《金属热处理缺陷分析及案例》完整版共82页
- 格式:ppt
- 大小:8.78 MB
- 文档页数:82
钢铁热处理缺陷的分析摘要:本文对钢铁进行热处理时常见缺陷进行了分析,也列举了若干个实例,以及避免缺陷出现的措施.关键词:过热淬火开裂热处理是很多机械零件在加工过程中要经历的一道工序.热处理一般分为三个阶段,即加热保温,冷却.在为了进行热处理而进行加热的初期,一般会出现如下一些问题:1.当零件加热过快时,尤其是大型零件,其表面温度快速升高,发生热膨胀,而内层温度升高缓慢,热膨胀与表层不同步,产生热应力;2.零件加热温度过高或者保温时间过长时,零件会发生显著的氧化,脱碳,甚至过烧3.用导热性差的纲制造的零件,当没有加热透就进行塑性加工,则零件的中心部位会产生裂纹;4.如果零件仅从一边或局部强烈地加热,会出现加热不均匀的现象;下面逐一进行分析:一.加热初期产生缺陷如果开始加热时,加热速度过快或者非整体加热,产生的缺陷会导致零件的损坏.例如,某传动装置中的小齿轮轴,材料是铬钼纲50crmo,在不大的弯曲应力作用下,仅仅使用了三个月,就破坏了.为了修理,在轴的中心加工了一个孔,发现在该轴内部还有第二个裂纹.破坏是从这第二个内部裂纹扩展到大部分断面的.以这个内部裂纹为起源.在使用载荷作用下,产生了两个疲劳裂纹.对该轴作纵断面的抛光检查,发现破坏的起始点是具有带状偏析的地方.这种带状偏析在大型锻件中经常出现,原因就是加热速度过快,原子没有来得及扩散均匀.在超载的情况下,偏析组织强度低,承受不住载荷的作用,产生了裂纹而使得齿轮轴破坏.某钢制厚壁容器,调质后在u型内侧的圆角处作为起点,产生了纵向裂纹.在容器的横断面的抛光面上进行鲍曼试验,证实容器的纯度很高.在裂纹及其附近可以明显地看到氧化皮,以及脱碳的现象.根据这个现象倒推,氧化皮和脱碳是在热处理(调质)时出现的.容器是在冷的状态下装进淬火炉的.加热过快,膨胀不一致导致产生了裂纹.对容器打孔是为了阻止薄弱区域的延伸,但是反而加剧了应力的集中.应该在热处理以后再打孔才是适宜的.用31CrMoV钢制的渗氮活塞杆,热处理后矫直时产生了破裂.根据裂纹的颜色,剖开后观察,活塞杆先是产生了纵向的弯曲裂纹,矫直时该弯曲裂纹进一步扩展,才最终造成了活塞杆的破坏.通过表面腐蚀可以看到,活塞杆的破坏处,有加热留下的小点状,这些小点状是调质组织发生了变化,析出了铁素体.由此可知,活塞杆矫直时的加热,温度超过了750度,氮化物聚集成球状,导致表面硬度有比较大的降低.总之,为了矫直活塞杆而对活塞杆进行快速加热的方法是不合适的.渗氮层回火到500度以下是稳定的.所以,矫直时,在低温下进行均匀的加热,是允许的.另外,一般对渗氮的零件,不需要矫正.原因是渗蛋温度比较低,渗氮后冷却也慢,所以残余应力小,能够防止零件产生变形.当然,在实际操作中,有些细节要加以注意,就是当零件装入渗氮炉时,要注意别使应力增加,要防止零件因自重而造成弯曲,最好在炉中吊装零件.尤其是高速钢,因为其导热型差,传热慢,在锻造和淬火时,必须进行整体缓慢而充分地加热.二.加热后出现氧化皮加热时零件表面通常都会产生氧化皮,如果只是在一定范围内,而且只是在加热时产生,一般不认为是损害事故,虽然零件表层因为氧化而失去了大量的金属.氧化皮的厚度随着时间以抛物线的规律增加.炉中的多种气体,不论是过剩的氧,还是二氧化碳,还是水蒸气,都可以发生氧化反应形成氧化皮,尤其是硫化氢会促进氧化皮的产生.氧化皮出现以后,可以通过酸洗去掉,也可以通过机械加工去除.但是也有特殊情况.就是,含铜的钢,用酸洗的方法很难除去氧化皮,而且还会使零件表面产生缺陷.城市煤气不含水蒸汽,氧很少,如果燃烧时温度高,工件表层容易形成鳞片层.原因是氧侵入奥氏体晶界,并与金属原子结合所致.宏观上,鳞片层呈桔皮状或者鳄鱼皮状,工件进行热锻或者冷塑性加工,表明附近很容易形成初期裂纹.如果钢中成分含有铜,会更严重.解决办法是,避免长时间加热及过热,把气体中氧的浓度控制在百分之一到百分之二,以及钢中含铜尽量低.如果加热温度过高或者时间过长,则会形成粗大的晶粒,并在晶界上析出微小氧化物,锻造时会造成开裂.这种现象称为过烧.过烧与过热不同,过烧不能通过热处理进行改善,只有通过热锻才可以消除.某钢丝直径5.8毫米,铅浴淬火后的组织发生了晶界氧化,拉拔时开裂.此钢含有0.16%的铜.最外面包围着条状奥氏体晶界,显微镜下呈褐色,是非金属夹杂物.开裂的原因正如上面的分析.某耐热钢15Mo3制成壁厚9毫米的无缝热拉锅炉水管,管子内填充沙子,进行热弯曲变形,拉拔生成的纤维组织处,产生了很多裂纹.分析其化学成分,碳0.13%,硅0.17%,锰0.53%,磷0.032%,硫0.022%,钼0.26%,以及无意添加的铜0.26%.管子的弯曲部分是含微量铁素体的粗大晶粒组织,管子的直线部分是铁素体加细晶粒的朱光体,所以导致弯曲时强烈过热了,并在表明附着了较多的鳞片组织,鳞片层下的铁中,有金属铜的析出,在母相附近的亚表面,有氧化物析出,也有细小的铜的析出,析出的氧化物沿着奥氏体晶界,深度达到3毫米.这种表层深处发生过烧并伴随铜的析出的缺陷被称为红热脆.三.加热后开裂某沸腾钢抗拉强度大于370兆帕,其使用无温控的锻造设备,钢棒发生过烧,把钢棒锻出刀刃时产生开裂.沿刀刃垂直剖开,晶粒很粗大,开裂发生在夹杂物覆盖的奥氏体晶界处.由此可以看出,刀刃在锻后淬火了,由于钢棒晶粒较粗,尽管含碳量不高,只有0.17%,锻后冷却时组织还是全部变成了马氏体.小结:钢铁产品进行热处理是非常普遍的,也非常重要,所以,在操作过程中,要特别注意预防各种缺陷,以免出现不必要的损失和浪费.。
金属热处理过程中的硬度、力学性能及组织不合格问题解析1. 硬度不合格金属材料的硬度与其静拉伸强度和疲劳强度存在一定的经验关系,并与金属的冷成形性、切削加工性和焊接性能等加工工艺性能存在某种程度的关系;硬度试验不损坏工件,测试简单,数据直观,故而被广泛用作热处理工件的最重要的质量检验指标,不少工件还是其唯一的技术要求。
硬度不合格是最常见的热处理缺陷之一。
主要表现为硬度不足、淬火冷却速度不够、表面脱碳、钢材淬透性不够、淬火后残余奥氏体过多、回火不足等因素造成的。
淬火工件在局部区域出现硬度偏低的现象叫做软点。
软点区域的围观组织多为马氏体和沿原奥氏体晶界分布的托氏体混合组织。
软点或硬度不均匀通常是由于淬火加热不均匀或淬火冷却不均匀所引起。
加热时炉温不均匀,加热温度或保温时间不足是造成加热不均匀的主要原因。
冷却不均匀主要由于淬火冷时工件表面附着着淬火介质的气泡、淬火介质被污染(例如水中有油悬浮珠)或淬火介质搅动不充分所造成的。
此外,钢材组织过于粗大,存在严重偏析,大块碳化物或大块自由铁素体也会造成淬火不均匀形成软点。
1.1 软点淬火加热的目的是使工件在淬火过程中完成组织转变。
为此,必须加热到适当温度并有足够保温时间。
加热温度偏低和保温时间不足使得原珠光体组织未能完全转变为奥氏体和转变的奥氏体成分不均匀,淬火后得不到完全马氏体组织,结果使工件淬火后形成软点。
图1为T12钢制造的手用丝锥因加热不足形成的显微组织:细针马氏体+淬火托氏体+珠光体。
性能上表现为硬度不均匀。
▲图1 T12A钢加热不足的显微组织1-细针马氏体 2-淬火托氏体 3-珠光体淬火介质搅拌不充分,工件在淬火介质中移动不够或者工件进入介质方向不对时,往往延迟了工件表面某些部位的蒸汽膜破裂,导致该处冷却速度降低,从而出现高温分解产物,形成软点或局部硬度下降。
水蒸气膜比盐水稳定,因此软点更易在水淬的工件上形成。
水和水溶液的温度越高越容易产生软点。
淬透性较差的碳钢,工件截面较大时容易出现软点。
钢的普通热处理实例解析与缺陷分析班级:冶金2班姓名:张海骄学号:09455622312012.5.31钢的普通热处理及常见缺陷与不救措施摘要:简单介绍钢的普通热处理工艺,以及常见缺陷的不救措施,最后举例说明热处理的简单应用(用T12钢制作剪板机刀片)关键字:热处理退火正火淬火回火缺陷补救 T12钢引言通过阅读了解热处理相关的知识,热处理是一种很重要的金属加工工艺方法,也是充分发挥金属材料性能潜力的重要手段。
热处理的主要目的是改变金属材料的性能,其中包括使用性能及工艺性能。
热处理是金属零件加工工艺中的一个重要环节。
原材料质量和工件结构以及焊接、电镀处理,校直和装配时产生的应力对热处理过程及工件质量有重要的影响,因此防止热处理缺陷必须对其生产工艺过程进行分析。
列举实例说明钢的热处理的简单应用。
1.钢的普通热处理1.1 退火将钢加热到适当温度,保持一定时间,然后缓慢冷却(通常为随炉冷却)至500℃以下空冷,从而获得接近平衡状态组织的热处理工艺称做退火。
1.1.1退火目的:1.调整硬度以便进行切削加工。
工件经铸造或锻造等热加工后,硬度偏高或偏低,且不均匀,严重影响切削加工。
适当退火或正火后可使工件的硬度调整到HB170~250且比较均匀,从而改善了切削加工性能。
2.消除残余内应力,以防止钢件在淬火时产生变形或开裂。
3.细化晶粒,改善组织,提高力学性能。
4.为最终热处理(淬火+回火)作好组织上的准备。
1.1.2退货常见类型A.完全退火:完全退火是将钢件或钢材加热到Ac3以上20℃~30℃,经完全奥氏体化后进行随炉缓慢冷却,以获得近于平衡组织的热处理工艺。
应用:用于亚共析钢的铸锻件、也用于焊接结构。
过共析钢不用该方法B.球化退火: 钢随炉升温加热到Ac1以上Accm以下的双相区,较长时间保温,并缓慢冷却的工艺。
这种工艺主要适用于共析或过共析的工模具钢,目的是让其中的碳化物球化(粒化)和消除网状的二次渗碳体,因此叫做球化退火。
热处理缺陷的成因分析及解决方案(图)模具的热处理包含了预备热处理、最终热处理及表面强化处理。
模具热处理中,淬火是常见工序.然而,因种种原因,有时难免会产生淬火裂纹,致使前功尽弃。
通常热处理缺陷是指模具在最终热处理过程中或在以后的工序中以及使用过程中出现的各种缺陷,如淬裂、变形超差、硬度不足、电加工开裂、磨削裂纹、模具的早期破坏等。
分析热处理缺陷产生原因,进而采取相应预防措施,具有显著的技术经济效益。
⒈纵向裂纹裂纹呈轴向,形状细而长。
当模具完全淬透即无心淬火时,心部转变为比容最大的淬火马氏体,产生切向拉应力,模具钢的含碳量愈高,产生的切向拉应力愈大,当拉应力大于该钢强度极限时导致纵向裂纹形成。
以下因素又加剧了纵向裂纹的产生:(1)钢中含有较多S、P、Bi、Pb、Sn、As等低熔点有害杂质,钢锭轧制时沿轧制方向呈纵向严重偏析分布,易产生应力集中形成纵向淬火裂纹,或原材料轧制后快冷形成的纵向裂纹未加工掉保留在产品中导致最终淬火裂纹扩大形成纵向裂纹; (2)模具尺寸在钢的淬裂敏感尺寸范围内(碳工具钢淬裂危险尺寸为8—15mm,中低合金钢危险尺寸为25-40mm)或选择的淬火冷却介质大大超过该钢的临界淬火冷却速度时均易形成纵向裂纹。
解决方案:(1)严格原材料入库检查,对有害杂质含量超标钢材不投产; (2)尽量选用真空冶炼,炉外精炼或电渣重熔模具钢材;(3)改进热处理工艺,采用真空加热、保护气氛加热和充分脱氧盐浴炉加热及分级淬火、等温淬火;(4)变无心淬火为有心淬火即不完全淬透,获得强韧性高的下贝氏体组织等措施,大幅度降低拉应力,能有效避免模具纵向开裂和淬火畸变。
⒉横向裂纹裂纹特征是垂直于轴向。
未淬透模具,在淬硬区与未淬硬区过渡部分存在大的拉应力峰值,大型模具快速冷却时易形成大的拉应力峰值,因形成的轴向应力大于切向应力,导致产生横向裂纹.锻造模块中S、P、Bi、Pb、Sn、As等低熔点有害杂质的横向偏析或模块存在横向显微裂纹,淬火后经扩展形成横向裂纹。