知识讲解-二项式定理(理)(基础)110知识讲解
- 格式:doc
- 大小:402.50 KB
- 文档页数:10
二项式定理重点、难点解析:1.熟练掌握二项式定理和通项公式,掌握杨辉三角的结构规律:二项式定理:*222110,)(N n b C b a C b a C b aC a C b a nn nrrn r nn nn nnnn∈+⋅⋅⋅++⋅⋅⋅+++=+---,),,2,1,0(n r C r n⋅⋅⋅=叫二项式系数(0≤r≤n ).通项用1+r T 表示,为展开式的第r+1项,且1+r T =rrn r nb aC -, 注意项的系数和二项式系数的区别.2.掌握二项式系数的两条性质和几个常用的组合恒等式. ①②),,2,1,0(n r Cr n⋅⋅⋅=先增后减.n 为偶数时,中间一项的二项式系数最大,为2nn C ;n 为奇数时,中间两项的二项式系数相等且最大,为.③nn rn nnnnC C C C C +⋅⋅⋅++⋅⋅⋅+++=+210)11(.即各二项式系数的和为n2.131202-=⋅⋅⋅++=⋅⋅⋅++n nn n n C C C C 3.二项式从左到右使用为展开,从右到左使用为化简,从而可用来求和或证明.掌握“赋值法”这种利用恒等式解决问题的思想.一、求二项式展开式中指定项在二项展开式中,有时存在一些特殊的项,如常数项、有理项、整式项、系数最大的项等等,这些特殊项的求解主要是利用二项展开式的通项公式1r T +,然后依据条件先确定r 的值,进而求出指定的项。
1. 求常数项例1 (2006山东卷)已知(x x 12-)n的展开式中第三项与第五项的系数之比为143,则展开式中常数项是()(A )-1(B)1(C)-45(D)452. 求有理项例2 已知*41(),2n x n N x+∈的展开式中,前三项系数成等差数列,求展开式中所有的有理项。
3. 求幂指数为整数的项求幂指数为整数的项例3(2006年湖北卷)在2431()xx-的展开式中,x的幂的指数是整数的项共有(的幂的指数是整数的项共有( )A.3项B.4项C.5项D.6项4. 求系数最大的项求系数最大的项例4 已知*41(),2nx n Nx+∈的展开式中,只有第五项的二项式系数最大,求该展开式中系数最大的项。
二项式定理知识点总结1.二项式定理公式:011()()n n n r n r rn nn n n n a b C a C a b C a b C b n N --*+=+++++∈,2.基本概念:①二项式展开式:右边的多项式叫做()n a b +的二项展开式。
②二项式系数:展开式中各项的系数rnC (0,1,2,,)r n =⋅⋅⋅. ③项数:共(1)r +项,是关于a 与b 的齐次多项式④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。
用1r n r r r n T C a b -+=表示。
3.注意关键点:①项数:展开式中总共有(1)n +项。
②顺序:注意正确选择a ,b ,其顺序不能更改。
()n a b +与()n b a +是不同的。
③指数:a 的指数从n 逐项减到0,是降幂排列。
b 的指数从0逐项减到n ,是升幂排列。
各项的次数和等于n .④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r nn n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a 与b 的系数(包括二项式系数)。
4.常用的结论:令1,,a b x == 0122(1)()n r rn n n n nn n x C C x C x C x C xn N*+=++++++∈ 令1,,a b x ==- 0122(1)(1)()n r rnnn n n nnnx C C x C x C x C x n N *-=-+-+++-∈ 5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0,n n n C C =·1k k n n C C -=②二项式系数和:令1a b ==,则二项式系数的和为0122rnnn n n nn C C C C C ++++++=,变形式1221rnn nn n n C C C C +++++=-。
二项式定理一、二项式定理:ab n CaCabCabCb0n1n1knkknnnnnn (nN)等号右边的多项式叫做nab的二项展开式,其中各项的系数kC(k0,1,2,3n)叫做二项式系数。
n对二项式定理的理解:(1)二项展开式有n1项(2)字母a按降幂排列,从第一项开始,次数由n逐项减1到0;字母b按升幂排列,从第一项开始,次数由0逐项加1到n(3)二项式定理表示一个恒等式,对于任意的实数a,b,等式都成立,通过对a,b取不同的特殊值,可为某些问题的解决带来方便。
在定理中假设a1,bx,则nCxCxCxCx1x(nN)nnnn0n1knknn(4)要注意二项式定理的双向功能:一方面可将二项式nab展开,得到一个多项式;n 另一方面,也可将展开式合并成二项式ab二、二项展开式的通项:knkk T k1Cabn二项展开式的通项knkkT k1Cab(k0,1,2,3n)是二项展开式的第k1项,它体现了n二项展开式的项数、系数、次数的变化规律,是二项式定理的核心,它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数等方面有广泛应用对通项knkkT k1Cab(k0,1,2,3n)的理解:n(1)字母b的次数和组合数的上标相同(2)a与b的次数之和为n(3)在通项公式中共含有a,b,n,k,Tk这5个元素,知道4个元素便可求第5个元素1例1.132933等于()n1nC n CCCnnnA.n4B。
n4n34C。
13D.n431例2.(1)求7(12x)的展开式的第四项的系数;(2)求19(x)x的展开式中3x的系数及二项式系数三、二项展开式系数的性质:①对称性:在二项展开式中,与首末两端“等距离”的两项的二项式系数相等,即 0n1n12n2knk C n C,CC,C C,CCnnnnnnn,②增减性与最大值:在二项式展开式中,二项式系数先增后减,且在中间取得最大值。
二项式定理【学习目标】1.理解并掌握二项式定理,了解用计数原理证明二项式定理的法. 2.会用二项式定理解决与二项展开式有关的简单问题.【要点梳理】 要点一:二项式定理1.定义一般地,对于任意正整数n ,都有:nn n r r n r n n n n n n b C b a C b a C a C b a +++++=+--ΛΛ110)((*N n ∈),这个公式所表示的定理叫做二项式定理, 等号右边的多项式叫做n b a )(+的二项展开式。
式中的rn rr n C ab -做二项展开式的通项,用T r+1表示,即通项为展开式的第r+1项:1r n r rr nT C a b -+=, 其中的系数rn C (r=0,1,2,…,n )叫做二项式系数, 2.二项式(a+b)n的展开式的特点:(1)项数:共有n+1项,比二项式的次数大1;(2)二项式系数:第r+1项的二项式系数为rn C ,最大二项式系数项居中;(3)次数:各项的次数都等于二项式的幂指数n .字母a 降幂排列,次数由n 到0;字母b 升幂排列,次数从0到n ,每一项中,a ,b 次数和均为n ;3.两个常用的二项展开式:①011()(1)(1)n n n r r n r r n n nn n n n a b C a C a b C a b C b ---=-++-⋅++-⋅L L (*N n ∈) ②122(1)1n r r nn n n x C x C x C x x +=++++++L L要点二、二项展开式的通项公式公式特点:①它表示二项展开式的第r+1项,该项的二项式系数是rn C ; ②字母b 的次数和组合数的上标相同; ③a 与b 的次数之和为n 。
要点诠释:(1)二项式(a+b)n的二项展开式的第r+1项r n rr n C ab -和(b+a)n 的二项展开式的第r+1项r n r rn C b a -是有区别的,应用二项式定理时,其中的a 和b 是不能随便交换位置的.(2)通项是针对在(a+b)n 这个标准形式下而言的,如(a -b)n的二项展开式的通项是1(1)r r n r rr n T C a b -+=-(只需把-b 看成b 代入二项式定理)。
二项式定理知识点二项式定理是高中数学中的重要知识点,也是进一步学习数学分析、概率论和数学推理的基础。
它是关于多项式的一个重要的数学定理,通过二项式定理,我们可以用简洁的方式表示多项式展开的结果。
在本文中,我们将深入探讨二项式定理的概念、性质以及应用。
首先,让我们来了解什么是二项式。
二项式是指两个单项式之和的代数式,其中包含两个不同的变量,每个变量的指数均为非负整数。
例如,(a + b)就是一个二项式,其中a和b为变量,且指数分别为1和0。
根据二项式定理,我们可以将二项式展开为多项式。
二项式定理的表述如下:对于任意非负整数n和实数a、b,有(a + b)^n = C(n, 0)a^n b^0 + C(n, 1)a^(n-1) b^1 + C(n, 2)a^(n-2) b^2 + ... + C(n, n)a^0 b^n,其中C(n, k)表示组合数,计算公式为C(n, k) = n!/(k!(n-k)!)。
这个定理告诉我们,二项式(a + b)的展开式中的每一项都可以通过组合数进行系数的计算。
二项式定理的证明可以通过数学归纳法进行,但为了保持本文的简洁性,我将不涉及具体的证明过程。
而是着重介绍一些二项式定理的性质以及它的一些重要应用。
首先,二项式定理的性质之一是二项式展开式的系数的和等于2的n次方。
也就是说,展开式中每一项的系数相加,结果等于2的n次方。
这个性质可以通过将展开式中的每一项进行二项式系数的求和来证明。
二项式定理还可以用于计算多项式的平方、立方等高次幂。
通过使用二项式定理展开多项式的高次幂,我们可以更简洁地计算出结果。
另一个重要的应用是二项式定理在概率论中的应用。
在概率论中,我们经常需要计算一些事件的概率,而这些概率通常涉及到组合数的计算。
二项式定理为我们提供了一个快速计算组合数的方法,从而简化了概率计算的过程。
除此之外,二项式定理还在数学推理和数学分析中有重要的应用。
在数学推理中,我们经常需要进行代数式的变形和化简,而二项式定理可以帮助我们将复杂的代数式转化为更简单的形式。
二项式定理知识点1.二项式定理:011()()n n n r n r r n nn n n n a b C a C a b C a b C b n N --*+=+++++∈L L ,2.基本概念:①二项式展开式:右边的多项式叫做()na b +的二项展开式。
②二项式系数:展开式中各项的系数rn C (0,1,2,,)r n =⋅⋅⋅. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n rr n C a b -叫做二项式展开式的通项。
用1r n r rr nT C a b -+=表示。
3.注意关键点:①项数:展开式中总共有(1)n +项。
②顺序:注意正确选择a ,b ,其顺序不能更改。
()n a b +与()nb a +是不同的。
③指数:a 的指数从n 逐项减到0,是降幂排列。
b 的指数从0逐项减到n ,是升幂排列。
各项的次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r nn n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a 与b 的系数(包括二项式系数)。
4.常用的结论:令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N *+=++++++∈L L 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+-+++-∈L L5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1)k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n nn n n n n C C C C C ++++++=L L , 变形式1221r n nn n n n C C C C +++++=-L L 。
二项式定理知识点总结二项式定理专题一、二项式定理:二项式定理是一个重要的恒等式,它表示了任意实数a,b 和正整数n之间的关系。
具体地,对于任意正整数n和实数a,b,有以下恒等式成立:a+b)^n = C(n,0)*a^n + C(n,1)*a^(n-1)*b +。
+ C(n,n-1)*a*b^(n-1) + C(n,n)*b^n其中,C(n,k)表示从n个元素中选取k个元素的组合数,也就是n个元素中取k个元素的方案数。
右边的多项式叫做(a+b)的二项式展开式,其中各项的系数C(n,k)叫做二项式系数。
二项式定理的理解:1)二项展开式有n+1项。
2)字母a按降幂排列,从第一项开始,次数由n逐项减1到0;字母b按升幂排列,从第一项开始,次数由0逐项加1到n。
3)二项式定理表示一个恒等式,对于任意的实数a,b,等式都成立。
通过对a,b取不同的特殊值,可为某些问题的解决带来方便。
例如,当a=1,b=x时,有以下恒等式成立:1+x)^n = C(n,0) + C(n,1)*x +。
+ C(n,n-1)*x^(n-1) +C(n,n)*x^n4)要注意二项式定理的双向功能:一方面可将二项式(a+b)展开,得到一个多项式;另一方面,也可将展开式合并成二项式(a+b)^n。
二、二项展开式的通项公式:二项展开式的通项公式是指,二项式展开式中第k+1项的系数C(n,k)的公式。
具体地,对于任意正整数n和实数a,b,有以下通项公式成立:T(k+1) = C(n,k)*a^(n-k)*b^k其中,T(k+1)表示二项式展开式中第k+1项的系数。
通项公式体现了二项展开式的项数、系数、次数的变化规律,是二项式定理的核心。
它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数等方面有广泛应用。
三、二项展开式系数的性质:在二项式展开式中,二项式系数具有以下性质:①对称性:与首末两端“等距离”的两项的二项式系数相等,即C(n,0) = C(n,n)。
二项式定理【学习目标】1.理解并掌握二项式定理,了解用计数原理证明二项式定理的方法. 2.会用二项式定理解决与二项展开式有关的简单问题.【要点梳理】 要点一:二项式定理1.定义一般地,对于任意正整数n ,都有:nn n r r n r n n n n n n b C b a C b a C a C b a +++++=+-- 110)((*N n ∈),这个公式所表示的定理叫做二项式定理, 等号右边的多项式叫做n b a )(+的二项展开式。
式中的rn rr n C ab -做二项展开式的通项,用T r+1表示,即通项为展开式的第r+1项:1r n r rr nT C a b -+=, 其中的系数rn C (r=0,1,2,…,n )叫做二项式系数, 2.二项式(a+b)n的展开式的特点:(1)项数:共有n+1项,比二项式的次数大1;(2)二项式系数:第r+1项的二项式系数为rn C ,最大二项式系数项居中;(3)次数:各项的次数都等于二项式的幂指数n .字母a 降幂排列,次数由n 到0;字母b 升幂排列,次数从0到n ,每一项中,a ,b 次数和均为n ;3.两个常用的二项展开式:①011()(1)(1)n n n r r n r r n n nn n n n a b C a C a b C a b C b ---=-++-⋅++-⋅(*N n ∈)②122(1)1n r r n n n n x C x C x C x x +=++++++要点二、二项展开式的通项公式公式特点:①它表示二项展开式的第r+1项,该项的二项式系数是rn C ; ②字母b 的次数和组合数的上标相同; ③a 与b 的次数之和为n 。
要点诠释:(1)二项式(a+b)n 的二项展开式的第r+1项r n rr n C ab -和(b+a)n 的二项展开式的第r+1项r n r rn C b a -是有区别的,应用二项式定理时,其中的a 和b 是不能随便交换位置的.(2)通项是针对在(a+b)n 这个标准形式下而言的,如(a -b)n的二项展开式的通项是1(1)r r n r rr n T C a b -+=-(只需把-b 看成b 代入二项式定理)。
二项式定理知识点总结二项式定理一、二项式定理:ab n CaCabCabCb0n1n1knkknnnnnn (nN)等号右边的多项式叫做nab的二项展开式,其中各项的系数kC(k0,1,2,3n)叫做二项式系数。
n对二项式定理的理解:(1)二项展开式有n1项(2)字母a按降幂排列,从第一项开始,次数由n逐项减1到0;字母b按升幂排列,从第一项开始,次数由0逐项加1到n(3)二项式定理表示一个恒等式,对于任意的实数a,b,等式都成立,通过对a,b取不同的特殊值,可为某些问题的解决带来方便。
在定理中假设a1,bx,则nCxCxCxCx1x(nN)nnnn0n1knknn(4)要注意二项式定理的双向功能:一方面可将二项式nab展开,得到一个多项式;n 另一方面,也可将展开式合并成二项式ab二、二项展开式的通项:knkk T k1Cabn二项展开式的通项knkkT k1Cab(k0,1,2,3n)是二项展开式的第k1项,它体现了n二项展开式的项数、系数、次数的变化规律,是二项式定理的核心,它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数等方面有广泛应用对通项knkkT k1Cab(k0,1,2,3n)的理解:n(1)字母b的次数和组合数的上标相同(2)a与b的次数之和为n(3)在通项公式中共含有a,b,n,k,Tk这5个元素,知道4个元素便可求第5个元素1例1.132933等于()n1nC n CCCnnnA.n4B。
n4n34C。
13D.n43例2.(1)求7(12x)的展开式的第四项的系数;(2)求19(x)x的展开式中3x的系数及二项式系数三、二项展开式系数的性质:①对称性:在二项展开式中,与首末两端“等距离”的两项的二项式系数相等,即 0n1n12n2knk C n C,CC,C C,CCnnnnnnn,②增减性与最大值:在二项式展开式中,二项式系数先增后减,且在中间取得最大值。
二项式定理知识点总结
二项式定理是一个关于排列组合计算的定理。
它是已知整数n和k,该定理对应于n个不同对象从中挑选k个对象,排列组合共有
$ C_{n}^{k}\\$种情况。
主要包括:
一、定义:
二项式定理定义为:令$ C_{n}^{k}\\$表示从n个不同的元素中取出k
个元素的所有可能组合,则有
$$C_{n}^{k}=\frac{n!}{k!(n-k)!}$$
二、特点:
(1)二项式有逆元素:$C_{n}^{k}=C_{n}^{n-k}$
(2)$C_{n}^{k}$是一个单调函数,即$k\gt n-k$时,$C_{n}^{k}$是一个单增函数,反之$C_{n}^{k}$是一个单减函数。
(3)$C_{n}^{0}=C_{n}^{n}=1$
三、应用:
二项式定理应用主要是赋予概率分布、抽样、计算机科学以及计算复
杂性等,它们在统计学上大量应用,其特点是一次可以抽取多个,也可以不抽取,以及抽取的元素之间的顺序无所谓,这都可以用二项式定理来解决;并且它也可以应用在记忆过程,以及各类技术中。
可编辑修改精选全文完整版
二项式定理知识点总结资料
二项式定理(Binomial Theorem)是一个数学定理,可以用来求解幂次方程。
它可以表示成以下形式:(a + b)^n = Σ_(k=0)^nC_n^ka^(n-k)b^k
其中,C_n^k表示组合数(Combinatorial Number),即从n个不同元素中取出k个元素的组合数。
二项式定理的应用包括但不限于:
1. 快速计算多项式的值:可以使用二项式定理快速计算多项式的值,如:
(x+y)^7=x^7+7x^6y+21x^5y^2+35x^4y^3+35x^3y^4+21x^2y ^5+7xy^6+y^7;
2. 求解极值问题:在求解极值问题时,二项式定理可以用来求解函数的极值;
3. 计算组合数:可以用二项式定理来计算组合数,如:C_n^k = n!/(k!*(n-k)!);
4. 计算排列数:可以用二项式定理来计算排列数,如:P_n^k = n!/(n-k)!
5. 求解方程:可以用二项式定理来求解方程,如:F(x)=(x+1)^2=x^2+2x+1。
二项式定理【学习目标】1.理解并掌握二项式定理,了解用计数原理证明二项式定理的方法. 2.会用二项式定理解决与二项展开式有关的简单问题.【要点梳理】 要点一:二项式定理1.定义一般地,对于任意正整数n ,都有:nn n r r n r n n n n n n b C b a C b a C a C b a +++++=+--ΛΛ110)((*N n ∈),这个公式所表示的定理叫做二项式定理, 等号右边的多项式叫做n b a )(+的二项展开式。
式中的rn rr n C ab -做二项展开式的通项,用T r+1表示,即通项为展开式的第r+1项:1r n r rr n T C a b -+=,其中的系数rn C (r=0,1,2,…,n )叫做二项式系数, 2.二项式(a+b)n 的展开式的特点:(1)项数:共有n+1项,比二项式的次数大1;(2)二项式系数:第r+1项的二项式系数为rn C ,最大二项式系数项居中;(3)次数:各项的次数都等于二项式的幂指数n .字母a 降幂排列,次数由n 到0;字母b 升幂排列,次数从0到n ,每一项中,a ,b 次数和均为n ;3.两个常用的二项展开式:①011()(1)(1)n n n r r n r r n n nn n n n a b C a C a b C a b C b ---=-++-⋅++-⋅L L (*N n ∈)②122(1)1n r r nn n n x C x C x C x x +=++++++L L要点二、二项展开式的通项公式公式特点:①它表示二项展开式的第r+1项,该项的二项式系数是rn C ; ②字母b 的次数和组合数的上标相同; ③a 与b 的次数之和为n 。
要点诠释:(1)二项式(a+b)n 的二项展开式的第r+1项r n rr n C ab -和(b+a)n 的二项展开式的第r+1项r n r rn C b a -是有区别的,应用二项式定理时,其中的a 和b 是不能随便交换位置的.(2)通项是针对在(a+b)n 这个标准形式下而言的,如(a -b)n 的二项展开式的通项是1(1)r r n r rr n T C a b -+=-(只需把-b 看成b 代入二项式定理)。
要点三:二项式系数及其性质1.杨辉三角和二项展开式的推导。
在我国南宋,数学家杨辉于1261年所著的《详解九章算法》如下表,可直观地看出二项式系数。
n b a )(+展开式中的二项式系数,当n 依次取1,2,3,…时,如下表所示:1)(b a +………………………………………1 1 2)(b a +……………………………………1 2 1 3)(b a +…………………………………1 3 3 14)(b a +………………………………1 4 6 4 1 5)(b a +……………………………1 5 10 10 5 1 6)(b a +…………………………1 6 15 20 15 6 1…… …… ……上表叫做二项式系数的表, 也称杨辉三角(在欧洲,这个表叫做帕斯卡三角),反映了二项式系数的性质。
表中每行两端都是1,而且除1以外的每一个数都等于它肩上的两个数的和。
用组合的思想方法理解(a+b)n 的展开式中n r r a b -的系数rn C 的意义:为了得到(a+b)n 展开式中n r r a b -的系数,可以考虑在()()()na b a b a b +++L 14444244443这n 个括号中取r 个b ,则这种取法种数为rn C ,即为n r r a b -的系数.2.()na b +的展开式中各项的二项式系数0n C 、1n C 、2n C …nn C 具有如下性质:①对称性:二项展开式中,与首末两端“等距离”的两项的二项式系数相等,即rn n r n C C -=; ②增减性与最大值:二项式系数在前半部分逐渐增大,在后半部分逐渐减小,在中间取得最大值.其中,当n 为偶数时,二项展开式中间一项的二项式系数2n n C 最大;当n 为奇数时,二项展开式中间两项的二项式系数21-n n C ,21+n n C 相等,且最大.③各二项式系数之和为2n,即012342nn n n n nn n C C C C C C ++++++=L ;④二项展开式中各奇数项的二项式系数之和等于各偶数项的二项式系数之和,即15314202-=+++=+++n n n n n n nC C C C C C ΛΛ。
要点诠释:二项式系数与展开式的系数的区别:二项展开式中,第r+1项r r n r nb a C -的二项式系数是组合数rn C ,展开式的系数是单项式r r n r n b a C -的系数,二者不一定相等。
如(a -b)n 的二项展开式的通项是1(1)r r n r r r n T C a b -+=-,在这里对应项的二项式系数都是rn C ,但项的系数是(1)r rn C -,可以看出,二项式系数与项的系数是不同的概念.3.()na b c ++展开式中p q ra b c 的系数求法(,,0p q r ≥的整数且p q r n ++=)rq q r n q r n r n r r n r n n n c b aC C c b a C c b a c b a ----=+=++=++)(])[()( 如:10)(c b a ++展开式中含523c b a 的系数为!5!2!3!105527310⨯⨯=C C C要点诠释:三项或三项以上的展开式问题,把某两项结合为一项,利用二项式定理解决。
要点四:二项式定理的应用1.求展开式中的指定的项或特定项(或其系数).2.利用赋值法进行求有关系数和。
二项式定理表示一个恒等式,对于任意的a ,b ,该等式都成立。
利用赋值法(即通过对a 、b 取不同的特殊值)可解决与二项式系数有关的问题,注意取值要有利于问题的解决,可以取一个值或几个值,也可以取几组值,解决问题时要避免漏项等情况。
设2012()()n nn f x ax b a a x a x a x =+=++++L (1) 令x=0,则0(0)na fb ==(2)令x=1,则012(1)()nn a a a a f a b ++++==+L(3)令x=-1,则0123(1)(1)()n nn a a a a a f a b -+-+-=-=-+L(4)024(1)(-1)2f f a a a ++++=L(5)135(1)-(-1)2f f a a a +++=L3.利用二项式定理证明整除问题及余数的求法:如:求证:98322--+n n 能被64整除(*N n ∈)4.证明有关的不等式问题:有些不等式,可应用二项式定理,结合放缩法证明,即把二项展开式中的某些正项适当删去(缩小),或把某些负项删去(放大),使等式转化为不等式,然后再根据不等式的传递性进行证明。
①nx x n +>+1)1(;②22)1(1)1(x n n nx x n -++>+;(0>x ) 如:求证:n n)11(2+< 【典型例题】类型一、求二项展开式的特定项或特定项的系数例1. 求41(1)x+的二项式的展开式.【思路点拨】 按照二项式的展开式或按通项依次写出每一项,但要注意符号. 【解析】解一: 411233444411111(1)1()()()()C C C x x x x x +=++++23446411x x x x =++++. 解二:4444413123444111(1)()(1)()1x x C x C x C x x x x⎡⎤+=+=++++⎣⎦ 23446411x x x x=++++. 【总结升华】记准、记熟二项式(a+b)n 的展开式,是解答好与二项式定理有关问题的前提条件,对较复杂的二项式,有时先化简再展开会更简捷. 举一反三:【变式】求二项式52322x x ⎛⎫- ⎪⎝⎭的展开式.【答案】 (1)解法一:52322x x ⎛⎫- ⎪⎝⎭2305142332555522223333(2)(2)(2)(2)2222C x C x C x C x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭4545552233(2)22C x C x x ⎛⎫⎛⎫+-+- ⎪ ⎪⎝⎭⎝⎭52471018013540524332120832x x x x x x=-+-+- 解法二:5352103(43)2232x x x x -⎛⎫-= ⎪⎝⎭ 0351342332332343455555555101[(4)(4)(3)(4)(3)(4)(3)(4)(3)(3)]32C x C x C x C x C x C x =+-+-+-+-+- 1512963101(10243840576043201620243)32x x x x x x=-+-+- 52471018013540524332120832x x x x x x =-+-+-。
例2.(1)求7(12)x +的展开式的第四项的系数;(2)求91()x x-的展开式中3x 的系数及二项式系数【思路点拨】先根据已知条件求出二项式的指数n ,然后再求展开式中含x 的项.因为题中条件和求解部分都涉及指定项问题,故选用通项公式.【解析】(1)7(12)x +的展开式的第四项是333317(2)280T C x x +==,∴7(12)x +的展开式的第四项的系数是280.(2)∵91()x x-的展开式的通项是9921991()(1)r r r r r r r T C x C x x--+=-=-,∴923r -=,3r =,∴3x 的系数339(1)84C -=-,3x 的二项式系数3984C =.【总结升华】1.利用通项公式求给定项时避免出错的关键是弄清共有多少项,所求的是第几项,相应的r 是多少;2. 注意系数与二项式系数的区别;3. 在求解过程中要注意幂的运算公式的准确应用。
举一反三:【变式1】求5)2(b a +的展开式的第3项的二项式系数和系数; 【答案】10,80;2510C =2323235(2)80T C a b a b =⋅⋅=【变式2】求(x 3-22x)5的展开式中x 5的系数; 【答案】(1)T r +1=r r r r r rx C xx C 51552535)2()2()(---=-依题意15-5r =5,解得r =2 故(-2)2rC 5=40为所求x 5的系数例3.(1)(2x 2-x1)6的展开式中的常数项; (2)求153)1(xx -的展开式中的有理项.【思路点拨】常数项就是项的幂指数为0的项,有理项,就是通项中x 的指数为正整数的项,可以根据二项式定理的通项公式求。