方程与不等式之分式方程知识点
- 格式:doc
- 大小:531.00 KB
- 文档页数:12
分式方程与分式不等式分式方程和分式不等式是高中数学中的重要概念,它们在解决实际问题以及推理证明中有着广泛的应用。
本文将以简洁明了的方式,对分式方程与分式不等式进行全面的介绍和论述。
1. 分式方程在数学中,分式方程是指含有分式的方程,其形式为a/b = c/d,其中a、b、c、d为实数或未知数。
解决分式方程的关键是消除分母,使得方程变为整式方程。
举个例子,考虑分式方程2/x + 1/(x - 1) = 1/x,我们可以通过以下步骤解决这个方程:首先,我们找到方程中的最小公倍数,即x(x-1)。
然后,将方程中每一项的分母都乘以最小公倍数,得到2(x-1) + x = (x-1)(x)。
接下来,我们将方程转化为整式方程,进行多项式的运算。
最后,我们求解得到x = 3,即为原方程的解。
分式方程在代数中有着广泛的应用,特别是在解决比例问题以及抽象问题时起到了重要的作用。
2. 分式不等式分式不等式指的是含有分式的不等式,其形式为a/b > c/d 或 a/b <c/d,其中a、b、c、d是实数或未知数。
解决分式不等式的方法与解决分式方程有些许不同,但思路大致相似。
举个例子,考虑不等式1/x < 2/(x-1),我们可以通过以下步骤解决这个不等式:首先,我们需要确定不等式的定义域。
对于本例而言,由于分母不能为0,所以x ≠ 0, x ≠ 1。
接下来,我们将不等式转化为整式不等式,通过交叉相乘的方式来消除分母。
然后,我们对整式不等式进行求解,得到x > 2,即为原不等式的解。
解决分式不等式时,我们需要特别注意定义域以及分母不为0的限制条件,以保证求解的正确性。
分式不等式在实际问题中有着广泛的应用,比如利润与成本的关系、时间与距离的关系等等,掌握解决分式不等式的方法对于解决这类问题具有重要意义。
总结:本文从分式方程和分式不等式的基本概念出发,对解决这两类问题的方法进行了详细的阐述。
分式方程的关键在于消除分母,转化为整式方程进行求解;而分式不等式的解决则需要注意定义域以及分母不为0的限制条件。
分式方程与分式不等式通常情况下,分式方程与分式不等式是我们在初中数学学习过程中需要掌握的重要知识点。
本文将对分式方程与分式不等式进行详细介绍,包括定义、求解方法以及一些应用实例。
一、分式方程分式方程是指方程中含有分式的等式。
通常表现为分式中含有未知数,并且需要求解该未知数的值。
在解分式方程时,首先需要将方程中的分式转化为通分式,然后将等式两边进行化简,最后得到未知数的值。
举例说明:1. 解方程:$\frac{1}{2}x - \frac{3}{4} = \frac{x}{6}$首先,通分得到 $\frac{3}{6}x - \frac{9}{12} = \frac{2}{12}x$化简得到 $\frac{3}{6}x - \frac{2}{12}x = \frac{9}{12}$进一步计算得到 $\frac{1}{6}x = \frac{9}{12}$最后得到 $x = \frac{9}{12} \cdot \frac{6}{1} = \frac{3}{2}$因此,方程的解为 $x = \frac{3}{2}$2. 解方程:$\frac{1}{x} + \frac{3}{2} = \frac{5}{4}$首先,通分得到 $\frac{2}{2x} + \frac{3x}{2x} = \frac{5}{4}$化简得到 $\frac{2 + 3x}{2x} = \frac{5}{4}$进一步计算得到 $8 + 12x = 10x$移项得到 $12x - 10x = -8$最后得到 $x = -8$因此,方程的解为 $x = -8$二、分式不等式分式不等式是指方程中含有分式的不等式。
通常表现为分式中含有未知数,并且需要求解该未知数的取值范围。
在解分式不等式时,首先需要将不等式中的分式转化为通分式,然后将不等式两边进行化简,最后得到未知数的取值范围。
举例说明:1. 解不等式:$\frac{2}{3}x + \frac{1}{2} < \frac{5}{4}$首先,通分得到 $\frac{8}{12}x + \frac{6}{12} < \frac{15}{12}$化简得到 $\frac{8x + 6}{12} < \frac{15}{12}$进一步计算得到 $8x + 6 < 15$移项得到 $8x < 9$最后得到 $x < \frac{9}{8}$因此,不等式的解为 $x < \frac{9}{8}$2. 解不等式:$\frac{x}{4} - \frac{1}{3} \geq \frac{5}{6}$首先,通分得到 $\frac{3x}{12} - \frac{4}{12} \geq \frac{10}{12}$化简得到 $\frac{3x - 4}{12} \geq \frac{10}{12}$进一步计算得到 $3x - 4 \geq 10$移项得到 $3x \geq 14$最后得到 $x \geq \frac{14}{3}$因此,不等式的解为 $x \geq \frac{14}{3}$三、分式方程与分式不等式的应用实例1. 实例一:某公司的总资产为450万元,其中固定资产占总资产的四分之一,流动资产为总资产的三分之一。
知识必备02方程与不等式(公式、定理、结论图表)考点一、一元一次方程1.方程含有未知数的等式叫做方程.2.方程的解能使方程两边相等的未知数的值叫做方程的解.3.等式的性质(1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式.(2)等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式.4.一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程叫做一元一次方程的标准形式,a是未知数x的系数,b是常数项.5.一元一次方程解法的一般步骤整理方程 —— 去分母—— 去括号—— 移项—— 合并同类项——系数化为1——(检验方程的解).6.列一元一次方程解应用题(1)读题分析法:多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套”,利用这些关键字列出文字等式,并且根据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法:多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看作已知量),填入有关的代数式是获得方程的基础.列方程解应用题的常用公式:(1)行程问题:距离=速度×时间;(2)工程问题:工作量=工效×工时;(3)比率问题:部分=全体×比率;(4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5)商品价格问题:售价=定价·折·,利润=售价-成本,;(6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab, C正方形=4a,S正方形=a2,S环形=π(R2-r2),V长方体=abh ,V正方体=a3,V圆柱=πR2h ,V圆锥=πR2h.考点二、一元二次方程1.一元二次方程含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程.2.一元二次方程的一般形式,它的特征是:等式左边是一个关于未知数x的二次多项式,等式右边是零,其中叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项.3.一元二次方程的解法(1)直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法.直接开平方法适用于解形如的一元二次方程.根据平方根的定义可知,是b的平方根,当时,,,当b<0时,方程没有实数根.(2)配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用.配方法的理论根据是完全平方公式,把公式中的a看做未知数x,并用x代替,则有.(3)公式法公式法是用求根公式求一元二次方程的解的方法,它是解一元二次方程的一般方法.一元二次方程的求根公式:(4)因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法.4.一元二次方程根的判别式一元二次方程中,叫做一元二次方程的根的判别式,通常用“”来表示,即.5.一元二次方程根与系数的关系如果方程的两个实数根是,那么,.也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商.要点诠释:一元二次方程的解法中直接开平方法和因式分解法是特殊方法,比较简单,但不是所有的一元二次方程都能用这两种方法去解,配方法和公式法是普通方法,一元二次方程都可以用这两种方法去解.(1)判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后再进行判断,注意一元二次方程一般形式中.(2)用公式法和因式分解的方法解方程时要先化成一般形式.(3)用配方法时二次项系数要化1.(4)用直接开平方的方法时要记得取正、负.典例1:已知关于的一元二次方程.(1)求证:不论取何值时,方程总有两个不相等的实数根.(2)若直线与函数的图象的一个交点的横坐标为2,求关于的一元二次方程的解.【答案】(1)证明:∵不论取何值时,∴,即∴不论取何值时,方程总有两个不相等的实数根..(2)将代入方程,得再将代入,原方程化为,解得.考点三、分式方程1.分式方程分母里含有未知数的方程叫做分式方程.2.解分式方程的一般方法解分式方程的思想是将“分式方程”转化为“整式方程”.它的一般解法是:①去分母,方程两边都乘以最简公分母;②解所得的整式方程;③验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根.口诀:“一化二解三检验”.3.分式方程的特殊解法换元法:换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法.要点诠释:解分式方程时,有可能产生增根,增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零,因此必须验根.增根的产生的原因: 对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取那些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件.当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根.典例2:近年来,由于受国际石油市场的影响,汽油价格不断上涨.请你根据下面的信息,帮小明计算今年5月份汽油的价格.如图所示.【思路点拨】根据“用150元给汽车加油今年比去年少18.75升”列方程.【答案与解析】解:设今年5月份汽油价格为x元/升,则去年5月份的汽油价格为(x-1.8)元/升.根据题意,得,整理,得.解这个方程,得x1=4.8,x2=-3.经检验两根都为原方程的根,但x2=-3不符合实际意义,故舍去.【总结升华】解题的关键是从对话中挖掘出有效的数学信息,构造数学模型,从而解决问题,让同学们更进一步地体会到数学就在我们身边.考点四、二元一次方程(组)1.二元一次方程含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程,它的一般形式是ax+by=c(a ≠0,b≠0).2.二元一次方程的解使二元一次方程左右两边的值相等的一对未知数的值,叫做二元一次方程的一个解.3.二元一次方程组两个(或两个以上)二元一次方程合在一起,就组成了一个二元一次方程组.4.二元一次方程组的解使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.5.二元一次方程组的解法①代入消元法;②加减消元法.6.三元一次方程(组)(1)三元一次方程把含有三个未知数,并且含有未知数的项的次数都是1的整式方程叫三元一次方程.(2)三元一次方程组由三个(或三个以上)一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组.要点诠释:二元一次方程组的解法:消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想.(1)代入消元法:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.(2)加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法.(3)二元一次方程组的解有三种情况,即有唯一解、无解、无限多解.教材中主要是研究有唯一解的情况对于其他情况,可根据学生的接受能力给予渗透.典例3:如图所示,是在同一坐标系内作出的一次函数y1、y2的图象、,设,,则方程组的解是( )A. B. C. D.【思路点拨】图象、的交点的坐标就是方程组的解.【答案】B;【解析】由图可知图象、的交点的坐标为(-2,3),所以方程组的解为【总结升华】方程组与函数图象结合体现了数形结合的数学思想,这也是中考所考知识点的综合与相互渗透.考点五、不等式(组)1.不等式的概念(1)不等式用不等号表示不等关系的式子,叫做不等式.(2)不等式的解集对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解.对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集.求不等式的解集的过程,叫做解不等式.2.不等式基本性质(1)不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;(2)不等式两边都乘以(或除以)同一个正数,不等号的方向不变;(3)不等式两边都乘以(或除以)同一个负数,不等号的方向改变.3.一元一次不等式(1)一元一次不等式的概念一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式.(2)一元一次不等式的解法解一元一次不等式的一般步骤:①去分母;②去括号;③移项;④合并同类项;⑤将x 项的系数化为1.4.一元一次不等式组(1)一元一次不等式组的概念几个一元一次不等式合在一起,就组成了一个一元一次不等式组.几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集.求不等式组的解集的过程,叫做解不等式组.当任何数x 都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集.(2)一元一次不等式组的解法①分别求出不等式组中各个不等式的解集;②利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集.由两个一元一次不等式组成的一元一次不等式组的解集的四种情况如下表.注:不等式有等号的在数轴上用实心圆点表示.要点诠释:用符号“<”“>”“≤ ”“≥”“≠”表示不等关系的式子,叫做不等式.不等式组(其中a >b )图示解集口诀(同大取大)(同小取小)(大小取中间)无解(空集) (大大、小小找不到)(1)不等式的其他性质:①若a>b,则b<a;②若a>b,b>c,则a>c;③若a≥b,且b≥a, 则a=b;④若a2≤0,则a=0;⑤若ab>0或,则a、b同号;⑥若ab<0或,则a、b异号.(2)任意两个实数a、b的大小关系:①a-b>O a>b;②a-b=O a=b;③a-b<O a<b.不等号具有方向性,其左右两边不能随意交换:但a<b可转换为b>a,c≥d可转换为d≤c.典例4:解不等式组并将解集在数轴上表示出来.【思路点拨】此题考查一元一次不等式组的解法,解出不等式组中的每个不等式,根据不等式组解的四种情况,看看属于哪种情况.【答案与解析】解不等式①得:.解不等式②得:x≥-1.所以不等式组的解集为-1≤x<.其解在数轴上表示为如图所示:【总结升华】注意解不等式组的解题步骤.典例5:为了美化家园,创建文明城市,园林部门决定利用现有的3600盆甲种花卉和2900盆乙种花卉搭配A、B两种园艺造型共50个,摆放在迎宾大道两侧,搭配每个造型所需花卉的情况如下表所示;造型甲乙A90盆30盆B40盆100盆综合上述信息,解答下列问题:(1)符合题意的搭配方案有哪儿种?(2)若搭配一个A种造型的成本为1000元,搭配一个B种选型的成本为1200元,试说明选用(1)中哪种方案成本最低?【思路点拨】本题首先需要从文字和表格中获取信息,建立不等式(组),然后求出其解集,根据实际问题的意义,再求出正整数解,从而确定搭配方案.【答案与解析】解:(1)设搭配x个A种造型,则需要搭配(50-x)个B种造型,由题意,得解得30≤x≤32.所以x的正整数解为30,31,32.所以符合题意的方案有3种,分别为:A种造型30个,B种造型20个;A种造型31个,B种造型19个;A种造型32个,B种造型18个.(2)由题意易知,三种方案的成本分别为:第一种方案:30×1000+20×1200=54000;第二种办案:31×1000+19×1200=53800;第三种方案:32×1000+18×1200=53600.所以第三种方案成本最低.【总结升华】实际问题的“最值问题”一般是指“成本最低”、“利润最高”、“支出最少”等问题.。
分式方程与分式不等式的解法在数学学科中,我们经常会遇到分式方程和分式不等式的求解问题。
分式方程是指含有分数形式的方程,而分式不等式则是含有分数形式的不等式。
本文将介绍分式方程和分式不等式的基本解法。
一、分式方程的解法分式方程的解法可以分为以下几个步骤:1. 将方程中的分式化简为整式,消除分式。
2. 通过移项和合并同类项,将方程转化为一元一次方程。
3. 求解一元一次方程,得到方程的解。
举例说明:假设我们要解以下分式方程:(2/x) + 1 = 5首先,我们将方程中的分式化简为整式:2/x + 1 = 5然后,通过移项和合并同类项,将方程转化为一元一次方程:2 + x = 5x接下来,我们求解一元一次方程,得到方程的解:2 = 5x - xx = 1/2因此,原方程的解为x = 1/2。
二、分式不等式的解法分式不等式的解法可以分为以下几个步骤:1. 将不等式中的分式化简为整式。
2. 根据不等式的性质,进行等价变形。
3. 确定不等式的解集。
举例说明:假设我们要解以下分式不等式:(3/x) - 2 ≥ 1首先,我们将不等式中的分式化简为整式:3/x - 2 ≥ 1然后,根据不等式的性质,进行等价变形:3/x ≥ 3x ≤ 1最后,确定不等式的解集:解集为x ≤ 1。
分式方程的解法包括将分式化简为整式、转化为一元一次方程、求解一元一次方程等步骤。
而分式不等式的解法则包括将分式化简为整式、进行等价变形、确定解集等步骤。
掌握这些解法,我们就能够准确地求解各种类型的分式方程和不等式问题。
通过以上的讲解,我们对分式方程与分式不等式的解法有了更深入的理解。
希望本文对您在学习和应用中有所帮助。
第二单元《方程(组)与不等式(组)》中考知识点梳理第5讲一次方程(组)第6讲一元二次方程第7讲分式方程三、知识清单梳理第8讲一元一次不等式(组)知识点一:不等式及其基本性质关键点拨及对应举例1.不等式的相关概念(1)不等式:用不等号(>,≥,<,≤或≠)表示不等关系的式子.(2)不等式的解:使不等式成立的未知数的值.(3)不等式的解集:使不等式成立的未知数的取值范围.例:“a与b的差不大于1”用不等式表示为a-b≤1.2.不等式的基本性质性质1:若a>b,则a±c>b±c;性质2:若a>b,c>0,则ac>bc,ac>bc;性质3:若a>b,c<0,则ac<bc,ac<bc.牢记不等式性质3,注意变号.如:在不等式-2x>4中,若将不等式两边同时除以-2,可得x<2.知识点二:一元一次不等式3.定义用不等号连接,含有一个未知数,并且含有未知数项的次数都是1的,左右两边为整式的式子叫做一元一次不等式. 例:若230mmx++>是关于x的一元一次不等式,则m的值为-1.4.解法(1)步骤:去分母;去括号;移项;合并同类项;系数化为1.失分点警示系数化为1时,注意系数的正负性,若系数是负数,则不等式改变方向.(2)解集在数轴上表示:x≥a x>a x≤a x<a知识点三:一元一次不等式组的定义及其解法5.定义由几个含有同一个未知数的一元一次不等式合在一起,就组成一个一元一次不等式组.(1)在表示解集时“≥”,“≤”表示含有,要用实心圆点表示;“<”,“>”表示不包含要用空心圆点表示.(2)已知不等式(组)的解集情况,求字母系数时,一般先视字母系数为常数,再逆用不等式(组)解集的定义,反推出含字母的方程,最后求出字母的值.如:已知不等式(a-1)x<1-a 的解集是x>-1,则a的取值范围是a<1.6.解法先分别求出各个不等式的解集,再求出各个解集的公共部分7.不等式组解集的类型假设a<b解集数轴表示口诀x ax b≥⎧⎨≥⎩x≥b大大取大x ax b≤⎧⎨≤⎩x≤a小小取小x ax b≥⎧⎨≤⎩a≤x≤b大小,小大中间找x ax b≤⎧⎨≥⎩无解大大,小小取不了知识点四:列不等式解决简单的实际问题8.列不等式解应用题(1)一般步骤:审题;设未知数;找出不等式关系;列不等式;解不等式;验检是否有意义.(2)应用不等式解决问题的情况:a.关键词:含有“至少(≥)”、“最多(≤)”、“不低于(≥)”、“不高于(≤)”、“不大(小)于”、“超过(>)”、“不足(<)”等;注意:列不等式解决实际问题中,设未知数时,不应带“至少”、“最多”等字眼,与方程中设未知数一致.。
分式方程与分式不等式的解法分式方程和分式不等式是涉及分数的方程和不等式,其解法与一般的代数方程和不等式有一些不同之处。
本文将介绍分式方程和分式不等式的解法,并给出一些实例说明。
一、分式方程的解法分式方程是包含有分数的方程,一般形式为:$\frac{a}{x}+\frac{b}{y}=c$解分式方程的一般步骤如下:1. 将方程的两边通分,以消去分母。
2. 将分子相加,将方程转化为一个整式方程。
3. 解得整式方程的解。
4. 检验解,将解代入原方程验证是否成立。
例如,解方程$\frac{3}{x}-\frac{2}{y}=5$:解:首先将方程的两边通分,得到$3y-2x=5xy$。
接着整理方程,得到$5xy+2x-3y=0$。
将该方程转化为整式方程:$5xy+2x-3y=0$。
解得整式方程$5xy+2x-3y=0$的解。
程$5xy+2x-3y=0$的解。
二、分式不等式的解法分式不等式是包含有分数的不等式,一般形式为:$\frac{a}{x}>\frac{b}{y}$解分式不等式的一般步骤如下:1. 将不等式的两边通分,以消去分母。
2. 根据分数的正负和大小关系确定不等式符号。
3. 将分子相减,得到一个整式不等式。
4. 解得整式不等式的解。
5. 检验解,将解代入原不等式验证是否成立。
例如,解不等式$\frac{5}{x}>\frac{2}{y}$:解:首先将不等式的两边通分,得到$5y>2x$。
根据分数的正负和大小关系,确定不等式符号为>。
接着整理不等式,得到$2x-5y<0$。
将该不等式转化为整式不等式:$2x-5y<0$。
解得整式不等式$2x-5y<0$的解。
等式$2x-5y<0$的解。
结论本文简要介绍了分式方程和分式不等式的解法。
对于分式方程,我们通过通分和整理方程,将其转化为整式方程来求解。
对于分式不等式,我们通过通分和整理不等式,将其转化为整式不等式来求解。
中考数学专题复习四--分式方程和不等式(组)(总6页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除中考数学专题复习(四)分式方程和不等式(组)【知识梳理】1.分式方程:分母中含有的方程叫分式方程.2.解分式方程的一般步骤:(1)去分母,在方程的两边都乘以,约去分母,化成整式方程;(2)解这个整式方程;(3)验根,把整式方程的根代入,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.3. 用换元法解分式方程的一般步骤:①设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数式;②解所得到的关于辅助未知数的新方程,求出辅助未知数的值;③把辅助未知数的值代入原设中,求出原未知数的值;④检验作答.4.分式方程的应用:分式方程的应用题与一元一次方程应用题类似,不同的是要注意检验:(1)检验所求的解是否是所列;(2)检验所求的解是否 . 5.易错知识辨析:(1)去分母时,不要漏乘没有分母的项.(2)解分式方程的重要步骤是检验,检验的方法是可代入最简公分母, 使最简公分母为0的值是原分式方程的增根,应舍去,也可直接代入原方程验根.(3)如何由增根求参数的值:①将原方程化为整式方程;②将增根代入变形后的整式方程,求出参数的值.6.不等式的有关概念:用连接起来的式子叫不等式;使不等式成立的的值叫做不等式的解;一个含有的不等式的解的叫做不等式的解集.求一个不等式的的过程或证明不等式无解的过程叫做解不等式.7.不等式的基本性质:(1)若a <b ,则a +c c b +; (2)若a >b ,c >0则ac bc (或ca cb ); (3)若a >b ,c <0则ac bc (或c a cb ). 8.一元一次不等式:只含有 未知数,且未知数的次数是 且系数 的不等式,称为一元一次不等式;一元一次不等式的一般形式为 或ax b <;解一元一次不等式的一般步骤:去分母、 、移项、 、系数化为1.9.一元一次不等式组:几个 合在一起就组成一个一元一次不等式组.一般地,几个不等式的解集的 ,叫做由它们组成的不等式组的解集.10.由两个一元一次不等式组成的不等式组的解集有四种情况:(已知a b <)x a x b <⎧⎨<⎩的解集是x a <,即“小小取小”; x a x b >⎧⎨>⎩的解集是x b >,即“大大取大”;x a x b >⎧⎨<⎩的解集是a x b <<,即“大小小大中间找”; x a x b <⎧⎨>⎩的解集是空集,即“大大小小取不了”.11.易错知识辨析:(1)不等式的解集用数轴来表示时,注意“空心圆圈”和“实心点”的不同含义.(2)解字母系数的不等式时要讨论字母系数的正、负情况.如不等式ax b >(或ax b <)(0a ≠)的形式的解集: 当0a >时,b x a >(或b x a <); 当0a <时,b x a <(或b x a>); 当0a <时,b x a <(或b x a>). 12.求不等式(组)的特殊解:不等式(组)的解往往有无数多个,但其特殊解在某些范围内是有限的,如整数解,非负整数解,求这些特殊解应先确定不等式(组)的解集,然后再找到相应答案.13.列不等式(组)解应用题的一般步骤:①审:审题,分析题中已知什么、求什么,明确各数量之间的关系;②设:设未知数(一般求什么,就设什么为x );③找:找出能够表示应用题全部含义的一个不等关系;④列:根据这个不等关系列出需要的代数式,从而列出不等式(组);⑤解:解所列出的不等式(组),写出未知数的值或范围;⑥验:检验所求解是否符合题意;⑦答:写出答案(包括单位).14.易错知识辨析:判断不等式是否成立,关键是分析不等号的变化,其根据是不等式的性质.【真题回顾】一、选择题1.(2010年山东菏泽全真模拟1)下列运算中,错误..的是( ) A.(0)a ac c b bc =≠ B.1a b a b--=-+2(4)4-= D.x y y x x y y x --=++ 2.(2010年江西省统一考试样卷)若分式21x x +有意义,则x 的取值范围是( )A .x >1B .x >-1C .x ≠0D .x ≠-13.(2009年孝感)关于x 的方程211x a x +=- 的解是正数,则a 的取值范围是( ) A .a >-1 B .a >-1且a≠0 C .a <-1 D .a <-1且a≠-24.(2011.鸡西)分式方程)2)(1(11+-=--x x m x x 产生增根,则m 的值是( ) A. 0和3 B. 1 C. 1和-2 D. 35.(2009年安徽)甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是( )A .8 B.7 C .6 D .5二、填空题1.(2010年西湖区月考)若分式22221x x x x --++的值为0,则x 的值等于 2.(2010年江苏省泰州市中考模拟题)使代数式43--x x 有意义的x 的取值范围是 . 3.(2009年滨州)解方程2223321x x x x --=-时,若设21x y x =-,则方程可化为 . 4.(2011襄阳)已知关于x 的分式方程1131=-+-xx m 的解是正数,则m 的取值范围为 5.(2010新疆乌鲁木齐)在数轴上,点A 、B 对应的数分别为2 ,15+-x x ,且A 、B 两点关于原点对称,则x 的值为 。
分式方程与分式不等式的解法在代数学中,我们经常会遇到涉及到分式方程和分式不等式的问题。
了解如何解决这些问题,对于解决各种数学难题至关重要。
本文将介绍分式方程和分式不等式的解法,并提供几个例子来帮助读者更好地理解。
一、分式方程的解法分式方程是指带有分式的等式。
一般来说,我们需要找到能够使方程两边相等的未知数值。
下面我们将介绍两种常见的分式方程解法。
1. 通分法通分法是解决分式方程的常用方法。
当方程两边的分母相同时,我们可以通过扩展分子来消去分母,从而得到一个简单的等式。
例如,考虑以下分式方程:$\frac{x}{2} + \frac{3}{4} = \frac{5}{6}$我们可以通过通分消去分母,将方程转化为:$3x + \frac{3}{2} = \frac{5}{6}$然后,我们再进一步化简等式,最终求解出未知数的值。
2. 方程转化法在一些情况下,我们可以通过将分式方程转化为普通方程来求解。
例如,考虑以下分式方程:$\frac{x-1}{3} = \frac{x+2}{4}$我们可以通过将分式的等式两边进行交叉乘法,得到:$4(x-1) = 3(x+2)$然后,我们展开并整理等式,再次求解未知数的值。
二、分式不等式的解法分式不等式是指带有分式的不等式,例如 $\frac{x}{2} > 3$。
解决分式不等式的关键是找到使不等式成立的未知数范围。
下面我们将介绍两种常见的分式不等式解法。
1. 分数法分数法是解决分式不等式的一种常见方法,它可以通过一些数学性质来找到不等式的解。
例如,考虑以下分式不等式:$\frac{x+1}{2} \leq 3$我们可以通过将不等式的等价形式转化为:$x+1 \leq 6$然后,我们进一步化简等式,最终求解出未知数的范围。
2. 区间法区间法是一种几何方法,可以直观地找到分式不等式的解。
例如,考虑以下分式不等式:$\frac{x-2}{x+1} > 0$我们可以通过将不等式的等价形式转化为:$\frac{(x-2)(x+1)}{(\lvert x+1 \rvert)(x+1)} > 0$然后,我们可以考虑$x+1$的正负情况以及$(x-2)(x+1)$的正负情况,从而得到未知数的范围。