(完整版)高性能金属新材料
- 格式:doc
- 大小:27.61 KB
- 文档页数:7
新型金属材料的最新研究进展在金属材料的领域,新材料的研究是必不可少的。
随着技术的发展和社会的需求,人们对于新型金属材料的研究也越来越关注。
以下介绍几种新型金属材料的最新研究进展。
一、超导金属材料超导是一种电性质,在一些物质中可以表现出来。
所谓超导,就是在低温下材料的电阻值为零。
超导材料广泛应用于磁共振成像、磁悬浮列车和磁能量存储等领域。
随着研究的深入,新型超导材料也不断涌现。
最近,一项由美国纽约州立大学石溪分校(Stony Brook University)研究团队领导的研究发现了一种新型超导材料,该材料表现出了几乎无损耗的电流输送。
这种新型超导材料的研究对能源的利用和环境保护具有重要意义。
二、高熵合金高熵合金是一种由多种元素组成的新型金属材料。
与传统材料相比,高熵合金拥有更高的强度、更好的塑性和更好的耐腐蚀性能。
这种材料被广泛应用于航空、航天、能源、环保和汽车制造等领域。
最近,南方科技大学材料科学与工程系教授钟文锋研究团队成功研制出了一种新型高熵合金,该合金具有超强的抗拉强度和良好的韧性,且在高温高压环境下也表现出了优异的性能。
三、金属框架材料金属框架材料是一种由金属离子和有机物分子共同组成的新型材料。
与传统材料相比,金属框架材料具有更好的气体吸附性能、更好的催化性能和更好的分离性能。
它们广泛应用于气体分离、储氢、催化反应和环境污染治理等领域。
最近,南开大学化学学院罗晋教授和美国加州大学伯克利分校(University of California, Berkeley)Mohammad Javad Mirzaei博士联合研究发现了一种新型金属框架材料,该材料表现出了较高的氧化亚氮催化活性。
这项研究为环境污染治理提供了新的解决思路。
四、超塑性金属材料超塑性金属材料是一种具有优异塑性变形能力的新型材料。
它们可以在极低的应力下发生大变形,具有可塑性好、产品成型精度高的特点。
这种新型材料被广泛应用于飞机、汽车和半导体制造等领域。
有色金属新材料有色金属新材料是指除铁、钢、合金钢以外的金属材料,包括铜、铝、镁、锌、镍、钛等。
这些材料具有良好的导电性、导热性、耐腐蚀性和可塑性,被广泛应用于航空航天、汽车制造、电子通讯、建筑工程等领域。
随着科技的不断发展,有色金属新材料的研究和应用也得到了极大的推动,为各行各业的发展提供了重要支持。
首先,有色金属新材料在航空航天领域具有重要意义。
铝合金、镁合金等轻质高强材料被广泛应用于飞机、火箭、卫星等航空航天器件的制造中,有效降低了整体重量,提高了飞行性能,同时也减少了燃料消耗,减轻了对环境的污染。
此外,铜合金、镍合金等耐高温耐腐蚀材料的应用,也为航空航天领域的发展提供了重要支持。
其次,有色金属新材料在汽车制造领域发挥着重要作用。
随着汽车工业的快速发展,对汽车材料的要求也越来越高。
铝合金、镁合金等轻质高强材料的应用,可以有效降低汽车整体重量,提高燃油经济性,减少尾气排放,符合节能减排的发展趋势。
同时,铜合金、铝合金等导电性能良好的材料,也为汽车电子设备的制造提供了重要支持。
此外,有色金属新材料在电子通讯领域也具有重要意义。
铜、铝等导电性能良好的金属材料被广泛应用于电子线路板、通讯设备等领域,提高了设备的传输速度和稳定性。
同时,铜合金、铝合金等耐腐蚀性良好的材料,也为电子设备的使用寿命提供了保障。
最后,有色金属新材料在建筑工程领域也有着重要的应用。
铝合金、镁合金等轻质高强材料被广泛应用于建筑结构中,提高了建筑物的整体稳定性和抗风抗震能力。
同时,铜合金、锌合金等耐腐蚀性良好的材料,也为建筑物的外墙装饰、屋面防水等提供了重要支持。
总的来说,有色金属新材料在各个领域都发挥着重要作用,为现代工业的发展提供了重要支持。
随着科技的不断进步,有色金属新材料的研究和应用也将不断深化,为各行各业的发展带来新的机遇和挑战。
我们有理由相信,有色金属新材料一定会在未来的发展中发挥越来越重要的作用,为人类社会的进步做出更大的贡献。
《重点新材料首批次应用示范指导目录(2021年版)》序号材料名称性能要求先进基础材料一先进钢铁材料(一)海洋工程用钢1高性能船舶用钢(1)油船货油舱用耐蚀钢:在模拟上甲板工况腐蚀条件下,25年后钢板的腐蚀损耗估算值ECL≤2mm,钢板母材和焊缝金属之间无不连续表面;在模拟内底板工况腐蚀条件下,钢板的腐蚀速率C.R.≤1mm/年,钢板母材和焊缝金属之间无不连续表面;(2)高强度止裂船板:屈服强度≥460MPa,抗拉强度570~720MPa,延伸率≥17%,-40℃冲击功≥64J,止裂韧度Kca≥8000N/mm3/2。
2海洋工程用钢(1)F级超低温韧性超高强度海洋工程用钢(厚度≥80mm):屈服强度≥690MPa,抗拉强度≥770MPa,延伸率≥14%;钢板1/4和1/2厚度处,-60℃横向冲击≥46J;(2)大规格高等级海洋工程系泊链:等级R4S,直径150~200mm;屈服强度≥700MPa,抗拉强度Rm≥960MPa,断后伸长率A≥12%,断面收缩率Z≥50%,链体-20℃冲击吸收能量值(KCV)≥56J,焊缝-20℃冲击吸收能量值(KCV)≥40J,硬度≤HB330,心部和R/3处硬度相差不超过15%,氢脆试验Z1/Z2≥0.85;(3)海洋工程用高断裂韧性高强钢厚板:厚度50~120mm,屈服强度≥414MPa,抗拉强度≥517MPa,-40℃心部横向冲击吸收能量值≥48J,Z向性能≥35%,API2Z可焊性试验-10℃粗晶区CTOD值≥0.46mm,现场施焊条件下-10℃接头CTOD值≥0.3mm;(4)海洋平台桩腿结构用大厚度高强齿条钢:厚度≥177.8mm的特厚钢板,屈服强度≥690MPa,-40℃低温冲击吸收能量值≥69J,Z向抗撕裂性能达到Z35级,以及低碳当量下的焊接性能(Ceq≤0.75%)。
(二)交通装备用钢3新型汽车轻量化材料变厚度钢板厚度公差±0.05mm,累计长度公差±2mm,浪高≤12mm;过渡区测量点偏差≤10mm;差厚比>1:2.1。
有色金属新材料
有色金属新材料是指除了铁、钢之外的金属材料,主要包括铜、铝、镁、锌、
钛等金属及其合金。
这些材料具有优良的导电、导热、耐腐蚀等特性,在航空航天、汽车制造、电子通讯、建筑工程等领域有着广泛的应用前景。
随着科技的不断发展,有色金属新材料的研究和应用也日益受到重视。
首先,有色金属新材料具有良好的导电性能。
铜、铝等金属是优良的导电材料,被广泛应用于电力传输、电子设备等领域。
与铁、钢相比,有色金属新材料的导电性能更优越,能够有效减小电能损耗,提高能源利用效率。
其次,有色金属新材料具有良好的导热性能。
铜、铝等金属不仅具有良好的导
电性能,而且具有优异的导热性能,被广泛应用于制冷设备、散热器等领域。
利用有色金属新材料制成的散热器能够有效地散发热量,保证设备的正常运行。
此外,有色金属新材料具有良好的耐腐蚀性能。
在恶劣的环境中,铜、铝等金
属能够表现出较高的耐腐蚀性能,能够保证设备长时间稳定运行。
因此,在海洋工程、化工设备等领域,有色金属新材料得到了广泛的应用。
另外,有色金属新材料的轻质化特性也备受关注。
在汽车制造、航空航天等领域,轻质化材料的应用已成为发展的趋势。
铝、镁等金属及其合金因其轻质化特性,能够有效减轻设备自重,提高设备的运行效率。
总的来说,有色金属新材料具有导电性能好、导热性能好、耐腐蚀性能好、轻
质化特性等优点,被广泛应用于各个领域。
随着科技的不断发展,相信有色金属新材料将会有更广阔的应用前景,为各行各业的发展带来更多的可能性。
高性能铝合金新材料开发建议书当今社会,铝合金材料因其优异的性能和广泛的应用前景,已经成为工业领域中的重要材料之一。
然而,传统的铝合金材料在某些方面还存在着一定的局限性,无法满足现代工业对材料性能的更高要求。
为此,我们提出开发高性能铝合金新材料的建议。
一、背景与意义随着科技的不断进步和工业的快速发展,对铝合金材料的性能要求也越来越高。
传统的铝合金材料在强度、硬度、耐腐蚀性等方面已无法满足部分高端领域的需求。
因此,研究和开发高性能铝合金新材料具有重要的现实意义和广阔的市场前景。
二、目标与任务高性能铝合金新材料开发的目标是:提高材料的强度、硬度、耐腐蚀性等性能,拓宽其应用领域。
具体任务如下:1.研究并确定新材料的成分设计,通过合理的元素配比,实现材料性能的优化。
2.探索合适的制备工艺,包括熔炼、铸造、轧制、挤压等,确保材料的微观结构和性能的稳定。
3.对新材料进行性能测试与评估,包括抗拉强度、硬度、耐腐蚀性等,以验证新材料的性能优势。
4.开展新材料的应用研究,将其应用于实际工业领域,以拓宽其应用范围。
三、实施方案与步骤1.组成研究团队:组建一支由材料科学家、工程师、技术人员等组成的研究团队,共同开展高性能铝合金新材料的研究与开发。
2.调研与分析:收集并分析国内外高性能铝合金的研究现状和发展趋势,明确研究方向和目标。
3.成分设计:根据性能要求,设计合理的元素配比,进行小批量试验,优化材料成分。
4.制备工艺研究:探索并确定合适的熔炼、铸造、轧制、挤压等工艺,确保材料的微观结构和性能的稳定。
5.性能测试与评估:对新材料进行性能测试与评估,包括抗拉强度、硬度、耐腐蚀性等,以验证新材料的性能优势。
6.应用研究:开展新材料的应用研究,将其应用于实际工业领域,以拓宽其应用范围。
四、预期成果与效益1.预期成果:成功研发出高性能铝合金新材料,实现材料性能的优化,满足现代工业对材料性能的更高要求。
2.经济效益:高性能铝合金新材料的开发和应用将带来显著的经济效益,降低生产成本,提高产品竞争力。
全球20大未来潜力新材料1. 石墨烯(Graphene): 石墨烯是由单层碳原子构成的二维晶体结构,具有极高的导电性和导热性,被广泛应用于电子、能源储存和传输领域。
2. 纳米纤维素(Nanocellulose): 纳米纤维素是从天然植物纤维中提取得到的纳米级材料,具有高强度、低密度和高生物降解性,可应用于纳米复合材料、生物医学和环境保护等领域。
3. 二维过渡金属二硫化物(2D Transition Metal Dichalcogenides): 这类材料具有层状结构,具有优异的电子和光学性质,在电子器件、光电子学和电化学储能方面有巨大的应用潜力。
4. 钙钛矿材料(Perovskite): 钙钛矿材料在太阳能电池领域表现出良好的光电转换效率,同时成本相对较低,成为太阳能领域的一个热门研究方向。
5.金属有机骨架材料(MOFs):MOFs具有大孔洞结构和高比表面积,可用于气体存储和分离、催化和药物传递等领域。
6. 纳米氧化物(Nanooxides): 纳米氧化物具有较高的表面积和优异的催化性能,在能源转换、环境治理和生物医学等领域具有广泛的应用前景。
7. 3D打印材料(3D Printing Materials): 随着3D打印技术的快速发展,各种高性能、可定制的3D打印材料不断涌现,应用于汽车、航空航天、医疗和消费品等领域。
8. 烯烃聚合物(Olefin Polymers): 烯烃聚合物具有出色的机械强度、耐久性和化学稳定性,广泛应用于塑料制品、纤维和涂料等领域。
9. 生物基聚合物(Biopolymer): 生物基聚合物以可再生资源为原料制备而成,具有低碳排放、生物可降解和可吸收性等特点,逐渐取代传统的石油基聚合物。
10. 聚合物质子交换膜(Polymer Proton Exchange Membrane): 聚合物质子交换膜是一种具有高导电性和化学稳定性的材料,广泛应用于燃料电池和电解水等能源转换技术中。
新型金属材料有哪些随着科技的不断发展,新型金属材料的研究和应用也日益受到人们的关注。
新型金属材料具有优异的性能和广泛的应用前景,对于推动工业和科技的发展起着至关重要的作用。
那么,新型金属材料究竟有哪些呢?接下来,我们将对几种常见的新型金属材料进行介绍。
首先,我们来介绍一种被广泛应用的新型金属材料——高强度钢。
高强度钢具有优异的强度和硬度,能够承受较大的载荷,因此被广泛用于航空航天、汽车制造等领域。
与传统钢材相比,高强度钢具有更好的耐磨性和耐腐蚀性,能够延长使用寿命,降低维护成本。
其次,钛合金是另一种备受关注的新型金属材料。
钛合金具有优异的耐高温性能和良好的耐腐蚀性能,因此被广泛应用于航空航天、船舶制造等领域。
同时,钛合金还具有较低的密度和良好的可塑性,能够满足复杂零部件的加工需求。
除此之外,镁合金也是一种备受瞩目的新型金属材料。
镁合金具有较低的密度和良好的机械性能,能够满足节能减排的要求,因此在汽车制造、航空航天等领域有着广泛的应用前景。
与此同时,镁合金还具有良好的可塑性和耐腐蚀性能,能够满足复杂构件的加工需求。
最后,我们要介绍的是形状记忆合金。
形状记忆合金是一种具有记忆效应的新型金属材料,能够在受到外力作用后恢复到原来的形状。
形状记忆合金具有广泛的应用前景,可以用于医疗器械、航空航天等领域,为人们的生活和工作带来便利。
综上所述,新型金属材料具有优异的性能和广泛的应用前景,对于推动工业和科技的发展起着至关重要的作用。
高强度钢、钛合金、镁合金和形状记忆合金都是备受关注的新型金属材料,它们各自具有独特的优势和应用领域,将为人类社会的发展带来更多的可能性。
相信随着科技的不断进步,新型金属材料的研究和应用将会取得更大的突破,为人类社会的发展注入新的活力。
什么是镁合金?镁材料的应用在哪些方面?镁合金由于其比强度高、弹性模量大、散热好、消震性好、承受冲击载荷能力比铝合金大、耐有机物和碱的腐蚀性能好等特点,现已广泛应用于航空、航天、运输、化工、火箭等领域。
除此之外,镁合金在医疗器械上的应用潜力很大;如果金属镁企业能在加工性能和产品价格上取得突破,那么镁合金也将在LED产业得到广泛应用。
什么是镁合金?镁材料的应用在哪些方面?接下来,就带你了解一下吧!左铁镛院士在今年新材料发展趋势高层论坛中说到:“就镁材料来说,近20年来,我国的镁材料已取得了三个“第一”的好成绩,分别是镁产量第一,镁储量第一和镁出口量第一。
现在我国在上海交通大学和重庆大学分别建立了镁材料研究中心,在山西、陕西等省份形成产业一体化的布局,大大促进了我国镁合金的研究应用。
目前,镁金属与铝金属相比,价格只高出20%,相较之前有大幅度降低,这也能极大的促进镁合金的研究发展和应用。
”那么,镁合金的优势在哪?1什么是镁合金?镁是地球上储量最丰富的轻金属元素之一,镁的比重是1.74g/cm3,只有铝的2/3、钛的2/5、钢的1/4;镁合金比铝合金轻36%、比锌合金轻73%、比钢轻77%。
镁具有比强度、比刚度高,导热导电性能好,并具有很好的电磁屏蔽、阻尼性、减振性、切削加工性以及加工成本低、加工能量仅为铝合金的70%和易于回收等优点。
镁合金是以镁为基加入其他元素组成的合金。
镁合金的比强度高于铝合金和钢,略低于比强度最高的纤维增强塑料;比刚度与铝合金和钢相当,远高于纤维增强塑料;耐磨性能比低碳钢好得多,已超过压铸铝合金A380;减振性能、磁屏蔽性能远优于铝合金。
镁合金是制造工业中可使用的最轻金属结构材料之一,其性能特点决定了众多的应用优势:一是减轻资源压力,镁合金产品的应用可以缓解铁矿和铝矿资源短缺的压力;二是减轻能源和环境压力,以汽车为例,镁合金大规模应用可降低10%—15%的油耗和排放;三是镁合金产品减震性能优越;四是镁合金能源特性好,在某种程度上可以说有镁就有电;五是镁合金产品可屏蔽电子辐射,可广泛用于手机和电脑外壳……中国有丰富的镁资源(占世界70%以上)和巨大的应用市场,为制造业减重的同时必将提升中国制造业的竞争力。
高性能金属新材料(特种金属功能材料、高端金属结构材料)一、金属类新材料金属新材料按功能和应用领域可划分为高性能金属结构材料和金属功能材料。
高性能金属结构材料指与传统结构材料相比具备更高的耐高温性、抗腐蚀性、高延展性等特性的新型金属材料,主要包括钛、镁、锆及其合金、钽铌、硬质材料等,以及高端特殊钢、铝新型材等。
金属功能材料指具有辅助实现光、电、磁或其他特殊功能的材料,包括磁性材料、金属能源材料、催化净化材料、信息材料、超导材料、功能陶瓷材料等。
与其他材料相比,稀土具有优异的光、电、磁、催化等物理特性,近年来在新兴领域的应用急速增长,其中永磁材料是稀土应用领域最重要的组成部分,2009年永磁材料占稀土新材料消费总量的57%。
在国家新兴产业政策的推动下,新能源汽车、风力发电、节能家电等领域将拉动稀土永磁材料钕铁硼磁体的需求出现爆发式增长。
建议重点关注钕铁硼行业龙头中科三环、宁波韵升,以及稀土资源类企业包钢稀土、厦门钨业等。
钢铁材料、稀有金属新材料、高温合金、高性能合金是属于金属类工程结构材料。
①、钢铁材料和稀有金属新材料钢铁材料提高钢材的质量、性能,延长使用周期,在钢铁材料生产中,应用信息技术改造传统的生产工艺,提高生产过程的自动化和智能化程度,实现组织细化和精确控制,提高钢材洁净度和高均匀度,出现低温轧制、临界点温度轧制、铁素体轧制等新工艺。
稀有金属新材料指高强、高韧、高损伤容限钛合金,以及热强钛合金、锆合金、难熔金属合金、钽钨合金、高精度铍材等。
②、高温合金和高性能合金高温结构材料主要种类包括:高温合金、粉末合金、高温结构金属间化合物,以及高熔点金属间化合物等。
二、高性能结构材料从世界上新材料的发展趋势看,钢铁材料和有色金属材料的生产一直在向短流程、高效率、节能降耗、洁净化、高性能化、多功能化的方向发展。
结构材料其主要功能是承担负载(如火车、汽车、飞机)。
汽车用钢近年来已从一般钢铁发展为使用高强合金钢、铝合金或特殊的高强Mg基合金,高强Ti合金在高强钢中有重要位置,不锈钢则有取代碳钢的趋势。
用于军用飞机的Al合金及一般钢材则被先进的Ti合金及高分子基复合材料所取代。
进一步还需要发展碳纤维增强复合材料或Al基复合材料。
结构材料的主体有:(1)钢铁钢铁材料,特别是具有多相结构和复杂成分的优质钢具有重要的应用前景和潜在优势,需要开展相应的基础研究。
联系微米和纳米技术的纳米层间结构、织构以及晶界和界面都可视为改善钢铁材料的重要途径。
(2)Al合金Al基材料及相应的沉淀硬化效应导致高强铝合金的出现,相关技术工艺已发展为“沉淀科学”,它涉及“相”间晶体结构的匹配性以及合金的稳定性,特别是时效合金的稳定性直接影响航空或空间应用,因此可视为Al合金基础研究中的重要问题。
(3)Mg合金镁及镁合金广泛应用于冶金、汽车、摩托车、航空航天、光学仪器、计算机、电子与通讯、电动、风动工具和医疗器械等领域。
镁合金是最轻的工程结构材料,以其优良的导热性、减振性、可回收性、抗电磁干扰及优良的屏蔽性能等特点,被誉为新型“绿色工程材料”、21世纪的“时代金属”。
(4)Ti合金Ti合金在军用或民用航空工业的发展中有重要位置,多相纳米尺度层状微结构问题对高强Ti基合金的特性具有重要意义,它将成为设计新Ti基合金的关键因素。
三、国内外金属新材料的发展概况(一)国外金属材料的发展概况:目前世界上已有50万种材料,而新材料正以每年大约5%的速度增长,现今全世界已有800多万种人工合成的化合物,而且每年还以25万种的速度递增,其中有相当一部分将成为新材料。
新材料在新兴技术中的产值居于首位,2000年全世界12项新兴技术的市场总营业额达到10000亿美元,其中新材料占40%。
新材料国际市场需求旺盛,预计2007-2010年锂离子电池产业进入相对平稳增长阶段,销售收入增长率为5.85%;1. 新材料主要领域发展概况钢铁业是全球最大金属产业和第二大人造材料产业,其年产量达7.5亿吨,位居水泥的11亿吨之后。
作为结构材料,钢铁产品在社会生活中应用非常广泛,无论是当前还是今后较长时间内钢铁材料都将占主导地位。
世界钢铁工业技术进步的主流是缩短流程、减少工序、降低能耗降低成本、提高质量、提高效率,使钢铁工业从粗放式向集约化方向发展。
目前钢铁技术的发展主要涉及到钢铁冶炼新技术,钢铁生产新工艺流程的开发,钢铁材料的连铸连轧技术、钢铁用能新技术、轧钢技术、冷轧产品的高质和高功能化以及计算机系统在钢铁工业中的应用等几个方面。
有色金属是指元素周期表中除金属铁、锰、铬以外的64种金属。
由于这些金属具有一系列独特的性能和奇异的功能,如半导体功能、形状记忆功能、介电功能、光、磁、热、化学和核能等,在材料领域里独树一帜,应用极广,成为人类文明发展中不可缺少的物质。
21世纪,人类面临资源枯竭、环境污染、人口剧增三大难题,有色金属材料在解决这些难题过程中起着独特的、不可替代的作用,有色金属材料的生产水平和应用程度已成为一个国家综合国力的标志之一。
其技术发展方向是合成技术向纯净化、细晶体、均质化、强韧化和复合化方向发展,加工技术向高效、节能、短流程、高精度、环保型发展,新型铝合金、镁合金、钛合金的应用越来越广。
新能源材料则是指实现新能源的转化和利用以及发展新能源技术中所要用到的关键材料,主要包括镍氢电池材料、锂离子电池材料、燃料电池材料、太阳能电池材料以及核反应堆用核能材料等。
复合材料是指由两种或两种以上不同材质的材料通过适当的工艺方法复合而成的一种多相材料体系,按其基体种类可分为聚合物基复合材料、金属基复合材料和陶瓷基复合材料三类。
复合材料技术发展趋势是:金属基复合材料中非连续增强复合材料迅速发展,航空和宇航方面的应用前景好;美国和西欧各国侧重于航空和军事应用,日本则力求把它应用在工业上。
信息技术是21世纪高技术发展的先导,而电子信息材料则是信息技术发展的物质基础。
电子信息材料主要包括电子计算机所用的集成电路材料(半导体材料)、与电子计算机配套使用的信息存储材料、光电子材料、传感器材料、磁性材料、电子功能陶瓷、光传导纤维、绿色电池材料等。
电子材料技术发展趋势是:集成电路和半导体器件所用的材料由单片集成向系统集成发展;光电子材料向纳米结构、非均值、非线性和非平衡态发展;新型电子元器件用材料主要向小型化、片式化方向发展。
2. 主要国家材料科技发展概况现代科技发展表明,每一项重大的新技术产生,往往都依赖于新材料的发展,由于新材料在发展高技术、改造和提升传统产业、增强综合国力和国防实力方面起着重要的作用,世界各发达国家都非常重视它的研究开发工作,并制定了相关发展计划,例如美国、日本、欧盟、俄罗斯、韩国等。
美国材料科技的战略目标是保持本领域的全球领导地位,支撑信息技术、生命科学、环境科学和纳米技术等的发展,满足国防、能源、电子信息等重要部门和领域的需求。
美国把生物材料、信息材料、纳米材料、极端环境材料及材料计算科学列为主要前沿研究领域。
美国正在执行的材料相关规划比较多,分为国家层次及部门层次两种。
这些规划主要包括:未来工业材料计划、国家纳米技术计划(NNI)、21世纪纳米技术研究开发法案、美国氢燃料电池研究计划、光电子计划、光伏计划、下一代照明光源计划、先进汽车材料计划、建筑材料计划。
其中与金属新材料有关的有:纳米材料、极端环境材料、先进汽车材料计划、建筑材料计划。
日本材料科技战略目标是保持产品的国际竞争力,注重实用性,在尖端领域赶超欧美。
日本科学技术基本计划重点是生命科学、信息通信、环境、纳米技术与材料等四大领域。
日本注重于已有材料的性能提高、合理利用及回收再生,并在这些方面领先于世界。
日本对新材料的研发与传统材料的改进采取了引进的策略,在结构材料的研究主要集中在超级钢、高性能铝合金、钛合金、镁合金、铜合金、锌合金、高性能陶瓷、超细陶瓷粉体、高性能高分子材料、复合材料方面;材料技术上的发展重点为高纯度化、薄膜化、纤维化、微粒化、气孔化、致密化、复合化、非晶化、梯度功能化、精密成形化等技术。
主要规划有:科学技术基本计划;纳米材料计划;21世纪之光计划;超级钢铁材料开发计划等。
欧盟是政治、经济联盟,也是科技联盟。
欧盟材料科技战略目标是保持在航空航天材料等某些领域的竞争领先优势。
2003年欧盟科研部门指出欧盟准备大力发展的十大材料领域是催化剂、光学材料和光电材料、有机电子学和光电学、磁性材料、仿生学、纳米生物技术、超导体、复合材料、生物医学材料以及智能纺织原料,并认为未来新材料学的研究将体现三大技术特征:①制作技术,新的加工工艺和制造方法将使材料的生产实现从实验室走向工业化;②模仿技术,从材料的自然特性仿制到材料混合特性的研究;③预测技术,开发新的模型和试验方法,从而缩短材料的试验周期。
俄罗斯发展新材料的战略目标是:一方面力求继续保持某些材料领域在世界上的领先地位,如航空航天材料、能源材料、化工材料、金属材料、聚合材料等;另一方面大力发展促进国民经济发展和提高国防实力有影响的领域,如电子信息工业、通讯设施、计算机产业等所用的关键新材料。
俄罗斯在新材料发展中采取的基本策略是:在处理发展高新技术和传统产业关系的同时,做到研发新材料与有效使用传统材为有机结合,在注重研发高新技术所需新材料的同时,对于现有的一般技术所需要的材料进行优选和更新,进而提高利用率。
使研发新材料有的放矢、重点突出、周期缩短、效果显著。
俄罗斯新材料的主要研发方向是结构材料和功能材料,具体为金属材料、陶瓷材料、复合材料、高分子材料、高纯度材料以及生物材料、超导材料和纳米材料等。
俄罗斯在航空航天以及与国防有关的材料方面投入很大,以期保持在国防与空间技术方面与美国抗衡的实力。
韩国材料科技的战略目标是继美国、日本、德国之后,成为世界产业第四强国,材料科技被认为是确保2025年国家竞争力的6项核心技术之一,也是为其他领域技术实现突的破铺路技术。
与材料相关的主要规划为:韩国科技发展长远规划--2025年构想;新产业发展战略;纳米科技推广计划;NT(纳米技术)综合发展计划(2001-2010年);韩国的G7计划及2025构想提出了针对高新材料的发展方向,在新材料产业战略中对钢铁、化工材料的发展制定了明确目标;生物工程科学发展计划;原子能技术开发计划等。
(二)国内金属新材料的发展概况1. 国家高度重视金属新材料的发展高性能金属材料产业是高新技术发展的重要基础和先导产业,前沿技术不断突破,新产品开发不断加快,在新材料领域中占有重要的战略地位。
目前,高性能金属材料技术正处于加快发展的关键时期,作为当今科技创新和产业化的重要前沿领域,高性能金属材料产业的发展水平成为一个国家和地区经济社会发展、科技进步和综合实力的重要标志之一。