非线性系统作业-Backstepping设计
- 格式:docx
- 大小:1.92 MB
- 文档页数:11
摘要滑模变结构控制出现在20世纪中后期,由于变结构系统的滑动模态运动对系统的参数摄动、外界的扰动、不确定模态和模型不确定性具有自适应性,也就是完全鲁棒性,使得滑模控制引起了人们的极大关注。
反演(backstepping)是将复杂的非线性系统分解成不超过系统阶数的子系统,然后为每个子系统分别设计李雅普诺夫函数和中间虚拟控制量,一直后退到整个系统,直到完成整个控制律的设计。
本课题与李雅普诺夫型自适应律结合,综合考虑控制律和自适应律,使整个闭环系统满足期望的动静态性能指标。
在本论文中,将滑模变结构控制和基于backstepping设计方法的自适应控制有机结合,实现了以下技术指标:研究了Backstepping的基本思想和设计方法,并通过仿真实例进行验证。
设计出Backstepping滑模控制器。
设计出自适应Backstepping滑模控制器,使整个闭环系统满足期望的动静态性能指标。
通过MATLAB平台,对实例进行了仿真。
仿真结果表明:研究自适应反演滑模控制策略,为一大类不确定非线性系统提供了一种更有效的控制策略。
关键词:滑模变结构,反演控制器,自适应,李雅普诺夫函数Adaptive Backstepping Sliding Mode ControlABSTRACTThe sliding mode variable structure control was brought in the mid-and late 20th century. It is attention-getting because the sliding mode movement of variable structure system holds the adaptability, an ideal robustness, for the change of system parameters, outside disturbance, uncertain mode and model uncertainty of the system.Backstepping algorithm is designed to decompose a complicated nonlinear system to several subsystems with lower orders, and then a Lyapunov function and an interim virtual control variable are respectively designed for each subsystem. The steps of recursive algorithm will continue until the whole control law is worked out. In order to make the whole closed-loop system meet the anticipant stable and dynamic performance indexes, the subject is combined to Lyapunov’s adaptive law, and the control law and adaptive law are also taken into consideration.In this paper, the sliding mode variable structure control is properly combined to adaptive control based on backstepping design and the technical goals are realized as following.The basic ideal and designing method of backstepping are studied and proved through the simulation of practical examples.Backstepping sliding mode controller is developed.Adaptive backstepping sliding mode controller is designed to make the whole closed-loop system meet the anticipant stable and dynamic performance indexes.The simulation of practical examples is carried out on the platform of MATLAB. The simulation results show that the adaptive backstepping slidingmode provides a more efficient control strategy for a large class of uncertain nonlinear systems.Key words:sliding mode variable structure,backstepping controller,adaptive,Lyapunov function自适应反演滑模控制0 引言进入20世纪80年代以来,随着计算机、大功率电子切换器件、机器人及电机等技术的迅速发展,变结构控制理论和应用研究开始进入了一个新阶段。
一类输入受限的不确定非线性系统自适应 Backstepping变结构控制李飞;胡剑波;王坚浩;汪涛【摘要】针对一类输入受限的不确定非线性系统,提出了一种自适应Backstepping变结构控制器设计方法.建立了受未知非线性特征约束的执行器故障模型,可以描述系统存在死区、齿隙、饱和、滞回等输入受限情形以及可能发生的执行器失效、卡死等故障情形.设计径向基函数神经网络补偿未建模动态项,引入一阶低通滤波器避免了Backstepping控制中的计算复杂性问题.自适应近似变结构控制能够有效削弱控制信号抖振.理论分析和仿真实验结果证明,提出的自适应鲁棒控制律能够在输入受限的情况下自适应地调节控制输入,使得闭环系统稳定且满足控制性能要求.%An adaptive Backstepping sliding mode control method is proposed for a class of uncertain nonlinear systems with input constraints.A model for the nonlinear actuator is developed, which includes input constrained situations such as dead zone, backlash, saturation, hysteresis, and unknown faults such as partial loss of effectiveness fault and actuator stuck fault.Radial basis function neural network is employed to approximate the unknown nonlinear functions.The explosion of complexity is avoided in the traditional Backstepping design method by introducing a first order filter.Adaptive approximate variable structure control is effective to reduce the chatting of the control signal.Theoretical analysis and simulation results are presented to demonstrate the effectiveness of this method by adaptively adjusting control input.【期刊名称】《系统工程与电子技术》【年(卷),期】2017(039)008【总页数】11页(P1823-1833)【关键词】未知非线性;未知故障;不确定性;自适应Backstepping控制;径向基函数神经网络【作者】李飞;胡剑波;王坚浩;汪涛【作者单位】空军工程大学理学院, 陕西西安 710051;空军工程大学装备管理与安全工程学院, 陕西西安 710051;空军工程大学装备管理与安全工程学院, 陕西西安710051;空军工程大学装备管理与安全工程学院, 陕西西安 710051【正文语种】中文【中图分类】TP273物理器件的固有特性、机械设计和制造偏差、外部环境干扰以及安全因素的制约,使得死区、齿隙、饱和以及滞回等非线性特征不可避免地存在于机械系统、伺服系统、压电系统等实际控制系统中,使得系统控制信号受到一定的约束限制,影响被控系统的性能,甚至会造成系统出现发散、震荡等不稳定情况。
摘要对于几类严格反馈的非线性系统, 本文依据模糊逻辑系统、Backstepping技术、command滤波和Nussbaum函数等方法对其进行控制器设计, 并且进行了稳定性分析. 具体内容如下:1.针对一类具有状态约束的严格反馈非线性系统, 构造了一个模糊跟踪控制器, 借助于模糊逻辑系统来近似非线性函数, 所提出的控制方案解决了有限时间跟踪控制问题.2.针对一类具有不确定参数的随机非线性系统, 构造了一个有限时间跟踪控制器. 通过构造一个tan−型的障碍Lyapunov函数, 证明了闭环系统是有限时间稳定的;跟踪误差在有限时间内收敛到零的一个足够小的邻域内.3.针对一类具有不确定扰动的非线性系统, 讨论了基于command滤波的有限时间自适应模糊控制问题. 通过用误差补偿信号和模糊逻辑系统, 提出了一个模糊控制方案, 保证了输出跟踪误差在有限时间内收敛到零的一个足够小的邻域内, 并且闭环系统中的所有信号都是有界的.4.为了处理一类具有未知控制方向的非线性系统, 提出了一个基于command滤波的自适应控制方案. 在控制方案中, 用模糊逻辑系统来处理非线性函数、用command滤波来解决由重复可导的虚拟函数引起的复杂性问题、用Nussbaum函数来解决未知控制方向问题.关键词:非线性系统; 模糊逻辑系统; 障碍Lyapunov函数;command滤波; 误差补偿信号;Nussbaum函数.ABSTRACTFor several classes of strict-feedback nonlinear systems, the controller is designed and stability is analyzed in this paper based on fuzzy logic system, backstepping technique, command filter and Nussbaum function. The specific contents are as follows:1. A fuzzy tracking controller is constructed for a class of strict-feedback nonlinear systems with full state constraints. Because fuzzy logic system is used to approximate the unknown nonlinear functions, the proposed control scheme addresses the finite-time tracking control problem.2. A finite-time tracking controller is constructed for a class of stochastic nonlinear systems with parametric uncertainties. By constructing a tan-type Barrier Lyapunov Function, the proposed control scheme ensures that the closed-loop system is finite-time stable and the output tracking errors converge to a sufficiently small neighborhood of the origin in finite-time.3. A command filter-based finite-time adaptive fuzzy control problem is discussed fora class of nonlinear systems with uncertain disturbance. By using the error compensation signals and fuzzy logic system, a fuzzy control scheme is proposed to ensure that the output tracking errors converge to a sufficiently small neighborhood of the origin in finite-time and all signals in the closed-loop systems are bounded.4. To deal with a class of nonlinear systems with unknown control directions, a command filter-based adaptive control scheme is proposed. In the design process, fuzzy logic system is required to handle nonlinear functions, command filter is employed to settle the explosion of complexity problem arose from repeated differentiation of virtual control function and Nussbaum function is introduced to deal with the problem of unknown control directions.Key words:nonlinear systems; fuzzy logic system; Barrier Lyapunov Function; command filter; error compensation signals; Nussbaum function.目录第一章前言 (1)1.1论文研究背景 (1)1.2本文的主要研究内容和安排 (3)第二章一类状态约束非线性系统的有限时间自适应模糊控制 (5)2.1模型描述及基本假设 (5)2.2控制器设计和稳定性分析 (7)2.3仿真结果 (12)2.4本章小结 (14)第三章一类状态约束随机非线性系统的有限时间跟踪控制 (15)3.1模型描述及基本假设 (15)3.2控制器设计和稳定性分析 (16)3.3仿真结果 (23)3.4本章小结 (25)第四章一类未知扰动非线性系统的有限时间自适应模糊控制 (26)4.1模型描述及基本假设 (26)4.2控制器设计和稳定性分析 (27)4.3仿真结果 (32)4.4本章小结 (33)第五章一类未知控制方向非线性系统的自适应跟踪控制 (34)5.1模型描述及基本假设 (34)5.2控制器设计和稳定性分析 (35)5.3仿真结果 (41)5.4本章小结 (42)第六章总结与展望 (43)参考文献 (44)致谢 (49)攻读硕士学位期间参与的科研项目和发表的学术论文 (50)第一章前言1.1 论文研究背景在工业、生活和生产中, 几乎所有系统都可以用非线性系统来描述, 例如机器人控制设计、无人机飞行器设计和网络信号传输控制设计等. 研究非线性系统为解决实际问题提供了理论帮助. 不像线性系统因其数学模型比较简单和容易建立, 非线性系统中包含了各种未知因素和扰动, 并且其系统不满足叠加原理. 所以研究非线性系统具有非常重要的意义.在之前的研究中, 可以用泰勒展式等处理非线性函数, 将其转化为线性问题, 从而应用线性系统完善的理论和方法解决非线性问题. 但是随着科技、计算机技术的发展和非线性系统的进一步研究, 应用线性系统来解决非线性问题显得捉襟见肘. 为了在研究中保证实际系统的良好性能和稳定性, 需要对实际系统建立精确的模型. 而实际系统存在不确定性和扰动等因素, 例如实际系统中能量消耗、重心转移引起的误差因素和系统本身的时滞性等. 这些因素难以测量, 不被我们熟知, 所以对非线性系统的研究比线性系统的研究更加困难和具有挑战性. 为了使非线性系统更加接近实际问题, 考虑非线性系统的不确定性是十分必要的.由于许多被控对象的数学模型随时间、能量消耗、环境等的变化而变化. 针对这类变化, 研究者们提出了许多解决方案. 当其数学模型变化的范围较小时, 可用反馈控制、最优控制等来消除或减弱对控制性能的不利影响. 而数学模型的变化范围较大时, 以上方法不可用, 从而引发了人们对自适应控制问题的研究. 在50年代末, Whitaker首次在飞机自动驾驶问题上提出了自适应控制方案, 但是没有进行实际应用. 1966 年, Parks根据Lyapunov方法提出了自适应算法, 保证了系统的全局渐近稳定. 但是该算法降低了自适应对干扰的抑制能力. Landau把超稳定性理论应用到自适应控制中, 使得系统是全局渐近稳定的, 并且增强了系统的抗干扰能力. 由于自适应控制对系统有良好的控制性能, 到目前为止自适应控制理论被广泛应用在线性系统理论、非线性系统理论、计算机控制、航空航天、空间飞行器的控制等各个方面[1]-[2].20世纪90年代初, 非线性系统自适应控制的研究引起越来越多的关注.Kanellakopoulos,Kokotovic和Morse等对部分线性的严格反馈系统提出了自适应反推(backstepping)方法. 在此基础上, [3]首次介绍了非线性系统的自适应backstepping设计方法. 但是, 由于自适应理论刚刚发展, 早期的backstepping方法还不成熟, 即存在过度参数化问题. Jiang和Praly将推广的匹配条件应用到高阶非线性系统, 成功的将估计参数减少了一半.Krsti在文[6]中通过引入调节函数处理了估计参数, 彻底地解决了过度参数化问题. 由于自适应backstepping设计方法不要求非线性系统满足匹配条件, 因此, 该方法在近年来引起了广泛的应用[4]-[10]. 但是backstepping设计方法Ge S S和存在局限性, 那就是针对的系统是严格反馈的非线性系统. 在2002年, .. Wang C用均值定理和隐函数定理, 通过设计backstepping方法, 解决了纯反馈系统.的自适应跟踪控制问题. 但到目前为止, 对于非严格反馈系统的控制器设计还没有得到解决.backstepping设计方法采用反向递推的设计思想, 对于严格反馈的系统, 将其分解成不超过系统阶数的子系统, 在每一个子系统中设计相应的Lyapunov函数和虚拟控制信号, 使得其具有一定的收敛性. 在下一个子系统中, 将上一个虚拟控制律作为跟踪目标, 获得该子系统的虚拟控制信号. 以此类推, 完成了整个backstepping设计, 构造了跟踪控制器, 并且实现系统的全局调节或跟踪.L A Zadeh在为了用数学方法解决自然界中不精确的信息, 1965年, 美国科学家..论文Fuzzy Set中提出了模糊理论. 模糊理论是建立在模糊集合和模糊逻辑的基础上,用于描述模糊信息, 处理模糊现象的一种新的数学工具. 至此, 模糊集理论得到了飞跃性的发展. 模糊控制是以模糊集理论、模糊语言变量、模糊逻辑推理为基础的一种智能控制, 是智能控制的重要组成部分. 同时, 模糊控制也是控制领域中非常有前景的一个分支, 并且已经得到了成功的应用. 1974年, Mamdani利用模糊语言构成模糊控制器, 首次在蒸汽机和锅炉的控制中应用模糊控制理论.当模糊控制应用于复杂的非线性系统时, 为了得到更好的控制效果, 需要有更完善的控制策略. 由于系统本身的性质、外界扰动等影响, 造成了原有的模糊机制不完善. 为了弥补这一问题, 自适应模糊控制被提出[11]. 自适应在处理和分析过程中, 能够自动的调节处理方法、参数等, 通过在线辨识, 使其达到最佳的效果, 使模型越来越接近实际系统. 将自适应控制和模糊控制相结合, 形成具有自我调节能力的更完善的控制系统. 根据控制对象的动态变化, 实时地调整对应的模糊控制器, 从而更有效的解决了非线性问题. 由于该控制系统能够不断的调节自己的控制机制来改变其性能, 因此越来越多的控制方案应用到工业、电力系统、航空航天等实际性问题中, 并且取得了令人瞩目的结果[12]-[17].在实际系统中, 我们常常需要在有限的时间内实现收敛. 因此, 有限时间控制问题已成为一个重要的研究课题. 随着有限时间稳定性理论的发展, 近年来有限时间控制问题得到了研究, 并给出了非线性系统的有限时间控制结果[18]-[27]. 随机现象在制造过程、机器人操作系统等实际系统中经常发生, 它会引起系统的不稳定性. 因此, 随机是需要考虑的另一个重要因素, 对随机非线性系统的研究近年来也受到越来越多的关注[28]-[38].此外, 以上文献中的控制方法都存在计算复杂性问题. 因为backstepping技术在α进行重复求导, 导致较高阶虚拟控制器和最终实际控每一步中都要对虚拟控制器i制器所含项随着系统阶数的增加呈现爆炸性增长, 使得控制器的计算复杂程度剧增, 从而限制了这种方法在实际工程中的应用. 庆幸的是, 文献[39]首次提出了一种动态面控制技术, 解决了以上复杂性问题. 随后, Levant[40]提出了Command滤波, 用来解决重复可导的虚拟控制器引起的复杂性问题. 之后, 各种非线性系统的动态面自适应控制方案[41]-[44]和Command滤波自适应控制方案[45]-[50]被提出.控制方向代表了系统在任意控制下的运动方向, 在控制设计中具有重要意义. 但是控制方向很难检测或从物理意义上决定, 这使得控制设计更加困难. 连续Nussbaum增益法在控制设计中易于实现, 是解决控制方向未知问题的一种常用方法. 该方法的关键是利用Nussbaum函数去估计控制系数的符号, 从而解决非线性系统中未知控制方向的问题[51]-[58].总的来说, 本文在有关不确定非线性系统的自适应控制方面已经取得了一定的研究成果, 但是还需要进一步的讨论与研究. 本文对几类严格反馈的非线性系统进行了稳定性分析及控制器设计, 对进一步研究基于自适应backstepping方法的非线性不确定系统控制问题具有一定的参考价值.1.2 本文的主要研究内容和安排本文主要对于几类严格反馈的非线性系统, 进行了控制器的设计, 并且以自适应控制、backstepping设计方法和模糊控制为理论基础进行了稳定性分析. 全文内容安排如下:第一章: 前言. 介绍了论文的研究背景以及本文的主要研究内容和安排.第二章: 针对一类状态约束的严格反馈非线性系统, 构造了一个模糊跟踪控制器, 证明了输出跟踪误差信号在有限时间收敛到零的任意小的领域内, 同时闭环系统中所有的信号都是有界的.第三章: 针对一类具有不确定参数的随机非线性系统, 研究了状态约束严格反馈随机非线性系统的稳定性问题, 证明了系统输出能够有效地跟踪参考信号, 并且闭环系统中所有的信号都是有界的.第四章: 针对一类具有不确定扰动的非线性系统, 构造了一个命令滤波模糊控制器, 保证了误差收敛于零的任意小邻域内, 而且系统中闭环信号均有界.第五章: 对于一类控制方向未知的非线性系统, 提出了一个command滤波跟踪控制方案. 保证了误差信号收敛到原点附近, 并且所有闭环信号都是有界的.第六章: 对全文的工作做了总结, 并指出了以后的工作中需要解决的问题.以上章节均给出仿真实例, 并且验证了所提出的方法的有效性.第二章 一类状态约束非线性系统的有限时间自适应模糊控制针对一类严格反馈的非线性系统, 本章设计了一个有限时间模糊跟踪控制器. 将tan −型障碍Lyapunov 函数、模糊逻辑系统和backstepping 技术灵活地结合起来, 给出了控制器的设计步骤. 所提出的控制方案保证了输出跟踪误差在有限时间内收敛到零的任意小的领域内, 同时系统中的所有信号均有界. 仿真实例说明了该方法的有效性.2.1 模型描述及基本假设2.1.1 模型描述:考虑如下严格反馈非线性系统:11,11,()()((,),)i i i i i i n n n n n i x f x g x x x f x g x n x u y +=≤≤−+==+ (2-1)其中12[,,,],,T n n x x x x R y R u R ∈∈∈ 分别为系统状态、输出和输入; 12[,,,]T i i x x x x = ; ()i i f x 是未知的光滑非线性函数并且满足(0)0i f =; ()i i g x 是已知的光滑非线性函数; 内, i c k 是正常数. 本章的目的是针对系统(2-1), 设计一个有限时间模糊跟踪控制器, 使得:(1)输出在有限时间内能够很好地跟踪参考信号;(2)闭环系统中所有信号均有界;(3)所有的状态都不能违反其约束边界.2.1.2 基本假设:模糊逻辑系统的基本原理:IF-THEN 规则: i R : 如果1x 属于1i F , ..., n x 属于i n F , 则y 属于,1,,i B i N = , 其中12[,,,],T n n x x x x R y R ∈∈ 分别为系统状态和输出; i j F 和i B 是模糊集; ()j i j F x µ和()iB y µ是模糊隶属度函数. 通过模糊系统规则, 可以将模糊逻辑系统表示为1111()()[()]i j i j nN i j F i j n N j F i j x y x x µµ====Φ=∑∏∑∏, 其中()i i y R B max y µ∈Φ=. 令111(()[)()]i j i j n j F j i n N j F i j x p x x µµ====∏∑∏, 12()[(),(),,()]T N P x p x p x p x = ,1[,,]T N Φ=ΦΦ , 则上式可写成()()T y x P x =Φ. (2-2)引理 2.1[16]. ()f x 是定义在紧集Ω上的一个连续函数, 则对于任何给定的常数0ε>, 存在模糊逻辑系统(2-2), 使得()()T x sup f x P x ε∈Ω−Φ≤.引理2.2[18]. 对于任何实数1,,n x x …和01b <<, 以下不等式成立:n 11(++)b n b bx x x x …≤…++. 定义2.1[19]. 如果对于任意00()t ζζ=, 存在正常数ε和驻留时间0(,)T εζ<∞, 对任意1120210()ln (1)1T V x λλµµµµ−+−≤.推论2.1.对于任何实数12,00µµ>>, 01λ<<, 01β<<和0τ<<∞, 如果存在一个21102011122()1ln (1)()(1)V x T λλλµβµµλτµβµβµ−−+≤−+−. 证明: 从(2-3)可知, 对于任意01β<<, 有122()()()(1)().V x V x V x V x λλµβµβµτ≤−−−−+定义集合2{()}(1)x x V x λτβµΩ=≤−∣和2{()}(1)x x V x λτβµΩ=>−∣. 以下分两种情形进行讨论: 情形1: 如果()x x t ∈Ω, 则12()()()V x V x V x λµβµ≤−− , 所以假设1. 对于连续函数)(i i g x , 存在正常数0g , 满足00()i i g g x <≤. 不失一般性, 假2.2 控制器设计和稳定性分析在这一部分中, 对于系统(2-1), 构造了一个有限时间自适应模糊跟踪控制器. 首先, 定义111,,id i i x y x ξξα−=−=− (2-5) 其中i ξ是状态跟踪误差, i α是虚拟控制器并且满足i i αα<, i α是正常数. 定义2i i θΦ. 给出以下tan −型的候选障碍Lyapunov 函数:22*2tan()2ii i b i b k V k πξπ=,其中:{,,1,,}i i i i b R k i n ξξξξ∈Ω=∈<=…, 11010,0i ib c b c i k k Y k k α−=−>=−>.第1步: 由(2-5)可得11112.d d x y f g x yξ−+==−选择如下障碍Lyapunov 函数:*121112V V θ=+ , 其中111ˆθθθ=− , 并且1ˆθ为1θ的估计. 定义222cos ()2iiiib k ξξϑπξ=, 计算1V 的导数:11122111111221112111ˆ(())cos ()2ˆ()),(d b V f g y k f g ξαθθπξϑξαξξθθ=−−=++−++ (2-6)其中11d f f y =− . 由引理2.1可知, 对于任何10τ>, 存在模糊逻辑系统111()TP X Φ, 使得以下式子成立:111111111()(),,()Tf P X X X δδτ=Φ+≤11)(X δ为近似误差. 通过使用'Young s 不等式, 可以得到:1111122221111111111121()()2222TTP P a f P X X a ξξξξξϑθϑτϑϑϑδ=Φ+≤+++, (2-7)1a 是一个给定的正常数. 设计虚拟控制器1α如下:11111122221111,1222111121111sin()cos()cos ()ˆ2221[]22tan Tb b b K K S k k k P P g aαξξπξπξπξϑθϑαξξ=−−−−, (2-8)其中1100,K K α>>是常数, ,tan i S 定义为:22,2221222tan ta (),0,2()(),,t 22n an i i i i i i b tan ii i i i b b if k S l l else k k απξξεπξπξ ≥> = +(2-9) 2212122251(),(),01,tan tan 04422i i i ii i i b b l l k k ααπεπεαε−−==−<<>. 根据洛必达法则可得 11221112211sin()cos()220,0.b b K k k πξπξξξ→→当这意味着奇点不会出现在1α的第一项中. 构造(2-9)是为了避免奇点发生在1α的第二项中. 根据洛必达法则, 有11221,1211cos ()20,0tan b K S k απξξξ→→当.将(2-7), (2-8)代入(2-6), 得到1111111111111122221111111211121222222221111111111112112222112211122ˆ()2222ˆˆ()(tan )22222222()(2tan tan tan 2TT T b b b b P P a V g a P P P P a K K g k k a a K K k k ξξξξξξξααξααϑθϑτϑξαθθϑθϑϑθϑπξπξτϑξθθπξπξ+++++−≤−−−−+++++−−−≤≤ 112221111121121ˆ)().222T P P a g a ξξϑτϑξθθ++++− (2-10)第i 步: 从(2-5), 可以得到111()ii i i i i i i x f g ξαξαα−+−=−=++− . 其中111(1)11111()101ˆ()ˆi i i j i i i j j jj i j d j j j j jd f g x y x y ααααθθ−−−+−−−−+===∂∂∂=+++∂∂∂∑∑∑ . 定义候选障碍Lyapunov 函数: 2112i i i i V V V θ∗−=++ , 其中ˆi i i θθθ=− , 并且ˆiθ是i θ的估计. 计算i V 的导数, 则有1111111ˆ(())ˆ(()),i iii i i i i i i i i i i i i i i i i i i V V f g g V f g ξξξξϑξααθθϑξϑξαθθϑ−−+−−−+=+++−−=+++−− (2-11) 其中111ii i ii i i g f f ξξϑξαϑ−−−=−+ . 根据引理 2.1, 对于任意0i τ>, 存在模糊逻辑系统()i i T i P X Φ, 使得下式成立:()(),,()i i i i i i i i T i f P X X X δδτ=Φ+≤)(i i X δ是近似误差. 利用'Young s 不等式, 以下不等式成立22222()(),2222iiiii i i i i i i i T i ii i i Tf P X X P P a a ξξξξξϑϑϑδϑθϑτ=Φ+≤+++ (2-12)i a 是一个给定的正常数. 设计控制器i α为2222,2222sin()cos()cos ()ˆ2221[]22i iiiiitan iT b i i i i i i ii ii b b iiK K S k k k P P g aαξξπξπξπξϑθϑαξξ=−−−−, (2-13)0,0i i K K α>>是常数. 相似于1α, 奇异点将不会发生在i α中, 将(2-10)、(2-12)和(2-13)代入(2-11), 可得1122222222222211122122112ˆ()222ˆˆtan()tan ()222222222i i i i i i i ii i i i i i i ii i i i i i i i iT T i i i i i i i i i i i i i i i i i b b i T i i i i P P P P a V K K P P a g g k k a V g a a V g ξξξξξξξααξξξϑθϑϑθϑθϑτϑξαϑξθθϑπξπξτϑξϑξθ−−−++−−−≤++++≤−−−−+++++−−++−− 2222212221111ˆ()()()().2222tan tan 2j j i j j i iiii j j j j j jj i j j T i j j j j b b j P g a P a K K k k ξααξϑπξπξτϑθθξθ+====≤−−++++−∑∑∑∑ (2-14)第n 步: 从(2-5), 可以得到11n n n n n n xf g u ξαα−−=−=+− , 其中111(1)11111()101ˆ()ˆn n n j n n n j j j jn j d j j j j jdf g x y x y ααααθθ−−−+−−−−+===∂∂∂=+++∂∂∂∑∑∑ . 定义候选障碍Lyapunov 函数: 2112n n n n V V V θ∗−++ , ˆn n nθθθ=− , 并且ˆn θ是n θ的估计. 计算n V 的导数, 可得11111ˆ()ˆ(),n n nnn n n n n n nn n n n n n n V V f g u g V f g u ξξξξϑαθθϑξϑθθϑ−−−−−=++−−=++−− (2-15)其中111n nn n nn n g f f ξξϑξαϑ−−−=−+ . 根据引理 2.1, 对于任意0n τ>, 存在模糊逻辑系统()n n T n P X Φ, 使得下式成立:()(),,()T n n n n n n n n n f P X X X δδτ=Φ+≤)(n n X δ是近似误差. 利用'Young s 不等式, 以下不等式成立22222()(),2222nnnnn T n n n n n n T n n nnn nf P X X P P a a ξξξξξϑϑϑδϑθϑτ=Φ+≤+++ (2-16)n a 是一个给定的正常数. 设计控制器u 为2222,2222sin()cos()cos ()ˆ2221[]22nnnnnnn n nn tan nT b b b n n n n n n nK K S k k k P P u g a αξξπξπξπξϑθϑξξ=−−−−, (2-17)0,0n n K K α>>是常数. 相似于1α, 奇异点将不会发生在n α中, 将(2-14)、(2-16)和(2-17)代入(2-15), 可得112222222212222111222122ˆˆtan()tan ˆ222()22222222ta 2n(n n n n n n n n nn n n T T n n n n n n n n n n n n n n n n b T n n nn n n n nn n n n nnb ni n i P P P P a V K K g k k a a P P a V V g u g a K ξξξξξααξξξξϑθϑϑθϑπξπξτϑξθϑθϑτϑϑξθθπξθ−−−−−−=≤+++++−≤−−−−++++−−−≤−∑ 22222222111ˆ)()()().2222tan 2iiiiT n n n i i i i i i i i i i i b b i P P a K k k a ξααϑπξτθθ===−+++−∑∑∑ (2-18) 设计自适应率为22ˆˆ2i T i i i i ii P P a ξϑθσθ=− , 则(2-18)能够写成 2222221111ta ˆ()()n t 22a )n (22i i i n n n ni i i i n i i i i i i i b b ia V K K k k ααπξπξτσθθ====≤−−+++∑∑∑∑ . (2-19) 由'Young s 不等式, ˆi i i σθθ 满足2222222222222ˆ222222(1)22222(1)(1).2222i i i i i i i i i i i i i i ii i i i i i i i ii i i i i i iαααασθσθσθθσθσθσθσθσθσθσθασθασσθασθσθασ≤−=−−+−≤−−++−−≤−−+ (2-20)将(2-20)代入(2-19), 有22222222211(1)(tan tan 1)(()())().22222222i i i n ni i i i i i i i i i i n i i i b b a V K K k k αααπξπξτσθασθσθασ=−−≤−−+++−−+∑∑(2-21) 定义111122min{,,,(1),,(1)}nn n b b K K k k ππησασα=…−…−, 11112122}min{,,,2,,2n n n b b K K k k ααααααααππησσ−−=……, 则(2-21)能够写成222222122211tan tan 11[()][()]2222ii i inn b b i ini i i i b b k k V C k k αααααπξπξηθηθππ==≤−+−++∑∑ , 其中2221(1)()2222ni i i i i ia C τσθασ=−=+++∑. 由引理2.2可知:12n n nV V V C αηη≤−−+ . (2-22)定理: 在满足假设1和假设2的条件下考虑系统(2-1). 如果设计的控制器是(2-17),虚拟控制信号是(2-13)和自适应律是22ˆˆ2i T i i i i ii P P a ξϑθσθ=− , 则有: (1)未违反状态约束的条件;(2)闭环系统中的所有信号都是有界的; (3) 误差信号()i t ξ将收敛到max{i i ξε<内,并且驻留时间满足: 110111222((0))1ln (1)()(1)n V T Cαααηξβηηαηβηβη−−+≤−+−.证明: 从(2-22)中可得1n nV V C η≤−+ , 解不等式可得111((0))t n n CCV V e ηηη−≤−+. 因此n V 是有界的. 根据2112n n n n V V V θ∗−++ 可知, i V 和i θ 都是有界的. 因此ˆi i iθθθ=+ 也是有界的. 根据122211()(ta (n 0))2iib t i n n b k CV V e kCηπξπηη−≤≤−+可知ii b k ξ<成立. 由(2-5)和假设2可得11110d b c x y k Y k ξ≤+<+=. 从模糊逻辑系统的定义可知111TP P <. 根据假设1可得11i g g ≤, 所以1ig 是有界的. 因此1α是有界的并且满足11αα≤. 从(2-25)和11αα≤可知222211b c x k k ξαα≤+<+=. 所以2α是有界的并且满足22αα≤. 同理可知,3,,i i c x k i n <=…. 因此, 未违反状态约束的条件.因为控制器u 中的所有信号都是有界的,所以控制器u 是有界的, 由以上分析可知闭环系统中的所有信号都是有界的.根据推论 2.1可知, n V 将在有限时间内收敛到紧集12()(1)n n CV V αβη−≤内. 因为21222()()tan (1)2iib i n b k C V kαπξπβη≤≤−,所以max{ii ξε<, 并且收敛时间满足110111222((0))1ln (1)()(1)nV T Cαααηξβηηαηβηβη−−+≤−+−.证明完毕.2.3 仿真结果:考虑以下非线性系统:11221221,.,xx x x x x u y x =+=+= 参考信号是()0.5sin()d y t t =. 初始条件是12(0)=0.1,(0)=0.1x x , 状态约束在12=1.5,=1.5c c k k 内.在状态区间[-1.5,1.5]中定义了7个模糊集. 并且给出了隶属度函数:222123222456270.5( 1.5)0.5(1)0.5(0.5)0.5()0.5(0.5)0.5(1)0.5( 1.5),,,,,,.i i i iiii i i iiiii x x x F F F x x x F F F x F e e e e e e e µµµµµµµ−+−+−+−−−−−−−=======参数设计为121212122,2,1,1,0.75,0.01,0.01,0.01,0.01K K K K ααασσττ=========. 仿真结果如图2-1至2-5.图2-1 输出y 和参考信号d y 图2-2 系统状态1x 和2x图2-3 自适应率1ˆθ和2ˆθ 图2-4 系统输入u图2-5误差信号1S 和2S2.4 本章小结:针对一类具有状态约束的严格反馈非线性系统, 本章提出了一个自适应有限时间模糊控制方案. 在该方案中, 跟踪误差在有限时间内收敛到零的任意小邻域内. 闭环系统中的信号均有界, 并且不违反状态约束的条件.第三章 一类状态约束随机非线性系统的有限时间跟踪控制本章研究了状态约束随机非线性系统的稳定性问题. 采用反推技术设计了基于tan −型障碍Lyapunov 函数的非线性系统有限时间跟踪控制器. 保证了系统输出能够有效地跟踪参考信号, 并且闭环系统中所有信号都是有界的. 最后, 仿真结果说明了所提出的有限时间控制方案的有效性.3.1 模型描述及基本假设3.1.1 模型描述:考虑如下严格反馈非线性系统:11(()())(),1,,1,(()(),)(),T i i i i i i i i Tn n n n n n n dx f x g x x dt x d i n dx f x g x u dt x d y x φωφω+=++=…−=++= (3-1)其中12[,,,],,T n n x x x x R y R u R ∈∈∈ 分别为系统状态、输出和输入; 12[,,,]T i i x x x x = ;()i i f x 是未知的光滑非线性函数并且满足()()T i i i i f x x θϕ=; i ϕ是光滑函数向量, θ是不确定的常数向量满足{,,}m M M R R θθθθθθ+∈Ω=∈≤∈; ()i i g x 是已知的光滑非线性函数;()i i x φ是已知的非线性函数向量; ω是标准维纳过程.所有的状态都严格约束在紧集, 其中ic k 是正常数.本章的控制目标是针对系统(3-1), 设计一个有限时间跟踪控制器, 使得: (1)输出在有界误差范围内跟踪参考信号; (2)闭环系统中的所有信号都有界; (3)并且所有状态都满足约束条件. 3.1.2 基本假设:考虑如下随机系统:()()dxf x dtg x d ω=+,其中x 为状态向量; ()f x R ∈和()n r g x R ×∈满足局部李普希茨条件和线性增长条件, 并且满足(0)0,(0)0f g ==; ω是一个r 维的标准维纳过程.定义3.1[32] . 对于任何给定的正函数2,1(,)V x t C ∈, 我们定义微分算子L 如下:221[(,)]{}2T V V V L V x t f Tr g g t x x ∂∂∂=++∂∂∂, 其中(.)Tr 是矩阵的迹.引理3.1[33]. ()f x R ∈和()n r g x R ×∈满足局部李普希茨条件和线性增长条件, 如果存在一个2C 上的函数V , K ∞类函数12,µµ, 两个常数0c >和01γ<<, 满足12()()(),()(),x V x x LV x cV x γµµ≤≤≤−则系统是有限时间随机稳定的, 并且驻留时间满足:1001[()]()(1)E T x V x c γγ−≤−.引理3.2[34]. 存在一个2C 上的函数V , K ∞类函数12,µµ, 两个常数0γ>和0ρ>, 满足0[()]()/t E V x V x e γργ−≤+.3.2 控制器设计和稳定性分析在这一部分中, 对于系统(3-2), 构造了一个自适应有限时间控制器. 首先, 定义111,,i d i i x y x ξξα−=−=− (3-2) 其中i ξ是虚拟状态跟踪误差, i α是虚拟控制器并且满足i i αα<, i α是正的常数. 给出以下tan −型的候选障碍Lyapunov 函数:444tan()4iib i i b k V k πξπ∗=,其中:{,,1,,}ii i i b R k i n ξξξξ∈Ω=∈<=…, 11010,0iib c b c i k k Y k k α−=−>=−>.第1步: 由11d x y ξ=−和221x ξα=−可得 11112111211()(())T T T T d d d d dx dy g x y dt d g y dt d ξθϕφωθϕξαφω=−=+−+=++−+ .选择如下障碍Lyapunov 函数:1112T V V θθ∗=+ ,其中ˆθθθ=− 并且ˆθ为θ的估计. 定义3442cos ()4i ii ib k ξξϑπξ=, 由定义3.1可知: 111111444261111443211112114423411443cos()2sin()44(())cos ()2cos ()44b b b T T d b b b k k k LV g y k k kπξπξξπξξθϕξαφθθπξπξ+=++−++. (3-3) 令11ωϕ=和111ˆξθτωϑσθ=−. 设计虚拟控制器1α如下: 1111111144421111,144411331114411433322114441144),sin()cos()cos ()4441ˆ(2sin()41(3)cos()cos()44tan b b b T d b b b b K K S k k k y g k k kkαπξπξπξαθωξξπξπξφπξπξ=−−−++ (3-4)其中1100,K K α>>是常数, ,tan i S 定义为:44,4421244tan ta (),0,4()(),,t 44n an i i i i i i b tan ii i i i b b if k S l l else k k απξξεπξπξ ≥> = +(3-5) 4412124451(),()444t n n 4a ta i ii i i i b b l l k k ααπεπε−−==−. 根据洛必达法则可得 114411144131sin()cos()440,0.b b K k k πξπξξξ→→当这意味着奇点不会出现在1α的第一项中. 构造(3-5)是为了避免奇异发生在1α的第二项中. 根据洛必达法则, 有11421,14131cos ()400tan b K S k απξξξ→→当.通过使用'Young s 不等式, 以下不等式成立:1111111114444264111111444333231221114443343411114443cos()2sin()2sin()4441(3)32cos ()cos ()cos()444b b b b b b b b b k k k k S k k kkk πξπξπξξπξπξξφφπξπξπξ+≤++. (3-6)将(3-4)和(3-6)代入(3-3), 得到11111111144421111,1444311112433211144411433322111444114433121431sin()cos()cos ()444(cos ()42sin()41ˆ(3))cos()cos()44cos (4tan b b bT d bbT d b b b K K S k k k LV g y k k y k k k k απξπξπξξθϕξπξξξπξπξθωφπξπξξπξ≤+−−−−++ 111111111114411433214344411111214431144441114431111ˆˆtan()tan ()()442sin()41(3)3)cos()41ˆˆ()()()43tan tan 43bT b b bT T T b T T b bb K K k S k k g k k S K K k k S αξαθξααπξπξθϕξθωθπξπξφθθπξϑπξπξθθτσθθθϑ≤−−++−+−+++≤−−−−+++ 112.g ξ(3-7)第2步: 从221x ξα=−和332x ξα=−可得 22122312223212()(())T T T Td dx d g x dt d g dt d ξαθϕαφωθϕξααφω=−=+−+=++−+ ,其中1111211()Tg x x ααθϕη∂=++∂ ,22()11111111(1)2111ˆ()()ˆ2i Td i i d y x x y x αααηθφφθ−=∂∂∂=++×∂∂∂∑ . 上式可写为 12,2,223212121(())T Tr r d g dt d g x dt x αξθϕξαηφω∂=++−+−∂,其中1,2,2211[,],[,]TT T Tr r x αθθθϕϕϕ∂==−∂, 选择候选障碍Lyapunov 函数:212V V V ∗=+. 由定义3.1可得22222244426222244322121,2,2232112244234122443cos()2sin()44(())cos ()2cos ()44.b b b Tr r b b b k k k LV LV g g x x k k k πξπξξπξξαθϕξαηφπξπξ+∂=+++−−+∂(3-8) 令212212121,x ξαωϕϕττωϑ∂=−=+∂. 设计控制器2α为222221222244422222,2444221332224422433312122221244412244sin()cos()cos()4441ˆ[2sin()41(3)],cos()cos()44tanb b b Tbbb bK K Sk k kgk gg xxkk kαξξπξπξπξαθωηξξπξπξϑξαφϑπξπξ=−−−+∂++−∂(3-9) 220,0K Kα>>是常数. 通过使用'Young s不等式, 下列不等式成立:2222222224444264222222444333232222224443343422224443cos()2sin()2sin()4441(3)32cos()cos()cos()444bb b bb bb b bkk k kSk kk k kπξπξπξξπξπξξφφπξπξπξ+≤++. (3-10) 将(3-7), (3-9)和(3-10)代入(3-8), 得到2222221222244422222,24443221,2,2234332222444224333122222244422443222sin()cos()cos()444(cos()42sin()41ˆ(3))cos()cos()44tanb b bTr rbbTbb bK K Sk k kLV LV gkk gkk kαξξπξπξπξξθϕξπξξξπξπξϑξθωφϑπξπξξ≤++−−−+−2222221222442243332244334222444422122312244324422244112sin()41(3)3cos()cos()441tan()tan()443ˆtan()tan()()44ii ibbb bTb bTi iii ib bkSkk kLV K K g gk k SK Kk kααξξξααπξπξφπξπξπξπξϑξϑξϑθωπξπξθθτ==++≤−−++−≤−−−+−+∑∑2223311ˆ.3Ti igSθξσθθϑξ=++∑(3-11)第i步: 从1i i ixξα−=−和11i i ixξα++=−, 可得111(())Ti i i i iTi i iid dx d g dt dξαθϕξααφω−+−=−=++−+,其中111111()iTii jj jj jig xxααθϕη−−−+−=∂=++∂∑, 21()1111(1)1,11ˆ()()ˆ2ij Ti i ii d kij jjkjj j k kdy x xx xyαααηθφφθ−−−−−−==∂∂∂=++×∂∂∂∂∑∑. 上式能够写成11,,1111(())i iiT T ir i r iji i ji jjid g dt d g x dtxαξθϕξαηφω−−+−+=∂=++−+−∂∑,其中11,,1111[,,],[,,,]T T T Ti ir i r ii iix xααθθθϕϕϕϕ−−−−∂∂=…=−…−∂∂. 选择候选障碍Lyapunov函数:1i iiV V V∗−=+.根据定义3.1可得444264431211,,111441234443cos()2sin()44(())cos ()2cos ()44.i i iiiii i ii i i i i j b i b b Ti i r i r i i j ii i j i j b b b k k k LV LV g g x x k k kπξπξξπξξαθϕξαηφπξπξ−−−+−+=+∂=+++−−+∂∑(3-12)令1111,ii i j i i ji i i j x ξαωϕϕττωϑ−−−=∂=−=+∂∑. 设计控制器i α为14442,444133444331311221441444sin()cos()cos ()4441ˆ[2sin()41(3)],cos()cos()44i i i i ii i i i ii i ii i i i i ta ii ii ij n ib b b T i i b i i i j j b b b j i i K K S k k k g k g g x x k k k αξξπξπξπξαθωηξξπξπξϑξαφϑπξπξ−−−−−+==−−−+∂++−∂∑ (3-13)0,0i i K K α>>是常数.通过使用'Young s 不等式, 以下不等式成立:44442644443332322444334344443cos()2sin()2sin()4441(3)32cos ()cos ()cos()444i iiiiiii ii i i ib b bbii b b b b i ii ii i i ibk k k k S k k kk k πξπξπξξπξπξξφφπξπξπξ+≤++. (3-14) 将(3-11), (3-13)和(3-14)代入(3-12), 得到14442,44431,,14332444433312244444sin()cos()cos ()444(cos ()42sin()41ˆ(3))cos()cos()44i iiii i iii iita i i i i i i i ii i i n ib b b T i r i r i i b b i T ib b b iiiii i K K S k k k LV LV g k k g k kkαξξπξπξπξξθϕξπξξξπξπξϑξθωφϑπξπξ−−+−≤++−−−+−14443333224433444441114434444112sin()41(3)3cos ()cos()441tan()tan ()443tan()tan ()44iii ii i i iiji jj i i iii i i i i i i b it b b b T i i i b b i iij j j b j j b k S k k k LV K K g g kkS K K kk ααξξξααπξπξξφπξπξπξπξϑξϑξϑθωπξπξ−−+−==++≤−−+−++≤−−∑ 1311ˆˆ()3.i iii i jT T i j g S θξθθτσθθϑξ+=−++−+∑∑(3-15)第n 步: 从1nn n x ξα−=−可得 11()T Tn n n n n n n d dx d g u dt d ξαθϕαφω−−=−=+−+ ,其中2111()11111111(1)111,11ˆ()()()ˆ2,n nn n T i Tn n n n n i n n d k k i i i i i k k d i i i i i i g y x x x x x y x αααααθϕηηθφφθ−−−−−−−−+−−−====∂∂∂∂=++=++×∂∂∂∂∂∑∑∑∑ . 上式能够写成11,,111()n TT n nr nr n n n ni i i id g u dt d g x dt x αξθϕηφω−−−+=∂=+−+−∂∑, 其中11,,1111[,,],[,,,]T T T T n n r n r nn n n x x ααθθθϕϕϕϕ−−−−∂∂=…=−…−∂∂. 选择候选障碍Lyapunov 函数: 1n n n V V V ∗−=+. 根据定义3.1可得444264431211,,11441234443cos()2sin()44()cos ()2cos ()4.4nnnnnni n n b nn n b bTn n n n r n r n n n i n i nn b i bb k k k LV LV g u g x x k k kπξπξξπξξαθϕηφπξπξ−−−−+=+∂=++−−+∂∑(3-16)令1111,ni in n n n n n n i x ξαωϕϕττωϑ−−−=∂=−=+∂∑. 设计控制器u 为14442,444133444331311221441444sin()cos()cos ()4441ˆ[2sin()41(3)],cos()cos()44n nnnnn n nnnn n n n tan nb b b T n n nnnn i nn b n n n nni i n n b b ib K K S k k k u g k g g x x k kkαξξπξπξπξθωηξξπξπξϑξαφϑπξπξ−−−−−+==−−−+∂++−∂∑(3-17)0,0n n K K α>>是常数.通过使用'Young s 不等式, 以下不等式成立:44442644443332322444334344443cos()2sin()2sin()4441(3)32cos ()cos ()cos()444nnnnnnnn nn n n b nn nb bbn nnn n n n n bb b b bk k k k S k k kk k πξπξπξξπξπξξφφπξπξπξ+≤++. (3-18)将(3-15), (3-17)和(3-18)代入(3-16), 得到14442,44431,,433244443331224444432sin()cos()cos ()444ˆ(cos ()42sin()41(3))cos()cos()44n n n nnnn nn n nn n nn tan nb b b T T n n n r n r n nn n nb n nb n n nn n nb b b nK K S k k k LV LV k k g k k k αξξπξπξπξξθϕθωπξξξπξπξϑξφϑπξπξξ−−−≤+−−−+−14443332443344444114434444112sin()41(3)3cos ()cos()441tan()tan ()443ˆtan()tan ()()44nnn nn n n n n i i i n nb n n n n n b b b T n nn n n n nb b nnn T i ii n i i b b k S k k k LV K K g k k S K K k k ααξξααθπξπξφπξπξπξπξϑξϑθωπξπξθθτσ−−−==++≤−−+−≤−−−+−+∑∑ 311ˆ.3n T i i S θθ=+∑(3-19)。
基于非线性Backstepping的船舶动力定位控制算法研究黄珍;毕传林
【期刊名称】《舰船科学技术》
【年(卷),期】2018(0)2X
【摘要】船舶动力的定位控制属于是闭环控制系统,因风浪等一些环境产生的干扰,使船舶动力的定位控制存在不确定性的干扰控制问题。
当前算法对船舶的动力进行定位控制时没有对船舶的动力进行定位,导致船舶动力定位控制不准确的问题。
提出一种基于非线性Backstepping的船舶动力定位控制的算法。
对船舶动力定位控制的数学模型进行构建,利用非线性Backstepping反步积分的控制原理为基础,通过对Lyapunov函数递推进行2步船舶控制律进行构造,有效地提高了定位的精确度,由此完成对非线性Backstepping的船舶动力定位控制算法的研究。
实验结果证明,利用该算法使船舶动力定位控制的精确度较高。
【总页数】3页(P55-57)
【关键词】非线性;Backstepping;船舶动力;定位控制
【作者】黄珍;毕传林
【作者单位】九江职业技术学院信息工程学院,江西九江332007
【正文语种】中文
【中图分类】U664.82
【相关文献】
1.基于非线性模型预测的船舶动力定位控制器设计 [J], 王元慧;隋玉峰;吴静
2.基于非线性控制理论的船舶动力定位控制系统的数学模型 [J], 刘芙蓉;陈辉
3.基于迭代滑模的船舶动力定位非线性控制 [J], 陈海力;任鸿翔;杨柏丞;衣莹
4.基于非线性自适应控制器的船舶动力定位系统设计 [J], 吕莉;李艳
5.非线性Backstepping算法在船舶动力定位系统控制的应用 [J], 牛兴霞;章小丹因版权原因,仅展示原文概要,查看原文内容请购买。
基于自适应Backstepping设计的TCSC非线性鲁棒控制器李文磊;张智焕;井元伟;刘晓平【期刊名称】《控制理论与应用》【年(卷),期】2005(22)1【摘要】电力系统是强非线性的动态大系统,在运行中总要受到外部干扰和内部干扰的影响,从而对其稳定运行造成严重威胁.本文针对带有TCSC单机无穷大母线系统的三阶鲁棒模型,在考虑阻尼系数未知及系统受外部扰动的情况下,将自适应backstepping方法与非线性L2增益干扰抑制理论融合,构造出系统的存贮函数,并获得非线性自适应鲁棒控制器及参数替换律.所得控制器不仅能够保证系统状态有界,而且能够有效抑制干扰对系统输出的影响.通过对单机系统的仿真结果表明采用该方法的控制器优于传统的控制器.【总页数】5页(P153-156,160)【作者】李文磊;张智焕;井元伟;刘晓平【作者单位】宁波大学,信息科学与工程学院,浙江,宁波,315211;宁波大学,信息科学与工程学院,浙江,宁波,315211;东北大学,信息科学与工程学院,辽宁,沈阳,110004;东北大学,信息科学与工程学院,辽宁,沈阳,110004【正文语种】中文【中图分类】TM712【相关文献】1.基于Backstepping设计的非线性鲁棒自适应控制 [J], 陈芳;田有先2.基于Backstepping设计的非线性大系统模糊自适应输出反馈分散控制 [J], 刘长亮;佟绍成3.基于Backstepping设计的非线性系统自适应模糊输出反馈控制 [J], 贺向雷;佟绍成4.基于扩展自适应Backstepping设计的TCSC非线性控制的新方法 [J], 付俊;赵军5.TCSC非线性自适应鲁棒控制器设计 [J], 王艳;井元伟;赵韦仑;杨秀敏因版权原因,仅展示原文概要,查看原文内容请购买。
具有非线性不确定参数的电液伺服系统自适应backstepping控制林浩;李恩;梁自泽【期刊名称】《控制理论与应用》【年(卷),期】2016(033)002【摘要】针对电液伺服系统中存在非线性不确定参数的问题,提出了一种采用积分型Lyapunov函数的自适应backstepping控制方法。
首先定义积分型Lyapunov函数,将电液伺服系统中的非线性不确定参数转化为线性表示;然后逐步递推设计backstepping控制器,同时在控制律中加入阻尼项,从而补偿外界干扰对控制性能的影响;基于Lyapunov稳定性方法,设计了参数自适应律,并且在自适应律中引入充分光滑投影算子,实现对电液伺服系统中不确定参数漂移的抑制作用。
搭建了AMESim与MATLAB的联合仿真平台,对所设计的自适应backstepping控制器进行仿真,作为对比,设计了不带有非线性参数估计的自适应backstepping控制器和PID算法。
仿真表明,本文所设计的控制器具有良好的跟踪性能和补偿非线性不确定参数变化的能力。
%An adaptive backstepping control method with an integral-type Lyapunov function is designed for an electro-hydraulic servo system with nonlinear uncertain parameters. Firstly, the integral-type Lyapunov function is defined to transform the nonlinear parameters to the linear parameters. Then, we design the adaptive backstepping controller with the nonlinear-damping which compensates for external disturbance. Based on Lyapunov method, parameter update laws are given. And sufficiently smooth projection operators are used toconquer the effects of the parameter-drift. Finally, a co-simulation platform using AMESim and Matlab is build to test the performace of the desigend controller. By contrast, PID and the adaptive backstepping controller without considering nonlinear parameters are designed and simulated, respectively. The simulation results show that the designed adaptive backstepping controller using nonlinear parameter adaption laws gives a satisfactory tracking performance and can compensate for the nonlinear uncertain parameters.【总页数】8页(P181-188)【作者】林浩;李恩;梁自泽【作者单位】中国科学院自动化研究所复杂系统管理与控制国家重点实验室,北京100190;中国科学院自动化研究所复杂系统管理与控制国家重点实验室,北京100190;中国科学院自动化研究所复杂系统管理与控制国家重点实验室,北京100190【正文语种】中文【中图分类】TP273【相关文献】1.基于奇异摄动理论的电液伺服系统Backstepping滑模自适应控制 [J], 吴忠强;夏青2.基于Backstepping的阀控非对称缸电液伺服系统非线性控制 [J], 郭洪波;李洪人3.具有参数不确定性的轮式移动机器人自适应backstepping控制 [J], 孙棣华;崔明月;李永福4.控制量前具有不确定系数的电液伺服系统自适应控制 [J], 方一鸣;韩永成;赵琳琳;李强5.基于Backstepping的电液伺服系统多级自适应滑模控制 [J], 管成;朱善安因版权原因,仅展示原文概要,查看原文内容请购买。
渤海大学硕士研究生 非线性系统 课程考核论文
院(系、部): 工学院 年级: 2013 级 专业: 控制理论与控制工程
姓名: 郑晓龙 学号: 2013080030
密 封 线
第1页(共11页)
任课教师: 刘亮
一、命题部分
考虑如下三阶严格反馈非线性系统
并且
设计状态控制器使得闭环系统是渐进稳定的,并给出一个二阶系统的数值仿真算例。
二、评分标准
1、论文排版格式(15分); 2、控制器设计过程(45分);
3、仿真算例控制器设计(25分); 4、Matlab仿真图片(15分)。
三、教师评语
请根据您确定的评分标准详细评分,给定成绩,填入“成绩”部分。
阅 卷 教 师 评 语
成 绩
评阅教师签字:
2014年 月 日
____________________________
注1:本页由学生填写卷头和“任课教师”部分,其余由教师填写。其中蓝色字体部分请教师在命题时删除。提交试卷时含
本页。学生从第二页开始写作,要求见蓝色字体部分。
注2:“阅卷教师评语”部分请教师用红色或黑色碳素笔填写,不可用电子版。无“评语”视为不合规范。
注3:试题、评分标准、评语尽量控制在本页。
注4:不符合规范试卷需修改规范后提交。
密 封 线
第2页(共11页)
Backstepping控制设计
郑晓龙
提要 Backstepping设计方法是针对非线性系统的一种系统化的控制器综合方法,是将Lyapunov函数的选取与控
制器的设计相结合的一种回归设计方法。它通过从系统的最低阶次微分方程开始,引入虚拟控制的概念,一
步一步设计满足要求的虚拟控制,最终设计出真正的控制律。本文基于Backstepping设计方法对三阶严格反
馈非线性系统进行了控制器设计,并对结论做了仿真验证。
关键词 Backstepping 非线性系统控制
一、引言
Backstepping (逐步后推,反推)设计方法是针对不确定性系统的一种系统化的控制器综合方法,
是将Lyapunov 函数的选取与控制器的设计相结合的一种回归设计方法。它通过从系统的最低阶次微分方
程开始,引入虚拟控制的概念,一步一步设计满足要求的虚拟控制,最终设计出真正的控制律.
Backstepping自适应控制是当前自适应控制理论和应用的前沿课题之一,近年来, 在处理线性和某些
非线性系统时, 该方法在改善过渡过程品质方面展现出较大的潜力,除航空航天领域外, 在液压控制、电
机控制、机器人控制、船舶控制等许多工业控制领域, 反推自适应控制的应用在国内外均有大量报道.
Backstepping 方法在处理非线性控制问题方面所具有的独特的优越性,近年来引起了众多学者的极
大关注。Backstepping 的基本设计思想是将复杂的非线性系统分解成不超过系统阶数的子系统,然后单
独设计每个子系统的部分 Lyapunov 函数,在保证子系统具有一定收敛性的基础上获得子系统的虚拟控制
律,在下一个子系统的设计中,将上一个子系统的虚拟控制律作为这个子系统的跟踪目标。相似于上个子
系统的设计,获得该子系统的虚拟控制律;以此类推,最终获得整个闭环系统的实际控制律,且结合
Lyapunov 稳定性分析方法来保证闭环系统的收敛性。
Backstepping 可用来设计控制方案以满足三角结构单输入单输出非线性系统的匹配条件。
Backstepping 设计方法之所以受到国内外学者的极大关注,主要原因为该方法取消了系统不确定性满足
匹配条件的约束,从而解决了相对复杂的非线性系统的控制问题。在现实世界中,存在大量非线性系统具
有(或者可以经过微分同胚变换成)严格反馈等规范型;该方法为复杂非线系统的 Lyapunov 函数设计提供
了较为简单的结构化、系统化方法,解决了一直以来具有严格反馈等结构的非线性系统稳定性分析和控制
器设计的难题。自适应 backstepping 设计方法发展的初级阶段,要求系统不确定性能够线性参数化。随
着神经网络与模糊系统等智能控制技术的不断发展,很好地取消了自适应 backstepping 设计所需的该约
束条件,从而使得 backstepping技术获得了很大的发展空间。特别是神经网络和自适应技术的引入,极
大地推广了backstepping 方法的应用。
二、基于Backstepping三阶严格反馈非线性系统控制器设计
考虑如下三阶严格反馈非线性系统
(1)
密 封 线
第3页(共11页)
这里,321,,fff是局部Lipschitz且满足)0,0,0()0,0()0(321fff。
假设 1.
3,2,1),(1ixxkf
iii
。
首先,做如下坐标变换:
(2)
这里,21,为虚拟控制。
第一步,选择Lyapunov函数:
(3)
1
V
的导数为:
(4)
使用假设 1和完全平方公式得:
(5)
将(5)带入(4)得:
(6)
设计虚拟控制1为:
(7)
这里111ck,然后可以得到下面的不等式:
(8)
第二步,选择Lyapunov函数: