图灵机——计算机的理论模型
- 格式:ppt
- 大小:304.50 KB
- 文档页数:5
理论计算机科学中的图灵机图灵机是理论计算机科学中的一个重要概念。
它被认为是能够计算任何可计算问题的最基本的计算机模型。
理解图灵机对于对计算机科学的学习和研究都至关重要。
一、图灵机的定义和原理图灵机是由英国数学家图灵提出的一种计算模型。
它包括一个有限控制器和一条无限长的纸带。
纸带被划分为一系列的单元格,每个单元格上可以写上一个字符。
控制器通过读取纸带上的字符和控制器内部的状态来进行计算。
它可以进行有限的计算,而且可以处理无限长的输入。
在图灵机模型中,所有的操作都是基于读取和写入单元格上的字符来进行。
图灵机具有非常简单的结构,但它却能够计算出任何可计算问题。
二、图灵机的应用图灵机能够计算出任何可计算问题,因此它在理论计算机科学中有着非常重要的应用。
它被用于证明计算机科学中的许多重要问题,例如停机问题和可计算性问题。
通过证明一个问题是不可计算的,我们可以得出它是无法用计算机解决的。
这对于计算机的设计和实现都有着重要的指导意义。
此外,图灵机还被广泛应用于计算机语言和自动机理论的研究中。
我们可以使用图灵机来描述计算机语言的语法和语义,并且使用它来定义自动机模型。
这在编程语言的编译、解释和分析中都有着广泛的应用。
三、图灵机的限制尽管图灵机是一种非常强大的计算模型,它仍然存在着一些限制。
其中最明显的一点是图灵机的速度。
尽管图灵机能够计算出任何可计算问题,但某些问题可能需要非常长的时间才能得到结果。
例如,计算出一个长文本的哈希值可能需要几分钟,而对于一个复合的问题,甚至需要几个世纪才能计算得出。
此外,图灵机还无法解决某些问题,例如非计算问题和不规则问题。
这些问题之所以无法用图灵机解决,是因为它们没有确定的方法来解决它们。
这些问题是无法用算法来解决的,并且需要人类直接进行解决。
四、结语图灵机是理论计算机科学中最重要的概念之一。
它被认为是能够计算出任何可计算问题的最基本计算机模型。
通过图灵机的研究,我们可以深入理解计算机科学的基本原理,理解计算机能力和限制。
图灵机英国数学家A.M.图灵提出的一种抽象计算模型,用来精确定义可计算函数。
图灵机由一个控制器、一条可无限延伸的带子和一个在带子上左右移动的读写头组成。
这个在概念上如此简单的机器,理论上却可以计算任何直观可计算的函数。
图灵机作为计算机的理论模型,在有关计算理论和计算复杂性的研究方面得到广泛的应用。
研究简况由于图灵机以简明直观的数学概念刻划了计算过程的本质,自1936年提出以来,有关学者对它进行了广泛的研究。
C.E.仙农证明每一个图灵机等价于仅有两个内部状态的图灵机,王浩证明每个图灵机可由具有一条只读带和一条只有两个符号的存储带的图灵机模拟。
人们还证明,图灵机与另一抽象计算模型──波斯特机器在计算能力上是等价的(见波斯特对应问题)。
人们还研究了图灵机的各种变形,如非确定的图灵机、多道图灵机、多带图灵机、多维图灵机、多头图灵机和带外部信息源的图灵机等。
除极个别情形外,这些变形并未扩展图灵机的计算能力,它们计算的函数类与基本图灵机是相同的,但对研究不同类型的问题提供了方便的理论模型。
例如,多带图灵机是研究计算复杂性理论的重要计算模型。
人们还在图灵机的基础上提出了不同程度地近似于现代计算机的抽象机器,如具有随机访问存储器的程序机器等。
基本结构和功能图灵机(见图)的控制器具有有限个状态。
其中有两类特殊状态:开始状态和结束状态(或结束状态集合)。
图灵机的带子分成格子,右端可无限延伸,每个格子上可以写一个符号,图灵机有有限个不同的符号。
图灵机的读写头可以沿着带子左右移动,既可扫描符号,也可写下符号。
在计算过程的每一时刻,图灵机处于某个状态,通过读写头注视带子某一格子上的符号。
根据当前时刻的状态和注视的符号,机器执行下列动作:转入新的状态;把被注视的符号换成新的符号;读写头向左或向右移动一格。
这种由状态和符号对偶决定的动作组合称为指令。
例如指令q1a i│a j q2L表示当机器处在状态q1下注视符号a i时,将a i换成符号a j,转入新的状态q2,读写头左移一格。
有关图灵的名词解释谈及计算机科学史上最重要的人物,图灵(Alan Turing)无疑是一个不可忽视的名字。
他将计算机科学带入了一个新的纪元,开创了许多重要的概念和理论。
本文将解释和探讨与图灵相关的几个重要名词。
1. 图灵机(Turing Machine)图灵机被认为是计算机科学的奠基之石。
它是一种理论计算机模型,由图灵于1936年提出。
图灵机包括一个无限长的纸带和一种移动的读写头。
纸带上划分成了一系列的格子,每个格子上可以写入一个符号。
读写头可以在纸带上进行读取、写入和移动操作。
图灵机的规则包括一个状态表,定义了读写头在纸带上移动的方式和每次移动后需要执行的操作。
图灵机是一种抽象的、理论上的计算机模型,可以模拟任何其他的计算机或计算过程。
2. 图灵完备性(Turing Completeness)图灵完备性是指一种计算系统具备与图灵机等价的计算能力。
如果一个计算系统具备图灵完备性,那么它可以模拟图灵机,也就是说,可以执行任何图灵机能执行的计算任务。
图灵完备性是计算机科学中的一个重要概念,用于评估和比较不同计算系统的能力。
3. 图灵测试(Turing Test)图灵测试是图灵于1950年提出的一个概念性测试,用于评估机器是否具备智能。
在图灵测试中,一个人与一台机器进行文字交流,如果这个人无法确定他在与机器还是与另一个人交流,那么这台机器被认为通过了图灵测试,具备了智能。
图灵测试是人工智能领域的一个重要指标,至今仍被广泛应用于衡量机器智能水平。
4. 图灵奖(Turing Award)图灵奖是计算机科学领域最高荣誉,由美国计算机协会(ACM)每年颁发给在计算机科学领域做出杰出贡献的人士。
该奖项以图灵的名字命名,旨在纪念他对计算机科学的重要贡献。
图灵奖在计算机科学界具有极高的声望,获得该奖的人士被认为是对计算机科学做出了突出贡献的杰出人物。
5. 图灵研究所(Turing Institute)图灵研究所是一个致力于推动科学和工程领域创新的机构。
图灵机的原理
图灵机是由英国数学家阿兰·图灵在20世纪30年代提出的一种理论模型,用于描述计算机的工作原理和能力。
图灵机采用一条无限长的纸带作为存储器,上面分为一系列小方格,每个方格可以存储一个字符。
同时,图灵机还包括一个读写头,它可以在纸带上移动,并读取或写入数据。
图灵机的工作基于一个控制单元和一组状态转换规则。
控制单元根据当前的状态以及读取头所指向的字符,根据预先定义的规则,决定下一步要执行的动作,包括读取、写入、移动等。
通过不断重复这些动作,图灵机可以模拟各种计算操作。
图灵机具有极强的计算能力,它可以模拟任何其他计算机或计算设备,只要给定足够的时间和资源。
这是因为图灵机具有可编程和可存储的特性,可以执行各种复杂的算法和运算。
图灵机可以解决许多计算问题,包括数学计算、逻辑运算、字符串处理等等。
图灵机的提出对计算机科学产生了深远的影响,它为计算机的发展和研究提供了重要的理论基础。
图灵机的原理也被广泛应用于计算理论、算法设计、人工智能等领域,成为了计算机科学的核心概念之一。
图灵机的工作原理图灵机是一种理论上的计算模型,由英国数学家艾伦·图灵于1936年提出。
它是一种抽象的计算设备,可以执行各种计算任务,包括判断可计算问题的可行性、解决数学问题以及模拟其他计算设备的功能。
图灵机的工作原理是基于简单的操作规则和有限的状态集合,但却能够模拟出任何可计算的函数。
下面我们将详细介绍图灵机的工作原理。
首先,图灵机由一个无限长的纸带和一个读写头组成。
纸带被划分为一个个小格子,每个格子上可以写入一个符号,包括0和1。
读写头可以在纸带上移动,并能够读取当前格子上的符号,并根据一定的规则进行写入操作。
图灵机还包括一个状态寄存器,用来记录当前的状态。
图灵机的工作原理可以简单描述为,根据当前的状态和读写头所读取的符号,执行一定的操作,并根据预先设定的转移规则,改变状态、移动读写头、修改当前格子上的符号。
这样不断地重复执行,直到图灵机进入停机状态或者无限循环。
图灵机的工作原理实际上是基于一系列的转移函数,这些函数定义了在不同状态和不同输入符号下,图灵机应该执行的动作。
这些动作包括改变状态、移动读写头、修改当前格子上的符号。
通过这些转移函数的组合,图灵机可以模拟出任何可计算的函数。
图灵机的工作原理可以用来解决各种计算问题,比如判断一个问题是否可计算、寻找某个数学函数的解、模拟其他计算设备的功能等。
虽然图灵机是一种理论上的计算模型,但它对于计算机科学的发展产生了深远的影响,成为了计算理论的基础。
总之,图灵机的工作原理是基于简单的操作规则和有限的状态集合,但却能够模拟出任何可计算的函数。
它通过不断地执行转移函数,改变状态、移动读写头、修改纸带上的符号,实现了各种计算任务。
图灵机的工作原理对于计算机科学的发展产生了深远的影响,成为了计算理论的基础。
计算机计算模型中的图灵机从计算机计算模型的角度来看,图灵机被认为是一种通用的计算模型,也是计算机科学研究的重要基础之一。
在本文中,我们将深入探讨图灵机的内部结构、运作原理,以及在计算机科学与人工智能研究中的应用。
一、图灵机的定义与内部结构图灵机是一种最简单、最有代表性的计算模型。
其定义由英国数学家阿兰·图灵提出,目的是为了探究哪些问题可以被自动机器解决,哪些问题不可以。
从宏观角度看,图灵机可以被视为一个运算器。
它包括一个无限长度的纸带,上面按照一定规律印有各种符号,一个读写头,可以在纸带上不停移动,并读取或写入符号,以及一个确定的有限自动机,遵循一定的规则对符号进行操作,并改变自动机的状态。
从微观角度看,图灵机可以被视为一个五元组(M, S, T, s0, F)。
其中,M表示状态集合,S表示符号集合,T表示转移函数,s0表示起始状态,F表示接受状态。
具体而言,自动机根据读取到的符号,通过转移函数来执行状态转移,并可以改写纸带上的符号。
当自动机的状态转换到F中的任意一个状态时,其判定为输入串被接受。
二、图灵机的运作原理图灵机的运作可以被大致分为两个阶段:读写头扫描纸带,自动机执行状态转移。
在程序开始运行时,自动机根据起始状态s0开始,读写头扫描到的符号会被送至转移函数T中计算状态转移,根据T中的定义,自动机可能完成以下四个操作之一:- 将读写头向左或右移动一格- 改写当前符号- 将自动机状态从M中的一种变为另一种- 停机在一个图灵机的运行中,自动机状态的变化不是唯一的。
事实上,任何一个有限自动机都可看作某个图灵机的子集,只是它转换后的操作相对简单罢了。
三、图灵机在计算机科学中的应用图灵机在计算机科学中的应用主要有以下两个方面:1.图灵完备性一个计算模型被称为图灵完备,当且仅当它可以在所有计算上都与图灵机等价。
因为图灵机是最简单、最有代表性的计算模型之一,许多计算机科学研究中的问题可以被转换成图灵机问题。
图灵机的原理图灵机是英国数学家图灵在1936年提出的一种抽象计算模型,它被认为是现代计算机的理论基础。
图灵机的原理是基于一种简单的操作规则,通过读写无限长的纸带来模拟各种计算过程。
这种抽象的计算模型为我们理解计算机的工作原理提供了重要的参考,下面我们将详细介绍图灵机的原理。
首先,图灵机由一个有限状态的控制器和一条无限长的纸带组成。
纸带被划分为一个个小的单元格,每个单元格上可以写上一个符号,这些符号可以是0和1,也可以是其他字符。
控制器可以根据当前状态和纸带上的符号来决定下一步的操作,包括移动纸带、改变符号和改变状态等。
其次,图灵机的计算过程可以用一系列的状态转换来描述。
当图灵机处于某个状态并读取到某个符号时,它会根据预先设定的转移函数来确定下一步的状态和动作。
这种状态转换的过程可以无限进行下去,直到图灵机进入停机状态或者产生无限长的计算结果。
接着,图灵机可以模拟任何可以被计算的问题。
这是因为图灵机的操作规则是非常简单和通用的,它可以进行有限状态的计算、存储和读写操作。
通过适当的编程,图灵机可以模拟各种算法和计算过程,包括数学运算、逻辑推理、字符串处理等。
此外,图灵机的原理也揭示了计算的本质。
它表明任何计算过程都可以被抽象为一系列简单的状态转换和符号操作,而这些操作可以用一个通用的计算模型来实现。
这种抽象的计算模型为我们理解计算机的工作原理提供了重要的参考,也为计算理论的发展提供了重要的基础。
最后,图灵机的原理对计算机科学和人工智能领域产生了深远的影响。
它不仅为计算机的设计和实现提供了理论指导,也为人工智能的发展提供了重要的参考。
图灵机的原理启发了许多计算模型和算法的设计,也为人工智能的研究提供了理论基础。
总之,图灵机的原理是计算机科学的重要基础之一,它为我们理解计算的本质和计算机的工作原理提供了重要的参考。
通过对图灵机的原理进行深入的研究和理解,我们可以更好地掌握计算机科学的核心概念,也为未来计算机技术和人工智能的发展提供重要的思想支持。
计算机科学中的计算模型计算机科学是一门极具挑战性的学科,在推进人类新技术和新思想上起着重要作用。
计算机科学的一个核心问题就是如何处理信息。
为了解决这个问题,人们发明了各种计算模型。
计算模型是指用来描述计算机系统中可进行的计算的方式和规则。
在本文中,我们将会简要地探讨一些计算模型。
1. 图灵机图灵机,是由英国数学家阿兰·图灵 (Alan Turing) 于20世纪30年代发明的一种机器模型。
图灵机是一种抽象机器,由一个无限长的纸带、一个读写头和一些程序控制器组成。
纸带上可以写有限个符号,读写头可以读取或改变纸带上的符号,程序控制器根据读写头所在的位置及当前的符号来控制下一步的操作。
图灵机被认为是通用的计算模型,这就意味着所有计算机都可以使用图灵机来模拟。
2. 基于状态转移的模型状态转移模型是另一种广泛使用的计算模型。
这个模型把计算看作状态的一系列转移。
它主要有两个组成部分:状态集合和状态转移函数。
状态集合是计算机所能具有的状态的集合,状态转移函数是描述一种状态下,如何从输入到输出的所有可能性的函数。
状态转移模型被广泛应用,在机器学习和人工智能领域有着广泛的应用。
3. 并行计算模型另一种重要的计算模型是并行计算模型。
它允许多个计算单元同时工作,以加速计算。
这种模型增加了并行性,对于处理大规模数据和高效计算非常有用。
在实际计算中,多处理器系统常用并行计算模型解决计算问题。
4. 量子计算模型近年来,随着量子计算的发展,量子计算模型变得越来越重要。
相比传统的计算模型,量子计算模型可处理的计算复杂度更高,解决的问题更加优秀。
量子计算模型的核心是量子比特和量子门。
量子比特可以用来存储量子信息,量子门可以运用量子比特进行计算。
不同于传统的计算机体系结构,量子计算机是基于量子力学理论建立的,处理信息的方式也与传统计算机不同。
总结计算模型是计算机科学中的重要组成部分,它有助于我们理解计算机如何进行处理。
在计算机科学中,图灵机、状态转移模型、并行计算模型和量子计算模型是历史上四个重要的计算模型。
图灵机的基础原理概述图灵机(Turing machine)是英国数学家图灵(Alan Turing)于1936年提出的一种理论计算机模型,它用来描述一种具有无穷长纸带的机器,并在这个纸带上进行操作。
图灵机是计算机理论的基石之一,它不仅仅是一种计算模型,更是理解计算机的工作原理的基础。
图灵机的基本组成包括一个读写头、一个无限长的纸带、一个控制单元和一组状态。
纸带可以想象成是一个无限长的带子,带子上有一些小方格,每个小方格上都可以写有一个符号(比如数字、字母等)。
读写头可以在纸带上左右移动,并能够读取或写入符号到当前所在方格。
图灵机通过不断读取和写入纸带上的符号来进行计算。
控制单元是图灵机的大脑,它控制着读写头的移动和符号的读写。
控制单元的设计包括一组状态和对不同状态下的输入进行响应的规则。
每个状态都对应着某种操作,可以是移动读写头、读取或写入符号、改变状态等。
图灵机的控制单元根据当前的状态和读写头所读取的符号,在给定的一组规则下进行操作。
图灵机的原理可以简单概括为模拟一种计算过程,该过程由一系列状态和操作构成。
通过读取和写入纸带上的符号,不断改变图灵机的状态,进而模拟出各种计算过程。
图灵机的基本计算过程包括以下几个步骤:1. 读取:图灵机的读写头读取当前所在方格上的符号。
2. 根据读取到的符号和当前状态,在控制单元中查找相应的规则。
3. 根据查找到的规则,进行相应的操作,比如移动读写头、改变状态、写入符号等。
4. 如果当前状态没有对应的规则,图灵机停止计算;否则,返回步骤1,读取新的符号,继续下一轮计算。
图灵机的能力非常强大,可以计算任何可计算的问题。
这是因为图灵机具备无限的存储能力,可以在纸带上存储无限多的符号,并且通过改变状态和操作来模拟各种复杂的计算过程。
虽然图灵机的实际计算过程可能非常繁琐,但是它能够计算任何一个可计算的问题。
图灵机的提出和研究给计算机科学带来了深远的影响。
首先,图灵机使得计算机的工作原理变得清晰而明确,让人们能够基于此进行研究和发展。
图灵机工作原理图灵机是一种理论上的计算模型,由英国数学家艾伦·图灵于1936年提出。
它是一种抽象的计算设备,能够模拟任何可以通过算法计算的问题。
图灵机的工作原理主要包括输入、状态转换和输出三个基本部分。
首先,图灵机接受输入。
输入是指由输入符号构成的无限长的纸带,纸带上的每个符号都属于有限的字母表。
图灵机的读写头可以在纸带上移动,并能够读取当前位置的符号。
这些输入符号代表了问题的初始状态,图灵机需要根据这些输入符号进行计算和处理。
其次,图灵机通过状态转换来处理输入。
图灵机在内部有一个状态转换表,根据当前状态和读取的输入符号,图灵机可以根据状态转换表中的规则进行状态转换。
这些状态转换规则包括了读取当前符号后的下一步动作,如写入新符号、移动读写头的位置或改变内部状态等。
通过不断的状态转换,图灵机可以模拟出复杂的计算过程。
最后,图灵机输出结果。
当图灵机完成状态转换并停止时,纸带上的符号就代表了问题的计算结果。
图灵机可以通过读取纸带上的符号来输出最终的计算结果。
图灵机的工作原理可以用简洁的数学模型来描述,这种模型包括了输入符号、状态转换表和内部状态等重要元素。
通过这些元素的相互作用,图灵机能够模拟出任何可以通过算法计算的问题。
这种抽象的计算模型为计算机科学的发展提供了重要的理论基础,对于计算机算法和程序设计具有重要的指导意义。
总的来说,图灵机的工作原理是基于输入、状态转换和输出这三个基本部分的。
通过这些部分的相互作用,图灵机能够模拟出任何可以通过算法计算的问题,这为计算机科学的发展提供了重要的理论基础。
图灵机的工作原理不仅对计算机科学具有重要的指导意义,同时也为人工智能和机器学习等领域的发展提供了重要的思想参考。
简述图灵机的工作原理图灵机是由英国数学家艾伦·图灵于1936年提出的一种理论计算模型,被认为是现代计算机的理论基础。
图灵机的工作原理主要包括输入、状态转换和输出三个部分。
首先,图灵机的输入是由无限长的纸带组成,纸带上被划分为一个个的格子,每个格子上可以写入符号。
图灵机的读写头可以在纸带上左右移动,读取当前格子上的符号,并根据预先设定的规则进行状态转换。
这些规则包括了读取当前符号后应该执行的动作,例如改变当前符号、移动读写头的位置,或者改变图灵机的内部状态。
通过这样的状态转换,图灵机可以模拟出各种复杂的计算过程。
其次,图灵机的状态转换是基于一系列预先设定的规则进行的。
这些规则被称为转移函数,它定义了在图灵机的当前状态和读取的符号下,应该执行的动作。
通过这些转移函数,图灵机可以在纸带上进行各种计算操作,包括加法、乘法、逻辑运算等。
这些转移函数可以根据具体的计算任务进行设计,从而使图灵机能够解决各种复杂的问题。
最后,图灵机的输出是通过读写头在纸带上写入符号来实现的。
当图灵机完成了特定的计算任务后,它会在纸带上写下最终的结果。
这个结果可以是一个数值、一个逻辑值,甚至是一个新的状态,取决于图灵机所模拟的具体计算过程。
通过这样的输出,图灵机可以完成各种复杂的计算任务,包括数学运算、逻辑推理、甚至是模拟其他计算机程序的执行过程。
总的来说,图灵机的工作原理可以概括为,通过读写头在纸带上读取和写入符号,根据预先设定的状态转换规则进行计算,最终得到所需的输出结果。
图灵机的这种工作原理被认为是计算机科学的基础,它不仅为现代计算机的设计提供了理论依据,也为计算理论和人工智能研究提供了重要的参考。
通过对图灵机工作原理的深入理解,我们可以更好地认识计算机的本质,从而推动计算机科学的发展和进步。
图灵机的原理
图灵机是由英国数学家艾伦·图灵于1936年提出的一种抽象数学模型,它被认为是现代计算机的理论基础。
图灵机的原理是基于一种简单的执行模型,它包括一个无限长的纸带和一个读写头,读写头可以在纸带上移动,并且可以读写纸带上的符号。
图灵机的工作原理可以简单描述为,读写头根据当前的状态和纸带上的符号进行移动和改写,然后根据预先定义的规则转换到下一个状态。
通过这种方式,图灵机可以模拟任何可以被计算的问题,这也是图灵机被认为是通用计算设备的原因之一。
图灵机的原理可以用来解决许多计算问题,例如判断一个给定的算法是否能够在有限时间内停机(停止计算),这被称为停机问题。
图灵机的原理还可以用来证明一些数学定理,比如哥德尔不完备定理就是利用了图灵机的原理来证明的。
此外,图灵机的原理也被广泛应用于计算机科学领域,例如在算法设计、计算复杂性理论等方面。
图灵机的原理的核心在于其简洁而强大的计算模型,它可以模拟任何可以被计算的问题,这使得它成为了计算理论的基石。
图灵机的原理也为计算机科学的发展提供了理论基础,例如在计算机程
序设计、人工智能、计算复杂性等领域都有着重要的应用。
总之,图灵机的原理是计算机科学领域中的重要理论基础,它的简洁和强大使得它成为了现代计算机的理论基础,同时也为计算机科学的发展提供了理论基础。
图灵机的原理不仅在理论上有着重要的意义,而且在实际应用中也有着广泛的应用,它对于计算机科学领域的发展产生了深远的影响。
图灵机♣张江(email: jakezj@)自然中的一切过程都有可能在进行计算,碰撞的小球、流动的溪水、燃烧的火焰,大自然用自己的方式处理着大量的信息。
著名的Mathematica软件发明人沃尔弗莱姆(Wolfram)甚至宣称,整个宇宙就是一台大的图灵计算机。
究竟什么是计算?什么是图灵机?计算与人类智能是怎样的关系?(一) 图灵与图灵机图灵机是计算机的理论模型,这个名字来源于它的发明人,阿兰·图灵(Alan Turing)。
图灵(1912~1954)出生于英国伦敦,19岁考入了剑桥皇家学院,22岁就当选为皇家学会会员。
1937年,他发表了论文《论可计算数及其在判定问题中的应用》,提出了图灵机模型,后来,冯诺依曼就是根据这个模型设计出历史上第一台电子计算机的。
1950年,图灵又发表了划时代的文章:《机器能思考吗?》,成为了人工智能的开山之作。
可惜的是,就在他的事业刚刚达到顶峰的时候图灵自杀了,享年仅有42岁。
为了纪念这个伟大的学者,计算机界设立了最高荣誉奖:ACM图灵奖。
言归正传,我们开始讲图灵机的概念。
你需要先认识一下它的轮廓,如右图:这个装置由下面几个部分组成:一个被划分成方格的无限长的纸带,一个读写头。
(中间那个大盒子),内部状态(盒子上的方块,比如A,B,E,H),另外,还有一个程序对这个盒子进行控制。
这个装置就是根据程序的命令以及它的内部状态进行磁带的读写、移动。
也许这里的语言太抽象、死板,那么下面,我们用一个有趣的比喻让这个冷冰冰的家伙活起来。
1.小虫的比喻我们不妨考虑这样一个问题。
假设一个小虫在地上爬,那么我们应该怎样从小虫信息处理的角度来建立它的模♣∗本篇文章介绍图灵机模型及其计算理论。
*号表示作者的推测。
型呢?首先,我们需要对小虫所在的环境进行建模。
我们不妨假设小虫所处的世界是一个无限长的纸带,这个纸带上被分成了若干小方格,而每个方格都只有黑白两种颜色。
黑色表示该方格有食物,白色就表示没有。
图灵机工作原理
图灵机是一种理论模型,用于描述计算机和计算问题的工作原理。
图灵机的基本构成包括一个读写头、一个无限长的纸带和一套指令集。
图灵机的工作过程如下:首先,图灵机的读写头在纸带上的某一位置读取一个符号。
然后,根据当前读取的符号和内部的状态,图灵机根据指令集中的规则进行一系列操作,包括读取符号、写入符号、改变状态和移动读写头等。
最后,图灵机根据这些操作的结果,决定下一步要执行的操作。
图灵机通过重复执行上述过程,不断读取符号、执行操作,直到满足某个停机条件为止。
停机条件可以是指令集中的某条指令,也可以是指令集中没有定义的情况。
一旦满足停机条件,图灵机的计算过程就结束了。
图灵机的工作原理是基于一种被称为图灵完备性的概念。
一个系统如果具有图灵完备性,就意味着它能够模拟图灵机的所有计算行为。
这也就意味着,任何图灵完备的系统都能够解决图灵机可以解决的问题。
总之,图灵机是一种用于描述计算机和计算问题工作原理的理论模型,通过读写头、纸带和指令集的组合,完成符号的读写、状态的改变和读写头的移动等操作,从而实现计算过程。
图灵机的工作原理是基于图灵完备性概念,能够模拟图灵机的所有计算行为。
著名的抽象计算机模型——图灵机人类盼望用机器进行计算由来已久。
最早的自动计算机可追溯到1833年由英国数学家查尔斯·拜贝吉(CharlesBabbage)建造的分析机,它依据事先打在卡片上的指令进行操作。
它是首台通用的计算机。
现在,这台计算机被存放在伦敦科学博物馆。
但是,现代计算机的历史应从1936年算起。
那年,英国著名数学家图灵设计出抽象计算机模型——图灵机,而任何实用的现代计算机性能只是图灵机性能的等价集,或者子集。
为此,它被认为是现代计算科学之父。
艾伦·图灵(Alan Turing),1912年6月23日生于英国伦敦西部帕丁顿住宅区一个中上层的家庭里。
父亲在民间服务机构工作,经常来往于英国与印度之间。
幼小的艾伦·图灵被托付给他父亲的一位朋友。
很小的时候,图灵就显露出不同常人的天分。
他仅用了三个星期,自己学会了阅读。
他还表示出对数学难题的热衷。
六岁那年进小学,女校长马上发现了他的聪明才智,为了怕他“吃”不饱,经常将后面的课程提前教给他。
1926年,他进入中学。
开学那天,正赶上英国举行大罢工,公共交通身骑自行车,飞速穿行60英里(近100公里)赶往学校,夜间留宿中途的小饭店,最后没有误了第一天的课。
这件事在当地报纸上报道后引起轰动。
图灵的爱好是瘫痪。
年仅14岁的图灵提前一天只数学和科学,而这所开办于十六世纪的著名1931年,图灵进入剑桥大学国士学位。
1935年,凭借他在国王解决难题中的应用(OnComp 。
这纸带被分成一个个小方格,每个小方格记录单学校,其传统是文学和艺术。
校长给他父亲写信,认为图灵独自追求科学,有违学校育人的初衷,实在是浪费时间。
但是,图灵不管这些,继续在自己喜爱的学科领域中不断展示才华。
1927年,他根本没有学习过微积分的基础知识,但是硬是将十分复杂的难题解决了。
1928年,图灵年仅16岁,开始接触爱因斯坦的高深理论。
他不但掌握了这些理论,而且用爱因斯坦理论审视教科书中没有阐述清楚的牛顿运动法则。