漫反射光谱(DRS)
- 格式:ppt
- 大小:1.25 MB
- 文档页数:32
固体样品的紫外-可见漫反射光谱(UV-Vis DRS)测定一、实验目的1.掌握紫外-可见漫反射原理;2.了解紫外-可见分光光度计的类型和结构;3.数据处理及分析。
二、实验原理1.紫外-可见漫反射光谱与紫外一可见吸收光谱相比,所测样品的局限性要小很多。
吸收光谱符合朗伯-比尔定律,溶液必须是稀溶液才能测量。
而漫反射光谱,所测样品可以是浑浊溶液、悬浊溶液、固体和固体粉末等,试样产生的漫反射符合Kublka-Munk方程式:()2-=R R K S12//∞∞式中:K——吸收系数S——散射系数R∞——表示无限厚样品的反射系数R的极限值,其数值为一个常数。
实际上,一般不测定样品的绝对反射率,而是以白色标准物质为参比(本实验采用BaSO4,其反射系数在紫外-可见区高达98%左右)比较测量得到的相对反射率R∞(样品)/R∞(参比),将此比值对波长作图,构成一定波长范围内该物质的反射光谱。
积分球是漫反射测量中的常用附件之一,其内表面的漫反射物质反射系数高达98%,使得光在积分球内部的损失接近零。
漫反射光是指从光源发出的的光进入样品内部,经过多次反射、折射、散射及吸收后返回样品表面的光。
这些光在积分球内经过多次漫反射后到达检测器。
2.固体漫反射吸收光谱漫反射光谱是一种不同于一般吸收光谱的在紫外、可见和近红外区的光谱,是一种反射光谱,与物质的电子结构有关。
D:漫反射S:镜面反射固体漫反射示意图当光照射固体样品时,固体样品的外层电子产生跃迁。
νλE=h=h*C/式中:E为禁带能h=6.626⨯10-34J⋅S(普朗克常数)C=8⨯108m⋅S-1λ为截止波长,待测本实验测试仪器为岛津公司生产的UV-3600(大附件MPC-3100)分光光度计。
三、实验过程1.打开分光光度计预热20-30min;2.通过UVProbe软件设置相应参数;3.样品漫反射光谱测试;4.数据处理及分析。
四、实验报告及要求1.掌握实验原理以及相关知识;2.参数设置时的技巧;3.计算所测半导体材料的带隙,附图谱。
漫反射红外傅里叶变换光谱
漫反射红外傅里叶变换光谱(DRIFTS)是一种广泛应用于材料表征的非破坏性光谱技术。
它是将样品与一束红外光束接触,通过测量反射光的强度和频率变化,得到样品的物理和化学信息。
DRIFTS技术可以应用于各种领域,如化学、生物、环境和材料科学。
在石油和石化工业中,DRIFTS技术可以用于确定催化剂表面上的化学反应物和产物。
DRIFTS技术的核心是傅里叶变换光谱技术。
通过傅里叶变换,可以将时间域信号(光强与时间的关系)转换为频率域信号(光强与频率的关系)。
这使得我们可以分析光谱数据中的特定频率,以确定样品中的化学键和分子结构。
DRIFTS技术的优点是可以对样品进行非破坏性分析,并且可以测量非常小的样品。
DRIFTS技术的应用范围非常广泛。
在农业领域,DRIFTS技术可以用于鉴定植物的品种和生长环境。
在制药领域,DRIFTS技术可以用于测定药物的质量和成分。
在环境领域,DRIFTS技术可以用于监测大气污染物和水质。
在材料科学领域,DRIFTS技术可以用于研究材料的物理和化学性质,如纳米材料的表面结构和催化剂的活性。
总之,DRIFTS技术是一种非常重要的光谱技术,可以在各种领域中进行广泛应用。
它的应用范围越来越广泛,对于解决现实问题和推动科学研究都有着重要的作用。
- 1 -。
漫反射光谱测定云南元谋盆地古红土铁氧化物刘延国;刘艳秋;欧阳莉莉;蔡元峰;黄成敏【摘要】铁氧化物矿物是现代土壤和古土壤的重要组成,其数量和形态是反映土壤成土条件和土壤风化发育程度的重要指标.鉴于其粒度细小、结晶度差、含量低、与粘土矿物密切共生,加之基体效应的影响,难以快速准确测定其含量;鉴于某些测试方法自身的限制,能用于铁氧化物矿物定量分析的方法也很少.在分析目前常用测量方法的基础上,选择漫反射光谱法(DRS)对云南元谋盆地所采古红土样品中的铁氧化物进行定量研究,结果表明:漫反射光谱法测得土壤样品在400~2 500nm之间,间隔2nm共1 061个波段的光谱反射率最高45%左右,各样品反射率特征较为一致;漫反射光谱一阶导数显示,光谱主峰位于575 nm处,为赤铁矿的指示波谱段,次级峰位于435nm处,为针铁矿的指示波谱段;确定云南元谋古红土存在赤铁矿和针铁矿,其含量范围3~5和5~10 g· kg-1,此结果获得XRD方法分析方法的佐证.【期刊名称】《光谱学与光谱分析》【年(卷),期】2018(038)011【总页数】5页(P3516-3520)【关键词】元谋盆地;古红土;铁氧化物;DRS【作者】刘延国;刘艳秋;欧阳莉莉;蔡元峰;黄成敏【作者单位】四川大学建筑与环境学院,四川成都610065;西南科技大学环境与资源学院,四川绵阳 621010;四川大学建筑与环境学院,四川成都610065;四川大学建筑与环境学院,四川成都610065;南京大学金属成矿作用机制国家重点实验室,江苏南京210093;四川大学建筑与环境学院,四川成都610065【正文语种】中文【中图分类】O657.3引言铁作为土壤矿物中的主要元素之一,是最重要的过渡元素,主要以铁氧化物形式存在,针铁矿和赤铁矿又最为常见,其数量和形态是成土过程和成土环境的反映,在土壤化学、土壤发生学、植物营养学和环境化学及生物地球化学等方面的研究具有重要的理论和实践意义[1]。
高级物理化学实验讲义实验项目名称:红外反射光谱原理、实验技术及应用编写人:苏文悦编写日期:2011-7-7一、实验目的(宋体四号字)1、了解并掌握FTIR-ATR、FTIR-DRS和FTIR-RAS等红外光谱表面分析技术的原理、实验技术及应用2、比较分析FTIR-ATR、FTIR-DRS和FTIR-RAS等红外光谱技术各自适用的样品、同一样品不同红外光谱的谱带位置及形状。
二、实验原理衰减全反射(ATR)、漫反射(DRS)和反射吸收(RAS)都是傅里叶变换红外反射光谱,是FTIR常用的表面分析技术。
1全反射光谱原理、实验技术及应用全反射:光由光密(即光在此介质中的折射率大的)媒质射到光疏(即光在此介质中折射率小的)媒质的界面时,全部被反射回原媒质内的现象。
很多材料如交联聚合物、纤维、纺织品和涂层等,用一般透射法测量其红外光谱往往很困难,但使用FTIR及ATR技术却可以很方便地测绘其红外光谱。
(1)入射角与临界角在通常情况下,光透射样品时是从光疏介质的空气射向光密介质样品的,当垂直入射(入射角θ为0°)时,则全部透过界面;当θ≠0°时,如果两者的折射率相差不大,则光是以原方向透射的,但如折射率差别较大,则会产生折射现象。
当n2与n1有足够的差值(0.5以上),且入射光从光密介质(n1)射向光疏介图1 入射角(θ)及折射率(n1,n2)对光在界面上行为的影响θc为临界角,sinθc=n2/n1质(n2),入射角θ大于一定数值时,光线会产生全反射现象。
这个“一定数值”的角度称为临界角,也即当折射角φ等于90°时的入射角θ称为临界角θc,如图1,其中临界角θc和折射率n1和n2有如下关系: sinθ=n2/n1显然,临界角的数值取决于样品折射率与全反射晶体的折射率之比,对同一种全反射晶体,不同材质的样品会有不同的临界角值,表1所列数值可看出这一关系。
表1在ATR和MIR方法中必须选用远大于临界角的入射角,即sinθ>n2/n1,以确保全反射的产生和所获光谱的质量,本实验运用单次衰减全反射ATR附件,反射晶体是锗,入射角固定为45°,远大于临界角。
浅谈原位漫反射傅立叶变换红外光谱漫反射傅立叶变换红外光谱(DRIFTS)是近年来发展起来的一项原位(in situ)技术,通过对催化剂上现场反应吸附态的跟踪表征以获得一些很有价值的表面反应信息,进而对反应机理进行剖析,已在催化表征中日益受到重视.该表征技术适合于固体粉末样品的直接测定以及材料的表面分析。
将漫反射方法,红外光谱与原位红外技术结合,试样处理简单,无需压片,并且不改变样品原有形态,所以较之其他原位红外方法更容易实现在各种温度,压力和气氛下的原位分析。
1实验原理与装置原位漫反射红外光谱的实验系统一般由漫反射附件、原位池、真空系统、气源、净化与压力装置,加热与温度控制装置、FTIR光谱仪组成。
在红外光谱仪样品室加装一个漫反射装置,将装好样品的原位池置于其中,调整漫反射装置,使样品上的漫反射光与主机的光路匹配,以实现漫反射测量。
原位池可在高温、高压,高真空状态下工作。
图1所示为漫反射红外装置的光路图。
光谱仪光源发出的红外辐射光束经一椭圆镜会聚在样品表面并在内部进行折射、散射、反射和吸收,当这部分辐射再次穿出样品表面时,即是被样品吸收所衰减了的漫反射光。
如图2所示。
图3为漫反射原位池结构示意图,图4为热电公司红外的漫反射附件实物图图1 图2图3图4目前原位红外漫反射方面国内做的最好是大连化物所的辛勤老师,自行设计出一套漫反射红外装置.利用该装置在催化反应机理推导方面研究出很多有意义的结果。
2.实验操作开机前需要更换干燥剂,装好液氮先对检测器冷却,依次打开电脑、仪器、软件并检查各项参数是否在指定范围内,根据需要设置扫描次数、分辨率、纵坐标.对于智能型有的参数一般是不需要更改设置的。
调节样品池高度使探测器接收到的能量最大(粗调),然后将所测固体粉末样品装入样品池中,刮平样品表面,装上窗体,再调节样品池高度(细调),保证光正好打在样品上。
样品颗粒越细越好,这样得出的谱图会更精细。
对于深色样品不利于测样可以掺入溴化钾稀释。
漫反射光谱原理
漫反射光谱原理是指光线照射到物体表面时,光由于物体表面的粗糙度或材料的非均匀性而发生散射的现象。
在这种散射过程中,不同波长的光以不同的角度散射出去,形成一种特定的波长分布,即漫反射光谱。
漫反射光谱可以用来研究物体的颜色、材料成分、结构特征等信息。
当白光照射到物体表面时,物体会吸收部分光的能量,而反射出来的光则包含了物体表面所具有的颜色信息。
根据物体表面的不同特性,不同波长的光会以不同的强度散射出来,形成一个光强分布的谱。
漫反射光谱被广泛应用于材料科学、化学、生物医药等领域。
通过分析物体散射出的漫反射光谱,可以推断物体的颜色、成分、纹理、粗糙度等信息。
同时,漫反射光谱的研究还可以帮助人们了解光与物质的相互作用规律,为新材料的设计与制备提供理论指导。
总的来说,漫反射光谱原理是通过研究物体表面光的散射特性,得到一种特定的波长分布,用以分析物体的颜色、成分与结构等信息。
通过这种原理的应用,人们可以更深入地了解物质的性质与特征,为科学研究与实际应用提供有力支持。
漫反射光谱是一种光谱学技术,通常用于表征固体样品的光学性质。
与传统的吸收光谱不同,漫反射光谱测量的是样品对光的散射或反射。
因此,漫反射光谱中没有明确的吸收峰,而是反映了样品中的光散射特性。
漫反射光谱通常在可见光范围内进行测量,并用于分析物质的组成、结构和颜色等信息。
通过分析漫反射光谱,可以获得以下信息:
颜色:漫反射光谱可以用于定量分析样品的颜色特性,包括颜色的饱和度、亮度和色调。
组成:根据漫反射光谱的特征,可以推断样品中的不同化学成分。
不同化学物质对光的散射特性可能会不同,从而在光谱中产生不同的特征。
结构:漫反射光谱可以用于研究样品的微观结构,如晶体、颗粒大小和形状等。
虽然漫反射光谱本身没有吸收峰,但通过分析漫反射光谱的光谱特征和形状,可以获得有关样品的有用信息。
对于具体的样品和应用,可能需要与其他分析技术或数据处理方法相结合,以进一步解释光谱结果。
光催化中杂质能级的检测
光催化中杂质能级的检测方法多种多样,下面介绍几种常用的方法:
1. 光电子能谱(XPS):通过测量杂质表面产生的光电子的能量分布,可以确定其能级结构和化学状态。
2. 紫外-可见漫反射光谱(UV-Vis DRS):通过测量杂质吸收紫外-可见光的能力,可以推断出其能级和能带结构。
3. 瞬态吸收光谱(TAS):通过短脉冲激光诱导杂质吸收光谱,可以探测到杂质能级间的跃迁过程,获得杂质能级结构信息。
4. 电化学阻抗谱(EIS):通过测量杂质在光催化过程中对电荷传输的影响,可以推断出其能级和电荷转移机制。
5. 示差热分析(DTA):通过测量样品在升温过程中释放或吸收的热量变化,可以确定杂质能级和反应活性。
综上所述,光催化中杂质能级的检测可以通过不同的实验手段来获得信息,选择合适的方法取决于具体的研究问题和材料性质。