点O顺时针旋转后得到正方形.依此方式连续旋转2024次得到正方形,那么点的坐标是A. B. C. D.二、选择题(本大题共6小题,每小题3分,共18分)7.命题“若,则”的逆命题是___________命题(填“真”或“假”).8.一次函数的图象如图所示,当时,的取值范围是___________.9.如图,在三角形纸片ABC中,.沿过点的直线将纸片折叠,使点落在边BC上的点处;再将纸片折叠,使点与点重合,折痕与AC的交点为,则的长是___________.10.如图,在中,点在边BC上,于点,交AC于点.若,则___________.11.己知关于的不等式组只有三个整数解,则的取值范围是___________.12.如图,O是等边三角形ABC内一点,,将绕点按顺时针方向旋转得到,连接OD.若是等腰三角形,则的度数为___________.三、解答题(本大题共5个小题,每小题6分,共30分)13.解不等式组,并把解集表示在数轴上.14.如图所示,点,点的坐标分别为,将线段AB平移至CD,所得点,点坐标分别为.(1)求a,b的值;(2)求线段AB平移的距离.15.如图,函数和的图象交于点,求不等式组的解集.16.如图,已知在中,,将绕点顺时针旋转,得到.请仅用无刻度的直尺,按要求画图(保留画图痕迹,在图中标出字母,并在图下方表示出所画图形)。
山东省青岛市城阳区2023-2024学年八年级下学期期中考试数学试卷一、选择题(本大题共10小题,每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列四个图形中是中心对称图形的是( )A.B.C.D.2.如图,屋顶钢架外框是等腰三角形,其中AB=AC,工人师傅在焊接立柱时,只用找到BC的中点D,这就可以说明竖梁AD垂直于横梁BC了,工人师傅这种操作方法的依据是( )A.等边对等角B.等角对等边C.垂线段最短D.等腰三角形“三线合一”3.交通法规人人遵守,文明城市处处安全.在通过桥洞时,我们往往会看到如图所示的标态.则通过该桥洞的车高x(m)的范围在数轴上可表示为( )A.B.C.D.4.如图,△ABC的顶点坐标分别为A(1,4),B(﹣1,1),C(2,2),如果将△ABC先向左平移3个单位,再向上平移1个单位得到△A′B′C′,那么点B的对应点B′的坐( )A.(﹣4,0)B.(2,0)C.(﹣4,2)D.(2,2)5.若a<b,则下列不等式一定成立的是( )A.a﹣6>b﹣6B.3a>3b C.﹣2a<﹣2b D.a﹣b<06.用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应假设这个三角形中( )A.每一个内角都大于60°B.每一个内角都小于60°C.有一个内角大于60°D.有一个内角小于60°7.已知点A(a﹣2,2a+6)在第二象限,则a的取值范围是( )A.a<﹣3或a>2B.﹣3<a<2C.a<2D.a>﹣38.如图,把△ABC绕C点顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A的度数( )A.35°B.75°C.55°D.65°9.如果不等式(a+1)x>a+1的解集为x<1,则a必须满足( )A.a<0B.a≤1C.a>﹣1D.a<﹣110.如图,在Rt△ABC中,∠C=90°,AB=5,BC=3,以点A为圆心,适当长为半径作弧,分别交AB,AC于点E,F,分别以点E,F为圆心,大于EF的长为半径作弧,两弧在∠BAC的内部相交于点G,作射线AG,交BC于点D,则BD的长为( )A.B.C.D.二.填空题(本大题共6小题,每小题3分,共18分)11.如图是环岛行驶的交通标志,表示在环形交叉路口中,车辆按逆时针方向绕行.将这个图案绕着它的中心旋转一定角度后与自身重合,则旋转的角度至少为 .12.某校举行“学以致用,数你最行”数学知识抢答赛,共有20道题,规定答对一道题得10分,答错或放弃扣4分,在这次抢答赛中,八年级1班代表队被评为优秀(88分或88分以上),则这个队至少答对 道题.13.如图,在△ABC中,∠ABC的平分线与BC的垂直平分线交于点P,连接CP.若∠A=75°,∠ABC=62°,则∠ACP的度数为 °.14.若不等式组的解集是x>3,则m的取值范围是 .15.如图,已知在四边形ABCD中,AD∥BC,AM平分∠BAD交BC于点M,BE⊥AM于点E,EF⊥AD 于点F,AB=7,EF=3,则△ABM的面积为 .16.如图,函数y=kx+b(k,b为常数,k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,下列结论:①点A的横坐标为2;②关于x的不等式kx+b<0的解集为x>2;③关于x的方程kx+b=2x的解为x=2;④关于x的不等式组0<kx+b<2x的解集为1<x<2.其中正确的是 (只填写序号).三、作图题(本大题满分4分)用直尺、圆规作图,不写作法,但要保留作图痕迹.17.(4分)已知:如图,四边形ABCD;求作:点P,使点P在四边形ABCD内部,PD=PC,且点P到∠BAD两边的距离相等.四.解答题(本大题共7小题,共68分)18.(20分)计算:(1)解不等式x﹣1≥2x;(2)解不等式,并把解集表示在数轴上;(3)求不等式3(x﹣3)﹣6<2x﹣10的非负整数解;(4)解不等式组:;(5)解不等式组:.19.(6分)如图,BD,CE是△ABC的高,且BD=CE.(1)求证:△ABC是等腰三角形;(2)若∠A=60°,AB=2,求△ABC的高BD.20.(6分)△ABC的各顶点坐标分别为A(1,4),B(3,4),C(3,1),将△ABC先向下平移2个单位长度,再向左平移4个单位长度,得到△A1B1C1.(1)如果将△A1B1C1看成是由△ABC经过一次平移得到的,则平移的距离是 个单位长度;(2)在y轴上有点D,则AD+CD的最小值为 个单位长度;(3)作出△ABC绕点O顺时针旋转90°后的△A2B2C2.21.(8分)如图,已知△ABC,以AC为边构造等边△ACD,连接BD,在BD上取一点O,使∠AOD=60°,在OD上取一点E,使AO=AE,连接OC.(1)求证:△AOC≌△AED;(2)OA,OB,OC三条线段长度之和与图中哪条线段的长度相等?请说明理由.22.(9分)两个家庭暑假结伴自驾到某景区旅游,该景区售出的门票分为成人票和儿童票,小鹏家购买3张成人票和1张儿童票共需350元,小波家购买1张成人票和2张儿童票共需200元.(1)求成人票和儿童票的单价;(2)售票处规定:一次性购票数量达到30张,可购买团体票,即每张票均按成人票价的八折出售.若干个家庭组团到该景区旅游,导游收到通知该团成人和儿童共30人,估计儿童8至16人.导游选择哪种购票方式花费较少?23.(9分)【问题情境】如图①,△ABC的内角∠ABC,∠ACB的平分线BD,CD交于点D.【建立模型】(1)如图②,过点D作BC的平行线分别交AB,AC于点E,F.请你写出EF与BE,CF的数量关系并证明.(2)如图③,在图①的基础上,过点A作直线l∥BC,延长BD和CD,分别交l于点E,F,若AB=4,AC=3,请你直接写出EF的长度(不需要证明).【类比探究】如图④,△ABC的内角∠ABC的平分线BD,与它的外角∠ACG的平分线CD交于点D,过点D作BC 的平行线分别交AB,AC于点E,F.请你写出EF与BE,CF的数量关系并证明.24.(10分)如图,在长方形ABCD中,DC=3cm,AD=6cm,延长BC至点E,使CE=4cm,连接DE.点P从点A出发,沿AD方向匀速运动,速度为1cm/s;同时,点Q从点C出发,沿CB方向匀速运动,速度为2cm/s;连接PQ,DQ.当点Q停止运动时,点P也停止运动.设运动时间为t(s)(0<t≤3),解答下列问题:(1)当t为何值时,使点Q在∠PDC的平分线上?(2)当t为何值时,△DQE为等腰三角形?(3)设四边形PQED的面积为y(cm2),求y与t之间的关系式及四边形PQED面积的最大值.山东省青岛市城阳区2023-2024学年八年级下学期期中考试数学试卷参考答案一、选择题(本大题共10小题,每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列四个图形中是中心对称图形的是( )A.B.C.D.【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,由此即可得到答案.【解答】解:选项A、B、C中的图形都不能找到一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形.选项D中的图形能找到一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形.故选:D.【点评】本题考查中心对称图形,关键是掌握中心对称图形的定义.2.如图,屋顶钢架外框是等腰三角形,其中AB=AC,工人师傅在焊接立柱时,只用找到BC的中点D,这就可以说明竖梁AD垂直于横梁BC了,工人师傅这种操作方法的依据是( )A.等边对等角B.等角对等边C.垂线段最短D.等腰三角形“三线合一”【分析】根据等腰三角形的性质解答即可.【解答】解:∵AB=AC,BD=CD,∴AD⊥BC,故工人师傅这种操作方法的依据是等腰三角形“三线合一”,故选:D.【点评】本题考查等腰三角形的性质,熟知等腰三角形“三线合一”性质是解答的关键.3.交通法规人人遵守,文明城市处处安全.在通过桥洞时,我们往往会看到如图所示的标态.则通过该桥洞的车高x(m)的范围在数轴上可表示为( )A.B.C.D.【分析】利用已知图表直接得出该桥洞的车高x(m)的取值范围.【解答】解:由题意可得:通过该桥洞的车高x(m)的取值范围是:0<x≤4.5.在数轴上表示如图:.故选:D.【点评】此题主要考查了在数轴上表示不等式的解集.根据图表理解题意是解题的关键.4.如图,△ABC的顶点坐标分别为A(1,4),B(﹣1,1),C(2,2),如果将△ABC先向左平移3个单位,再向上平移1个单位得到△A′B′C′,那么点B的对应点B′的坐( )A.(﹣4,0)B.(2,0)C.(﹣4,2)D.(2,2)【分析】根据左减右加,上加下减的规律解决问题即可.【解答】解:∵将△ABC先向左平移3个单位,再向上平移1个单位得到△A′B′C′,∴点B的对应点B'的坐标是(﹣1﹣3,1+1),即(﹣4,2).故选:C.【点评】本题考查坐标与图形变化﹣平移,用到的知识点为:左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.5.若a<b,则下列不等式一定成立的是( )A.a﹣6>b﹣6B.3a>3b C.﹣2a<﹣2b D.a﹣b<0【分析】根据不等式的性质分析判断.【解答】解:A、已知a<b,根据不等式的基本性质不等式两边加(或减)同一个数(或式子),不等号的方向不变,所以a﹣6>b﹣6错误;B、不等式两边乘(或除以)同一个正数,不等号的方向不变,所以3a>3b错误;C、不等式两边乘(或除以)同一个负数,不等号的方向改变,所以﹣2a<﹣2b错误;D、a﹣b<0即a<b两边同时减去b,不等号方向不变.不等式一定成立的是a﹣b<0.故选:D.【点评】此题主要考查了不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.6.用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应假设这个三角形中( )A.每一个内角都大于60°B.每一个内角都小于60°C.有一个内角大于60°D.有一个内角小于60°【分析】熟记反证法的步骤,然后进行判断即可.【解答】解:用反证法证明“三角形中必有一个内角小于或等于60°”时,应先假设三角形中每一个内角都不小于或等于60°,即都大于60°.故选:A.【点评】此题主要考查了反证法,反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.7.已知点A(a﹣2,2a+6)在第二象限,则a的取值范围是( )A.a<﹣3或a>2B.﹣3<a<2C.a<2D.a>﹣3【分析】根据题意列出不等式组,解之即可得出答案.【解答】解:由题意知,,解得﹣3<a<2,故选:B.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8.如图,把△ABC绕C点顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A的度数( )A.35°B.75°C.55°D.65°【分析】根据旋转的性质可得∠ACA′=35,∠A=∠A′,结合∠A′DC=90°,可求得∠A′,即可获得答案.【解答】解:根据题意,把△ABC绕C点顺时针旋转35°,得到△A′B′C,由旋转的性质,可得∠ACA′=35,∠A=∠A′,∵∠A′DC=90°,∴∠A′=90°﹣∠ADA′=55°,∴∠A=∠A′=55°.故选:C.【点评】本题主要考查旋转的性质、直角三角形两锐角互余等知识,熟练掌握旋转的性质是解题关键.9.如果不等式(a+1)x>a+1的解集为x<1,则a必须满足( )A.a<0B.a≤1C.a>﹣1D.a<﹣1【分析】根据不等式的解集,得到不等号方向改变,即a+1小于0,即可求出a的范围.【解答】解:∵不等式(a+1)x>(a+1)的解为x<1,∴a+1<0,解得:a<﹣1.故选:D.【点评】此题考查了解一元一次不等式,熟练掌握不等式的解法是解本题的关键.10.如图,在Rt△ABC中,∠C=90°,AB=5,BC=3,以点A为圆心,适当长为半径作弧,分别交AB,AC于点E,F,分别以点E,F为圆心,大于EF的长为半径作弧,两弧在∠BAC的内部相交于点G,作射线AG,交BC于点D,则BD的长为( )A.B.C.D.【分析】由角平分线的性质定理推出CD=MD,由勾股定理求出AC的长,由△ABC的面积=△ACD的面积+△ABD的面积,得到AC•BC=AC•CD+AB•MD,因此4×3=4CD+5CD,即可求出CD的长,得到DB的长.【解答】解:作DM⊥AB于M,由题意知AD平分∠BAC,∵DC⊥AC,∴CD=DM,∵∠C=90°,AB=5,BC=3,∴AC==4,∵△ABC的面积=△ACD的面积+△ABD的面积,∴AC•BC=AC•CD+AB•MD,∴4×3=4CD+5CD,∴CD=,∴BD=BC﹣CD=3﹣=.故选:D.【点评】本题考查勾股定理,角平分线的性质,作图—基本作图,三角形的面积,关键是由角平分线的性质得到CD=MD,由三角形面积公式得到AC•BC=AC•CD+AB•MD.二.填空题(本大题共6小题,每小题3分,共18分)11.如图是环岛行驶的交通标志,表示在环形交叉路口中,车辆按逆时针方向绕行.将这个图案绕着它的中心旋转一定角度后与自身重合,则旋转的角度至少为 120° .【分析】根据图形的对称性,用360°除以3计算即可得解.【解答】解:∵360°÷3=120°,∴旋转的角度是120°的整数倍,∴旋转的角度至少是120°.故答案为:120°.【点评】本题考查了利用旋转设计图案,仔细观察图形求出旋转角是120°的整数倍是解题的关键.12.某校举行“学以致用,数你最行”数学知识抢答赛,共有20道题,规定答对一道题得10分,答错或放弃扣4分,在这次抢答赛中,八年级1班代表队被评为优秀(88分或88分以上),则这个队至少答对 12 道题.【分析】设这个队答对了x道题,则答错或放弃(20﹣x)道题,利用得分=10×答对题目数﹣4×答错或放弃题目数,结合得分不低于88分,可列出关于x的一元一次不等式,解之取其中的最小值,即可得出结论.【解答】解:设这个队答对了x道题,则答错或放弃(20﹣x)道题,根据题意得:10x﹣4(20﹣x)≥88,解得:x≥12,∴x的最小值为12,即这个队至少答对12道题.故答案为:12.【点评】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.13.如图,在△ABC中,∠ABC的平分线与BC的垂直平分线交于点P,连接CP.若∠A=75°,∠ABC=62°,则∠ACP的度数为 12 °.【分析】根据线段的垂直平分线的性质得到PB=PC,得到∠PBC=∠PCB,根据角平分线的定义、三角形内角和定理及角的和差求解即可.【解答】解:∵BP是∠ABC的平分线,∠ABC=62°,∴∠ABP=∠CBP=∠ABC=31°,∵P是线段BC的垂直平分线上一点,∴PB=PC,∴∠PBC=∠PCB,∴∠ABP=∠CBP=∠PCB=31°,∵∠A=75°,∠ABC=62°,∠A+∠ABC+∠ACB=180°,∴∠ACP=∠ACB﹣∠PCB=12°,故答案为:12.【点评】本题考查的是线段的垂直平分线的性质、三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.14.若不等式组的解集是x>3,则m的取值范围是 m≤3 .【分析】先解第一个不等式得到x>3,由于不等式组的解集为x>3,根据同大取大得到m≤3.【解答】解:,解①得x>3,∵不等式组的解集为x>3,∴m≤3.故答案为m≤3.【点评】本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.15.如图,已知在四边形ABCD中,AD∥BC,AM平分∠BAD交BC于点M,BE⊥AM于点E,EF⊥AD 于点F,AB=7,EF=3,则△ABM的面积为 21 .【分析】过E作EG⊥AB于G,则EG=EF=3,即可求出△ABE的面积,证明BE是△ABM的中线,由三角形中线的性质即可得出答案.【解答】解:过E作EG⊥AB于G,如图:∵AM平分∠BAD,∴EG=EF=3,∠DAM=∠BAM,∴S△ABE=×7×3=,∵AD∥BC,∴∠BAM=∠AMB,∴AB=BM,∵BE⊥AM,∴BE是△ABM边AM上的中线,∴S△ABM=2S△ABE=2×=21.故答案为:21.【点评】本题考查了角平分线的性质,平行线的性质、等腰三角形的判定与性质、三角形中线的性质等知识;熟练掌握角平分线的性质是解题的关键.16.如图,函数y=kx+b(k,b为常数,k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,下列结论:①点A的横坐标为2;②关于x的不等式kx+b<0的解集为x>2;③关于x的方程kx+b=2x的解为x=2;④关于x的不等式组0<kx+b<2x的解集为1<x<2.其中正确的是 ②④ (只填写序号).【分析】根据所给函数图象,利用数形结合的思想及一次函数与一元一次不等式的关系,对所给结论依次进行判断即可.【解答】解:由所给函数图象可知,A点的纵坐标为2,则2x=2,解得x=1,所以点A的横坐标为1.故①错误.因为点B坐标为(2,0),所以当x>2时,函数y=kx+b的图象在x轴下方,即kx+b<0,则不等式kx+b<0的解集为x>2.故②正确.因为函数y=2x和函数y=kx+b交点的横坐标为1,所以方程kx+b=2x的解为x=1.故③错误.由函数图象可知,当x>1时,函数y=kx+b的图象在函数y=2x图象的下方,即kx+b<2x,当x<2时,函数y=kx+b的图象在x轴上方,即kx+b>0,所以关于x的不等式组0<kx+b<2x的解集为1<x<2.故④正确.故答案为:②④.【点评】本题考查一次函数与一元一次不等式及一次函数与一元一次方程,数形结合思想的巧妙运用是解题的关键.三、作图题(本大题满分4分)用直尺、圆规作图,不写作法,但要保留作图痕迹.17.(4分)已知:如图,四边形ABCD;求作:点P,使点P在四边形ABCD内部,PD=PC,且点P到∠BAD两边的距离相等.【分析】作∠BAD的角平分线,作CD的垂直平分线,两条线交于点P即可.【解答】解:如图,点P即为所求.【点评】本题考查了作图﹣复杂作图,角平分线的性质,线段垂直平分线的性质,解决本题的关键是掌握角平分线和线段垂直平分线的作法.四.解答题(本大题共7小题,共68分)18.(20分)计算:(1)解不等式x﹣1≥2x;(2)解不等式,并把解集表示在数轴上;(3)求不等式3(x﹣3)﹣6<2x﹣10的非负整数解;(4)解不等式组:;(5)解不等式组:.【分析】(1)先移项,再合并同类项,把x的系数化为1即可;(2)先去分母,再去括号,移项,合并同类项,把x的系数化为1,并把解集表示在数轴上即可;(3)先求出不等式的解集,再求出其非负整数解即可;(4)(5)分别求出各不等式的解集,再求出其公共解集即可.【解答】解:(1)移项得,x﹣2x≥1,合并同类项得,﹣x≥1,x的系数化为1得,x≤﹣1;(2)去分母得,4+3x≤2(1+2x),去括号得,4+3x≤2+4x,移项得,3x﹣4x≤2﹣4,合并同类项得,﹣x≤﹣2,x的系数化为1得,x≥2,在数轴上表示为:;(3)去括号得,3x﹣9﹣6<2x﹣10,移项得,3x﹣2x<﹣10+9+6,合并同类项得,x<5,故其非负整数解为:0,1,2,3,4;(4),由①得,x≤1,由②得,x<3,故不等式组的解集为:x≤1;(5),由①得,x<,由②得,x≥1.故不等式组的解集为:1≤x<.【点评】本题考查的是解一元一次不等式组,解一元一次不等式及在数轴上表示不等式的解集,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解题的关键.19.(6分)如图,BD,CE是△ABC的高,且BD=CE.(1)求证:△ABC是等腰三角形;(2)若∠A=60°,AB=2,求△ABC的高BD.【分析】(1)由“HL”可证Rt△CDB≌Rt△BEC,可得∠ABC=∠ACB,即可求解;(2)由直角三角形的性质可求AD的长,由勾股定理可求解.【解答】(1)证明:∵BD,CE是△ABC的高,∴∠ADB=∠AEC=90°,在Rt△CDB和Rt△BEC中,,∴Rt△CDB≌Rt△BEC(HL),∴∠ABC=∠ACB,∴AB=AC,∴△ABC是等腰三角形;(2)解:∵∠A=60°,∠BDA=90°,∴∠ABD=30°,∴AD=AB=1,∴BD===.【点评】本题考查了全等三角形的判定和性质,直角三角形的性质,证明三角形全等是解题的关键.20.(6分)△ABC的各顶点坐标分别为A(1,4),B(3,4),C(3,1),将△ABC先向下平移2个单位长度,再向左平移4个单位长度,得到△A1B1C1.(1)如果将△A1B1C1看成是由△ABC经过一次平移得到的,则平移的距离是 2 个单位长度;(2)在y轴上有点D,则AD+CD的最小值为 5 个单位长度;(3)作出△ABC绕点O顺时针旋转90°后的△A2B2C2.【分析】(1)利用网格根据勾股定理计算即可;(2)取点A关于y轴的对称点A′,连接A′C交y轴于点D,可得AD+CD的最小值即为A′C的长度;(3)根据旋转的性质即可作出△ABC绕点O顺时针旋转90°后的△A2B2C2.【解答】解:(1)∵将△A1B1C1看成是由△ABC经过一次平移得到的,∴平移的距离是=2个单位长度;故答案为:2;(2)如图点D为所求,∴AD+CD的最小值为=5个单位长度;故答案为:5;(3)如图,△A2B2C2即为所求.【点评】本题考查了作图﹣旋转变换,平移变换,轴对称﹣最短路线问题,解决本题的关键是掌握旋转和平移的性质.21.(8分)如图,已知△ABC,以AC为边构造等边△ACD,连接BD,在BD上取一点O,使∠AOD=60°,在OD上取一点E,使AO=AE,连接OC.(1)求证:△AOC≌△AED;(2)OA,OB,OC三条线段长度之和与图中哪条线段的长度相等?请说明理由.【分析】(1)根据SAS证明三角形全等即可;(2)结论:BD=OA+OB+OC,理由全等三角形的性质证明.【解答】(1)证明:∵∠AOE=60°,AO=AE,∴△AOE是等边三角形,∴∠OAE=60°,∵△ACD是等边三角形,∴AC=AD,∠CAD=60°=∠OAE,∴∠OAC=∠EAD,在△OAC和△EAD中,,∴△AOC≌△AED(SAS);(2)解:结论:BD=OA+OB+OC.理由:∵△AOE是等边三角形,∴OA=OE,∵△AOC≌△AED,∴OC=DE,∴BD=OB+OE+ED=OB+OA+OC.【点评】本题考查全等三角形的判定和性质,等边三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.22.(9分)两个家庭暑假结伴自驾到某景区旅游,该景区售出的门票分为成人票和儿童票,小鹏家购买3张成人票和1张儿童票共需350元,小波家购买1张成人票和2张儿童票共需200元.(1)求成人票和儿童票的单价;(2)售票处规定:一次性购票数量达到30张,可购买团体票,即每张票均按成人票价的八折出售.若干个家庭组团到该景区旅游,导游收到通知该团成人和儿童共30人,估计儿童8至16人.导游选择哪种购票方式花费较少?【分析】(1)设成人票的单价是x元,儿童票的单价是y元,根据“小鹏家购买3张成人票和1张儿童票共需350元,小波家购买1张成人票和2张儿童票共需200元”,可列出关于x,y的二元一次方程组,解之即可得出结论;(2)设该团儿童有m人,则该团成人有(30﹣m)人,购买团体票所需费用为2400元,不购买团体票所需费用为(﹣50m+3000)元,分2400<﹣50m+3000,2400=﹣50m+3000及2400>﹣50m+3000三种情况,求出x的取值范围或x的值,再结合“估计儿童8至16人”,即可得出结论.【解答】解:(1)设成人票的单价是x元,儿童票的单价是y元,根据题意得:,解得:.答:成人票的单价是100元,儿童票的单价是50元;(2)设该团儿童有m人,则该团成人有(30﹣m)人,购买团体票所需费用为100×0.8×30=2400(元),不购买团体票所需费用为100(30﹣m)+50m=(﹣50m+3000)元,当2400<﹣50m+3000时,m<12,∴当8≤m<12时,购买团体票花费较少;当2400=﹣50m+3000时,m=12,∴当m=12时,两种购票方式花费一样多;当2400>﹣50m+3000时,m>12,∴当12<m≤16时,不购买团体票花费较少.答:当8≤m<12时,购买团体票花费较少;当m=12时,两种购票方式花费一样多;当12<m≤16时,不购买团体票花费较少.【点评】本题考查了二元一次方程组的应用、一元一次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式(或一元一次方程).23.(9分)【问题情境】如图①,△ABC的内角∠ABC,∠ACB的平分线BD,CD交于点D.【建立模型】(1)如图②,过点D作BC的平行线分别交AB,AC于点E,F.请你写出EF与BE,CF的数量关系并证明.(2)如图③,在图①的基础上,过点A作直线l∥BC,延长BD和CD,分别交l于点E,F,若AB=4,AC=3,请你直接写出EF的长度(不需要证明).【类比探究】如图④,△ABC的内角∠ABC的平分线BD,与它的外角∠ACG的平分线CD交于点D,过点D作BC 的平行线分别交AB,AC于点E,F.请你写出EF与BE,CF的数量关系并证明.【分析】(1)先由角平分线定义得∠DBC=∠DBE,∠DCB=∠DCF,再由平行线的性质得∠BDE=∠DBC,∠CDF=∠DCB,则∠DBE=∠BDE,∠CDF=∠DCF,证出BE=DE,CF=DF,进而得出结论;(2)同(1)证出AE=AB,AF=AC,进而得出结论;(3)同(1)证出DE=BE,DF=CF,进而得出结论.【解答】解:(1)EF=BE+CF,理由如下:如图②,∵∠ABC和∠ACB的平分线相交于点D,∴∠DBC=∠DBE,∠DCB=∠DCF,∵EF∥BC,∴∠BDE=∠DBC,∠CDF=∠DCB,∴∠DBE=∠BDE,∠CDF=∠DCF,∴BE=DE,CF=DF,∴DE+DF=BE+CF,即EF=BE+CF;(2)EF=7;理由如下:如图③,∵∠ABC和∠ACB的平分线相交于点D,∴∠EBC=∠ABE,∠FCB=∠ACF,∵EF∥BC,∴∠AEB=∠EBC,∠FCB=∠AFC,∴∠ABE=∠AEB,∠ACF=∠AFC,∴AE=AB,AF=AC,∵AB=4,AC=3,∴EF=AE+AF=4+3=7;(3)EF=BE﹣CF,理由如下:如图④,∵∠ABC的平分线BD与∠ACG的平分线CD交于点D,∴∠DBC=∠ABD,∠ACD=∠DCG,∵DE∥BC,∴∠DBC=∠BDE,∠CDF=∠DCG,∴∠ABD=∠BDE,∠ACD=∠CDF,∴DE=BE,DF=CF,∵EF=DE﹣DF,∴EF=BE﹣CF.【点评】本题是三角形综合题,考查了等腰三角形的判定、角平分线定义、平行线的性质等知识;本题综合性强,熟练掌握平行线的性质和角平分线定义,证明三角形为等腰三角形是解题的关键,属于中考常考题型.24.(10分)如图,在长方形ABCD中,DC=3cm,AD=6cm,延长BC至点E,使CE=4cm,连接DE.点P从点A出发,沿AD方向匀速运动,速度为1cm/s;同时,点Q从点C出发,沿CB方向匀速运动,速度为2cm/s;连接PQ,DQ.当点Q停止运动时,点P也停止运动.设运动时间为t(s)(0<t≤3),解答下列问题:(1)当t为何值时,使点Q在∠PDC的平分线上?(2)当t为何值时,△DQE为等腰三角形?(3)设四边形PQED的面积为y(cm2),求y与t之间的关系式及四边形PQED面积的最大值.【分析】(1)由题意得:AP=t cm,CQ=2t cm,利用平行线的性质,角平分线的定义和等腰三角形的判定定理解答即可;(2)利用分类讨论的思想方法解答,分三种情形,利用等腰三角形的性质列出关于t的方程,解方程即可求得结论;(3)利用t的代数式表示出线段PD,EQ,利用图形的面积公式解答即可得出y与t之间的关系式,再利用一次函数的性质解答即可得出结论.【解答】解:(1)由题意得:AP=t cm,CQ=2t cm.∵点Q在∠PDC的平分线上,∴∠ADQ=∠CDQ,∵四边形ABCD为矩形,∴AD∥BC,∴∠ADQ=∠CQD,∴∠CQD=∠CDQ,∴CQ=CD,∴2t=3,∴t=.∴当t为s时,使点Q在∠PDC的平分线上.(2)①当ED=EQ时,如图,∵DC=3cm,CE=4cm,DC⊥CE,∴DE==5(cm),∴EQ=ED=5cm∴CQ=1cm.∴2t=1,∴t=.②当ED=DQ时,如图,∵ED=DQ,DC⊥CE,∴CQ=CE=4 cm,∴2t=4,∴t=2.③由于点Q在线段BC上,不存在QD=QE的情形.综上,当t为s或2s时,△DQE为等腰三角形.(3)由题意得:AP=t cm,CQ=2t cm,∴PD=AD﹣AP=(6﹣t)cm,QE=CQ+CE=(4+2t)cm,∴y=(PD+QE)•CD=3(6﹣t+4+2t)=t+15.∵>0,∴y随t的增大而增大,∵0<t≤3,∴当t=3时,y的最大值=3+15=19.5(cm2).【点评】本题主要考查了矩形的性质,角平分线的定义,平行线的性质,等腰三角形的性质,分类讨论的思想方法,梯形的面积,熟练掌握矩形的性质和应用分类讨论的思想方法解得是解题的关键.。
八年级(下)期中数学试卷一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填在答题卡对应题目上.(注意:在试题卷上作答无效).1.下列各式中,属于分式的是()A.B.C.D.﹣2.在平面直角坐标系中,点M(﹣2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限3.下列计算正确的是()A.2﹣2=﹣4B.2﹣2=4C.2﹣2=D.2﹣2=﹣4.下列约分中,正确的是()A.=x3B.=0C.D.5.王大爷饭后出去散步,从家中走20分钟到离家900米的公园,与朋友聊天10分钟后,用15分钟返回家中.下面图形表示王大爷离时间x(分)与离家距离y(米)之间的关系是()A.B.C.D.6.如果分式的值为零,则a的值为()A.±1B.2C.﹣2D.以上全不对7.如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S=1,则S1+S2阴影=()A.3B.4C.5D.68.如图,直线y=x﹣1与x轴交于点B,与双曲线y=(x>0)交于点A,过点B作x轴的垂线,与双曲线y=交于点C,且AB=AC,则k的值为()A.2B.3C.4D.6二、填空题:(每小题3分,共24分)请把答案直接填在答题卡对应题中横线上.9.当x时,分式有意义.10.点P(3,﹣4)关于原点对称的点的坐标是.11.若函数y=(a+3)x+a2﹣9是正比例函数,则a=.12.用科学记数法表示:0.000204=.13.反比例函数y=的图象经过点(﹣2,3),则k的值为.14.若关于x的方程有增根,m.15.符号“”称为二阶行列式,规定它的运算法则为:=ad﹣bc,请你根据上述规定求出下列等式中x的值.若,那么x=.16.如图,过x轴正半轴上的任意一点P作y轴的平行线交反比例函数y=和y=﹣的图象于A,B两点,C是y轴上任意一点,则△ABC的面积为.三、解答题:本大题共8小题,共72分.解答应写出文字说明,证明过程或演算步骤.17.(10分)计算:①﹣4×()﹣2+|﹣5|+(π﹣3)0②﹣.18.(10分)解下列分式方程(1)=1(2)=19.(7分)先化简,再求值:,当a=﹣3时,求代数式的值.20.(7分)蓬溪芝溪玉液酒厂接到生产480件芝溪玉液酒的订单,为了尽快完成任务,该厂实际每天生产的件数比原来每天多50%,提前10天完成任务.原来每天生产多少件?21.(8分)“珍重生命,注意安全!”同学们在上下学途中一定要注意骑车安全.小明骑单车上学,当他骑了一段时,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校,以下是他本次所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是多少米?(2)小明在书店停留了多少分钟?(3)本次上学途中,小明一共行驶了多少米?一共用了多少分钟?(4)我们认为骑单车的速度超过300米/分钟就超越了安全限度.问:在整个上学的途中哪个时间段小明骑车速度最快,速度在安全限度内吗?22.(8分)某商场欲购进一种商品,当购进这种商品至少为10kg,但不超过30kg时,成本y(元/kg)与进货量x(kg)的函数关系如图所示.(1)求y关于x的函数解析式,并写出x的取值范围.(2)若该商场购进这种商品的成本为9.6元/kg,则购进此商品多少千克?23.(10分)如图,直线y=x﹣2分别交x轴、y轴于A、B两点,O是原点.(1)求△AOB的面积.(2)过△AOB的顶点B画一条直线把△AOB分成面积相等的两部分,求出直线解析式.24.(12分)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y =的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及△AOB的面积;(3)直接写出一次函数的值小于反比例函数值的x的取值范围.参考答案与试题解析一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填在答题卡对应题目上.(注意:在试题卷上作答无效).1.下列各式中,属于分式的是()A.B.C.D.﹣【分析】根据分式的定义,可得答案.【解答】解:A、是整式,故A错误;B、是分式,故B正确;C、是整式,故C错误;D、﹣是整式,故D错误;故选:B.【点评】本题考查了分式的定义,分母中含有字母的式子是分式,否则是整式,注意π是常数不是字母.2.在平面直角坐标系中,点M(﹣2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】横坐标小于0,纵坐标大于0,则这点在第二象限.【解答】解:∵﹣2<0,3>0,∴(﹣2,3)在第二象限,故选:B.【点评】本题考查了点的坐标,四个象限内坐标的符号:第一象限:+,+;第二象限:﹣,+;第三象限:﹣,﹣;第四象限:+,﹣;是基础知识要熟练掌握.3.下列计算正确的是()A.2﹣2=﹣4B.2﹣2=4C.2﹣2=D.2﹣2=﹣【分析】2﹣2表示2的平方的倒数,依据表示的意义即可求解.【解答】解:2﹣2==.故选:C.【点评】本题只需熟练掌握:负整数指数幂应把其化为正整数指数幂的倒数,进行计算即可.4.下列约分中,正确的是()A.=x3B.=0C.D.【分析】根据分式的基本性质,分别对每一项进行解答,即可得出答案.【解答】解:A、=x4,故本选项错误;B、=1,故本选项错误;C、==,故本选项正确;D、=,故本选项错误;故选:C.【点评】本题考查了约分,约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.由约分的概念可知,要首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去,注意不要忽视数字系数的约分.5.王大爷饭后出去散步,从家中走20分钟到离家900米的公园,与朋友聊天10分钟后,用15分钟返回家中.下面图形表示王大爷离时间x(分)与离家距离y(米)之间的关系是()A.B.C.D.【分析】对四个图依次进行分析,符合题意者即为所求.【解答】解:A、从家中走20分钟到离家900米的公园,与朋友聊天20分钟后,用20分钟返回家中,故本选项错误;B、从家中走20分钟到离家900米的公园,与朋友聊天0分钟后,用20分钟返回家中,故本选项错误;C、从家中走30分钟到离家900米的公园,与朋友聊天0分钟后,用20分钟返回家中,故本选项错误;D、从家中走20分钟到离家900米的公园,与朋友聊天10分钟后,用15分钟返回家中,故本选项正确.故选:D.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.6.如果分式的值为零,则a的值为()A.±1B.2C.﹣2D.以上全不对【分析】根据分式的值为零的条件可得:|a|﹣2=0且a+2≠0,从而可求得a的值.【解答】解:由题意得:|a|﹣2=0且a+2≠0,解得:a=2.故选:B.【点评】此题主要考查了分式的值为零的条件,分式的值为零需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.7.如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S=1,则S1+S2阴影=()A.3B.4C.5D.6【分析】欲求S1+S2,只要求出过A、B两点向x轴、y轴作垂线段与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=的系数k,由此即可求出S1+S2.【解答】解:∵点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S1+S2=4+4﹣1×2=6.故选:D.【点评】本题主要考查了反比例函数的图象和性质及任一点坐标的意义,有一定的难度.8.如图,直线y=x﹣1与x轴交于点B,与双曲线y=(x>0)交于点A,过点B作x轴的垂线,与双曲线y=交于点C,且AB=AC,则k的值为()A.2B.3C.4D.6【分析】由题意得:BC垂直于x轴,点A在BC的垂直平分线上,则B(2,0)、C(2,),A (4,),将A点代入直线y=x﹣1求得k值.【解答】解:由于AB=AC,BC垂直于x轴,则点A在BC的垂直平分线上,由直线y=x﹣1,可得B(2,0),A、C均在双曲线y=上,则C(2,),A(4,),将A点代入直线y=x﹣1得:k=4.故选:C.【点评】本题考查了反比例函数系数k的几何意义,这里AB=AC是解决此题的突破口,题目比较好,有一定的难度.二、填空题:(每小题3分,共24分)请把答案直接填在答题卡对应题中横线上.9.当x≠1时,分式有意义.【分析】根据分式有意义的条件:分母≠0可得:x﹣1≠0,解可得答案.【解答】解:分式有意义,则x﹣1≠0,解得:x≠1,故答案为:≠1.【点评】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.10.点P(3,﹣4)关于原点对称的点的坐标是(﹣3,4).【分析】根据关于关于原点对称的点,横坐标与纵坐标都互为相反数.填空即可.【解答】解:点P(3,﹣4)关于原点对称的点的坐标是(﹣3,4),故答案为(﹣3,4).【点评】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.11.若函数y=(a+3)x+a2﹣9是正比例函数,则a=3.【分析】由正比例函数的定义可得a2﹣9=0,a+3≠0,再解可得a的值.【解答】解:∵函数y=(a+3)x+a2﹣9是正比例函数,∴a2﹣9=0,a+3≠0,解得:a=3.故答案为:3.【点评】此题主要考查了正比例函数的定义,解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.12.用科学记数法表示:0.000204= 2.04×10﹣4.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:用科学记数法表示:0.000204=2.04×10﹣4.故答案为:2.04×10﹣4.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.13.反比例函数y=的图象经过点(﹣2,3),则k的值为﹣6.【分析】将点(﹣2,3)代入解析式可求出k的值.【解答】解:把(﹣2,3)代入函数y=中,得3=,解得k=﹣6.故答案为:﹣6.【点评】主要考查了用待定系数法求反比例函数的解析式.先设y=,再把已知点的坐标代入可求出k值,即得到反比例函数的解析式.14.若关于x的方程有增根,m3.【分析】分式方程去分母转化为整式方程,将x=5代入整式方程即可求出m的值.【解答】解:去分母得:2﹣x+m=0,将x=5代入得:2﹣5+m=0,解得:m=3.故答案为:3.【点评】此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.15.符号“”称为二阶行列式,规定它的运算法则为:=ad﹣bc,请你根据上述规定求出下列等式中x的值.若,那么x=4.【分析】根据已知得出分式方程﹣=1,求出分式方程的解,再代入x﹣1和1﹣x进行检验即可.【解答】解:∵,∴﹣=1,方程两边都乘以x﹣1得:2+1=x﹣1,解得:x=4,检验:当x=4时,x﹣1≠0,1﹣x≠0,即x=4是分式方程的解,故答案为:4.【点评】本题考查了分式方程的应用,解此题的关键是根据材料得出分式方程,题目具有一定的代表性,是一道比较好的题目.16.如图,过x轴正半轴上的任意一点P作y轴的平行线交反比例函数y=和y=﹣的图象于A,B两点,C是y轴上任意一点,则△ABC的面积为3.【分析】设P(a,0),由直线APB与y轴平行,得到A和B的横坐标都为a,将x=a代入反比例函数y=和y=﹣中,分别表示出A和B的纵坐标,进而由AP+BP表示出AB,三角形ABC 的面积=×AB×OP,求出即可.【解答】解:设P(a,0),a>0,则A和B的横坐标都为a,将x=a代入反比例函数y=中得:y=,故A(a,);将x=a代入反比例函数y=﹣中得:y=﹣,故B(a,﹣),∴AB=AP+BP=+=,=AB•OP=××a=3.则S△ABC故答案为3.【点评】此题考查了反比例函数系数k的几何意义,以及坐标与图形性质,其中设出P的坐标,表示出AB是解本题的关键.三、解答题:本大题共8小题,共72分.解答应写出文字说明,证明过程或演算步骤.17.(10分)计算:①﹣4×()﹣2+|﹣5|+(π﹣3)0②﹣.【分析】(1)根据负整数指数幂、绝对值、零指数幂可以解答本题;(2)先对原式通分然后再化简即可解答本题.【解答】解:①﹣4×()﹣2+|﹣5|+(π﹣3)0=3﹣4×4+5+1=3﹣16+5+1=﹣7;②﹣=====.【点评】本题考查实数的运算、分式的加减法、负整数指数幂、零指数幂,解题的关键是明确它们各自的计算方法.18.(10分)解下列分式方程(1)=1(2)=【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:4﹣1=x﹣1,解得:x=4,经检验x=4是分式方程的解;(2)去分母得:4+x2+5x+6=x2﹣3x+2,解得:x=﹣1,经检验x=﹣1是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.19.(7分)先化简,再求值:,当a=﹣3时,求代数式的值.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算可得.【解答】解:原式=﹣•=﹣=,当a=﹣3时,原式==﹣.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌分式的混合运算顺序和运算法则.20.(7分)蓬溪芝溪玉液酒厂接到生产480件芝溪玉液酒的订单,为了尽快完成任务,该厂实际每天生产的件数比原来每天多50%,提前10天完成任务.原来每天生产多少件?【分析】直接根据题意表示出原计划和实际生产的件数,进而利用提前10天完成任务得出等式求出答案.【解答】解:设原来每天生产x件,根据题意可得:=+10,解得:x=16,检验得:当x=16是原方程的根,答:原来每天生产16件.【点评】此题主要考查了分式方程的应用,根据题意利用生产的天数得出等式是解题关键.21.(8分)“珍重生命,注意安全!”同学们在上下学途中一定要注意骑车安全.小明骑单车上学,当他骑了一段时,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校,以下是他本次所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是多少米?(2)小明在书店停留了多少分钟?(3)本次上学途中,小明一共行驶了多少米?一共用了多少分钟?(4)我们认为骑单车的速度超过300米/分钟就超越了安全限度.问:在整个上学的途中哪个时间段小明骑车速度最快,速度在安全限度内吗?【分析】(1)根据函数图象的纵坐标,可得答案;(2)根据函数图象的横坐标,可得到达书店时间,离开书店时间,根据有理数的减法,克的答案;(3)根据函数图象的纵坐标,可得相应的路程,根据有理数的加法,可得答案;(4)根据函数图象的纵坐标,可得路程,根据函数图象的横坐标,可得时间,根据路程与时间的关系,可得速度.【解答】解:(1)根据图象,学校的纵坐标为1500,小明家的纵坐标为0,故小明家到学校的路程是1500米;(2)根据题意,小明在书店停留的时间为从(8分)到(12分),故小明在书店停留了4分钟.(3)一共行驶的总路程=1200+(1200﹣600)+(1500﹣600)=1200+600+900=2700米;共用了14分钟.(4)由图象可知:0~6分钟时,平均速度==200米/分,6~8分钟时,平均速度==300米/分,12~14分钟时,平均速度==450米/分,所以,12~14分钟时速度最快,不在安全限度内.【点评】本题考查了函数图象,观察函数图象的纵坐标得出路程,观察函数图象的横坐标得出时间,又利用了路程与时间的关系.22.(8分)某商场欲购进一种商品,当购进这种商品至少为10kg,但不超过30kg时,成本y(元/kg)与进货量x(kg)的函数关系如图所示.(1)求y关于x的函数解析式,并写出x的取值范围.(2)若该商场购进这种商品的成本为9.6元/kg,则购进此商品多少千克?【分析】(1)设出成本y(元/kg)与进货量x(kg)的函数解析式,由图象上的点的坐标利用待定系数法即可求得结论;(2)令成本y=9.6,得出关于x的一元一次方程,解方程即可得出结论.【解答】解:(1)设成本y(元/kg)与进货量x(kg)的函数解析式为y=kx+b,由图形可知:,解得:.故y关于x的函数解析式为y=﹣0.1x+11,其中10≤x≤30.(2)令y=﹣0.1x+11=9.6,即0.1x=1.4,解得:x=14.故该商场购进这种商品的成本为9.6元/kg,则购进此商品14千克.【点评】本题考查了一次函数的图象以及用待定系数法求函数解析式,解题的关键:(1)设出解析式在图象上找出点的坐标利用待定系数法去求系数;(2)令y=9.6,得出关于x的一元一次方程.本题属于基础题,难度不大,解决该类题型的方法是利用图象得出点的坐标,结合待定系数法求出结论.23.(10分)如图,直线y=x﹣2分别交x轴、y轴于A、B两点,O是原点.(1)求△AOB的面积.(2)过△AOB的顶点B画一条直线把△AOB分成面积相等的两部分,求出直线解析式.【分析】(1)分别令直线解析式中x=0、y=0求出相对于的y、x值,由此即可得出点A、B的坐标,再利用三角形的面积公式即可得出结论;(2)找出线段OA的中点C,连接BC,设直线BC的解析式为y=kx+b(k≠0),由点A的坐标可得出点C的坐标,结合点B、C的坐标利用待定系数法即可得出结论.【解答】解:(1)令y=x﹣2中x=0,则y=﹣2,∴点B(0,﹣2);令y=x﹣2中y=0,则x﹣2=0,解得:x=3,∴点A(3,0).S=OA•OB=×2×3=3.△AOB(2)作出线段AO的中点C,连接BC,如图所示.∵点A(3,0),∴点C(,0).设直线BC的解析式为y=kx+b(k≠0),将点B(0,﹣2)、C(,0)代入y=kx+b中,得:,解得:,∴直线BC的解析式为y=x﹣2.【点评】本题考查了一次函数图象上点的坐标特征、三角形的面积公式以及待定系数法求出函数解析式,解题的关键是:(1)求出点A、B的坐标;(2)利用待定系数法求出函数解析式.本题属于基础题,难度不大,解决该题型题目时,找出点的坐标,再利用待定系数法求出函数解析式是关键.24.(12分)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y =的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及△AOB的面积;(3)直接写出一次函数的值小于反比例函数值的x的取值范围.【分析】(1)先把B点坐标代入代入y=,求出m得到反比例函数解析式,再利用反比例函数解析式确定A点坐标,然后利用待定系数法求一次函数解析式;+S (2)根据x轴上点的坐标特征确定C点坐标,然后根据三角形面积公式和△AOB的面积=S△AOC进行计算;△BOC(3)观察函数图象得到当﹣4<x<0或x>2时,一次函数图象都在反比例函数图象下方.【解答】解:∵B(2,﹣4)在反比例函数y=的图象上,∴m=2×(﹣4)=﹣8,∴反比例函数解析式为:y=﹣,把A(﹣4,n)代入y=﹣,得﹣4n=﹣8,解得n=2,则A点坐标为(﹣4,2).把A(﹣4,2),B(2,﹣4)分别代入y=kx+b,得,解得,∴一次函数的解析式为y=﹣x﹣2;(2)∵y=﹣x﹣2,∴当﹣x﹣2=0时,x=﹣2,∴点C的坐标为:(﹣2,0),△AOB的面积=△AOC的面积+△COB的面积=×2×2+×2×4=6;(3)由图象可知,当﹣4<x<0或x>2时,一次函数的值小于反比例函数的值.【点评】本题考查的是一次函数与反比例函数的交点问题以及待定系数法的运用,灵活运用待定系数法是解题的关键,注意数形结合思想的正确运用.。