必修1第一章复习[上学期]新人教版
- 格式:pdf
- 大小:930.40 KB
- 文档页数:8
(新教材)部编人教版高中数学必修一第一章课后练习和习题汇总(附答案)目录第一章集合与常用逻辑用语.1.1 集合的概念1.2 集合间的基本关系1.3集合的基本运算1.4 充分条件与必要条件1.5全称量词与存在量小结复习参考题1第一章集合与常用逻辑用语1.1集合的概念练习1.判断下列元素的全体是否组成集合,并说明理由:(1)与定点A,B等距离的点;【答案解析】:是集合,因为这些点有确定性.(2)高中学生中的游泳能手.【答案解析】:不是,因为是否能手没有客观性,不好确定.2.用符号“∈”或“∉”填空:0___ N; -3___ N; 0.5__Z; √2__z; ⅓__Q; π__R.【答案解析】:根据自然数,整数,有理数,实数的定义即可判断.0是自然数,则0∈N ;-3不是自然数,则-3∉N ; 0.5,√2 不是整数,则0.5∉Z,√2∉Z;⅓是有理数,则⅓∈Q ;π 是无理数,则π∈R故答案为:(1)∈;(2)∉ ;(3)∉ ;(4)∉ ;(5)∈ ;(6)∈3.用适当的方法表示下列集合:(1)由方程x²-9=0的所有实数根组成的集合;【答案解析】:{-3, 3}.(2)一次函数y=x+3与y=-2x+6图象的交点组成的集合;【答案解析】: {(1, 4)}.(3)不等式4x- 5<3的解集.【答案解析】:{x | x<2}.习题1.1一、复习巩固1.用符号“∈”或“∉”填空:(1)设A为所有亚洲国家组成的集合,则中国____ A,美国____A,印度____A,英国____ A;【答案解析】:设A为所有亚洲国家组成的集合,则:中国∈A,美国∉A,印度∈A,英国∉A.(2)若A={x|x²=x},则-1____A;【答案解析】:A={x|x²=x}={0, 1},则-1∉A.(3)若B={x|x²+x-6=0},则3____B;【答案解析】:若B={x|x²+x-6=0}={x|(x+3)(x-2)=0}={-3,2},则3∉B; (4)若C={x∈N|1≤x≤10},则8____C, 9.1____C.【答案解析】:若C={x∈N|1≤x≤10}={1, 2, 3,4,5, 6,7, 8,9,10},则8∈C, 9.1∉C.2.用列举法表示下列集合:(1)大于1且小于6的整数;【答案解析】:大于1且小于6的整数有4个:2,3,4,5,所以集合为{2,3,4,5}.(2) A={x|(x-1)(x +2)=0};【答案解析】:(x- 1)(x+2)=0的解为x=1或x=-2,所以集合为{1, -2}.(3) B={x∈Z|-3<2x-1<3}.【答案解析】:由-3<2x-1<3,得-1<x<2.又因为x∈Z,所以x=0.或x=1,所以集合为{0,1}.二、综合运用3.把下列集合用另一种方法表示出来:(1) {2,4,6,8, 10};【答案解析】:{x |x=2k, k=1, 2, 3, 4, 5}.(2)由1,2,3这三个数字抽出一部分或全部数字(没有重复)所组成的一切自然数;【答案解析】:{1, 2, 3, 12, 21, 13, 31, 23, 32, 123, 132, 213, 231, 312, 321}.(3) {x∈N|3<x<7};【答案解析】:{4, 5, 6}.(4)中国古代四大发明.【答案解析】:{指南针,活字印刷,造纸术,火药}.4.用适当的方法表示下列集合:(1)二次函数y=x²-4的函数值组成的集合;【答案解析】: {y | y≥-4}.(2)反比例函数y=2/x的自变量组成的集合;【答案解析】:{x | x≠0}.(3)不等式3x≥4- 2x的解集.【答案解析】:{x |x≥4/5}.三、拓广探索5.集合论是德国数学家康托尔于19 世纪末创立的.当时,康托尔在解决涉及无限量研究的数学问题时,越过“数集”限制,提出了一般性的“集合”概念.关于集合论,希尔伯特赞誉其为“数学思想的惊人的产物,在纯粹理性的范畴中人类活动的最美的表现之一”,罗素描述其为“可能是这个时代所能夸耀的最伟大的工作”.请你查阅相关资料,用简短的报告阐述你对这些评价的认识.【答案解析】:略.1.2 集合间的基本关系练习1.写出集合{a, b,c}的所有子集.【答案解析】由0个元素构成的子集: ∅;由1个元素构成的子集: {a}, {b}, {c};由2个元素构成的子集: {a, b}, {a,c}, {b, c};由3个元素构成的子集: {a, b, c};综上,可得集合{a,b, c}的所有子集有: 0, {a}, {b}, {c}, {a, b}, {a,c}, {b, c}, {a, b, c}.2.用适当的符号填空:(1) a__ {a,b,c}; (2) 0__ {x|x²=0};(3) B___ {x∈R|x²+1=0}; (4) {0,1}___N(5) {0}___ {x|x²=x}; (6) {2, 1}___{x|x²-3x+2=0}.【答案解析】:(1)∈;(2)=;(3)=;(4)⊆;(5)⊆;(6)=.3.判断下列两个集合之间的关系:(1) A={x|x<0}, B={x|x<l};(2) A={x|x=3k,k∈N},B={x|x=6z,z∈N};(3) A={x∈N₋|x是4与10的公倍数},B={x|x=20m, m∈N₊}.【答案解析】:⫋A B B A A=B习题1.2一、复习巩固1.选用适当的符号填空:(1)若集合A={x|2x-3<3x}, B={x|x≥2},则-4___B,-3___ A, {2}___B,B___ A;【答案解析】:∵集合A= {x|2x-3< 3x}= {x|x>-3},B = {x|x≥2},则∴-4∉B,-3∉A,{2}B,B A.故答案为:∉,∉,,。
第一节 地球的宇宙环境1.宇宙:是时间和空间的统一体,是运动、发展和变化着的 物质 世界。
2.天体(1)概念:宇宙中物质的存在形式。
最基本的天体是 恒星 和 星云 。
(2)常见的天体及其特征特别提醒:天体可分为自然天体(如恒星、行星等)和人造天体(如在太空中运行的人造卫星、宇宙飞船等)。
3.天体系统(1)概念:天体之间相互 吸引 、相互 绕转 ,构成不同级别的天体系统。
(2)层次:常见天体系统分为四级。
(3)天体系统及层次结构 天体系统 组成 特别说明地月系 地球和月球地球是地月系的中心天体,月球是地球唯一的天然卫星太阳系 太阳、地球及其他围绕太阳公转的行星、卫星、彗星、流星体和行星际物质 地球是距离太阳较近的一颗行星,日地平均距离约为1.5亿千米银河系 太阳和其他恒星以及各种各样的天体太阳系与银河系中心的距离大约为3万光年 河外星系 银河系之外与银河系相类似的天体系统 数以亿计总星系银河系与河外星系目前所认识的最高级别的天体系统宇宙物质 组成(举例) 特点恒星 炽热气体 质量 庞大,自身能发出光和热 星云 气体和尘埃云雾状,密度小,体积和质量都很大行星 金星、地球等 绕恒星公转,质量小,不发光卫星 月球绕行星公转,本身不发光流星体 尘粒、固体块 与大气摩擦生热而燃烧发光,形成流星现象 彗星冰物质绕太阳呈周期性运行,体积大,密度很小,具有 云雾 状的外表;背向太阳的一面有一条扫帚状的彗尾地月银河4.八大行星(地球的普通性)(1)结构特征(2)运动特征:同向性、共面性、近圆性5.地球的特殊性(1)地球是目前能探测到的宇宙中唯一有生命的天体(2)存在生命的条件:条件原因影响外部条件安全的宇宙环境太阳系中,大、小行星各行其道,互不干扰太阳系中八大行星都可能存在生命稳定的太阳光照自生命诞生以来,太阳光照条件没有明显的变化自身条件适宜的温度日地距离适中,地球的自转和公转周期适当只有地球有生命存在适合生物呼吸的大气地球的体积和质量适中,地球原始大气的演化有液态的水内部温度升高→产生水汽→形成海洋第二节 太阳对地球的影响1.太阳辐射(1)能量来源:太阳核心物质的 核聚变 反应。
最新人教版高一数学必修1第一章《复习》教案本章的研究内容主要包括集合和函数的基本知识,以及抽象函数和复合函数的相关问题。
通过整合这些知识,可以帮助学生系统化、网络化地理解数学概念,培养他们的理性思维能力和抽象思维能力。
在研究过程中,我们将注重培养学生的分析、探究、思考能力,帮助他们综合运用基本知识解决问题。
同时,我们也会激发学生对数学的兴趣,培养他们的合作、交流和创新意识。
本章的教学重点包括集合与函数的基本知识,含字母问题的研究,以及抽象函数的理解。
教学难点则在于分类讨论的标准和抽象函数的理解。
为了更好地进行教学,我们准备了多媒体课件和投影仪,并计划用两个课时来完成本章的教学任务。
在教学过程中,我们首先对第一章的知识点进行了回顾,包括集合的含义、表示法、元素与集合的关系,集合间的基本关系以及函数的概念和表示方法等等。
我们还介绍了函数的单调性、奇偶性以及应用问题的解法。
在解决函数应用题的过程中,我们需要遵循“设、列、解、答”的步骤,即先分析题意设出变量,然后列出关系式建立函数模型,接着运用函数的性质解出要求的量,最后回到原实际问题作答。
这些步骤可以用框图来表示。
通过本章的研究,我们希望学生能够掌握集合和函数的基本知识,理解抽象函数和复合函数的相关问题,并能够综合运用这些知识解决实际问题。
同时,我们也希望能够培养学生的分析、探究、思考能力,激发他们对数学的兴趣和创新意识。
当涉及到多个变量时,需要寻找与所求量(y)之间的关系式。
确定一个自变量(x),并通过题目中的条件用x表示其他变量,最终得到函数模型y=f(x)。
在证明集合相等时,需要同时满足A包含于B和B包含于A。
判断两个函数是否相同,需要考虑它们的定义域和对应法则。
函数表达式可以通过定义法、换元法和待定系数法求得。
函数的定义域可以通过列出使函数有意义的自变量的不等式来求解。
常见的依据包括分母不为0、偶次根式中被开方数不小于0以及实际问题的实际意义。
知识点总结归纳【最新版】适用于老师、学生、家长一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性3、集合的表示:{ …} 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}2.集合的表示方法:列举法与描述法。
非负整数集(即自然数集)记作:N正整数集N*或N+ 整数集Z 有理数集Q 实数集R3.关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作a∈A ,相反,a不属于集合A 记作a∉A•列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
•描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
用确定的条件表示某些对象是否属于这个集合的方法。
①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{x∈R| x-3>2}或{x| x-3>2}•4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:二、集合间的基本关系• 1.“包含”关系—子集注意:有两种可能(1)A是B的一部分;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A ⊆B或B ⊇A•2.“相等”关系(5≥5,且5≤5,则5=5)实例:设A= B={-1,1} “元素相同”结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B①子集:任何一个集合是它本身的子集。
A⊆A②真子集:如果A⊆B,且B⊄A那就说集合A是集合B的真子集,记作A⊈B(或B⊉A)③如果A⊆B, B⊆C ,那么A⊆C④如果A⊆B 同时B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
高一生物必修一知识点整理第一章走近细胞第一节从生物圈到细胞一、相关概念、细胞:是生物体结构和功能的基本单位。
除了病毒以外,所有生物都是由细胞构成的。
细胞是地球上最基本的生命系统生命系统的结构层次:细胞→组织→器官→系统(植物没有系统)→个体→种群→群落→生态系统→生物圈二、病毒的相关知识:1、病毒(Virus)是一类没有细胞结构的生物体。
主要特征:①、个体微小,一般在10~30nm之间,大多数必须用电子显微镜才能看见;②、仅具有一种类型的核酸,DNA或RNA,没有含两种核酸的病毒;③、专营细胞内寄生生活;④、结构简单,一般由核酸(DNA或RNA)和蛋白质外壳所构成。
2、根据寄生的宿主不同,病毒可分为动物病毒、植物病毒和细菌病毒(即噬菌体)三大类。
根据病毒所含核酸种类的不同分为DNA病毒和RNA病毒。
3、常见的病毒有:人类流感病毒(引起流行性感冒)、SARS病毒、人类免疫缺陷病毒(HIV)[引起艾滋病(AIDS)]、禽流感病毒、乙肝病毒、人类天花病毒、狂犬病毒、烟草花叶病毒等。
第二节细胞的多样性和统一性一、细胞种类:根据细胞内有无以核膜为界限的细胞核,把细胞分为原核细胞和真核细胞二、原核细胞和真核细胞的比较:1、原核细胞:细胞较小,无核膜、无核仁,没有成形的细胞核;遗传物质(一个环状DNA分子)集中的区域称为拟核;没有染色体,DNA 不与蛋白质结合,;细胞器只有核糖体;有细胞壁,成分与真核细胞不同。
2、真核细胞:细胞较大,有核膜、有核仁、有真正的细胞核;有一定数目的染色体(DNA与蛋白质结合而成);一般有多种细胞器。
3、原核生物:由原核细胞构成的生物。
如:蓝藻、细菌(如硝化细菌、乳酸菌、大肠杆菌、肺炎双球菌)、放线菌、支原体等都属于原核生物。
4、真核生物:由真核细胞构成的生物。
如动物(草履虫、变形虫)、植物、真菌(酵母菌、霉菌、粘菌)等。
三、细胞学说的建立:1、1665 英国人虎克(Robert Hooke)用自己设计与制造的显微镜(放大倍数为40-140倍)观察了软木的薄片,第一次描述了植物细胞的构造,并首次用拉丁文cella(小室)这个词来对细胞命名。
第一章物质及其变化一、物质的分类1.根据物质的组成对物质进行分类(1)由同一种元素形成的几种性质不同的单质,叫作这种元素的同素异形体如金刚石、石墨和C60;O2和O3(2)根据物质的组成对物质进行分类——树状分类法(3)从不同的角度对物质进行分类——交叉分类法碳酸钠为钠盐,也为碳酸盐2.根据物质的性质对物质进行分类酸性氧化物碱性氧化物定义能与碱反应生成盐和水的氧化物能与酸反应生成盐和水的氧化物实例CO2、SO3等CaO、Fe2O3等属类大多数非金属氧化物大多数金属氧化物例1 .以下为中学化学中常见的几种物质:①Fe ②熔融NaCl ③NaHSO4 ④CO2 ⑤H2SO4 ⑥酒精⑦KHCO3溶液⑧BaSO4⑨NaOH请回答下面问题。
属于电解质的是(填序号);属于酸的是;属于盐的是。
二、分散系及其分类1.分散系(1)基本概念(2)分类根据分散质粒子的直径大小分类:2.胶体(1)分类胶体分散剂实例液溶胶液体Fe(OH)3胶体气溶胶气体云、雾固溶胶固体有色玻璃(2)Fe(OH)3胶体的制备在小烧杯中,加入40 mL蒸馏水,加热至沸腾,向沸水中逐滴加入5~6滴FeCl3饱和溶液,继续煮沸至液体呈红褐色,停止加热,即可得到Fe(OH)3胶体。
化学方程式:FeCl 3+3H 2O=====△Fe(OH)3(胶体)+3HCl 。
(3)丁达尔效应①实验探究实验操作实验现象原因分析观察到一条光亮的“通路”胶粒的直径为1~100 nm ,能使光波发生散射无明显现象溶液中粒子的直径小于1__nm ,光的散射极其微弱②应用:该效应常用来区分胶体和溶液。
三、物质的转化1.实现物质转化的基本依据:在化学变化过程中,元素不会发生改变。
2.常见单质及其化合物的转化关系 (1)实例探究Ca ――→①CaO ――→②Ca (OH )2――→③CaCO 3 C ――→④CO 2――→⑤H 2CO 3――→⑥CaCO 3写出上述转化的化学方程式并注明反应类型:序号 化学方程式 反应类型 ① 2Ca +O 2===2CaO 化合反应 ② CaO +H 2O===Ca(OH)2化合反应 ③ Ca(OH)2+CO 2===CaCO 3↓+H 2O复分解反应 ④ C +O 2=====点燃CO 2 化合反应 ⑤ CO 2+H 2O===H 2CO 3化合反应 ⑥H 2CO 3+Ca(OH)2===CaCO 3↓+2H 2O复分解反应(2)探究归纳:单质到盐的转化关系3.确定制取物质的方法 (1)确定依据(2)实例——碱的制备(3)工业生产方法的选择①最适当方法的选择②实例——工业上制取NaOHa.不采用Na2O与H2O反应的原因:Na2O作为原料,来源少、成本高;b.主要采用方法:电解饱和食盐水;c.过去曾采用方法:盐(如Na2CO3)与碱[如Ca(OH)2]反应。
必修1第一章集合与函数基础知识点整理第1讲 §1。
1。
1 集合的含义与表示¤知识要点:1。
把一些元素组成的总体叫作集合(set ),其元素具有三个特征,即确定性、互异性、无序性.2. 集合的表示方法有两种:列举法,即把集合的元素一一列举出来,并用花括号“{ }”括起来,基本形式为123{,,,,}n a a a a ⋅⋅⋅,适用于有限集或元素间存在规律的无限集. 描述法,即用集合所含元素的共同特征来表示,基本形式为{|()x A P x ∈},既要关注代表元素x ,也要把握其属性()P x ,适用于无限集.3。
通常用大写拉丁字母,,,A B C ⋅⋅⋅表示集合. 要记住一些常见数集的表示,如自然数集N ,正整数集*N 或N +,整数集Z ,有理数集Q ,实数集R 。
4. 元素与集合之间的关系是属于(belong to )与不属于(not belong to ),分别用符号∈、∉表示,例如3N ∈,2N -∉.¤例题精讲:【例1】试分别用列举法和描述法表示下列集合:(1)由方程2(23)0x x x --=的所有实数根组成的集合; (2)大于2且小于7的整数。
解:(1)用描述法表示为:2{|(23)0}x R x x x ∈--=; 用列举法表示为{0,1,3}-.(2)用描述法表示为:{|27}x Z x ∈<<; 用列举法表示为{3,4,5,6}.【例2】用适当的符号填空:已知{|32,}A x x k k Z ==+∈,{|61,}B x x m m Z ==-∈,则有: 17 A ; -5 A ; 17 B 。
解:由3217k +=,解得5k Z =∈,所以17A ∈;由325k +=-,解得73k Z =∉,所以5A -∉;由6117m -=,解得3m Z =∈,所以17B ∈。
【例3】试选择适当的方法表示下列集合:(教材P 6 练习题2, P 13 A 组题4) (1)一次函数3y x =+与26y x =-+的图象的交点组成的集合; (2)二次函数24y x =-的函数值组成的集合; (3)反比例函数2y x =的自变量的值组成的集合。