电磁感应及综合应用(学案)
- 格式:doc
- 大小:2.31 MB
- 文档页数:2
13.3电磁感应现象及应用【学习目标】1.了解电磁感应现象及相关的物理学史.2.通过实验探究产生感应电流的条件.3.能正确分析磁通量的变化情况.4.能运用感应电流的产生条件判断是否有感应电流产生.【学习任务一】划时代的发现1.“电生磁”的发现奥斯特发现的电流的磁效应,证实与磁现象是有联系的.2.法拉第的探索:法拉第提出了“由磁产生电”的设想,并为此进行了长达10年探索,从中领悟到,“磁生电”是一种在变化、的过程中才能出现的效应.3.电磁感应:“”的现象.4.感应电流:现象中产生的电流.【学习任务二】产生感应电流的条件1.实验:探究感应电流产生的条件(1)实验一:如图1所示,当条形磁体插入或拔出线圈时,线圈中电流产生,但条形磁体在线圈中静止不动时,线圈中电流产生.(均选填“有”或”无”)图图1(2)实验二:如图2所示,将小线圈A插入大线圈B中不动,当开关S闭合或断开时,电流表中电流通过;若开关S一直闭合,当改变滑动变阻器的阻值时,电流表中电流通过;而开关S一直闭合,滑动变阻器的滑动触头不动时,电流表中电流通过.(均选填“有”或“无”)图2(3)归纳总结:几个实验共同特点:产生感应电流时闭合回路的都发生了变化.(4)产生感应电流条件:①电路;②回路的中的磁通量【学习任务三】磁通量的变化(ΔΦ)引起磁通量变化的原因(1)闭合电路的一部分导体切割磁感线时,是磁场B还是面积S变化引起磁通量变化?;(2)实验一:条形磁铁与线圈发生相对运动时,是磁场B变化还是面积S变化引起磁通量变化?;(3)实验二:是B变化还是面积S变化引起磁通量变化?;(4)磁感应强度B与垂直磁场方向的面积S都在变化引起磁通量变化。
【学习任务四】电磁感应现象的应用(1)是根据电磁感应原理制造的,它开辟了人类社会的电气化时代。
(2)生产、生活中广泛使用的变压器、电磁炉等都是根据制造的。
试题案例例1、如图所示,通电直导线右边有一个矩形线框,线框平面与直导线共面,若使线框逐渐远离(平动)通电导线,则穿过线框的磁通量将( )A.逐渐增大B.逐渐减小C.保持不变D.不能确定例2.如选项图所示,A中线圈有一小缺口,B、D中匀强磁场区域足够大,C中通电导线位于水平放置的闭合线圈某直径的正上方.其中能产生感应电流的是( )A BC D例3、(多选)如图所示,绕在铁芯上的线圈与电源、滑动变阻器和开关组成闭合电路,在铁芯的右端套有一个表面绝缘的铜环A,下列各种情况铜环A中有感应电流的是()A.线圈中通以恒定的电流B.通电过程中,使变阻器的滑片P做匀速移动C.通电过程中,使变阻器的滑片P做加速移动D.将开关突然断开的瞬间例4、如图所示的线框,面积为S,处于磁感应强度为B的匀强磁场中,B的方向与线框平面成θ角,当线框转过90°到如图所示的虚线位置时,试求:(1)初、末位置穿过线框的磁通量的大小Φ1和Φ2;(2)磁通量的变化量ΔΦ.1.首先发现电流的磁效应和电磁感应现象的物理学家分别是( )A.安培和法拉第B.法拉第和楞次C.奥斯特和安培D.奥斯特和法拉第2、下列现象属于电磁感应现象的是( )A.磁场对电流产生力的作用B.变化的磁场使闭合电路中产生电流C.插在通电螺线管中的软铁棒被磁化D.电流周围产生磁场3下列说法正确的是( )A.磁感应强度B增强,磁通量一定变大B.线圈面积S增大,磁通量一定变大C.只要穿过电路的磁通量不为零,电路中一定产生感应电流D.穿过闭合电路的磁通量增加,电路中产生感应电流4、(多选)闭合线圈按下列选项中的方式在磁场中运动,则穿过闭合线圈的磁通量发生变化的是( )A B C D5.如图所示,一水平放置的矩形闭合线圈abcd在细长磁铁N极附近下落,保持bc边在纸外,ad边在纸内,由图中的位置Ⅰ经过位置Ⅱ到位置Ⅲ,且位置Ⅰ和Ⅲ都很靠近位置Ⅱ,在这个过程中,线圈中的磁通量 ( )A.是增加的 B.是减少的C.先增加.后减少 D.先减少,后增加6、(多选)如图所示,导线ab和cd互相平行,则下列四种情况中,导线cd中有电流的是( )A.开关S闭合或断开的瞬间B.开关S是闭合的,但滑动触头向左滑动C.开关S是闭合的,但滑动触头向右滑动D.开关S始终闭合,滑动触头不动7.为了探究电磁感应现象的产生条件,如图给出了必备的实验仪器。
3.电磁感应现象及其应用学习目标:1.[物理观念]知道电流的磁效应和电磁感应的概念,知道感应电流产生的条件。
2.[科学思维]会根据磁通量的变化判断回路中是否有感应电流的产生,能解决有关的问题。
3.[科学探究]通过实验探究产生感应电流的现象,分析归纳感应电流产生的条件。
4.[科学态度与责任]感知科学家们科学探索的艰辛与百折不挠的精神,体验由实验发现规律的成功喜悦,培养学生的科学兴趣。
一、奥斯特实验的启迪1.1820年,奥斯特发现了电流的磁效应。
2.科学家们根据对称性的思考提出,既然电能产生磁,是否也存在逆效应,即磁产生电呢?注意:做奥斯特电流磁效应实验时,直线电流南北放置,小磁针放在导线下方,效果明显。
二、电磁感应现象的发现1.法拉第经历长达10年的探索,于1831年向英国皇家学会提交了一篇论文,论文将“磁生电〞的现象分为五类并把这些现象命名为电磁感应。
2.五类“磁生电〞的现象:(1)变化中的电流(2)变化中的磁场(3)运动中的恒定电流(4)运动中的磁铁(5)运动中的导线。
3.感应电流:由电磁感应现象产生的电流叫作感应电流。
说明:“磁生电〞是一种变化、运动的过程中才能出现的效应。
三、感应电流产生的条件1.实验说明:当闭合电路的一局部导体在磁场中做切割磁感线运动时,电路中有感应电流产生。
2.实验探究说明:两个线圈相互不连通,也没有相对运动,B线圈中的电流是靠“感应〞而产生的。
引起“感应〞的必要条件是穿过B线圈的磁通量发生了变化。
3.产生感应电流的条件:只要穿过闭合导体回路的磁通量发生变化,闭合导体回路中就有感应电流产生。
注意:产生感应电流有两个条件(1)闭合回路(2)磁通量变化四、电磁感应规律的发现对社会开展的意义1.法拉第创造了人类历史上第一台感应发电机。
2.发电机、变压器、感应电动机使人类进入电气时代。
1.思考判断(正确的打“√〞,错误的打“×〞)(1)法拉第发现了电磁感应现象。
(√)(2)法拉第完成了“由磁产生电〞的设想。
学案:电磁感应的综合应用【知识整合】一、电磁感应中的力学问题1.基本方法:通过导体的感应电流在磁场中将受到安培力作用,电磁感应往往和力学问题结合在一起。
(1)用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向,(2)求回路中的电流大小;(3)分析研究导体受力情况(包含安培力,用左手定则确定其方向)(4)列动力学方程或平衡方程求解。
2.电磁感应力学问题中,要抓好受力情况,运动情况的动态分析导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化,周而复始地循环,循环结束时,加速度等于零,导体达稳定状态,抓住a=0时,速度v达最大值。
二、电磁感应中的电路问题在电磁感应中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路相当于电源。
因此,电磁感应问题往往又和电路问题联系在一起,解决与电路相联系的电磁感应问题的基本方法是:(1)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向(2)画等效电路图(3)运用全电路欧姆定律,串并联电路性质,电功率等公式联立求解三、电磁感应中的图象问题电磁感应中常涉及磁感应强度B、磁通量Φ、感应电动势E、感应电流I、安培力F安或外力F外随时间t变化的图象,即B—t图、Φ—t图、E—t图、I—t图、F—t图。
对于切割磁感线产生感应电动势和感应电流的情况,还常涉及感应电动势E和感应电流I随位移x 变化的图象,即E—x图、I—x图等。
这些图象问题大体上可分类两类:(1)由给定的电磁感应过程选出或画出正确图象。
(2)由给定的有关图象分析电磁感应过程,求解相应的物理量。
不管是何种类型,电磁感应中的图象问题常需利用右手定则、左手定则,楞次定律和法拉第电磁感应定律等规律分析解决。
四、电磁感应中的能量问题产生感应电流的过程,就是能量转化的过程。
电磁感应过程中产生的感应电流在磁场中必定受到安培力的作用,因此,要维持感应电流的存在,必须有“外力”克服安培力做功。
高三物理综合实践——电磁感应教案电磁感应教案一、教学目标1.了解电磁感应的基本概念和本质;2.系统地掌握电磁感应和感应电动势的基本原理和方法;3.能够运用电磁感应原理进行相关实验、检验和分析,并得到正确的结论;4.培养学生分析问题、处理问题的能力,以及综合实践能力。
二、教学重点和难点1.掌握电磁感应的基本概念和本质,能够简单解释电磁感应的原理和基本公式;2.掌握电磁感应和感应电动势的基本原理和方法,能够使用精确的语言和符号来表达和计算;3.进行相关实验、检验和分析,得到正确的结论;4.培养学生分析问题、处理问题的能力,以及综合实践能力。
三、教学内容1.电磁感应基本概念通过引导学生对电磁感应现象进行观察和实验,让学生了解电磁感应的概念和本质。
2.感应电动势基本原理和公式通过对电磁感应知识的整合,让学生系统地掌握感应电动势的基本原理和公式,并运用所学知识进行训和练习。
3.相关实验及分析通过各种实验进行训练,让学生掌握实验技巧和方法。
同时,经过实验和分析,培养学生的综合实践能力和科学素养。
四、教学方法1.教师引导发现性学习教师通过引导,发掘学生能够自己探究的问题,让学生具有自主探究和领悟知识的能力。
2.实验教学实验教学是本次教学的重要方法,让学生能够亲自进行实验,从中体验感性认识和个性化发展。
同时,通过实验,让学生掌握实验方法和技巧,提高实验能力和综合素质。
3.讨论式教学讨论式教学是本次教学中的重要方法,让学生在讨论中积极思考和交流,推动彼此内心的理解和认识。
四、教学安排1.开学之际,进行电磁感应的基本概念的讲解和讨论,让学生能够了解和认识电磁感应的基本概念和现象;2.通过相关的实验,辅助讲解和探究感应电动势的基本原理和公式;3.进行感应电动势的相关实验,检验学生所学知识的掌握程度,并通过讨论、分析等方法,提高学生的思维和分析能力。
五、教学反思与展望本次教学最终达到了预期目标,学生也对电磁感应有了更深刻的了解。
第3节电磁感应规律的综合应用【考纲知识梳理】一、电磁感应中的电路问题1.在电磁感应现象中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源,将它们接上电阻等用电器,便可对用电器供电,在回路中形成电流;将它们接上电容器,便可使电容器充电,因此电磁感应问题又往往跟电路问题联系在一起。
解决这类问题,不仅要考虑电磁感应中的有关规律,如右手定则、楞次定律和法拉第电磁感应定律等,还要应用电路中的有关规律,如欧姆定律、串联、并联电路电路的性质等。
2. 解决电磁感应中的电路问题,必须按题意画出等效电路图,将感应电动势等效于电源电动势,产生感应电动势的导体的电阻等效于内电阻,求电动势要用电磁感应定律,其余问题为电路分析及闭合电路欧姆定律的应用。
3. 一般解此类问题的基本思路是:(1)明确哪一部分电路产生感应电动势,则这部分电路就是等效电源(2)正确分析电路的结构,画出等效电路图(3)结合有关的电路规律建立方程求解.二.电磁感应中的图像问题1.电磁感应中常涉及磁感应强度B、磁通量Φ、感应电动势E和感应电流I随时间t变化的图像,即B-t 图像、Φ-t图像、E-t 图像和I-t图像等。
对于切割磁感线产生感应电动势和感应电流的情况还常涉及感应电动势E和感应电流I随线圈位移x变化的图像,即E-x图像和I-x图像。
2. 这些图像问题大体上可分为两类:由给定的电磁感应过程选出或画出正确的图像,或由给定的有关图像分析电磁感应过程,求解相应的物理量。
3. 不管是何种类型,电磁感应中的图像问题常需利用右手定则、楞次定律和法拉第电磁感应定律等规律分析解决。
三、电磁感应中的动力学问题1.电磁感应中产生的感应电流在磁场中将受到安培力的作用,因此,电磁感应问题往往跟力学问题联系在一起,解决这类电磁感应中的力学问题,不仅要应用电磁学中的有关规律,如楞次定律、法拉第电磁感应定律、左右手定则、安培力的计算公式等,还要应用力学中的有关规律,如牛顿运动定律、动量定理、动能定理、动量守恒定律、机械能守恒定律等。
电磁感应的实际应用导学案一、实验目的探究电磁感应在实际生活中的应用,并通过实验了解其中的原理和特点。
二、实验材料1. 导体线圈(可以使用铜线制成的简单线圈)2. 磁铁3. 电源4. KY-024霍尔传感器(可选)三、实验步骤步骤1:电磁感应产生电压1. 将一个磁铁放置在导体线圈的中心,确保磁铁和线圈的位置稳定。
2. 将线圈的两端分别与一个直流电源的正、负极连接,观察线圈中是否会产生电流。
步骤2:电磁感应的方向规律1. 将线圈上的导线与一个灯泡串联,构成电路。
2. 将磁铁从线圈的一侧向另一侧移动,观察灯泡的亮灭情况。
3. 反向移动磁铁,再次观察灯泡的亮灭情况。
4. 根据实验结果,总结电磁感应产生的电流方向规律。
步骤3:霍尔传感器的应用(可选)1. 将KY-024霍尔传感器连接到一个数字电压表上,确保传感器正常工作。
2. 将磁铁靠近霍尔传感器,观察数字电压表的数值变化。
3. 将磁铁远离霍尔传感器,再次观察数字电压表的数值变化。
4. 根据实验结果,探究霍尔传感器在实际中的应用。
四、实验原理电磁感应是指当导体中的磁通量发生变化时,导体内部会产生感应电流。
根据法拉第电磁感应定律,当导体受到磁场的作用,导体中的自由电荷运动会产生感应电流。
在实验步骤1中,当导体线圈内的磁通量发生变化时,由于磁通量变化产生的感应电流,使得线圈上产生电势差,从而使电流通过灯泡,使其亮起。
在实验步骤2中,当磁铁移动方向改变时,线圈内的磁通量方向改变,根据法拉第电磁感应定律,感应电流的方向也随之改变。
因此,根据灯泡亮灭情况的变化,可以推断出电磁感应产生的电流的方向规律。
在实验步骤3中,霍尔传感器利用磁场的变化来感应电压的变化,从而检测磁场的强度。
根据实验结果,可以了解到霍尔传感器在实际中的应用,如磁场检测、位置传感等。
五、实验应用电磁感应在实际生活中有着广泛的应用。
以下列举几个例子:1. 发电机:发电机的工作原理就是利用电磁感应产生电流。
高二物理纠偏辅导电磁感应(与力的综合应用)学案2011. 5 。
5方法精要电磁感应中产生的感应电流在磁场中将受到安培力的作用,因此,电磁感应问题往往跟力学问题联系在一起,解决这类电磁感应中的力学问题,不仅要应用电磁学中的有关规律,如楞次定律、法拉第电磁感应定律、左右手定则、安培力的计算公式等,还要应用力学中的有关规律,如牛顿运动定律、动量定理、动能定理、动量守恒定律、机械能守恒定律等。
要将电磁学和力学的知识综合起来应用。
由于安培力和导体中的电流、运动速度均有关,所以对磁场中运动导体进行动态分析十分必要。
例1. 水平放置于匀强磁场中的光滑导轨上,有一根导体棒ab,用恒力F作用在ab上,由静止开始运动,回路总电阻为R,分析ab 的运动情况,并求ab的最大速度。
例2. 在磁感应强度为B的水平均强磁场中,竖直放置一个冂形金属框ABCD,框面垂直于磁场,宽度BC=L,质量m的金属杆PQ用光滑金属套连接在框架AB和CD上如图.金属杆PQ电阻为R,当杆自静止开始沿框架下滑时:(1)开始下滑的加速度为多少?(2)框内感应电流的方向怎样?(3)金属杆下滑的最大速度是多少?(4)从开始下滑到达到最大速度过程中重力势能转化为什么能量例3. 竖直放置冂形金属框架,宽1m,足够长,一根质量是0.1kg,电阻0.1Ω的金属杆可沿框架无摩擦地滑动.框架下部有一垂直框架平面的匀强磁场,磁感应强度是0.1T,金属杆MN 自磁场边界上方0.8m处由静止释放(如图).求:(1)金属杆刚进入磁场时的感应电动势;(2)金属杆刚进入磁场时的加速度;(3)金属杆运动的最大速度及此时的能量转化情况.例4.如图所示,竖直平行导轨间距l=20cm,导轨顶端接有一电键K。
导体棒ab与导轨接触良好且无摩擦,ab的电阻R=0.4Ω,质量m=10g,导轨的电阻不计,整个装置处在与轨道平面垂直的匀强磁场中,磁感强度B=1T。
当ab棒由静止释放0.8s 后,突然接通电键,不计空气阻力,设导轨足够长。
《电磁感应及其应用》教学设计方案(第一课时)一、教学目标1. 知识与技能:理解电磁感应的观点,掌握法拉第电磁感应定律及其应用。
2. 过程与方法:通过实验探究,掌握电磁感应的规律,学会运用法拉第电磁感应定律分析问题。
3. 情感态度与价值观:培养科学探究精神,树立理论与实践相结合的思想。
二、教学重难点1. 教学重点:法拉第电磁感应定律及其应用。
2. 教学难点:电磁感应在实际生活和工业生产中的应用,如发电机、变压器等的工作原理。
三、教学准备1. 准备教学用具:电磁感应实验装置、发电机模型、变压器实物等。
2. 准备教学内容:制作PPT,包括图片、视频、案例等,以帮助学生更好地理解电磁感应及其应用。
3. 准备学生材料:一些基本的电磁感应应用案例,让学生提前了解和学习。
四、教学过程:1. 引入课题(1)通过生活实例引入电磁感应现象,如电磁炉、发电机、变压器等。
(2)引导学生回顾初中学过的磁场知识,为后续学习打下基础。
(3)教师简要介绍电磁感应的基本观点和定律。
2. 实验探究(1)学生分组实验:利用实验室提供的实验器械,探究电磁感应现象。
(2)引导学生观察实验现象,记录实验数据和结论。
(3)教师对实验过程中出现的问题进行讲解和指导。
3. 理论知识学习(1)教师讲解电磁感应定律及其应用,包括楞次定律、右手定则等。
(2)学生根据实验数据和结论,自主总结电磁感应定律的应用。
(3)教师对学生的总结进行点评和补充。
4. 实际应用举例(1)教师介绍电磁感应在生产、生活、科技等方面的应用,如发电机、变压器、磁悬浮列车等。
(2)学生了解电磁感应在实际应用中的优点和局限性。
5. 教室互动环节(1)学生就所学知识进行提问,教师进行解答。
(2)学生之间进行交流和讨论,共同探讨电磁感应在实际应用中的更多可能性。
6. 作业安置(1)要求学生预习下节课内容,准备讨论发言。
(2)安置与电磁感应相关的小论文或报告,鼓励学生进一步探究和学习。
高三物理一轮复习学案电磁感应与能量的综合应用一、目标导航:1.熟练掌握电磁感应现象中的常见功能关系;2.熟练掌握电磁感应现象中电能的三种常用求解方法,并能灵活应用。
课前案二、电磁感应问题往往涉及牛顿定律、动量守恒、能量守恒、电路的分析和计算等许多方面的物理知识,试题常见的形式是导体棒切割磁感线,产生感应电流,从而使导体棒受到安培力作用。
导体棒运动的形式有匀速、匀变速和非匀变速3种,对前两种情况,容易想到用牛顿定律求解,对后一种情况一般要用能量守恒和动量守恒定律求解,但当安培力变化,且又涉及位移、速度、电荷量等问题时,用动量定理求解往往能巧妙解决。
1.能量转化2.求解焦耳热Q的三种方法3. 解决电磁感应能量问题的策略克服安培力做功,必然有其他形式的能转化为电能,并且克服安培力做多少功,就产生多少电能;如果是安培力做正功,就是电能转化为其他形式的能【课中案】例1.如图所示,固定在水平绝缘平面上足够长的金属导轨不计电阻,但表面粗糙,导轨左端连接一个电阻R,质量为m的金属棒(电阻也不计)放在导轨上,并与导轨垂直,整个装置放在匀强磁场中,磁场方向与导轨平面垂直.用水平恒力F把ab棒从静止起向右拉动的过程中以下结论正确的有()A.恒力F做的功等于电路产生的电能B.恒力F和摩擦力的合力做的功等于电路中产生的电能C.克服安培力做的功等于电路中产生的电能D.恒力F和摩擦力的合力做的功等于电路中产生的电能和棒获得的动能之和例2.如图所示水平光滑的平行金属导轨,左端接有电阻R,匀强磁场B竖直向下分布在导轨所在空间内,质量一定的金属棒PQ垂直于导轨放置。
今使棒以一定的初速度v0向右运动,当其通过位置a、b时,速率分别为v a、v b,到位置c时棒刚好静止。
设导轨与棒的电阻均不计a、b与b、c的间距相等,则金属棒在由a→b与b→c的两个过程中下列说法中正确的是( )A,金属棒运动的加速度相等B.通过金属棒横截面的电荷量相等C.回路中产生的电能E ab<EbcD.金属棒通过a、b两位置时的加速度大小关系为aa<ab例3如图所示,两根足够长固定平行金属导轨位于倾角θ=30°的斜面上,导轨上、下端各接有阻值R=20Ω的电阻,导轨电阻忽略不计,导轨宽度L=2m,在整个导轨平面内都有垂直于导轨平面向上的匀强磁场,磁感应强度B=1T.质量m=0.1kg、连入电路的电阻r=10Ω的金属棒ab在较高处由静止释放,当金属棒ab下滑高度h=3m时,速度恰好达到最大值v=2m/s.金属棒ab在下滑过程中始终与导轨垂直且与导轨良好接触.g取10m/s2.求:(1)金属棒ab由静止至下滑高度为3m的运动过程中机械能的减少量.(2)金属棒ab由静止至下滑高度为3m的运动过程中导轨上端电阻R中产生的热量.课后案1、光滑曲面与竖直平面的交线是抛物线,如图所示,抛物线的方程y=x2,其下半部处在一个水平方向的匀强磁场中,磁场的上边界是y=a的直线(图中的虚线所示),一个小金属块从抛物线y=b(b>a)处以速度v沿抛物线下滑,假设抛物线足够长,则金属块在曲面上滑动的过程中产生的焦耳热总量是()A.mgbB .C .mg (b-a )D .2、如图所示,相距为d 的两条水平虚线L 1、L 2之间是方向水平向里的匀强磁场,磁感应强度为B ,正方形线圈abcd 边长为L (L <d ),质量为m ,电阻为R ,将线圈在磁场上方高h 处静止释放,cd 边刚进入磁场时速度为v 0,cd 边刚离开磁场时速度也为v 0,则线圈穿越磁场的过程中(从cd 边刚进入磁场起一直到ab 边离开磁场为止)( )A .感应电流所做的功为mgdB .感应电流所做的功为2mgdC .线圈的最小速度可能为22L B mgR D .线圈的最小速度一定为)(2d L h g -+3.如图所示,正方形导线框ABCD 、abcd 的边长均为L ,电阻均为R ,质量分别为2m 和m ,它们分别系在一跨过两个定滑轮的轻绳两端,且正方形导线框与定滑轮处于同一竖直平面内。
2010届高考物理专题复习精品学案――电磁感应规律的综合应用(最新)【命题趋向】电磁感应综合问题往往涉及力学知识(如牛顿运动定律、功、动能定理、能量守恒定律等)、电学知识(如电磁感应定律、楞次定律、直流电路知识、磁场知识等)等多个知识点,突出考查考生理解能力、分析综合能力,尤其从实际问题中抽象概括构建物理模型的创新能力。
在备考中应给予高度重视。
【考点透视】电磁感应是电磁学的重点,是高中物理中难度较大、综合性最强的部分。
这一章是高考必考内容之一。
如感应电流产生的条件、方向的判定、自感现象、电磁感应的图象问题,年年都有考题,且多为计算题,分值高,难度大,而感应电动势的计算、法拉第电磁感应定律,因与力学、电路、磁场、能量、动量等密切联系,涉及知识面广,综合性强,能力要求高,灵活运用相关知识综合解决实际问题,成为高考的重点。
因此,本专题是复习中应强化训练的重要内容。
【例题解析】一、电磁感应与电路题型特点:闭合电路中磁通量发生变化或有部分导体在做切割磁感线运动,在回路中将产生感应电动势,回路中将有感应电流。
从而讨论相关电流、电压、电功等问题。
其中包含电磁感应与力学问题、电磁感应与能量问题。
解题基本思路:1.产生感应电动势的导体相当于一个电源,感应电动势等效于电源电动势,产生感应电动势的导体的电阻等效于电源的内阻.2.电源内部电流的方向是从负极流向正极,即从低电势流向高电势.3.产生感应电动势的导体跟用电器连接,可以对用电器供电,由闭合电路欧姆定律求解各种问题.4.解决电磁感应中的电路问题,必须按题意画出等效电路,其余问题为电路分析和闭合电路欧姆定律的应用. 例1.如图所示,两个电阻的阻值分别为R和2R,其余电阻不计,电容器的电容量为C,匀强磁场的磁感应强度为B,方向垂直纸面向里,金属棒a b、cd 的长度均为l ,当棒a b以速度v向左切割磁感应线运动时,当棒cd以速度2v向右切割磁感应线运动时,电容C的电量为多大?哪一个极板带正电?解:画出等效电路如图所示:棒a b产生的感应电动势为:E1=Bl V棒a b产生的感应电动势为:E2=2Bl V电容器C充电后断路,U ef = - Bl v /3,U cd= E2=2Bl VU C= U ce=7 BL V /3Q=C U C=7 C Bl V /3右板带正电。
2012届高三物理一轮复习导学案十、电磁感应(6)电磁感应的综合应用问题【目标】1、进一步加深对法拉第电磁感应定律理解;2、学会用力学规律和能量的观点分析电磁感应问题。
【导入】电磁感应现象中的综合问题因可以覆盖高中力学、电学的所有考点而成为高考物理中的制高点和决定物理成绩的瓶颈。
题型全,从选择到解答题及作图题,无所不有;设问方式灵活,有定性的判断,更有定量的计算。
试题难度偏高,尤其是解答题,综合性强,知识涉及面广;方法技巧性强;再现率高,达100%,成为必考。
从近几年高考来看,利用法拉第电磁感应定律及相关公式来计算电动势仍是热点;而电磁感应定律中的力学、电学和能量问题仍是长期考向,理论联系实际类考题会成为主流。
【导研】[例1] 在开展研究性学习的过程中,某同学设计了一个利用线圈测量转轮转速的装置, 如图所示,在轮子的边缘贴上小磁体,将小线圈靠近轮边放置,接上数据采集器和电脑(即DIS实验器材).如果小线圈的面积为S,圈数为N匝,小磁体附近的磁感应强度最大值为B,回路的总电阻为R,实验发现,轮子转过 角,小线圈的磁感应强度由最大值变为零.因此,他说“只要测得此时感应电流的平均值I,就可以测出转轮转速的大小.”请你运用所学的知识,通过计算对该同学的结论作出评价.[例2] 如图甲所示,x轴沿水平方向,有一用钕铁硼材料制成的圆柱形强磁体M,其圆形端面分别为N极和S极,磁体的对称中心置于x轴的原点O。
现有一圆柱形线圈C从x轴负方向较远处开始沿x轴正方向做匀速直线运动,圆形线圈的中心轴始终与x轴重合,且其圆面始终与x轴垂直,在线圈两端接一阻值R=1000Ω的定值电阻。
现用两个传感器,一个测得通过圆环的磁通量随圆环位置的变化图像,如图8乙所示;另一个测得R两端的电压随时间变化的图像,如图8丙。
已知在乙图像的图线上,x=6mm的点的切线斜率最大;图丙中时刻6s到10s之间的图线可近似的看成直线。
则圆形线圈做匀速直线运动的速度大小是______m/s,6s 至8s期间流过电阻R的电量是__________C。
《电磁感应现象及应用》教学设计方案(第一课时)一、教学目标1. 理解电磁感应现象,掌握法拉第电磁感应定律。
2. 能够运用所学知识诠释和解决简单的问题,比如设计简单的电磁感应应用电路。
3. 培养实验操作和数据分析的能力,以及科学探究的精神。
二、教学重难点1. 教学重点:理解电磁感应现象,掌握法拉第电磁感应定律的应用。
2. 教学难点:设计并操作电磁感应实验,分析实验数据,解决实际问题。
三、教学准备1. 准备教学用具:电磁学演示器、导线、电源、电阻、小灯泡等,以便进行实验。
2. 搜集一些实际生活中的电磁感应应用案例,用于教室讨论。
3. 预先安置一些相关阅读,以便学生预习新知识。
4. 设计一些简单的问题和实验,让学生尝试解答和操作,以评估他们的理解水平。
四、教学过程:本节内容分为两个部分,起首是电磁感应现象的学习,其次是电磁感应现象在生活和科技中的应用。
以下是具体的教学设计:1. 导入:起首通过一些简单的实验,让学生观察磁铁靠拢闭合线圈时,闭合线圈如何产生感应电流,引入电磁感应的观点。
实验完毕后,教师可以提出问题:这种现象是如何产生的?激发学生的好奇心和探索欲望。
2. 探索电磁感应现象:引导学生逐步探索出产生感应电流的条件和规律。
可以先从定义开始,然后讨论楞次定律和法拉第电磁感应定律的应用。
教师可以给学生提供一些例题和练习题,帮助学生理解和应用这些规律。
3. 电磁感应现象的应用:在这一部分,教师可以引入一些实际应用案例,如发电机、变压器、电动机等,让学生了解电磁感应现象在生活和科技中的重要性。
同时,也可以让学生自己设计一些简单的电磁感应应用,如制作一个简单的变压器模型或一个电动机模型。
4. 小组讨论:组织学生进行小组讨论,让学生分享自己在制作和应用电磁感应模型的经验和感受,以及在探索过程中遇到的问题和解决方法。
这样可以提高学生的交流和合作能力,同时也可以加深学生对电磁感应现象的理解和应用。
5. 总结与反馈:最后,教师对这节课的内容进行总结,强调电磁感应现象的重要性和应用,并针对学生的学习情况进行反馈和指导。
电磁感应现象及应用[核心素养·明目标]核心素养学习目标物理观念知道电磁感应现象和感应电流的概念。
科学思维通过模仿法拉第的实验,归纳得出产生感应电流的条件。
学会通过现象分析归纳事物本质特征的科学思维方法。
科学探究经历感应电流产生条件的探究活动,提高分析论证能力。
科学态度与责任(1)了解电磁感应现象曲折的发现过程,学习法拉第坚持理想信念、不畏艰辛、勇于探索的科学精神。
(2)了解电磁感应现象的重大历史意义和电磁感应现象的广泛应用,体会科学、技术对人类文明的推动作用。
知识点一划时代的发现1.奥斯特发现的电流的磁效应,证实了电现象和磁现象是有联系的。
2.1831年,法拉第发现了“磁生电”现象,他认为“磁生电”是一种在变化、运动的过程中才能出现的效应。
3.法拉第把这些“磁生电”现象定名为电磁感应,这些现象中产生的电流叫作感应电流。
1:思考辨析(正确的打“√”,错误的打“×”)(1)法拉第发现了电磁感应现象。
(√)(2)法拉第完成了“由磁产生电”的设想。
(√)知识点二产生感应电流的条件1.探索感应电流产生的条件(1)实验装置(2)实验过程开关和变阻器的状态线圈B中是否有电流开关闭合瞬间有开关断开瞬间有开关闭合时,滑动变阻器不动无开关闭合时,迅速移动滑动变阻器的滑片有2.产生感应电流的条件:当穿过闭合导体回路的磁通量发生变化时,闭合导体回路中就产生感应电流。
电路闭合、磁通量变化,是产生感应电流的两个条件,缺一不可。
闭合电路中有没有磁通量不是产生感应电流的条件,如果穿过闭合电路的磁通量很大但不变化,那么也不会产生感应电流。
2:思考辨析(正确的打“√”,错误的打“×”)(1)闭合线圈内有磁场,就有感应电流。
(×)(2)穿过闭合线圈的磁通量发生变化,一定能产生感应电流。
(√)(3)闭合线圈和磁场发生相对运动,不一定能产生感应电流。
(√)知识点三电磁感应现象的应用1.最早的发电机:法拉第的圆盘发电机。
“东师学辅” 导学练·高二物理(5) 1.4_2 电磁感应综合应用编稿教师:李志强学习目标熟练运用楞次定律和法拉第电磁感应定律解决问题 旧知回顾闭合电路欧姆定律:EI R r=+,其中R 为外电路的电阻,r 为电源内阻。
楞次定律:感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。
法拉第电磁感应定律: 感应电动势的大小满足:E n t∆Φ=∆,其中n 为线圈的匝数,∆Φ为磁通量的变化量,t ∆为时间。
新知摘要1. 电磁感应中的图像问题:(1)在t Φ-图像上,斜率为t ∆Φ∆。
由于感应电动势E n t ∆Φ=∆,所以,感应电动势可以通过t Φ-图像的斜率来求。
(2)在B -t 图像上,斜率为Bt∆∆,若线圈面积S 不变,线圈与磁感线的夹角不变,则∆Φ=cos BS θ∆,所以t ∆Φ∆=cos BS tθ∆∆,这样通过B -t 图上的斜率也可以求感应电动势。
2. 解决电磁感应中电路问题的步骤: (1)确定电源;(2)应用楞次定律判断感应电动势的方向; (3)画出等效电路图;(4)应用法拉第电磁感应定律表达出感应电动势的大小;(5)根据电路规律(闭合电路欧姆定律,串并联规律等)列方程求解。
3. 回路中感应电荷量的计算:回路中产生感应电流时,t ∆时间内通过回路的电荷量为:q=I nE t t t t n R R R ∆Φ∆Φ∆∆=∆=∆=g g g 总总总,其中R 总为回路总电阻,∆Φ为这段时间内磁通量的变化量。
例1:(1)磁场均匀增加①画出大致B -t 图像 ②画出大致Φ-t 图像③画出大致E -t 图像 ④画出大致I -t 图像(2)导体棒匀速运动①画出大致B -t 图像 ②画出大致Φ-t 图像③画出大致E -t 图像 ④画出大致I -t 图像电磁感应中的电路问题 1.内电路和外电路(1)切割磁感线运动的导体或磁通量发生变化的线圈都相当于 .2013-2014学年上学期(2)该部分导体的电阻或线圈的电阻相当于电源的,其余部分是.2.电源电动势和路端电压(1)电动势:E=或E=n .(2)电源正、负极:用确定.(3)路端电压:U=E-Ir=IR.例2.两条光滑平行金属导轨间距d=0.6m,导轨两端分别接有R1=10Ω,R2=2.5Ω的电阻,磁感应强度B=0.2T的匀强磁场垂直于轨道平面向纸外,如图所示,导轨上有一根电阻为1.0Ω的导体杆MN。
【备考2022】高考物理一轮复习学案10.3 电磁感应定律的综合运用(2)右手定则的研究对象为闭合回路的一部分导体,适用于一段导线在磁场中做切割磁感线运动。
2.对电源的理解(1)在电磁感应现象中,产生感应电动势的那部分导体相当于电源,如切割磁感线的导体棒、有磁通量变化的线圈等,这种电源将其他形式的能转化为电能。
(2)判断感应电流和感应电动势的方向,都是把相当于电源的部分根据右手定则或楞次定律判定的。
实际问题中应注意外电路电流由高电势处流向低电势处,而内电路则相反。
3.导体棒在匀强磁场运动过程中的变与不变(1)外电阻的变与不变若外电路由无阻导线和定值电阻构成,导体棒运动过程中外电阻不变;若外电路由考虑电阻的导线组成,导体棒运动过程中外电阻改变。
(2)内电阻与电动势的变与不变切割磁感线的有效长度不变,则内电阻与电动势均不变。
反之,发生变化。
处理电磁感应区别安培定则、左手定则、右手定则的关键是抓住因果关系(1)因电而生磁(I→B)→安培定则(判断电流周围磁感线的方向)。
(2)因动而生电(v、B→I感)→右手定则(闭合回路的部分导体切割磁感线产生感应电流)。
(3)因电而受力(I、B→F安)→左手定则(磁场对电流有作用力)。
核心素养二对电路的理解(1)内电路是切割磁感线的导体或磁通量发生变化的线圈,外电路由电阻、电容等电学元件组成。
(2)在闭合电路中,相当于“电源”的导体两端的电压与真实的电源两端的电压一样,等于路端电压,而不等于感应电动势。
核心素养三图像问题2.解决图像问题的一般步骤(1)明确图像的种类,即是Bt图像还是Φt图像,或者Et图像、It图像等。
(2)分析电磁感应的具体过程。
(3)用右手定则或楞次定律确定方向对应关系。
(4)结合法拉第电磁感应定律、欧姆定律、牛顿运动定律等规律写出函数关系式。
(5)根据函数关系式,进行数学分析,如分析斜率的变化、截距等。
电磁感应规律的综合应用学案一、电磁感应中的力学问题电磁感应中通过导体的感应电流在磁场中又将受到安培力的作用,这就使得电磁感应问题往往和力学问题联系在一起,解决这类问题的基本方法是:(1)用法拉第电磁感应定律或导体做切割磁感线运动时感应电动势公式确定感应电动势的大小,再用楞次定律或右手定则确定感应电动势的方向;(2)画出等效电路,磁通量发生变化的电路或切割磁感线的导体相当于电源,用闭合电路欧姆定律求出电路中的电流;(3)分析所研究的导体受力情况(包括安培力、用左手定则确定其方向);(4)列出动力学方程或平衡方程并求解。
常用动力学方程有:牛顿运动定律、动量定理、动量守恒定律、动能定理、机械能守恒定律等。
【例1】(2005 上海)如图所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距1m,导轨平面与水平面成θ=37°角,下端连接阻值为R的电阻.匀强磁场方向与导轨平面垂直.质量为0.2kg、电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为0.25.求:(1)求金属棒沿导轨由静止开始下滑时的加速度大小;(2)当金属棒下滑速度达到稳定时,电阻R消耗的功率为8W,求该速度的大小;(3)在上问中,若R=2Ω,金属棒中的电流方向由a到b,求磁感应强度的大小与方向.(g=10m/s2,sin37°=0.6,cos37°=0.8)【例2】如图所示,两条互相平行的光滑金属导轨位于水平面内,距离为l = 0.2m,在导轨的一端接有阻值为R = 0.5Ω的电阻,在x ≥0处有一与水平面垂直的均匀磁场,磁感强度B = 0.5T。
一质量为m =0.lkg的金属直杆垂直放置在导轨上,并以v0=2m/s的初速度进入磁场,在安培力和一垂直于杆的水平外力F的共同作用下作匀变速直线运动,加速度大小为a = 2m/s2,方向与初速度方向相反。
设导轨和金属杆的电阻都可以忽略,且接触良好,求:(1)电流为零时金属杆所处的位置;(2)电流为最大值的一半时施加在金属杆上外力F的大小和方向;(3)保持其他条件不变,而初速度v0取不同值,求开始时F的方向与初速度v0取值的关系。
专题09 电磁感应及综合应用电磁感应是电磁学中最为重要的内容,也是高考命题频率最高的内容之一。
题型多为选择题、计算题。
主要考查电磁感应、楞次定律、法拉第电磁感应定律、自感等知识.本部分知识多结合电学、力学部分出压轴题,其命题形式主要是电磁感应与电路规律的综合应用、电磁感应与力学规律的综合应用、电磁感应与能量守恒的综合应用.复习中要熟练掌握感应电流的产生条件、感应电流方向的判断、感应电动势的计算,还要掌握本部分内容与力学、能量的综合问题的分析求解方法.预测2015年的高考基础试题重点考查法拉第电磁感应定律及楞次定律和电路等效问题.综合试题还是涉及到力和运动、动量守恒、能量守恒、电路分析、安培力等力学和电学知识.主要的类型有滑轨类问题、线圈穿越有界磁场的问题、电磁感应图象的问题等.此除日光灯原理、磁悬浮原理、电磁阻尼、超导技术这些在实际中有广泛的应用问题也要引起重视。
一、法拉第电磁感应定律法拉第电磁感应定律的内容是感应电动势的大小与穿过回路的磁通量的变化率成正比.在具体问题的分析中,针对不同形式的电磁感应过程,法拉第电磁感应定律也相应有不同的表达式或计算式.磁通量变化的形式表达式备注通过n匝线圈内的磁通量发生变化E=n·错误!(1)当S不变时,E=nS·错误!(2)当B不变时,E=nB·错误!导体垂直切割磁感线运动E=BLv当v∥B时,E=0导体绕过一端且垂直于E=错误!磁场方向的转轴匀速转动BL2ω线圈绕垂直于磁场方向的转轴匀速转动E=nBSω·sinωt当线圈平行于磁感线时,E最大为E=nBSω,当线圈平行于中性面时,E=0二、楞次定律与左手定则、右手定则1.左手定则与右手定则的区别:判断感应电流用右手定则,判断受力用左手定则.2.应用楞次定律的关键是区分两个磁场:引起感应电流的磁场和感应电流产生的磁场.感应电流产生的磁场总是阻碍引起感应电流的磁场的磁通量的变化,“阻碍"的结果是延缓了磁通量的变化,同时伴随着能量的转化.3.楞次定律中“阻碍”的表现形式:阻碍磁通量的变化(增反减同),阻碍相对运动(来拒去留),阻碍线圈面积变化(增缩减扩),阻碍本身电流的变化(自感现象).三、电磁感应与电路的综合电磁感应与电路的综合是高考的一个热点内容,两者的核心内容与联系主线如图4-12-1所示:1.产生电磁感应现象的电路通常是一个闭合电路,产生电动势的那一部分电路相当于电源,产生的感应电动势就是电源的电动势,在“电源”内部电流的流向是从“电源”的负极流向正极,该部分电路两端的电压即路端电压,U=RR+rE.2.在电磁感应现象中,电路产生的电功率等于内外电路消耗的功率之和.若为纯电阻电路,则产生的电能将全部转化为内能;若为非纯电阻电路,则产生的电能除了一部分转化为内能,还有一部分能量转化为其他能,但整个过程能量守恒.能量转化与守恒往往是电磁感应与电路问题的命题主线,抓住这条主线也就是抓住了解题的关键.在闭合电路的部分导体切割磁感线产生感应电流的问题中,机械能转化为电能,导体棒克服安培力做的功等于电路中产生的电能.说明:求解部分导体切割磁感线产生的感应电动势时,要区别平均电动势和瞬时电动势,切割磁感线的等效长度等于导线两端点的连线在运动方向上的投影.考点一对楞次定律和电磁感应图像问题的考查例1、如图1所示,直角坐标系xOy的二、四象限有垂直坐标系向里的匀强磁场,磁感应强度大小均为B,在第三象限有垂直坐标系向外的匀强磁场,磁感应强度大小为2B.现将半径为L、圆心角为90°的扇形闭合导线框OPQ在外力作用下以恒定角速度绕O点在纸面内沿逆时针方向匀速转动.t=0时刻线框在图示位置,设电流逆时针方向为正方向.则下列关于导线框中的电流随时间变化的图线,正确的是()图1答案B【变式探究】如图2所示,在线圈上端放置一盛有冷水的金属杯,现接通交流电源,过了几分钟,杯内的水沸腾起来.若要缩短上述加热时间,下列措施可行的有( )图2A.增加线圈的匝数B.提高交流电源的频率C.将金属杯换为瓷杯D.取走线圈中的铁芯答案AB【方法技巧】1.楞次定律的理解和应用(1)“阻碍"的效果表现为:①阻碍原磁通量的变化—-增反减同;②阻碍物体间的相对运动——来拒去留;③阻碍自身电流的变化——自感现象.(2)解题步骤:①确定原磁场的方向(分析合磁场);②确定原磁通量的变化(增加或减少);③确定感应电流磁场的方向(增反减同);④确定感应电流方向(安培定则).2.求解图像问题的思路与方法(1)图像选择问题:求解物理图像的选择题可用“排除法",即排除与题目要求相违背的图像,留下正确图像.也可用“对照法",即按照要求画出正确的草图,再与选项对照.解决此类问题的关键是把握图像特点,分析相关物理量的函数关系,分析物理过程的变化或物理状态的变化.(2)图像分析问题:定性分析物理图像,要明确图像中的横轴与纵轴所代表的物理量,弄清图像的物理意义,借助有关的物理概念、公式、不变量和定律作出相应判断.在有关物理图像的定量计算时,要弄清图像所揭示的物理规律及物理量间的函数关系,善于挖掘图像中的隐含条件,明确有关图像所包围的面积、斜率,以及图像的横轴、纵轴的截距所表示的物理意义.考点二对电磁感应中动力学问题的考查例2、如图3所示,间距为L的两条足够长的光滑平行金属导轨MN、PQ与水平面夹角为30°,导轨的电阻不计,导轨的N、Q端连接一阻值为R的电阻,导轨上有一根质量一定、电阻为r的导体棒ab垂直导轨放置,导体棒上方距离L以上的范围存在着磁感应强度大小为B、方向与导轨平面垂直向下的匀强磁场.现在施加一个平行斜面向上且与棒ab重力相等的恒力,使导体棒ab从静止开始沿导轨向上运动,当ab进入磁场后,发现ab开始匀速运动,求:图3(1)导体棒的质量;(2)若进入磁场瞬间,拉力减小为原来的一半,求导体棒能继续向上运动的最大位移.解析(1)导体棒从静止开始在磁场外匀加速运动,距离为L,其加速度为F-mg sin 30°=maF=mg得a=错误!g棒进入磁场时的速度为v=2aL=gL由棒在磁场中匀速运动可知F安=错误!mgF安=BIL=错误!得m=错误!错误!设导体棒继续向上运动的位移为x,则有错误!=mv将v =gL 和m =2B 2L 2R +r错误! 代入得x =2L答案 (1)错误!错误! (2)2L【变式探究】如图4甲所示,MN 、PQ 是相距d =1。
第3节电磁感应现象及应用教学设计备课人学科物理课题电磁感应现象及应用教学内容分析本节内容包括电磁感应现象发现的历史概述、探究产生感应电流的条件和电磁感应的应用三部分。
教科书以电磁感应现象发现的历史线索的分析为切入点,以面向学生的实验探究和电磁感应规律的广泛应用现实为基础展开讨论。
目的是先让学生有丰富的感性认识,再通过分析整合,从而形成理性的定性认识。
这三部分内容是前后相互联系而且是协调一致的。
在教学过程中,教师应引导学生通过活动和思考来主动地获得知识。
教科书所呈现的实验既为本节研究感应电流的产生条件提供了实验情景,又成为后续楞次定律教学的基础。
学情分析学生在初中阶段的物理课学习中,已经学习过关于电磁感应的初步知识,了解了通过切割磁感线产生感应电流的方式,但只限于定性的分析。
在现阶段,电磁感应的主体部分在高中物理选修部分,而本节课为电磁感应现象的基础知识,需要学生对电磁感应现象产生原因的本质进行分析,且尚不要求定量计算。
因此,本节课对学生设计、进行探究实验,和一句实验现象归纳结论的能力有一定的要求,也对学生对比不同现象,运用以往所学知识进行类比、归纳的能力有一定要求。
教学目标1、了解电磁感应现象曲折的发现过程,学习法拉第坚持理想信念、不畏艰辛、勇于探索的科学精神。
2、经历感应电流产生条件的探究活动,提高分析论证能力。
3、通过模仿法拉第的实验,归纳得出产生感应电流的条件。
学会通过现象分析归纳事物本质特征的科学思维方法,认识实验观察能力与逻辑思维能力在科学探究过程中的重要作用。
4、了解电磁感应现象发现的重大历史意义和电磁感应现象的广泛应用,体会科学、技术对人类文明的推动作用。
教学重难点教学重点:归纳总结产生感应电流的条件,学习法拉第等科学家坚持理想信念、勇于探索和创新的科学精神。
教学难点:通过设计、模仿法拉第的实验,通过观察和分析,将原来浅显已知的产生感应电流的非充要条件(闭合电路的一部分导体在磁场中做切割磁感线运动),提升为产生感应电流的充要条件——穿过闭合导体回路的磁通量发生变化。
电磁感应及综合应用(1)
(一)体系呈现
(二)热点精析
◆电磁感应中的图象问题
【例1】(2012·重庆理综)如图所示,正方形区域MNPQ内有垂
直纸面向里的匀强磁场,在外力作用下,一正方形闭合刚性导线
框沿QN方向匀速运动,t=0时刻,其四个顶点a、b、c、d恰好
在磁场边界中点,下列图像中能反映线框所受安培力f的大小随
时间t变化规律的是
〖变式〗(2011海南物理)如图,EOF和E’O’F’为空间一匀强
磁场的边界,其中EO∥E’O’,FO∥F’O’,且EO⊥OF;OO’为
∠EOF的角平分线,OO 间的距离为l;磁场方向垂直于纸面向里。
一边长为l的正方形导线框沿OO’方向匀速通过磁场,t=0时刻恰
好位于图示位置。
规定导线框中感应电流沿逆时针方向时为正,则感应电流i与时间t 的关系图线可能正确的是
『拓展』(2012·北京海淀期末)如图所示,在方向竖直向下、磁感
应强度为B的匀强磁场中,沿水平面固定一个V字形金属框架CAD,
已知∠A=θ,导体棒EF在框架上从A点开始在外力作用下,沿垂
直EF方向以速度v匀速向右平移,使导体棒和框架始终构成等腰三
角形回路。
已知框架和导体棒的材料和横截面积均相同,其单位长
度的电阻均为R ,框架和导体棒均足够长,导体棒运动中始终与磁场方向垂直,且与框架接触良好。
关于回路中的电流I 和消耗的电功率P 随时间t 变化关系,下列四个图象中可能正确的是( )
思路小结:
◆电磁感应中的动力学问题
【例2】(2012·河南洛阳五校联考)如图,在水平桌面上
放置两条相距l 的足够长的平行光滑导轨AB 与CD ,阻
值为R 的电阻与导轨的A 、C 端相连。
质量为m 、边长
为l 、电阻不计的正方形线框垂直于导轨并可在导轨上滑
动。
整个装置放于匀强磁场中,磁场的方向竖直向上,磁感应强度的大小为B 。
滑杆的中点系一不可伸长的轻绳,绳绕过固定在桌边的光滑轻滑轮后,与一个质量也为m 的物块相连,绳处于拉直状态。
现若从静止开始释放物块,用h 表示物块下落的高度(物块不会触地),g 表示重力加速度,其他电阻不计,则( )
A .因通过正方形线框的磁通量始终不变,故电阻R 中没有感应电流
B .物体下落的加速度为0.5g
C .若h 足够大,物体下落的最大速度为mgR 2B 2l 2
D .物块下降h 的过程中,通过电阻R 的电荷量为Blh R
〖变式〗如图,光滑且足够长的平行金属导轨MN 、PQ 固定在同一水平面上,两导轨间距L =0.2 m ,电阻R =0.4 Ω,与电阻R 并联的电容器的电
容C=0.6×10-6 F .导轨上停放着一质量m =0.1 kg 、电阻r
=0.1 Ω的金属杆ab ,导轨电阻不计,整个装置处于磁感
应强度B =0.5 T 的匀强磁场中,磁场方向竖直向上。
现用
一在导轨平面内,且垂直于金属杆ab 的外力F ,沿水平方
向拉杆,使之由静止开始做加速度为a =5 m/s 2的匀加速直
线运动。
不计电容器充电时对电路的影响。
(1)写出电容器的带电量Q 与时间t 的关系式;
(2)求金属杆ab 运动2 s 时外力F 的瞬时功率P 。
思路小结:。