第1章 误差
- 格式:ppt
- 大小:993.00 KB
- 文档页数:65
第1章误差分析利用计算机进行数值计算几乎全都是近似计算:计算机所能表示的数的个数是有限的,我们需要用到的数的个数是无限的,所以在绝大多数情况下,计算机不可能进行绝对精确的计算。
定义:设x *为某个量的真值,x为x *的近似值,称x *- x为近似值x的误差,通常记为e(x),以表明它是与x有关的量。
与误差作斗争是时计算方法研究的永恒的主体,由于时间和经验的关系,我们仅对这方面的只是做一个最基本的介绍。
1.1 误差的来源误差的来源是多方面的,但主要来源为:描述误差,观测误差,截断误差和舍入误差。
1描述误差为了便于数学分析和数值计算,人们对实际问题的数学描述通常只反映出主要因素之间的数量关系,而忽略次要因素的作用,由此产生的误差称为描述误差。
对实际问题进行数学描述通常称为是建立数学模型,所以描述误差也称为是模型误差。
2观测误差描述实际问题或实际系统的数学模型中的某些参数往往是通过实验观测得到的。
由试验得到的数据与实际数据之间的误差称为观测误差。
比如我们用仪表测量电压、电流、压力、温度时,指针通常会落在两个刻度之间,读数的最后一位只能是估计值,从而也产生了观测误差。
3.舍入误差几乎所有的计算工具,当然也包括电子计算机,都只能用一定数位的小数来近似地表示数位较多或无限的小数,由此产生的误差称为舍入误差。
4.截断误差假如真值x*为近似值系列{x n}的极限,由于计算机只能执行有限步的计算过程,所以我们只能选取某个x N作为x*的近似值,由此产生的误差称为截断误差。
我们可以通过函数的泰勒展式来理解截断误差:设f(x)可以在x=x0处展开为泰勒级数,记f N(x)为前N+1项的和,R N(x)为余项,如果用f N(x)近似表示f(x),则R N(x)就是截断误差。
提示:在我们的课程中,重点是考虑尽可能减小截断误差,尽可能消除舍入误差的副作用。
1.2 误差基本概念1.绝对误差与相对误差定义:设x*为某个量的真值,x为x*的近似值,我们称|x*- x|为近似值x的绝对误差;称|x *- x|/|x*|为近似值x的相对误差。
计算方法-1 -第一章 误差分析的基本概念§ 1误差的来源1. 误差概念:精确值与近似值之差称为误差,也叫绝对误差。
2. 产生误差的主要原因① 模型误差:在解决实际问题时,在一定条件下抓住主要因素将现实系统理想化的数学描述称为实 际问题的数学模型,这种数学描述常常是近似的,数学模型与实际系统之间存在误差,这种误差称为模 型误差。
② 观测误差:数学模型中往往含有一些由观测得到的物理量(如温度、电阻、长度)或由物理量估 算出的模型参数,这些观测物理量或模型参数常常与实际数据存在误差。
这种由观察产生的误差称为观 测误差。
③ 截断误差:数值计算中用有限运算近似代替无穷过程产生的误差。
例如计算一个无穷次可微函数 的函数值时,理论上只要能算出这个函数的泰勒级数值即可,但是实际工程上仅用泰勒级数中前面有限 项来近似计算函数值,而舍去高阶无穷小量。
这个被舍的高阶无穷小量正是截断误差。
④ 舍入误差:计算中按四舍五入进行舍入而引起的误差或因计算机字长有限,数据在内存中存放时 进行了舍入而引起的误差。
3. 举例说明例1设一根铝棒在温度t 时的实际长度为L t ,在t=0 C 时的实际长度为 L o ,用i t 来表示铝棒在温度为t 时的长度计算值,并建立一个数学模型: I tL °(1「.t ),其中a 是由实验观察得到的常数:-二(0.0000238 ± 0.0000001 ) 1/ C,称L t —I t 为模型误差,0.0000001/ C 是a 的观测误差。
这个问题中模型 误差产生的原因是:实际上 L t 与t 2有微弱关系,也就是说模型未能完全反映物理过程。
为了计算近似值,可取前面有限项计算•如取前面五项计算,计算过程中与计算结果都取五位小数得e ~1+1 + 1/2+1/6+1/24疋2.7083, e 取五位小数时的准确值为~ =2.71828,于是截断误差为:□0' —:2.71828 -2.7083 = 0.00995 n总n !这表明:只要在计算中采用了有限步运算近似代替无限步运算的方法,截断误差就一定存在。
第一章 误差1、设0>x ,x 的相对误差为δ,求x ln 的误差 [解]设0*>x为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x xx x x ,相对误差为****ln ln )(ln )(ln xxx x r δεε==。
2、设x 的相对误差为2%,求nx 的相对误差。
[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn xx n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr ==εε。
3、计算球体积要使相对误差限为1%,问度量半径R 允许的相对误差是多少?[解]由3*3**3**)(34))(34())(34(%1R R R r ππεπε==可知,)()(4)()(34)(34%1))(34(**2***3*3*3**R R R R R R επεπππε⨯='⎥⎦⎤⎢⎣⎡=⨯=, 从而***31%1)(R R ⨯=ε,故300131%1)()(*****=⨯==RR R r εε。
4、设280=Y ,按递推公式),2,1(78310011 =-=-n Y Y n n 计算到100Y ,若取982.27783≈(五位有效数字,)试问计算100Y 将有多大误差?[解]令n Y 表示n Y 的近似值,n n n Y Y Y e -=)(*,则0)(0*=Y e ,并且由 982.2710011⨯-=-n n Y Y ,78310011⨯-=-n n Y Y 可知,)783982.27(100111-⨯--=---n n n n Y Y Y Y ,即=-⨯-=-⨯-=--)783982.27(1002)()783982.27(1001)()(2*1**n n n Y e Y e Y e ,从而982.27783)783982.27()()(0*100*-=--=Y e Y e ,而31021982.27783-⨯≤-,所以3100*1021)(-⨯=Y ε。
第1章误差与数据处理121.1 误差1.1.1误差的表示方法—准确度和精密度1. 准确度测定结果与“真值”接近的程度,用误差表示a 100%E T 相对误差E r =绝对误差E a =-Tx 千分率3例:滴定的体积误差VE a E r 20.00 mL±0.02 mL ±0.1%2.00 mL ±0.02 mL±1%称量误差m E aE r 0.2000 g ±0.2 mg±0.1%0.0200 g±0.2 mg ±1%滴定剂体积应为20~30 mL 称样质量应大于0.2 g4例:测定含铁样品中w (Fe), 比较结果的准确度xA.铁矿中, T =62.38%, = 62.32%x E a = -T= -0.06%xB.Li 2CO 3试样中, T =0.042%, =0.044%x E a = -T=0.002%a r A.100%E E T =⨯=-0.06/62.38= -0.1%a r B.100%E E T =⨯=0.002/0.042=5%52. 精密度平行测定的结果互相靠近的程度,用偏差表示:各次测定值()与算术平均值()之差。
i x xxx d i i -=绝对偏差:nx x d n i i ∑=-=1平均偏差:相对偏差=x d i P13:例1-6精密度的另外表示方法:重复性、再现性81x 2x 3x 3.准确度与精密度的关系1x 2x 3x 4x1.精密度好是准确度好的前提;2.精密度好不一定准确度高(系统误差)。
91.1.2误差产生的原因及减免办法1.系统误差(systematic error)具单向性、重现性,为可测误差方法:溶解损失、终点误差-用其他方法校正仪器:刻度不准、砝码磨损-校准操作:颜色观察试剂:不纯-空白实验对照实验:标准方法、标准样品、标准加入10注意系统误差是定量分析中误差的主要来源,影响结果的准确度2. 随机误差(random error)偶然误差,服从统计规律(不存在系统误差的情况下,测定次数越多其平均值越接近真值。