8.1不定积分概念与基本积分公式
- 格式:pdf
- 大小:867.91 KB
- 文档页数:62
第八章不定积分一、不定积分概念与基本积分公式1.原函数与不定积分①定义1:设函数f 与F 在区间I 上都有定义,若F’(x)=f(x),x ∈I ,则称F 为f 在区间I 上的一个原函数。
②定理8.1:若函数f 在区间I 上连续,则f 在I 上存在原函数F ,即F’(x)=f(x),x ∈I 。
·不连续的函数也可以有原函数③定理8.2:设F 是f 在区间I 上的一个原函数,则(i)F+C 也是f 在I 上的原函数,其中C 为任意常量函数;(ii)f 在I 上的任意两个原函数之间,只可能相差一个常数。
④定义2:函数f 在区间I 上的全体原函数称为f 在I 上的不定积分,记作∫f(x)dx 。
·[∫f(x)dx]’=[F(x)+C]’=f(x);·d ∫f(x)dx=d[F(x)+C];⑤不定积分的几何意义:积分曲线2.基本积分表①∫0dx=C ;②∫1dx=∫dx=x+C ;③)0,1(11>-≠++=⎰+x C x dx x αααα;④)0(||ln 1≠+=⎰x C x dx x ;⑤∫e x dx=e x +C ;⑥)0,1(ln >≠+=⎰a C aa dx a xx α;⑦)0(sin 1cos ≠+=⎰αC ax a axdx ;⑧)0(cos 1sin ≠+-=⎰αC ax a axdx ;⑨∫sec 2xdx=tanx+C ;⑩∫csc 2xd1=-cotx+C ;⑪∫secx ·tanxdx=secx+C ;⑫∫cscx ·cotxdx=-cscx+C ;⑬12arccos arcsin 1C x C x x dx+-=+=-⎰;⑭12cot arctan 1C x arc C x x dx +-=+=+⎰。
⑮定理8.3:若函数f 与g 在区间I 上都存在原函数,k 1,k 2为两个任意常数,则k 1f+k 2g 在I 上也存在原函数,且当k 1和k 2不同时为零时,有∫[k 1f(x)+k 2g(x)]dx=k 1∫f(x)dx +k 2∫g(x)dx二、换元积分法与分部积分法1.换元积分法①定理8.4(第一换元积分法/凑微分法):设函数f(x)在区间I 上有定义,φ(t)在区间J 上可导,且φ(J)⊆I 。
不定积分公式口诀摘要:一、引言二、不定积分的概念与基本公式1.不定积分的定义2.基本积分公式三、常用初等函数的积分公式1.幂函数的积分公式2.三角函数的积分公式3.指数函数与对数函数的积分公式4.反三角函数的积分公式5.其他常见函数的积分公式四、记忆口诀与技巧1.口诀一:奇偶函数积分规律2.口诀二:高阶导数求积分3.口诀三:分部积分法五、总结正文:一、引言在微积分学习中,不定积分是重要的基础知识之一。
掌握好不定积分的方法和技巧,对于后续学习定积分、微分方程等课程具有重要意义。
本文将为大家介绍一些常用的不定积分公式,并通过口诀形式帮助大家记忆。
二、不定积分的概念与基本公式1.不定积分的定义:设函数f(x) 在区间[a, b] 上有界,F(x) 是f(x) 在[a, b] 上的一个原函数,则称F(x) 在[a, b] 上关于x 的不定积分。
通常用∫(a~b)f(x)dx 表示。
2.基本积分公式:对于一些基本的初等函数,我们可以直接查表或记忆其不定积分公式。
例如:∫(x^n)dx = x^(n+1)/(n+1)、∫(sinx)dx = -cosx +C、∫(ex)dx = ex + C 等。
三、常用初等函数的积分公式1.幂函数的积分公式:对于幂函数f(x) = x^n,其不定积分为F(x) =x^(n+1)/(n+1) + C。
2.三角函数的积分公式:对于正弦函数f(x) = sinx,其不定积分为F(x) = -cosx + C;对于余弦函数f(x) = cosx,其不定积分为F(x) = sinx + C。
3.指数函数与对数函数的积分公式:对于指数函数f(x) = ex,其不定积分为F(x) = ex + C;对于自然对数函数f(x) = lnx,其不定积分为F(x) = xlnx - ln(x) + C。
4.反三角函数的积分公式:对于反正弦函数f(x) = arcsin(x),其不定积分为F(x) = -√(1-x^2) + C;对于反余弦函数f(x) = arccos(x),其不定积分为F(x) = √(1-x^2) + C。
第八章 不 定 积 分1 概念与基本积分公式引入 求导 (微分)运算的逆运算一、不定积分的定义 1、原函数例 1 ( )'211x =+ ( )'2cos x =- ( )'2x = (d dx )sin 2x e x -=-(d )xdx = ( )'arctan x = 21arctan ln(1)2x x x ⋅-+定义 1 设函数F 和f 在区间I 上都有定义. 若在I 上,有()()F x f x '=, 则称F 为f 在区间I 上的一个原函数.注1 若f 可导, 则f 为()f x '的一个原函数. 原函数的基本问题1) 什么样的函数存在原函数?2) 若已知原函数存在,是否唯一? 如何求? 定理 1 若f 在区间I 上连续,则f 在I 上存在原函数. 推论1 初等函数在其定义域上都有原函数.问题 定理 1的逆定理是否成立? 即若f 在I 上存在原函数, 则f 是否连续?(答案是否定的, 也就是说间断函数可能具有原函数,). 详细地说, 仅有第二类间断点的函数可能有原函数. 而具有第一类间断点的函数不可能具有原函数.定理2 1) 若()F x 是()f x 在区间I 上的一个原函数,则对任何常数c ,()F x c + 都是()f x 在区间I 上的原函数.2) 若函数()G x 也是()f x 在区间I 上的一个原函数,则必有常数c ,使得()()G x F x c =+. (任何两个原函数之间相差一个常数c )注2 若()F x 为()f x 的一个原函数, 则()f x 的所有原函数为{(); }F x c c R +∈. 2、不定积分定义 2 f 在区间I 上的全体原函数称为f 的不定积分, 记作()f x dx ⎰或 f dx ⎰, 其中⎰为积分号,f 为被积函数, x 为积分变量, ()f x dx 为被积表达式.例 2 21dxx+⎰arctan x c =+, 323x x dx c =+⎰注 3 若F 为f 在区间I 上的一个原函数,则f 的不定积分为()F x c +,即()f x dx ⎰()F x c =+,这说明求不定积分只需求一个原函数, 再加上常数c 即可. 特别地,()()f x dx f x c '=+⎰, (())()f x dx f x '=⎰或者微分形式 ()()df x f x c =+⎰, (())()d f x dx f x dx =⎰. 在忽略常数的意义下, 求积分与求导数是一对互逆运算.不定积分的几何意义 若()F x 为()f x 的一个原函数,则称曲线()y F x =为f 的一条积分曲线. 这样f 的不定积分在几何上就表示f 的某一条积分曲线沿纵轴(y 轴)方向任意平移所得的一切积分曲线组成的曲线簇.现在我们回到前面的原函数基本问题: 怎么求原函数? 即怎样求不定积分?例 3 设()f x 是有界闭区间[,]a b 上的非负连续函数. 曲线()y f x =与直线,x a x b ==及0y =所围成的平面图形ABCD 称为曲边梯形,下面讨论曲边梯形的面积S (严格论证以后给出).任取[,]x a b ∈. 记曲边梯形AMND 的面积为()S x 则()0, ()S a S b S ==. 当x 变到x x +∆时……0x ∆≈时, ()()()S S x x S x f x x ∆=+∆-≈∆ 因此 '()()S x f x =因而求导的逆问题也称为求积问题,求曲边梯形面积可归结为求原函数问题. 到底该如何求原函数? 求原函数也的确是一个比较困难的问题,即使是一些简单的函数, 如前面的arctan x ,也不能一下看出来, 这就需要引进一些积分方法. 二、不定积分的基本公式 1、设函数,f g 存在原函数, 则1) (())()f x dx f x '=⎰, (())()d f x dx f x dx =⎰; 2)()()f x dx f x c '=+⎰, ()()df x f x c =+⎰; 3) 0α≠,()()f x dx f x dx αα=⎰⎰; 4)()()()()f x g x dx f x dx g x dx ±=±⎰⎰⎰.由3)、4) 可知不定积分为线性运算,即[()()]()()f x g x dx f x dx g x dx αβαβ+=+⎰⎰⎰ 22(,, 0)R αβαβ∀∈+≠. 2、基本积分表1) 0 dx c =⎰ 2) 1 dx x c =+⎰3) 11x x dx c ααα+=++⎰ (1)α≠- 4) 1ln ||dx x c x =+⎰5) xxe dx e c =+⎰ 6) ln xxa a dx c a=+⎰ (0,1)a a >≠7) sin cos x dx x c =-+⎰ 8) cos sin xdx x c =+⎰ 9) 2sec tan xdx x c =+⎰ 10) 2csc cot xdx x c =-+⎰ 11) sec tan sec x xdx x c =+⎰ 12) csc cot csc x xdx x c =-+⎰ 13)tan ln |cos |xdx x c =-+⎰ 14) cot ln |sin |xdx x c =+⎰15) sec ln |tan sec |xdx x x c =++⎰ 16) csc ln |csc cot |xdx x x c =-+⎰ 17)arcsin arccos x c x c =+=-+ 18)2arctan arccot 1dxx c x c x =+=-++⎰19)221arctan dx xc x a a a =++⎰ 20) 221ln ||2dx x ac x a a x a -=+-+⎰21)arcsinxc a=+ 22) ln(x c =++例 4 1) ⎰; 2)⎰;3) 01nn a a x a x dx ++⋅⋅⋅+⎰(); 4) 221x dx x +⎰;5) 421x dx x +⎰;6) 2(1010)x x dx -+⎰; 7) 2312x x e dx --⎰;8) 2cos 2sin xdx x ⎰; 9) 22cos sin d θθθ⋅⎰;10) cos cos3x xdx ⋅⎰; 11) 22dx x +⎰;12)()()dxx a x b ++⎰; 13)22dx x -⎰;问题: ()f x dx ⎰与()f u du ⎰是否相同?例 5 已知()F x 为()2f x x =的一个原函数, 且(2)5F =, 求()F x .例 6 已知211dy dx x =-, 求()y y x =.例 7 考察21sin , 0;() 0, 0,x x f x xx ⎧≠⎪=⎨⎪=⎩的导函数性质.2 换元积分与分部积分法一、第一类换元法----凑微分法544sin 25sin 2(sin 2)10sin 2cos 2d x x x dx x xdx '=⋅=⋅4410sin2cos 25sin 2(sin 2)x xdx x x dx '⋅=⋅⎰⎰45sin 2sin 2xd x =⎰sin 2u x = 45u du ⎰55sin 2u c x c =+=+ 定理 1 若()()f u du F u c =+⎰,()u x ϕ=连续可导, 则(())()(())f x x dx F x c ϕϕϕ'⋅=+⎰,即若被积函数()g x 能够分解为()(())()g x f x x ϕϕ'=⋅, 则()(())()(())()g x dt f x x dt f x d x ϕϕϕϕ'=⋅=⎰⎰⎰()u x ϕ=()()(())f u dx F u c F x c ϕ=+=+⎰例 1 1) ()m ax b dx +⎰ (1,0)m a ≠-≠2) 2sec (53)x dx -⎰3) 1cos3cos 2(cos cos5)2x xdx x x dx ⋅=+⎰⎰凑法1 11()()()()f ax b dx f ax b d ax b f u du a a+=++=例 2 1) 21sin (1cos 2)2xdx x dx =-⎰⎰2)2122dx c x =+⎰ 221[arctan ]dx x c a x a a =++⎰3)22232(1)2dx dx c x x x ==+++++⎰⎰4) 211ln ||23(3)(1)43dx dx x c x x x x x -==++-+-+⎰⎰5) 223xdx x x +-⎰例 3 21xdx x +⎰凑法2 111()()()()k k k k x f x dx f x d x f u du k k-== 如 2221()()2xf x dx f x dx =2f =例 4 1) 4104x dx x+⎰2) 2sin x x dx ⋅⎰3)4) 2c ===⎰⎰或5) 2221ln (1)21dx x c x x x =+++⎰凑法3 (sin )cos (sin )sin f x xdx f x d x ⋅= (cos )sin (cos )cos f x xdx f x d x =- 2(tan )sec (tan )tan f x xdx f x d x = 例 5 1) 3sin cos x xdx ⎰2) 3sin xdx ⎰3) 2cos 11sin sec ln ||cos 21sin x xxdx dx c x x+==+-⎰⎰4) 622sec (1tan )tan xdx x d x =+⎰⎰5) 5342tan sec tan sec sec x xdx x xd x =⎰⎰凑法4 ()()x x x x f e e dx f e de = 例 6 1) 2t dte --⎰2) 2t dt e -⎰凑法5 1(ln )(ln )ln f x dx f x d x x =例 7 1) 1ln dx x x ⎰ 2)(12ln )dxx x +⎰凑法6(arcsin )(arcsin )dx f x d x =2(arctan )(arctan )arctan 1f x dx f x d x x =+例 82c =+注:第一类换元积分关键在于看被积函数的形式能否凑成(())()f x x ϕϕ'⋅的形式,或看被积函数(复合)哪一部分较复杂,先换元试试看.例 9 1) ln()x x x x x x e e dx e e c e e----=+++⎰ [()ln |()|()f x dx f x c f x '=+⎰]2) ln 1ln x dx x x+⎰ 3)2sec sec tan sec sec tan x x x xdx dx x x +=+⎰⎰4)5)6)2222x dx x x -++⎰ 7) 2223x dx x x -+-⎰8) 分析22Ax Bx C dx ax bx c ++++⎰形式积分9)2222cos sin cos sin x x dx a x b x +⎰ 10) 2222cos sin dx a x b x +⎰11)22sin dx x -⎰ 12) 22sin dx x +⎰13)2sin cos sin cos x x dx x x -+⎰二、第二类换元法----拆微分法sin x t = sin t 21cos 1cos 22tdt tdt ==+⎰⎰11sin 224t t c =++1(arcsin )2x x c =+ 定理 2 设()x t ϕ=是连续可微的,且()0t ϕ'≠. 若(())()f t t ϕϕ'⋅具有原函数()F t , 则有换元公式1()(())()()(())f x dx f t t dt F t c F x c ϕϕϕ-'=⋅=+=+⎰⎰.常见代换:三角代换、无理代换、双曲代换、倒代换、万能代换、Euler 代换等1、 三角代换1) (正) 弦代换 (0)a >的积分施行,目的是去掉根号,方法是令sin x a t =cos cos a t a tdt =⋅, arcsin x t a =. 例 10 1)arcsin x c a =+2)=2) (正) 切代换 (0)a >的积分施行,目的是去掉根号,方法是令tan x a t =sec a t =, 2sec dx a tdt =, arctan x t a =. 例 11 1)2)222()dx x a +⎰ (0)a >3) (正) 割代换 (0)a >的积分施行,目的是去掉根号,方法是令sec x a t =tan a t =, sec tan dx a t tdt =⋅, arccos a t x =.例 12 1)sec ln |sec tan |ln ||...x tdt t t c c a a ==++=++=⎰2)c =2、万能代换 常用于被积函数为三角函数的有理分式形式 令tan 2x t =,则22sin 1t x t=+, 221cos 1t x t -=+, 22tan 1t x t =-, 221dt dx t =+, 2arctan x t =. 例 13 1)2cos dx x +⎰2)1sin cos dx x x ++⎰3)2sin cos sin cos x x dx x x -+⎰4) 1sin sin (1cos )x dx x x ++⎰5)2222sin cos dx a x b x +⎰3、无理代换若被积函数中有⋅⋅⋅形式时,令n 为12,,k n n n ⋅⋅⋅的最小公倍数,作代换t =,则1, n n x t dx nt dt -==,将被积函数转化为t 的有理函数。
不定积分基本概念数学中的积分是微积分的重要概念之一。
在求解函数的不定积分时,我们会遇到一些基本概念,本文将对这些概念进行详细介绍。
1. 不定积分的定义不定积分是求解一个函数的原函数的过程。
若函数F(x)在区间[a, b]上可导,且对于该区间上任意一点x,都有F'(x) = f(x),则F(x)就是函数f(x)在区间[a, b]上的一个原函数。
我们将F(x)称为原函数,而f(x)称为被积函数。
不定积分表示为∫f(x)dx,其中∫表示积分运算。
2. 不定积分的性质不定积分具有如下几个重要的性质:- 线性性质:对于任意的常数a和b,有∫(af(x)+bg(x))dx = a∫f(x)dx +b∫g(x)dx。
即不定积分具有可分配律。
- 求导与积分的关系:若F(x)是f(x)的一个原函数,则F'(x) = f(x),同时也可以推出f(x)是F(x)的一个原函数。
- 积分的逆运算:对于连续函数f(x),如果它在区间[a, b]上的一个原函数存在,那么∫(f'(x))dx = f(x) + C,其中C表示常数项。
3. 常见的不定积分公式在求解不定积分时,我们常常会用到一些常见的不定积分公式,下面列举一些常见的例子:- 常数函数的不定积分:∫kdx = kx + C,其中k为常数,C为常数项。
- 幂函数的不定积分:∫x^ndx = (x^(n+1))/(n+1) + C,其中n不等于-1,C为常数项。
- 正弦函数的不定积分:∫sinxdx = -cosx + C,其中C为常数项。
- 余弦函数的不定积分:∫cosxdx = sinx + C,其中C为常数项。
4. 换元积分法换元积分法是求解复杂函数不定积分的一种常用方法。
它通过引入一个新的变量,将原函数转化为更容易求解的形式。
换元积分法的基本步骤是:- 选择适当的变量代换,将不定积分转化为新变量的积分表达式。
- 对新变量进行积分运算,得到结果。
不定积分的性质与基本积分公式不定积分是微积分中一个重要的概念,用于求解给定函数的原函数。
在实际应用中,不定积分可以用于求解曲线的长度、曲线下的面积、物体的质心等问题。
本文将介绍不定积分的性质和基本积分公式。
1.不定积分的定义不定积分是对函数进行积分运算的过程。
设函数f(x)在区间[a, b]上可导。
称满足F′(x) = f(x)的函数F(x)为f(x)在区间[a, b]上的一个原函数。
记为F(x) = ∫f(x)dx + C,其中C为常数。
这里的F(x)就是f(x)的一个原函数,符号∫f(x)dx称为不定积分。
2.不定积分的运算性质(1)线性性质:若F(x)和G(x)都是f(x)在区间[a,b]上的原函数,则c1F(x)+c2G(x)也是f(x)在区间[a,b]上的原函数,其中c1和c2为常数。
(2)积分和导数的关系:若F(x)是f(x)在区间[a,b]上的一个原函数,则F(x)+C也是f(x)的一个原函数,其中C为常数。
即:(F(x)+C)'=F'(x)=f(x)。
(3)换元法则:设u = g(x)是一个可导函数,f(u)在区间[a, b]上连续,且f(g(x))g′(x)在[a, b]上连续,则∫f(g(x))g′(x)dx =∫f(u)du。
(4)分部积分法则:设u = u(x)和v = v(x)是可导函数,且u′(x)和v′(x)在[a, b]上连续,则∫u′(x)v(x)dx = u(x)v(x) -∫v′(x)u(x)dx。
(1)常数函数:∫kdx = kx + C,其中C为常数。
(2)幂函数:∫x^ndx = (x^(n+1))/(n+1) + C,其中C为常数,n≠-1(3)指数函数:∫e^xdx = e^x + C,其中C为常数。
(4)三角函数:∫sinxdx = -cosx + C,∫cosxdx = sinx + C,∫sec^2xdx = tanx + C,其中C为常数。