火焰原子吸收光谱法测定自来水中的钙和镁
- 格式:doc
- 大小:93.50 KB
- 文档页数:3
火焰原子吸收光谱法对水中钙镁元素含量的测定
1.原理
火焰原子吸收光谱法是一种常用的元素分析方法,对添加了特定试剂
的水样进行烧结分析,利用火焰中形成的原子,以吸收光谱的方式测定其
中元素的含量。
本实验以石英环氧环热烧结炉,采用火焰原子吸收光谱法,以选择性感应火焰来谱测定水中钙镁元素的含量。
2.原理描述
水样经加热烧结,在火焰中产生原子,其中的钙镁原子能够进行光离
子化(Ca+、Mg+),此时吸收器面上的检测元素中所具有的特征谱线就会
发出一定波长的回声,光谱仪可以发出特定波长的光,使检测元素产生特
征谱线,吸收器能够收集检测元素在特定波长的光线的反射,从而准确的
称出水样中的检测元素的含量。
3.分析流程
(1)将白细胞悬浮液以标定溶液的稀释倍数将其稀释至确定浓度;
(2)将稀释后的样品放入烧杯内,加入一定的烧剂,加热烧结;
(3)将火焰喷吐管插入环氧环,连接吸收器,开启光谱仪;
(4)在设定波长下测定样品中Ca、Mg吸收强度,确定测定值;
(5)重复上述步骤,完成对样品中Ca、Mg的测定;
(6)统计多次测定的结果,求出平均值,计算所求的检测元素含量。
实验6 火焰原子吸收光谱法灵敏度和自来水中钙、镁的测定一、实验原理在使用锐线光源条件下,基态原子蒸气对共振线的吸收,符合朗伯-比尔定律,即A=lg(Io / I)=KLN0在试样原子化时,火焰温度低于3 000K时,对大多数元素来讲,原子蒸气中基态原子的数目实际上十分接近原子总数。
在一定实验条件下,待测元素的原子总数目与该元素在试样中的浓度呈正比。
则A= k c用A-c标准曲线法或标准加入法,可以求算出元素的含量。
由原子吸收法灵敏度的定义, 按下式计算其灵敏度S:S = c*呼皿(mg・L或mg-IZM%)二、仪器与试剂1.仪器:WXF-1F2B2型原子吸收分光光度计;钙、镁空心阴极灯。
2 .试剂:钙系列标准溶液:3.0, 6.0, 9.0, 10. 0 mg - L-1镁系列标准溶液:0. 2, 0.4, 0. 6 mg • L-1三、实验步骤1.工作条件的设置(1)吸收线波长Ca 422.7 nm, Mg 285.2 nm(2)空心阴极灯电流4 mA(3)狭缝宽度0.4nm(4)原子化器高度6 mm(5)空气流量6.5 L • min1,乙快气流量1.7 L-min12.钙的测定(1)用10 mL的移液管吸取自来水样于50 mL容量瓶中,用蒸馅水稀释至刻度,摇匀。
(2)在最佳工作条件下,以蒸偏水为空白,由稀至浓逐个测量钙系列标准溶液的吸光度,最后测量自来水样的吸光度A。
4.镁的测定(1)用5mL的吸量管吸取自来水样于50mL容量瓶中,用蒸俺水稀释至刻度,摇匀。
(2)在最佳工作条件下,以蒸馅水为空白,测定镁系列标准溶液和自来水样的吸光度Ao5.实验结束后,用蒸馅水喷洗原子化系统2 min,按关机程序关机。
最后关闭乙快钢瓶阀门,旋松乙焕稳压阀,关闭空压机和通风机电源。
6.绘制钙、镁的A〜C标准曲线,由未知样的吸光度Ax,求算出自来水中钙、镁含量(mg • L」)。
或将数据输入微机,按一元线性回归计算程序,计算钙、镁的含量。
火焰原子吸收光谱法测定自来水中的铬一、实验目的1.学习原子吸收分光光度法的基本原理;2.了解原子吸收分光光度法的基本构造及其作用;3.掌握原子吸收光谱标准曲线法测定自来水中的铬的原理和方法。
二、实验原理原子吸收光谱法是基于待测元素的原子蒸汽对待测元素空心阴极灯发射的特征波长光的吸收作用而建立起来的分析方法。
吸光度与待测元素浓度的关系遵循朗伯-比尔定律,即A=lg(I0/I)=KLc。
原子吸收光谱仪的光路图:光信号源—试样系统—波长选择—分析信号转换—分析信号处理输出三、实验仪器及试剂原子吸收光谱仪,空心阴极灯(铬空心阴极灯),无油空气压缩机,乙炔钢瓶,铬标准溶液、未知样—自来水中的铬四、实验内容及数据处理打开无油空气压缩机,再开乙炔钢瓶阀,然后打开减压阀,最后再将电脑工作站和原子吸收光谱仪连接起来,准备测定。
(一)标准曲线法测定自来水中的铬1.设置原子吸收实验条件吸收波长:理论上为357.9nm,但本次实验实际用的波长为422.15nm灯电流:6mA 狭缝宽度:0.2nm 空气流量:8 L/min乙炔流量:2.2 L/min 燃烧器高度:7mm2.仪器稳定,用蒸馏水清洗雾化器吸液管并作空白溶液扣除背景,将雾化器吸液管依次插入0.05、0.1、0.2、1.0、2.0、4.0、6.0μg/ml浓度标准系列溶液的容量瓶中,测定系列溶液的吸光度。
然后,用蒸馏水清洗雾化器吸液管,再测定自来水样品的吸光度。
3Ac /μg由上可知,当y=0.8032时,x=19.7923,即测定自来水中钙的浓度为19.7923μg/ml。
(二)标准加入法测定自来水中的镁1.设置的原子吸收实验条件吸收波长:理论上为284.2nm,但本次实验实际用的波长为284.57nm灯电流:6mA 狭缝宽度:0.2nm 空气流量:8 L/min乙炔流量:1.8 L/min 燃烧器高度:7mm2.仪器稳定,用蒸馏水清洗雾化器吸液管并作空白溶液扣除背景,将雾化器吸液管依次插入0.2、0.3、0.4μg/ml浓度标准系列溶液的容量瓶中,测定系列溶液的吸光度。
实验四原子吸收光谱法测定自来 水中钙、镁含量1.学习火焰原子吸 收光谱仪的使用方 法。
2.理解钙、镁含量 的测定方法。
1. 要求学生实验前 认真预习实验内 容,对实验内容进 行设计,实验前教 师检查并批改预习报告,了解学生预 习情况。
2. 实验前先进行重点的讲解和示范基 本操作、实验步骤 中的注意事项,实 验过程中巡回指 导。
周次课 3时安排课时重点难点原子吸收的操作和 原理课题教学目标教学方法教 学手段教一、实验原理学原子吸收光谱法是基于由待测兀素空心阴极灯过发射出一定强度和波长的程特征谱线的光,当它通过含有待测兀素的基态原子教蒸汽时,原子蒸汽对这一学波长的光产生吸收,未被吸收的特征谱线的光经单过色器分光后,照射到光电检测器上被检测,根据该程特征谱线光强度被吸收的教程度,即可测得试样中待测兀素的含量。
学在一定浓度范围内,过被测兀素的浓度(C)、入程射光强(I0)和透射光强(I)符合Lambert-Beer 定律:1=10 >(10-abc (式中a为被测组分对某一波长光的吸收系数,b为光经过的火焰的长度)。
根据上述关系,配制已知浓度的标准溶液系列,在一定的仪器条件下,依次测定其吸光度,以加入的标准溶液的浓度为横坐标,相应的吸光度为纵坐标,绘制标准曲线。
试样经适当处理后,在与测量标准曲线吸光度相同的实验条件下测量其吸光度,在标准曲线上即可查出试样溶液中被测元素的含量,再换算成原始试样中被测元素的含量。
二、仪器与试剂1.仪器、设备:WF-210 型原子吸收分光光度计;钙、镁空心阴极灯;无油空气压缩机;乙炔钢瓶;容量瓶、移液管等。
2.试剂:碳酸镁、无水碳酸钙、1molL-1盐酸溶液、蒸馏水3.标准溶液配制(1)钙标准贮备液(1000gmL-1)准确称取已在110C下烘干2h的无水碳酸钙0.6250g于100mL烧杯中,用少量蒸馏水润湿,盖上表面皿,滴加1molL-1盐酸溶液,至完全溶解,将溶液于250mL容量瓶中定容,摇匀备用。
火焰原子吸收光谱法测定自来水中的铬一、实验目的1.学习原子吸收分光光度法的基本原理;2 . 了解原子吸收分光光度法的基本构造及其作用;3. 掌握原子吸收光谱标准曲线法测定自来水中的铬的原理和方法。
二、实验原理原子吸收光谱法是基于待测元素的原子蒸汽对待测元素空心阴极灯发射的特征波长光的吸收作用而建立起来的分析方法。
吸光度与待测元素浓度的关系遵循朗伯-比尔定律,即A=lg (l o/l )=KLc。
原子吸收光谱仪的光路图:光信号源一试样系统一波长选择一分析信号转换一分析信号处理输出三、实验仪器及试剂原子吸收光谱仪,空心阴极灯(铬空心阴极灯),无油空气压缩机,乙炔钢瓶,铬标准溶液、未知样一自来水中的铬四、实验内容及数据处理打开无油空气压缩机,再开乙炔钢瓶阀,然后打开减压阀,最后再将电脑工作站和原子吸收光谱仪连接起来,准备测定。
(一)标准曲线法测定自来水中的铬1 •设置原子吸收实验条件吸收波长:理论上为357.9nm,但本次实验实际用的波长为422.15nm灯电流:6mA 狭缝宽度:0.2 nm 空气流量:8 L/mi n乙炔流量:2.2 L/min 燃烧器高度:7mm2 •仪器稳定,用蒸馏水清洗雾化器吸液管并作空白溶液扣除背景,将雾化器吸液管依次插入0.05、0.1、0.2、1.0、2.0、4.0、6.0⑷/ml浓度标准系列溶液的容量瓶中,测定系列溶液的吸光度。
然后,用蒸馏水清洗雾化器吸液管,再测定自来水样品的吸光度。
3由上可知,当 y=0.8032时,x=19.7923,即测定自来水中钙的浓度为19.7923用/ml 。
(二)标准加入法测定自来水中的镁1 •设置的原子吸收实验条件吸收波长:理论上为 284.2nm ,但本次实验实际用的波长为 284.57nm 灯电流:6mA 狭缝宽度:0.2 nm 空气流量:8 L/min乙炔流量:1.8 L/mi n燃烧器高度:7mm2 •仪器稳定,用蒸馏水清洗雾化器吸液管并作空白溶液扣除背景,将雾化器吸液管依次插入 0.3、0.4冯/ml 浓度标准系列溶液的容量瓶中,测定系列溶液的吸光度。
实验名称实验十火焰原子吸收光谱法测定自来水中钙、镁的含量目的要求1、熟悉原子吸收光谱法分析的基本原理。
2、初步掌握原子吸收光谱仪的基本结构及使用方法。
3、掌握用标准曲线法测定自来水中钙、镁含量的方法。
重点1、原子吸收光谱分析的基本原理。
2、标准曲线法。
难点原子吸收光谱仪的基本结构和使用方法。
仪器设备原子吸收分光光度计、容量瓶、移液管、烧杯、洗瓶、去离子水、氧化钙(GR)、氧化镁(GR)、水样等。
内容提要1、试剂的准备(配制钙、镁的标准溶液和钙、镁的标准系列溶液)。
2、仪器的准备(开机、软件的操作)。
3、设置参数(实验条件的设定)。
4、仪器的调试。
5、标准曲线的制作。
6、试样的测定。
7、数据记录和结果处理。
操作要点1、准确配制钙、镁的标准溶液。
2、开机、正确操作软件。
3、选择最佳实验条件(设定参数)。
4、测定标准系列。
5、试样的测定。
6、数据记录和结果处理。
(标准曲线、回归方程、相关系数)7、关机。
注意事项1、开机前,检查各电源插头是否接触良好。
仪器各部分是否归于零位。
2、使用时,注意下列情况,如废液管道的水封圈被破坏、漏气,或燃烧器逢明显变宽,或助燃气与燃气流量比过大,这些情况都容易发生回火3.仪器点火时,要先开助燃气,然后开燃气;关气时先关燃气,然后关助燃气。
4.要定期检查气路接头和封口是否有漏气现象,以便及时解决。
5、单色器中的光学元件,严禁用手触摸和擅自调节思考题1、简述原子吸收光谱分析的基本原理。
2、原子吸收光谱分析为何要用待测元素的空心阴极灯作光源?能否用氢灯或钨灯代替?为什么?3、如何选择最佳的实验条件?讨论学习1、何谓试样的原子化?试样原子化的方法有哪几种?2、使用空心阴极邓应注意哪些问题?3、如何维护保养原子吸收分光光度计?拓展学习探讨原子吸收光谱法的特点和应用?。
实验七原子吸收光谱法测定自来水中钙、镁的含量——标准曲线法一、实验目的1. 学习原子吸收光谱分析法的基本原理;2. 了解火焰原子吸收分光光度计的基本结构,并掌握其使用方法;3. 掌握以标准曲线法测定自来水中钙、镁含量的方法。
二、实验原理1. 原子吸收光谱分析基本原理原子吸收光谱法(AAS )是基于:由待测元素空心阴极灯发射出一定强度和波长的特征谱线的光,当它通过含有待测元素的基态原子蒸汽时,原子蒸汽对这一波长的光产生吸收,未被吸收的特征谱线的光经单色器分光后,照射到光电检测器上被检测,根据该特征谱线光强度被吸收的程度,即可测得试样中待测元素的含量。
火焰原子吸收光谱法是利用火焰的热能,使试样中待测元素转化为基态原子的方法。
常用的火焰为空气—乙炔火焰,其绝对分析灵敏度可达10-9g ,可用于常见的30多种元素的分析,应用最为广泛。
2. 标准曲线法基本原理在一定浓度范围内,被测元素的浓度(c )、入射光强(I 0)和透射光强(I )符合Lambert-Beer 定律:I=I0×(10-abc (式中a 为被测组分对某一波长光的吸收系数,b 为光经过的火焰的长度)。
根据上述关系,配制已知浓度的标准溶液系列,在一定的仪器条件下,依次测定其吸光度,以加入的标准溶液的浓度为横坐标,相应的吸光度为纵坐标,绘制标准曲线。
试样经适当处理后,在与测量标准曲线吸光度相同的实验条件下测量其吸光度,在标准曲线上即可查出试样溶液中被测元素的含量,再换算成原始试样中被测元素的含量。
三、仪器与试剂1. 仪器、设备:AAnalyst 800原子吸收分光光度计;钙、镁空心阴极灯;无油空气压缩机;乙炔钢瓶2. 试剂碳酸镁、无水碳酸钙、1mol ⋅L -1盐酸溶液、蒸馏水3. 标准溶液配制(1)钙标准贮备液(1000μg ⋅mL -1)准确称取在110℃下烘干2h 的无水碳酸钙0.6250g 于100mL 烧杯中,用少量蒸馏水润湿,盖上表面皿,滴加1mol ⋅L -1盐酸溶液,至完全溶解,定容至250mL 容量瓶中,摇匀备用。
火焰原子吸收法测定自来水中钙、镁硬度一、实验目的:1、通过火焰原子吸收法测定自来水中的钙、镁硬度,熟悉火焰原子吸收分光光度法的基本原理。
2、了解仪器的基本结构和使用方法。
初步了解原子吸收测定中存在的干扰类型及消除方法。
二、实验原理:仪器光源辐射出待测元素的特征谱线(强度为I0),经火焰原子化区被待测元素基态原子所吸收,透过光强Iν符合Lanber-Beer定律:Iν=I0e−Kνl,根据经典爱因斯坦理论,吸收系数的积分与基态原子数目有关系:∫Kνdν=πe2mcfN0对某元素制定的谱线πe 2mcf为常数。
因此积分吸收与基态原子的浓度成正比。
但由于原子吸收线半宽非常窄,故试剂应用中采用锐线光源测定吸收线中心波长位置的吸收系数K0,由于原子吸收测量的温度不太高,分支吸收与产生吸收的原子数N存在线性关系:A=log I0I=KlN,故在一定条件下吸收值与待测元素的浓度C成正比。
火焰原子化主要分雾化、蒸发、熔化和解离、激发和电离四个步骤,与原子发射光谱测定原理类似。
原子吸收法测定钙、镁的灵敏度较高,共存的铝、钛、铁、硫酸根等对测定有负干扰,采用释放剂氯化锶消除干扰。
三、实验仪器及试剂:实验仪器:PerkinElmer AS800原子吸收光谱仪(仪器条件氧化剂:空气,氧化剂流量17.0L/min,乙炔流量:2.0L/min,观测高度:0.0mm)实验试剂:20% SrCl2 溶液,10mg/L Mg标液,100mg/L Ca标液,100 mg/L Al标液,自来水四、实验步骤:1、实验溶液配制根据要求的溶液浓度(见附1)在50ml离心管中配制溶液2、工作曲线绘制:开启仪器,仪器自检及自动化,建立实验文件夹,参数设置,进行工作曲线实验。
对已配好的5个镁标准系列浓度溶液及5个钙标准系列浓度溶液分别进行火焰原子吸收实验。
3、干扰及消除:对已配好的第三组Mg干扰溶液进行火焰原子吸收实验。
4、样品测试及钙的回收试验:对已配好的第四组样品Mg及Ca溶液进行火焰原子吸收实验,及Ca的回收实验,实验步骤与上述相同。
火焰原子吸收光谱法测定自来水中的铬
一、实验目的
1.学习原子吸收分光光度法的基本原理;
2.了解原子吸收分光光度法的基本构造及其作用;
3.掌握原子吸收光谱标准曲线法测定自来水中的铬的原理和方法。
二、实验原理
原子吸收光谱法是基于待测元素的原子蒸汽对待测元素空心阴极灯发射的特征波长光的吸收作用而建立起来的分析方法。
吸光度与待测元素浓度的关系遵循朗伯-比尔定律,即A=lg(I0/I)=KLc。
原子吸收光谱仪的光路图:
光信号源—试样系统—波长选择—分析信号转换—分析信号处理输出
三、实验仪器及试剂
原子吸收光谱仪,空心阴极灯(铬空心阴极灯),无油空气压缩机,乙炔钢瓶,铬标准溶液、未知样—自来水中的铬
四、实验内容及数据处理
打开无油空气压缩机,再开乙炔钢瓶阀,然后打开减压阀,最后再将电脑工作站和原子吸收光谱仪连接起来,准备测定。
(一)标准曲线法测定自来水中的铬
1.设置原子吸收实验条件
吸收波长:理论上为357.9nm,但本次实验实际用的波长为422.15nm
灯电流:6mA 狭缝宽度:0.2nm 空气流量:8 L/min
乙炔流量:2.2 L/min 燃烧器高度:7mm
2.仪器稳定,用蒸馏水清洗雾化器吸液管并作空白溶液扣除背景,将雾化器吸液管依次插入0.05、
0.1、0.2、1.0、2.0、4.0、6.0μg/ml浓度标准系列溶液的容量瓶中,测定系列溶液的吸光度。
然后,
用蒸馏水清洗雾化器吸液管,再测定自来水样品的吸光度。
3
A
c /μg
由上可知,当y=0.8032时,x=19.7923,即测定自来水中钙的浓度为19.7923μg/ml。
(二)标准加入法测定自来水中的镁
1.设置的原子吸收实验条件
吸收波长:理论上为284.2nm,但本次实验实际用的波长为284.57nm
灯电流:6mA 狭缝宽度:0.2nm 空气流量:8 L/min
乙炔流量:1.8 L/min 燃烧器高度:7mm
2.仪器稳定,用蒸馏水清洗雾化器吸液管并作空白溶液扣除背景,将雾化器吸液管依次插入0.2、
0.3、0.4μg/ml浓度标准系列溶液的容量瓶中,测定系列溶液的吸光度。
3
A
C/ μg/mL
当y=0时,x=-0.1157,因实验已将原待测浓度稀释了100倍,故测定自来水中镁的浓度为11.57μg/ml。
(三)结束工作
实验结束,先关乙炔气体,再按“purge”键排除残留气体,然后松开减压阀,依次关空气压缩机,原子吸收仪,然后排气,关闭系统。
检查电、水、门窗关好后离开。
五、思考题
1.简述原子吸收分光光度法的基本原理。
答:原子吸收分光光度法基于原子蒸汽相中被测元素的基态原子对其原子共振辐射的吸收来测定样品中该元素含量的一种分析方法。
利用吸收原理进行分析的,遵守朗伯—比尔定律:A=ξbc。
2.火焰原子吸收分光光度法的特点有哪些?
答:火焰原子吸收分光光度法的特点是:①灵敏度高;②选择性好,抗干扰能力强;③精密度高;④测量范围广。
但标准曲线的线性范围窄,一般仅为已个数量级;每测一种元素通常要使用一种元素灯,使用不方便。
3. 原子吸收分光光度法试验中必须选择哪些试验条件?
答:吸收波长,灯电流,狭缝宽度,燃烧器高度,燃气流量和助燃气流量及它们的比例。
4.使用标准曲线法进行原子吸收测量时应该满足哪些条件?
答:分析前用标准溶液校正系统;分析过程中保持操作条件;标准系列与被分析样品溶液的组成尽量一致;标准和试样溶液的吸光度应该在0.2~0.8之间。
5.标准加入法定量分析有哪些优点?采用标准加入法应该注意哪些问题?
答:该法可消除基体效应的影响,不用配制系列标准溶液,简单快捷。
应该注意加入的标准溶液浓度与待测溶液浓度相近。
6.简述标准加入法的基本原理和实验过程。
答:标准加入法的基本原理:建立在吸光度与浓度成正比及吸光度的加和性的基础上。
标准加入法的实验过程:对单点加入法是在被测试液中加入一定量的标准溶液,测定加入前后的吸光度;对作图法是对三份或三份以上等体积的被测试液中成比例地加入标准溶液,分别测定吸光度。
7.原子吸收的干扰有哪些?如何消除?
答:原子吸收的干扰及消除:
⑴物理干扰,采用标准加入法或稀释法、采用内标法、加入基体改进剂等方法消除;
⑵化学干扰,采用化学分离;采用高温火焰;加入释放剂、保护剂及缓冲剂;使用基体改进剂;
⑶电离干扰,采用低温火焰、加入消电离剂等方法消除;
⑷光谱干扰,其中谱线干扰用另选分析、减小狭缝宽度、更换老化了的光源方法消除;背景干扰
采用氘灯或塞曼效应方法消除。
8.谱线变宽的原因有哪些?
答:谱线变宽的原因有①自然宽度;②多普勒变宽;③碰撞变宽;④场致变宽;⑤磁致变宽。