幂的运算评估测试题及答案
- 格式:docx
- 大小:142.81 KB
- 文档页数:6
《幂的运算》练习题及答案幂的运算是数学中一个重要的概念,经常在代数和数论等领域出现。
本文将提供一些幂的练习题,并附上详细的答案,帮助读者加深对幂的运算规则的理解。
一、练习题1. 计算以下幂的结果:a) 2^3b) 5^2c) (-3)^4d) 10^0e) 1^1002. 化简以下幂的表达式:a) (2^3)^2b) 4^0c) (-2)^4d) (3^2)^3e) 5^13. 计算以下幂的结果,并写成最简形式:a) 2^(1/2)b) 10^(2/3)c) 8^(3/2)d) 27^(2/3)e) 16^(-1/2)二、答案解析1. 计算以下幂的结果:a) 2^3 = 2 * 2 * 2 = 8b) 5^2 = 5 * 5 = 25c) (-3)^4 = (-3) * (-3) * (-3) * (-3) = 81d) 10^0 = 1 (任何数的0次幂都等于1)e) 1^100 = 1 (任何数的1次幂都等于自身)2. 化简以下幂的表达式:a) (2^3)^2 = 2^(3*2) = 2^6 = 64b) 4^0 = 1 (任何非零数的0次幂均等于1)c) (-2)^4 = 2^4 = 16d) (3^2)^3 = 3^(2*3) = 3^6e) 5^1 = 5 (任何数的1次幂都等于自身)3. 计算以下幂的结果,并写成最简形式:a) 2^(1/2) = √2b) 10^(2/3) ≈ 4.641 (保留三位小数)c) 8^(3/2) = (√8)^3 = 2^3 = 8d) 27^(2/3) = (∛27)^2 = 3^2 = 9e) 16^(-1/2) = 1/√16 = 1/4上述练习题和答案介绍了幂的运算规则,包括幂的计算、幂的化简和带分数指数的幂运算等内容。
通过对这些问题的分析和解答,读者可以更好地理解幂的性质和规律。
总结:幂的运算是数学中一个重要的概念,掌握幂的运算规则对于数学学习和解题非常重要。
七(下)数学第八章幂的运算评估测试卷(时间:90分钟满分:100分)一、选择题(每小题2分,共50分)1.下列计算不正确的是( )??3?a---÷÷101?122nn240a??2ab?01 C. D. A3+2= B.10=.=0.a13b13a822.下列计算不正确的是( )aaa--÷(÷÷pm0mnpmmn aaaa =1 B A.=.)=--(3÷(-x)÷335 2 4=l C.(-x)9)=-x D. 3.下列计算正确的是( )a--5÷3÷÷x÷5÷39910810042 8528a 5=5 A.x=3 D.=1 C=x B..3 ( ) 的计算结果是÷1000nm1004.--mn3nm2mn mn A.100000.100B.101000D. C1-( ) 的值是22+x5=2,则.若x x11 0 D..A.4B. C444a-中A的值应是( )÷A=2m+nm a.在等式6-2 m+n+3 nn+2m+n+2aaaa B.. A..DC等于( ) 2m+4a.7a·m+422mm+2 24 m4aaaaaaa.C D.2 A.. B()+-÷(x ( )的结果是 2m+11mm)8x.xA.-l B.1 C.0 D.±19.下列等式正确的是( )-②3.10×1044 =31 00010 ①0.000 126=1.26×-5610.26×=0.000011 ③1.1×10④12 600 000=1 A.①② B.②④ C.①②③ D.①③④2×10×(1.5×10的值是 ( )243 2 )-)(10.311141414 10D4×105×10. B10.- C.- A.-1.11.下列各式中-定正确的是( )1)- 022 0 00?a=1+1)..( A.(2x-3)=1 B.(m=1 D=0 C2009200811????( )的结果是.计算12???????22????20092008200920091111????????B.. DA.. C???1????????2222????????( ) x的值是,m为正整数,则3mx6m>2.若2>2132m3 D.4m B.3m C. A.a-( ) ÷中括号内的式子应是( )=2m+nm a.在算式14--n+22m+n2m+n+2n aaaa. AD CB... ( ) 结果为02)(2×12÷3-15..12 D.无意义 A.0 B.1C ( ) 的式子是结果为16.aa---÷26 2 43421aaaaa.) C.. A.( D B2a( ).下面计算正确的是1785638243277aaa. A.=. Bb+b=b Cx+x=xD=x.xx等于 ( ) 23 a)-218.(569 6aaaa D C. A.44.-B.4419.下列运算正确的是( )-x·(-y) 7 23 795553102- (-y) A.xx=xy B.xy)=y=y D=x.-C.(20.下列运算正确的是( )÷(x÷x÷(xy) 2 332108 643)=x=x B A.x.(xy)=(xy)y--xx÷÷3n2nnnn+2n+14n x=x D C.x.x=x÷5得( ) mm25.计算21mm20.5 D. A.5 B.20 C ( ) 纳米应表示为2.5纳米1=0.000 000 001米,则22.---×10米米 D.2.5×10 C米.2.5×1052米 B..99810102.×5 A.奥运会场馆之一,它的外层膜的展开面积23.国家游泳中心——“水立方”是北京2008 ( ) 260 000用科学记数法表示应为约260 000平方米,将64 5 6 102.62C..6×10×D A.0.26×10 B.26×10.是的列下运算24正确.( )+5x=m=3x A.n.-= D. B(-y)2x=y C.(mn)222623 36 35322aaa万人,这一数据2008年全国普通高考计划招生66725.国家教育部最近提供的数据娃示,科学记数法表示为(结果保留两个有效数字)( )66 6 610×D.67.. B66×10C.67×10×..A6610二、填空题(每小题2分,共44分)a)(-·22a.=____________.26.--÷x=____________(x.·1332).(x)27·(-b)223)=_____________.b28.-b (-2 3=______________.x)-y) (y-29.(x×820092008=_____________.125. 30. 0-8÷1nn=_____________. 31.-43m+12m+4aaa =__________32.aa-b3b=____________. 10=25,则1033.已知10=5,,则A=_____________.2n+1n+1=xAx34.已知×64×25×48388=______________25.35.0.-55)××(-42 2=_____________. 36.-5a-(-2 32 2 3aaa)=______________.)( (.(b)-b) 37a)-÷(36a=____________.38.(- )a÷625aa=____________.39.--5×120=____________.40.5+25·(m÷m10 632=___________. 41.m)-x÷1m+1m=___________42.-x.a-÷mn1 nm a=___________.)(43.2n=4,则n=__________.44.若2,则x=___________.x3=286445.若×1-,则x=____________.÷(2 53)-x46.若2)=(247.用科学记数法表示0.000 000 125=____________.三、计算题(48~51题每小题4分,52、53题每小题5分,共26分)a÷2)3-(.48.3 2a-x÷1n 2nn+1 (x≠(x0) )49.x-x·x·x 2546x.x5011-(-2 03 )+(51.(--3)) 23--·(x-·xx) ·322 2nn x)52.3x+3(----(-3÷3×2009022 232))3×353.(-参考答案1.C 2.B 3.C 4.B 5.B 6.D 7.B 8.B 9.C 10.B 11.D 12.D 13.A 14.D 15.D 16.B 17.D 18.B 19.D 20.A 21.C 22.B23.C 24.D 25.C1-n34 m7 5aa 28.b 29.(y26.-x) 27. 30.8 31.-2 32.10x n 35.4 5 34.x33.123 5 aa 44. 43..m1 .-36.-1 37.0 38 42.-39.x 40.1 41n a-725×1045.15 46.-2 47.1.aa-÷÷462623 22aaaa =9) =948.解:(-3=9---(x÷·x0n 21(n+1)+(n2nn+11)n=1 .解:x =x)=x49x-·x-x2492569=0x=x. x.解:50x 3?21111??????0???51.解:8????3????1??9??????8283??????-3x nn =052.解:原式=3x.---(-3÷3×200902232 236-1=×9-27-=))3×3-(.解:53.。
幂的运算测试题
1. 计算题
a) 计算 $2^3$。
b) 计算 $(-3)^4$。
c) 计算 $0.5^2$。
2. 拓展思考题
a) 如果底数为负数,而指数为偶数,结果是正数还是负数?为什么?
b) 如果底数为零,而指数为正数,结果是什么?为什么?
c) 如果底数为正数,而指数为零,结果是什么?为什么?
d) 如果底数和指数都为零,结果是什么?为什么?
3. 简答题
a) 什么是幂?
b) 幂运算的性质有哪些?
c) 如何进行幂运算的乘法?
d) 如何进行幂运算的除法?
4. 实际应用题
a) 一辆车以每小时60公里的速度行驶,计算4小时后车子行驶的总路程。
以幂运算的形式给出答案。
b) 一笔存款以年利率5%计算利息,计算5年后的本金和利息总和。
以幂运算的形式给出答案。
5. 推理题
根据已知条件,完成以下推理:
a) 如果 $a^2 = 25$,那么 $a$ 的值是多少?
b) 如果 $b^3 = 27$,那么 $b$ 的值是多少?
c) 如果 $c^4 = 81$,那么 $c$ 的值是多少?
6. 计算题
a) 计算 $(2^2)^3$。
b) 计算 $2^{2^3}$。
以上是幂的运算测试题目,请根据每个小题给出答案,并标明是否使用了幂的运算。
幂的运算专项练习50题(有答案)1.2. (4ab2)2×(﹣a2b)33.(1);(2)(3x3)2•(﹣x);(3) m2•7mp2÷(﹣7mp);(4)(2a﹣3)(3a+1).4.已知a x=2,a y=3求:a x+y与a2x﹣y的值.5.已知3m=x,3n=y,用x,y表示33m+2n.6.若a=255,b=344,c=433,d=522,试比较a,b,c,d 的大小.7.计算:(﹣2 m2)3+m7÷m.8.计算:(2m2n﹣3)3•(﹣mn﹣2)﹣29.计算:.10.(﹣)2÷(﹣2)﹣3+2×(﹣)0.11.已知:2x=4y+1,27y=3x﹣1,求x﹣y的值.12.若2x+5y﹣3=0,求4x•32y的值.13.已知3×9m×27m=316,求m的值.14.若(a n b m b)3=a9b15,求2m+n的值.15.计算:(x2•x3)2÷x6.16.计算:(a2n)2÷a3n+2•a2.17.若a m=8,a n =,试求a2m﹣3n的值.18.已知9n+1﹣32n=72,求n的值.19.已知x m=3,x n=5,求x2m+n的值.20.已知3m=6,9n=2,求32m﹣4n+1的值.21.(x﹣y)5[(y﹣x)4]3(用幂的形式表示)22.若x m+2n=16,x n=2,(x≠0),求x m+n,x m﹣n的值.23.计算:(5a﹣3b4)2•(a2b)﹣2.24.已知:3m•9m•27m•81m=330,求m的值.25.已知x6﹣b•x2b+1=x11,且y a﹣1•y4﹣b=y5,求a+b的值.26.若2x+3y﹣4=0,求9x﹣1•27y.27.计算:(3a2x4)3﹣(2a3x6)2.28.计算:.29.已知16m=4×22n﹣2,27n=9×3m+3,求(n﹣m)2010的值.30.已知162×43×26=22m﹣2,(102)n=1012.求m+n的值.31.(﹣a)5•(﹣a3)4÷(﹣a)2.32.(a﹣2b﹣1)﹣3•(2ab2)﹣2.33.已知x a+b•x2b﹣a=x9,求(﹣3)b+(﹣3)3的值.34.a4•a4+(a2)4﹣(﹣3x4)235.已知(x5m+n y2m﹣n)3=x6y15,求n m的值.36.已知a m=2,a n=7,求a3m+2n﹣a2n﹣3m的值.37.计算:(﹣3x2n+2y n)3÷[(﹣x3y)2]n38.计算:(x﹣2y﹣3)﹣1•(x2y﹣3)2.39.已知a2m=2,b3n=3,求(a3m)2﹣(b2n)3+a2m•b3n的值40.已知n为正整数,且x3n=7,求(3x2n)3﹣4(x2)3n 的值.41.若n为正整数,且x2n=5,求(3x3n)2﹣34(x2)3n 的值.42.计算:(a2b6)n+5(﹣a n b3n)2﹣3[(﹣ab3)2]n.43..44.计算:a n﹣5(a n+1b3m﹣2)2+(a n﹣1b m﹣2)3(﹣b3m+2)45.已知x a=2,x b=6.(1)求x a﹣b的值.(2)求x2a﹣b 的值.46.已知2a•27b•37c=1998,其中a,b,c为整数,求(a﹣b﹣c)1998的值.47.﹣(﹣0.25)1998×(﹣4)1999.48.(1)(2a+b)2n+1•(2a+b)3•(2a+b)n﹣4(2)(x﹣y)2•(y﹣x)5.49.(1)(3x2y2z﹣1)﹣2•(5xy﹣2z3)2.(2)(4x2yz﹣1)2•(2xyz)﹣4÷(yz3)﹣2.50.计算下列各式,并把结果化为正整数指数幂的形式.(1)a2b3(2a﹣1b3);(2)(a﹣2)﹣3(bc﹣1)3;(3)2(2ab2c﹣3)2÷(ab)﹣2.幂的运算50题参考答案:1.解:原式=4﹣1﹣4=﹣1;2. 原式=16a2b4×(﹣a6b3)=﹣2a8b73.解:(1)原式=(﹣5)×3=﹣15;(2)原式=9x6•(﹣x)=﹣9x7;(3)原式=7m3p2÷(﹣7mp)=﹣m2p;(4)原式=6a2+2a﹣9a﹣3=6a2﹣7a﹣3.故答案为﹣15、﹣9x7、﹣m2p、6a2﹣7a﹣3 4.解:a x+y=a x•a y=2×3=6;a2x﹣y=a2x÷a y=22÷3=5.解:原式=33m×32n,=(3m)3×(3n)2,=x3y26.解:a=(25)11=3211;b=(34)11=8111;c=(43)11=4811;d=(52)11=2511;可见,b>c>a>d7.解:(﹣2m2)3+m7÷m,=(﹣2)3×(m2)3+m6,=﹣8m6+m6,=﹣7m68.解:(2m2n﹣3)3•(﹣mn﹣2)﹣2=8m6n﹣9•m﹣2n4= 9.解:原式=(﹣4)+4×1=010.解:原式=÷(﹣)+2×1=﹣2+2=011.解:∵2x=4y+1,∴2x=22y+2,∴x=2y+2 ①又∵27y=3x﹣1,∴33y=3x﹣1,∴3y=x﹣1②联立①②组成方程组并求解得,∴x﹣y=312.解:4x•32y=22x•25y=22x+5y∵2x+5y﹣3=0,即2x+5y=3,∴原式=23=813.解:∵3×9m×27m,=3×32m×33m,=31+5m,∴31+5m=316,∴1+5m=16,解得m=314.解:∵(a n b m b)3=(a n)3(b m)3b3=a3n b3m+3,∴3n=9,3m+3=15,解得:m=4,n=3,∴2m+n=27=12815.解:原式=(x5)2÷x6=x10÷x6=x10﹣6=x416.解:(a2n)2÷a3n+2•a2=a4n÷a 3n+2•a2=a4n﹣3n﹣2•a2=a n﹣2•a2=a n﹣2+2=a n17.解:a2m﹣3n=(a m)2÷(a n)3,∵a m=8,a n =,∴原式=64÷=512.故答案为51218.解:∵9n+1﹣32n=9n+1﹣9n=9n(9﹣1)=9n×8,而72=9×8,∴当9n+1﹣32n=72时,9n×8=9×8,∴9n=9,∴n=119.解:原式=(x m)2•x n=32×5=9×5=4520.解:由题意得,9n=32n=2,32m=62=36,故32m﹣4n+1=32m×3÷34n=36×3÷4=2721.解:(x﹣y)5[(y﹣x)4]3=(x﹣y)5[(x﹣y)4]3=(x﹣y)5•(x﹣y)12=(x﹣y)1722.解:∵x m+2n=16,x n=2,∴x m+2n÷x n=x m+n=16÷2=8,x m+2n÷x3n=x m﹣n=16÷23=223.解:(5a﹣3b4)2•(a2b)﹣2=25a﹣6b8•a﹣4b﹣2=25a﹣10b6=24.解:由题意知,3m•9m•27m•81m,=3m•32m•33m•34m,=3m+2m+3m+4m,=330,∴m+2m+3m+4m=30,整理,得10m=30,解得m=325.解:∵x6﹣b•x2b+1=x11,且y a﹣1•y4﹣b=y5,∴,解得:,则a+b=1026.解:∵2x+3y﹣4=0,∴2x+3y=4,∴9x﹣1•27y=32x﹣2•33y=32x+3y﹣2=32=927.解:(3a2x4)3﹣(2a3x6)2=27a6x12﹣4a6x12=23a6x12 28.解:原式=•a2b3=29.解:∵16m=4×22n﹣2,∴(24)m=22×22n﹣2,∴24m=22n﹣2+2,∴2n﹣2+2=4m,∴n=2m①,∵(33)n27n=9×3m+3,∴(33)n=32×3m+3,∴33n=3m+5,∴3n=m+5②,由①②得:解得:m=1,n=2,∴(n﹣m)2010=(2﹣1)2010=130.解:∵162×43×26=28×26×26=220=22m﹣2,(102)n=102n=1012.∴2m﹣2=20,2n=12,解得:m=11,n=6,∴m+n=11+6=1731.原式=(﹣a)5•a12÷(﹣a)2=﹣a5+12÷(﹣a)2=﹣a17÷a2=﹣a15.32.解:(a﹣2b﹣1)﹣3•(2ab2)﹣2=(a6b3)•(a﹣2b﹣4)=a4b﹣1=33.解:∵x a+b•x2b﹣a=x9,∴a+b+2b﹣a=9,解得:b=3,∴(﹣3)b+(﹣3)3=(﹣3)3+(﹣3)3=2×(﹣3)3=2×(﹣27)=﹣54 34.解:原式=a8+a8﹣9x8,=2a8﹣9x835.解:(x5m+n y2m﹣n)3=x15m+3n y6m﹣3n,∵(x5m+n y2m﹣n)3=x6y15,∴,解得:,则n m=(﹣9)3=﹣24336.解:∵a m=2,a n=7,∴a3m+2n﹣a2n﹣3m=(a m)3•(a n)2﹣(a n)2÷(a m)3=8×49﹣49÷8=37.解:(﹣3x2n+2y n)3÷[(﹣x3y)2]n,=﹣27x6n+6y3n÷(﹣x3y)2n,=﹣27x6n+6y3n÷x6n y2n,=﹣27x6y n38.解:(x﹣2•y﹣3)﹣1•(x2•y﹣3)2,=x2y3•x4y﹣6,=x6y﹣3,=39.解:(a3m)2﹣(b2n)3+a2m•b3n,=(a2m)3﹣(b3n)2+a2m•b3n,=23﹣32+2×3,=540.解:原式=27x6n﹣4x6n=23x6n=23(x3n)2=23×7×7=112741.解:∵x2n=5,∴(3x3n)2﹣34(x2)3n=9x6n﹣34x6n=﹣25(x2n)3=﹣25×53=﹣312542.解:原式=a2n b6n+5a2n b6n﹣3(a2b6)n=6a2n b6n﹣3a2n b6n=3a2n b6n43.解:原式=()50x50•()50x100=x15044.解:原式=a n﹣5(a2n+2b6m﹣4)+a3n﹣3b3m﹣6(﹣b3m+2),=a3n﹣3b6m﹣4+a3n﹣3(﹣b6m﹣4),=a3n﹣3b6m﹣4﹣a3n﹣3b6m﹣4,=045.解:(1)∵x a=2,x b=6,∴x a﹣b=x a÷x b=2÷6=;=(2)∵x a=2,x b=6,∴x2a﹣b=(x a)2÷x b=22÷6=46.解:∵2a•33b⋅37c=2×33×37,∴a=1,b=1,c=1,∴原式=(1﹣1﹣1)1998=147.解:原式=﹣()1998×(﹣4)1998×(﹣4),=﹣()1998×41998×(﹣4),=﹣(×4)1998×(﹣4),=﹣1×(﹣4),=448.解:(1)原式=(2a+b)(2n+1)+3+(n﹣4)=(2a+b)3n;(2)原式=﹣(x﹣y)2•(x﹣y)5=﹣(x﹣y)749.解:(1)原式=()﹣2•()2=•=;(2)原式=•÷=•y2z6=150.解:(1)a2b3(2a﹣1b3)=2a2﹣1b3+3=2ab6;(2)(a﹣2)﹣3(bc﹣1)3,=a6b3c﹣3,=;(3)2(2ab2c﹣3)2÷(ab)﹣2,=2(4a2b4c﹣6)÷(a﹣2b﹣2),=8a4b6c﹣6,。
幂的运算专项练习50题(有答案)1.2 2 2 32.(4ab)×(﹣ab)3.(1);(2)(3x3)2(?﹣x);(3)m2?7mp2÷(﹣7mp);(4)(2a﹣3)(3a+1).4.已知a x=2,a y=3求:a x+y与a2x﹣y的值.6.若a=255,b=344,c=433,d=522,试比较a,b,c,d的大小.2 3 77.计算:(﹣2m)+m÷m.2 ﹣33﹣2)﹣28.计算:(2mn) ?(﹣mn9.计算:.10.(﹣)2÷(﹣2)﹣3+2×(﹣)0.11.已知:2x=4y+1,27y=3x﹣1,求x﹣y的值.12.若2x+5y﹣3=0,求4x?32y的值.mn3m+2n 13.已知3×9m×27m=316,求m的值.5.已知3=x,3=y,用x,y表示3 .nm3915,求2 m+n 14.若(abb ) =ab 的值.2 3 2 615.计算:(x?x )÷x .2n 2 3n+2 216.计算:(a )÷a ?a .17.若a m =8,a n = ,试求a 2m ﹣3n的值.n+1 2n18.已知9 ﹣3=72,求n 的值.m n 2m+n19.已知x=3,x=5,求x 的值.20.已知3m =6,9n =2,求32m ﹣4n+1的值.21.(x ﹣y )5[(y ﹣x )4]3(用幂的形式表示)m m m m 3024.已知:3?9?27?81=3,求m 的值.6﹣b 2b+1 11 a ﹣1 4﹣b 525.已知x ?x =x ,且y ?y =y ,求a+b 的值.x ﹣1 y26.若2x+3y ﹣4=0,求9 ?27.2 43 3 6 227.计算:(3ax )﹣(2ax ).28.计算: .m2n ﹣2 n m+3 2010 的值. 29.已知16=4×2 ,27=9×3 ,求(n ﹣m )30.已知162×43×26=22m ﹣2,(102)n =1012.求m+n 的值.5 3 4 231.(﹣a )(?﹣a )÷(﹣a ).22.若x m+2n =16,x n =2,(x ≠0),求x m+n ,x m ﹣n的值. 32.(a ﹣2b ﹣1)﹣3(?2ab 2)﹣2.﹣3 4 2 2﹣2 a+b 2b ﹣a 9 b 323.计算:(5a b )(?ab ) . 33.已知x ?x =x ,求(﹣3)+(﹣3)的值.2/64 4 2 4 4234.a?a+(a)﹣(﹣3x )5m+n2m﹣n 3 6 15 m 35.已知(x y )=xy,求n的值.m n 3m+2n 2n﹣3m 36.已知a=2,a=7,求a ﹣a 的值.2n+2 n 3 3 2 n 37.计算:(﹣3x y)÷[(﹣xy)]2 6 n n 3n 23 2 n 42.计算:(ab)+5(﹣ab)﹣3[(﹣ab)].43..n﹣5 n+13m﹣2 2 n﹣1 m﹣2 33m+244.计算:a (a b )+(a b )(﹣b )45.已知x a=2,x b=6.(1)求x a﹣b的值.(2)求x2a﹣b 的值.﹣2 ﹣3 ﹣1 2 ﹣3 238.计算:(x y )(?xy ).46.已知2a?27b?37c=1998,其中a,b,c为整数,2m 3n3m 2 2n 3 2m 3n求(a﹣b﹣c)1998的值.39.已知a=2,b =3,求(a)﹣(b)+a?b的值40.已知n为正整数,且x3n=7,求(3x2n)3﹣4(x2)3n47.﹣(﹣0.25)1998×(﹣4)1999.的值.41.若n为正整数,且x2n=5,求(3x3n)2﹣34(x2)3n2n+1 3?(2a+b)n ﹣448.(1)(2a+b)?(2a+b)的值.3/6(2)(x ﹣y )2?(y ﹣x )5. 50.计算下列各式,并把结果化为正整数指数幂的形式.(1)a 2b 3(2a ﹣1b 3);22 ﹣1﹣2 ﹣232 49.(1)(3xyz ) ?(5xy z ).2 ﹣12 ) ﹣43 ﹣2 (2)(4xyz )?(2xyz ÷(yz ) .幂的运算50题参考答案:1.解:原式=4﹣1﹣4=﹣1;2 4 63 8 72.原式=16ab ×(﹣ ab )=﹣2ab3.解:(1)原式=(﹣5)×3=﹣15; (2)原式=9x 6(?﹣x )=﹣9x 7; 3 2 2(3)原式=7mp ÷(﹣7mp )=﹣mp ;2 2( 4)原式=6a+2a ﹣9a ﹣3=6a ﹣7a ﹣3.故答案为﹣15、﹣9x 7、﹣m 2p 、6a 2﹣7a ﹣34.解:a x+y=a x?a y =2×3=6; a 2x ﹣y =a 2x ÷a y =22÷3=3m 2n5.解:原式=3×3,=(3m )3×(3n )2, 3 2 =xy5 11 116.解:a=(2)=32;3 11 11 c=(4)=48; 2 11 11d=(5)=25; 可见,b >c >a >d2 3 77.解:(﹣2m )+m ÷m ,3 2 3 6=(﹣2)×(m )+m ,6 6 =﹣8m+m ,6 =﹣7m2﹣33 ﹣2 ﹣26 ﹣9 ﹣248.解:(2mn )?(﹣mn )=8mn ?mn=9.解:原式=(﹣4)+4×1=010.解:原式= ÷(﹣ )+2×1=﹣2+2 =0﹣2 ﹣3 ﹣1 3(2)(a )(bc );2﹣3 2 ﹣2 (3)2(2abc )÷(ab).11.解:∵2x=4y+1,x2y+2,∴2=2∴x=2y+2①y x﹣1又∵27=3 ,∴33y=3x﹣1,∴3y=x﹣1②联立①②组成方程组并求解得,∴x﹣y=312.解:4x?32y=22x?25y=22x+5y∵2x+5y﹣3=0,即2x+5y=3,∴原式=23=813.解:∵3×9m×27m,2m 3m=3×3×3,=31+5m,1+5m 16∴3=3,∴1+5m=16,解得m=3nm3n3m333n3m+3 14.解:∵(abb)=(a)(b)b=ab ,∴3n=9,3m+3=15,解得:m=4,n=3,∴2m+n=27=12815.解:原式=(x5)2÷x6=x10÷x6=x10﹣6=x416.解:(a2n)2÷a3n+2?a2=a4n÷a3n+2?a24n﹣3n﹣2 2=a ?an﹣22=a ?a=a n﹣2+2n=a17.解:a2m﹣3n=(a m)2÷(a n)3,m n∵a=8,a=,4/6∴原式=64÷ =512.故答案为 51218.解:∵9n+1﹣32n =9n+1﹣9n =9n (9﹣1)=9n×8,而72=9 ×8, ∴当9n+1﹣32n =72时,9n×8=9×8, ∴ 9n=9, ∴n =1 19.解:原式=(x m )2?x n2 =3×5 =9×5 =45 20.解:由题意得, 9n =32n =2,32m =62=36,故 32m ﹣4n+1=32m ×3÷34n=36×3÷4=275 4 3 5 4 321.解:(x ﹣y )[(y ﹣x )]=(x ﹣y )[(x ﹣y )]=( x ﹣y )5(?x ﹣y )12=(x ﹣y )1722.解:∵x m+2n=16,x n=2,m+2nn m+n ∴x ÷x=x =16÷2=8, x m+2n ÷x 3n =x m ﹣n =16÷23=223.解:( ﹣3 4 22﹣2 5a b )?(ab )﹣6 8 ﹣4 ﹣2 =25a b?a b =24.解:由题意知, 3m ?9m ?27m ?81m,m 2m3m 4m =3?3 ?3?3 , m+2m+3m+4m =3 , =330,∴ m +2m+3m+4m=30,整理,得10m=30, 解得m=325.解:∵x 6﹣b ?x 2b+1=x 11,且y a ﹣1?y 4﹣b =y 5, ∴ ,解得: ,则 a+b=1026.解:∵2x+3y ﹣4=0, ∴2x+3y=4, x ﹣1y 2x ﹣23y 2x+3y ﹣22∴9 ?27=3 ?3 =3=3=9 27.解:(3a 2x 4)3﹣(2a 3x 6)2=27a 6x 12﹣4a 6x 12=23a 6x 1228.解:原式= ? a 2b 3=29.解:∵16m =4×22n ﹣2,∴(24)m=22×22n ﹣2,∴24m =22n ﹣2+2,∴ 2n ﹣2+2=4m ,∴n=2m①,∵(33)n27n=9×3m+3,∴(33)n=32×3m+3,∴33n=3m+5,∴3n=m+5②,由①②得:解得:m=1,n=2,2010∴(n﹣m)=(2﹣1)2010=130.解:∵162×43×26=28×26×26=220=22m﹣2,(102)n=102n=1012.∴2m﹣2=20,2n=12,解得:m=11,n=6,∴m+n=11+6=1731.原式=(﹣a)5?a12÷(﹣a)2=﹣a5+12÷(﹣a)2=﹣17 2 15a÷a=﹣a.32.解:(a ﹣2﹣1﹣3 2﹣2 b)?(2ab)=(a6b3)(? a﹣2b﹣4)= a4b﹣1=33.解:∵x a+b?x2b﹣a=x9,∴a+b+2b﹣a=9,解得:b=3,b 3 3 3 3∴(﹣3)+(﹣3)=(﹣3)+(﹣3) =2×(﹣3)=2 ×(﹣27)=﹣5434.解:原式88 8=a+a ﹣9x,=2a8﹣9x835.解:(x5m+n y2m﹣n)3=x15m+3n y6m﹣3n,5m+n2m﹣n 3 6 15∵(xy )=xy ,∴,解得:,则n m=(﹣9)3=﹣24336.解:∵a m=2,a n=7,3m+2n 2n﹣3m m 3 n 2 n 2 m 3 ∴a ﹣a =(a)(?a)﹣(a)÷(a)=8×49﹣49÷8=2n+2 n 3 3 2 n37.解:(﹣3x y)÷[(﹣xy)],=﹣27x6n+6y3n÷(﹣x3y)2n,=﹣27x6n+6y3n÷x6n y2n,=﹣27x6y n38.解:(x﹣2?y﹣3)﹣1(?x2?y﹣3)2,5/6234﹣6=xy?xy ,=39.解:(a3m)2﹣(b2n)3+a2m?b3n,=(a2m)3﹣(b3n)2+a2m?b3n,3 2=2﹣3+2×3,=56n6n40.解:原式=27x﹣4x=23(x3n)2=23×7×7=11272n41.解:∵x=5,∴(3x3n)2﹣34(x2)3n6n6n=9x﹣34x2n3=﹣25(x )3=﹣25×5=﹣312542.解:原式=a2n b6n+5a2n b6n﹣3(a2b6)n =6a2n b6n﹣3a2n b6n=3a2n b6n50 50)50101543.解:原式=()x?(x =x44.解:原式=a n﹣5(a2n+2b6m﹣4)+a3n﹣3b3m﹣6(﹣b3m+2),=a3n﹣3b6m﹣4+a3n﹣3(﹣b6m﹣4),=a3n﹣3b6m﹣4﹣a3n﹣3b6m﹣4,=0a b45.解:(1)∵x=2,x=6,∴x a﹣b=x a÷x b=2÷6=;(2)∵x a=2,x b=6,∴x2a﹣b=(x a)2÷x b=22÷6=46.解:∵2a?33b?37c=2×33×37,∴a=1,b=1,c=1,∴原式=(1﹣1﹣1)1998=147.解:原式=﹣()1998×(﹣4)1998×(﹣4),=﹣()1998×41998×(﹣4),=﹣(×4)1998×(﹣4),=﹣1×(﹣4),=4(2n+1)+3+(n﹣4)48.解:(1)原式=(2a+b)3n =(2a+b);WORD 格式专业资料整理( 2)原式=﹣(x ﹣y )2(?x ﹣y )5=﹣(x ﹣y )749.解:(1)原式=( )﹣2(? )2= ?= ;(2)原式= ? ÷= ?y 2z 6=150.解:(1)a 2b 3(2a ﹣1b 3)=2a 2﹣1b 3+3=2ab 6;( 2)(a ﹣2)﹣3(bc ﹣1)3,=a 6b 3c ﹣3,= ;( 3)2(2ab 2c ﹣3)2÷(ab )﹣2,=2(4a 2b 4c ﹣6)÷(a ﹣2b ﹣2),=8a 4b 6c ﹣6, =6/6。
幂的运算 单元测试卷一、选择题1.若a m =12,a n =3,则a m ﹣n 等于( )A .4 B .9 C .15 D .362.在等式a 2×a 4×( )=a 11中,括号里面的代数式应当是( )A .a 3B .a 4C .a 5D .a 63.计算25m ÷5m 的结果是( )A .5 B .20 C .5m D .20m4、a 与b 互为相反数,且都不等于0,n 为正整数,则下列各组中一定互为相反数的是( )A 、a n 与b nB 、a 2n 与b 2nC 、a 2n+1与b 2n+1D 、a 2n ﹣1与﹣b 2n ﹣15、下列等式中正确的个数是( )①a 5+a 5=a 10;②(﹣a )6•(﹣a )3•a=a 10;③﹣a 4•(﹣a )5=a 20;④25+25=26.A 、0个B 、1个C 、2个D 、3个6、数学上一般把n aa a a a 个···…·记为( )A .na B .n a + C .n a D .a n7、下列计算不正确的是( )A.933)(a a =B.326)(n n a a =C.2221)(++=n n x xD.623x x x =⋅8、计算()4323b a --的结果是( ) A.12881b a B.7612b a C.7612b a - D.12881b a -二、填空题。
1、计算:x 2•x 3= _________ ;(﹣a 2)3+(﹣a 3)2= _________ .2、若2m =5,2n =6,则2m+2n = _________ .3、①最薄的金箔的厚度为0.000000091m ,用科学记数法表示为 m ; ②每立方厘米的空气质量约为1.239×10﹣3g ,用小数把它表示为 g .4.= ;﹣y 2n+1÷y n+1= ;[(﹣m )3]2= .5.(a+b )2•(b+a )3= ;(2m ﹣n )3•(n ﹣2m )2= .6.( )2=a 4b 2; ×2n ﹣1=22n+3.7.已知:,,,…,若(a ,b 为正整数),则ab= .8、已知102103m n ==,,则3210m n +=____________.三、解答题1、已知3x (x n +5)=3x n+1+45,求x 的值.3、已知2x+5y=3,求4x •32y 的值.2、若1+2+3+…+n=a,求代数式(x n y )(x n ﹣1y 2)(x n ﹣2y 3)…(x 2y n ﹣1)(xy n )的值.4、已知25m •2•10n =57•24,求m 、n .5、已知a x =5,a x+y =25,求a x +a y 的值.6、若x m+2n=16,x n=2,求x m+n的值. 8、比较下列一组数的大小.8131,2741,9617、已知10a=3,10β=5,10γ=7,试把105写成底数是10的幂的形式。
第八章《幂的运算》水平测试题及答案以下是查字典数学网为您推荐的第八章《幂的运算》水平测试题及答案,希望本篇文章对您学习有所帮助。
第八章《幂的运算》水平测试题及答案一、选择(每题3分,共30分)1.下列各式中,正确的是( )A. B. C. D.2.实验表明,人体内某种细胞的形状可近似地看作球,它的直径约为0.00000156m,则这个数用科学记数法表示是( )A. mB. mC. mD. m3.在等式 ( ) 中,括号里面的代数式是( )A. B. C. D.4.在下列括号中应填入的是( )A. B. C. D.5. 的结果是( )A. B. C. D.6.若,则等于( )A.5B.6C.8D.97.若则、的值分别为( )A.9,5B.3,5C.5,3D.6,128. 与的正确关系是( )A.相等B.互为相反数C.当为奇数时它们互为相反数,当为偶数时相等D.当为奇数时相等,当为偶数时互为相反数9.如果,,,那么三数的大小为( )A. B. C. D.10. 等于( )A. B. C. D.二、填空(每题3分,共30分)1.计算:(1) (2) (3)2.填上适当的指数:(1) (2) (3)3.填上适当的代数式:(1) (2)(3)4. 计算:(1) . (2) .5.用小数表示 .6.计算:的结果是 .7.若,则 .8.若,则 ________.(用幂的形式表示)9.计算: .10.已知,,则 .三、用心解答(共60分)1.(本题16分)计算:(1) (2)(3) (4)2.(本题10分)用简便方法计算:(1) (2)3.(本题8分)已知空气的密度是1.239㎏/m3,现有一塑料袋装满了空气,其体积为3500cm3,试问:这一袋空气的质量约为多少千克?(结果用科学计数法表示)4.(本题8分)若,解关于的方程 .5.(本题8分)已知,求的值.6.(本题10分)已知,,,用表示的代数式.参考答案一、1.A 2.C 3.C 4.B 5.D 6.B 7.B 8.D 9.A 10.A二、1.(1) ,(2) ,(3) ;2.(1)1,(2)1,(3)2;3.(1)1,(2)6,(3) ;4.(1) ,(2)1;5. ;6. ;7.4;8. ;9. ;10.3三、1.(1)解:原式 ;(2)解:原式 ;(3)解:原式 ;(4)解:原式 .2.(1)解:原式 ;(2)解:原式 .3.解:1.2393500 ㎏.4.解:解:变形为,所以,解得 .此时等式为, .5.解:由,得, ;由,得,, . 所以 .6.解:由,得,所以 .。
七年级下册数学第八章幂的运算评估测试卷(时间:90分钟满分:100分)一、选择题(每小题2分,共50分)1.下列计算不正确的是 ( )A.30+2-1=112B.10-4÷10-2=0.01 C.a2n÷a n=a2 D.()331328baba---=-2.下列计算不正确的是 ( ) A.a m÷a m=a0=1 B.a m÷(a n÷a p)=a m-n-pC.(-x) 5÷(-x) 4=-x D.9-3÷(3-3) 2=l3.下列计算正确的是 ( ) A.x8÷x4=x2 B.a8÷a-8=1 C.3100÷399=3 D.510÷55÷5-2=534.100m÷1000n的计算结果是 ( ) A.100000m-n B.102m-3n C.100mn D.1000mn5.若1x=2,则x2+x-2的值是 ( )A.4 B.144C.0 D.146.在等式a m+n÷A=a m-2中A的值应是 ( ) A.a m+n+2 B.a n-2 C.a m+n+3 D.a n+27.a2m+4等于 ( ) A.2a m+2 B.(a m) 2 a4 C.a2·a m+4 D.a2 a m+a48.x m+1 x m-1÷(x m) 2的结果是 ( ) A.-l B.1 C.0 D.±19.下列等式正确的是 ( )①0.000 126=1.26×10-4 ②3.10×104=31 000③1.1×10-5=0.000 011 ④12 600 000=1.26×106A.①② B.②④ C.①②③ D.①③④10.(-23×103) 2×(1.5×104) 2的值是 ( )A.-1.5×1011 B.1014 C.-4×1014 D.-101411.下列各式中-定正确的是 ( )A.(2x-3) 0=1 B.π0=0 C.(a2-1) 0=1 D.(m2+1) 0=112.计算200820091122⎛⎫⎛⎫-+-⎪ ⎪⎝⎭⎝⎭的结果是 ( )A.2009112⎛⎫+⎪⎝⎭B.200912⎛⎫- ⎪⎝⎭C.200812⎛⎫- ⎪⎝⎭D.200912⎛⎫⎪⎝⎭13.若26m>2x>23m,m为正整数,则x的值是 ( )A.4m B.3m C.3 D.2m14.在算式a m+n÷( )=a m-2中括号内的式子应是 ( ) A.a m+n+2 B.a n-2 C.a m+n-2 D.a n+215.(2×3-12÷2)0结果为 ( ) A.0 B.1 C.12 D.无意义16.结果为a2的式子是 ( ) A.a6÷a3 B.a4 a-2 C.(a-1) 2 D.a4-a217.下面计算正确的是 ( ) A.a4 a2=a8 B.b3+b3=b6 C.x5+x2=x7 D.x x7=x8 18.(-2a3) 2等于 ( ) A.4a5 B.4a6 C.4a9 D.-4a619.下列运算正确的是 ( ) A.x5 x=x5 B.x5-x2=x3 C.(-y) 2 (-y) 7=y9 D.-y3·(-y) 7=y10 20.下列运算正确的是 ( ) A.x10÷(x4÷x2)=x8 B.(xy) 6÷(xy) 2=(xy) 3=x3y3C.x n+2÷x n+1=x-n D.x4n÷x2n x3n=x-n21.计算25m÷5m得 ( )A.5 B.20 C.5m D.20m22.1纳米=0.000 000 001米,则2.5纳米应表示为 ( ) A.2.5×10-8米 B.2.5×10-9米 C.2.5×10-10米 D.2.5×109米23.国家游泳中心——“水立方”是北京2008奥运会场馆之一,它的外层膜的展开面积约260 000平方米,将260 000用科学记数法表示应为 ( )A.0.26×106 B.26×104 C.2.6×105 D.2.6×10624.下列运算正确的是 ( )A.a2 a3=a6 B.(-y2) 3=y6 C.(m2n) 3=m5n3 D.-2x2+5x2=3x2 25.国家教育部最近提供的数据娃示,2008年全国普通高考计划招生667万人,这一数据科学记数法表示为(结果保留两个有效数字) ( ) A.6.6×106 B.66×106 C.6.7×106 D.67×106二、填空题(每小题2分,共44分)26.a2·(-a)2=____________.27.(x2)-3·(x3)-1÷x=____________.28.-b2·(-b) 2 (-b3)=_____________.29.(x-y) 2 (y-x) 3=______________.30. 0.1252008×82009=_____________.31.-4n÷8n-1=_____________.32.a3 __________ a m+1=a2m+433.已知10a=5,10b=25,则103a-b=____________.34.已知Ax n+1=x2n+1,则A=_____________.35.0.258×643×258×48=______________.36.-52×(-5) 2×5-4=_____________.37.(a2) 2 (a b) 3-(-a2b) 3(-a)=______________.38.(-a)6÷(-a)3=____________.39.a2 a5÷a6=____________.40.50×5-2+25-1=____________.41.m3·(m2) 6÷m10=___________.42.-x m+1÷x m-1=___________.43.(a m-1) n÷a mn=___________.44.若22n=4,则n=__________.45.若64×83=2x,则x=___________.46.若x3=(-2) 5÷(12)-2,则x=____________.47.用科学记数法表示0.000 000 125=____________.三、计算题(48~51题每小题4分,52、53题每小题5分,共26分) 48.(-3a3) 2÷a249.x n+1 ÷x n-1(x n) 2 (x≠0) 50.x5 x4-x6·x2·x51. ( -3) 0+(-12)3-(13)-252.3x2·x n-2+3(-x) 2·x n-3·(-x) 53.(-3×3-2)-3-(-32) 2÷32×20090参考答案1.C 2.B 3.C 4.B 5.B 6.D 7.B 8.B 9.C 10.B 11.D12.D 13.A 14.D 15.D 16.B 17.D 18.B 19.D 20.A 21.C 22.B23.C 24.D 25.C26.a 4 27.101x 28.b 7 29.(y -x) 5 30.8 31.-23-n 32.a m33.5 34.x n 35.436.-1 37.0 38.-a 3 39.a 40.1 41.m 5 42.-x 2 43.1na 44.1 45.15 46.-2 47.1.25×10-748.解:(-3a 3) 2÷a 2 =9a 6÷a 2 =9a 6-2=9a 449.解:x n+1·x n -1÷(x n ) 2 =x (n+1)+(n -1)-2n =x 0=150.解:x 5·x 4-x 6 x 2 x=x 9-x 29=0.51.解:()320111131982388π-⎛⎫⎛⎫⎛⎫-+--=+--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭52.解:原式=3x n -3x n =0.53.解:(-3×3-2)-3-(-32) 2÷32×20090=-27-9×1=-36。
【精选】苏科版七年级下册数学第八章《幂的运算》测试卷(含答案)一、选择题(每题3分,共24分)1.【2021·南京市玄武区二模】计算a 3·(-a 2)的结果是( )A .a 5B .-a 5C .a 6D .-a 62.计算⎝ ⎛⎭⎪⎫130×⎝ ⎛⎭⎪⎫15-2的结果是( ) A.110 B .-110 C .25 D .-1253.【2022·宿迁】下列运算正确的是( )A .2m -m =1B .m 2·m 3=m 6C .(mn )2=m 2n 2D .(m 3)2=m 54.计算:(a ·a 3)2=a 2·(a 3)2=a 2·a 6=a 8,其中,第一步运算的依据是( )A .同底数幂的乘法法则B .幂的乘方法则C .乘法分配律D .积的乘方法则5.已知a a -1÷a =a ,则a =( )A .3B .1C .-1D .3或±16.【2022·长沙市校级期中】已知2x -3y =2,则(10x )2÷(10y )3的值为( )A .10 000B .1 000C .10D .1007.已知(x -1)|x |-1有意义且值为1,则x 的值为( )A .±1 B.-1 C .-1或2 D .28.【2022·青岛期中】如图,已知点P 从距原点右侧8个单位的点M 处向原点方向跳动,第一次跳动到OM 的中点M 1处,第二次从点M 1跳到OM 1的中点M 2处,第三次从点M 2跳到OM 2的中点M 3处,…,依次这样进行下去,第2 024次跳动后,该点到原点O 的距离为( )A .2-2 024B .2-2 023C .2-2 022D .2-2 021二、填空题(每题3分,共30分)9.【2022·苏州市吴江区期中】计算:(-3xy 3)3=__________.10.【2021·溧阳市期中】若83=25·2m ,则m =________.11.计算:(-5)2 023×⎝ ⎛⎭⎪⎫15 2 024=________.12.【2021·扬州市江都区期中】已知2a ÷4b =8,则a -2b 的值是________.13.【2022·湖北】科学家在实验室中检测出某种病毒的直径约为0.000 000 103m ,该直径用科学记数法表示为______________m.14.若0<x <1,则x -1,x ,x 2的大小关系是____________.15.【2021·盐城市建湖县月考】已知3x +1=6,2y +2=108,则xy 的值为________.16.设x =5a ,y =125a +1(a 为正整数),用含x 的代数式表示y ,则y =________.17.梯形的上、下底的长分别是4×103cm 和8×103cm ,高是1.6×104cm ,此梯形的面积是__________.18.我们知道,同底数幂的乘法法则为a m ·a n =a m +n (其中a ≠0,m 、n 为正整数).类似地,我们规定关于任意正整数m 、n 的一种新运算:g (m +n )=g (m )·g (n ),若g (1)=-13,则g (2 023)·g (2 024)=________________. 三、解答题(第19、20题每题6分,第21、22题每题8分,第23、24题每题9分,第25、26题每题10分,共66分)19.计算:(1)a3·a2·a+(a2)3; (2)(2m3)3+m10÷m-(m3)3. 20.计算:(1)0.62 023×(-53)2 024; (2)(-2)-2+⎝⎛⎭⎪⎫13-1×(2 023-π)0.21.已知2a=4b(a、b是正整数)且a+2b=8,求2a+4b的值.22.(1)比较221与314的大小;(2)比较86与411的大小.23.【2021·张家港市月考】(1)已知2×8x×16=223,求x的值;(2)已知a m=2,a n=3,求a3m-2n的值.24.某农科所要在一块长为1.2×105cm,宽为2.4×104cm的长方形实验地上培育新品种粮食,已知培育每种新品种需一块边长为1.2×104cm的正方形实验地,这块长方形实验地最多可以培育多少种新品种粮食?25.【2021·宿迁市沭阳县期中】(1)已知10a=5,10b=6,求102a+103b的值;(2)已知9n+1-9n=72,求n的值.26.【2022·盐城市亭湖区校级月考】规定两数a、b之间的一种运算,记作(a,b);如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.。
幂的运算专项练习50题(有答案)55443322,试比较a,b,c,b=3,c=4,,d=56.若a=2d的大小..1237÷m.+m7.计算:(﹣2 m )3222)×(﹣a2. (4abb)2﹣33﹣2﹣2))?.计算:8(2m(n﹣mn 1.(;)3.计算:.9 23;)(2 (3x)(?﹣x)0﹣23.)+210.(﹣)÷(﹣2)×(﹣22;7mp m3()?7mp÷(﹣)xy+1yx﹣1,求x﹣=3y的值. 11.已知:2=427, 2a 4()(﹣3a+1).()3xy的值. 4?32﹣12.若2x+5y3=0,求yx+yx2x﹣y的值.aa求:a,a.已知4=2=3与mm16,求m的值.27×.已知1339×=3 3m+2nmn yx,用=y3,=x3.已知5,3表示.nm3915m+nmmmm30,求m的值.=3?27,求2 的值. ?812414.若(a.已知:b3b)=a9b?6﹣b32262b+111a﹣14﹣b5,求a+b??xy=x=y,且y的值.15.计算:(xx? ).已知÷x .25xx22n3n+22﹣1y..,求4=09 ?2726.若16.计算:(a2x+3y)÷a?a﹣3n2m﹣nm =的值.,试求a17.若a=8,a243362.﹣(2a27.计算:(3ax))x.计算:.28 2nn+1 18.已知9﹣3=72的值.,求nm2n﹣22m+nnnmm+32010的值.) n﹣=9×3m29.已知16=4×2,求.已知19x=3,x=5x的值.,求27,(2362m﹣2﹣2m4n+1nm2n12.求m+n1016的值.×4×2)=2 =1039320.已知=6,=2,求(的值.,30.已知5345342.)))(﹣a÷(﹣?(﹣aa31(用幂的形式表示))﹣([yx.21(﹣)yx] .﹣m+n2﹣1﹣﹣mnn3m+2n2﹣2.(xx,求0≠x,=2,=16.若22xx(),的值.32.(a2abb)) ?39﹣2a2b2ba+b24﹣3﹣(23.计算:的值.)(﹣x33 .)ba()b5a?.已知?x3=x,求(﹣)+36/ 244244226nn3n232n)(﹣ab﹣3[?a+(a)﹣(﹣3x)(﹣ab)].42.计算:(ab)+534.a..43 m15n365m+n2m﹣ y)=xy,求35.已知(x的值.nmn3m+2n2n﹣3mn﹣5n+13m﹣22n﹣1m﹣233m+2) b(ab)(﹣44.计算:aba36.已知=2,a=7,求a()﹣a+a 的值.2n+2n332n ])÷[(﹣x37.计算:(﹣3xy)y aba﹣b2a﹣b x2)求的值.(45.已知x=2,x=6.1)求x(的值.232﹣2﹣3﹣1﹣.xy)(xy)?(38.计算:abc为整数,,b,c246.已知?27?37=1998,其中a1998﹣c)的值.a求(﹣b2m3n3m22n32m3n的值+a?b),39.已知a=2b=3,求(a)﹣(b19981999.))×(﹣4.﹣(﹣470.253n23n2n3)4(x3x为正整数,且40.已知nx=7,求()﹣的值.3n23n22n)x﹣34()x41.若n为正整数,且=5,求(3x2n+13n﹣42a+b()?))(1.48()2a+b(2a+b? 的值.6/ 350.计算下列各式,并把结果化为正整数指数幂的形式.52).y﹣(2)(x﹣y)x?(23﹣13);(2ab (1)ab﹣2﹣23﹣13﹣22﹣1﹣223;. 49.(1)(3x y(z(2))(?(5xyabcz)))2﹣32﹣432﹣22﹣12﹣.))3)24x2)((yz2ab )(?2xyz)c÷(÷(yz)ab(.(题参考答案:50幂的运算x2y+2, =2∴2∴x=2y+2 ①﹣1.解:xy+1, =411.解:∵2原式=4﹣14=﹣1;yx﹣1,=327 又∵763248)=16a2. 原式=b﹣2a×(﹣abb3yx﹣1,=33 ∴∴3y=x﹣1②﹣(﹣1)原式=5)×3=15; 3.解:(76 9x=﹣;(2)原式=9xx?(﹣)联立①②组成方程组并求解得,232 pm7mp÷(﹣)=(3)原式=7m﹣p;22∴x﹣y=3 3.﹣3=6a﹣7a﹣=6a(4)原式9a+2a﹣xy2x5y2x+5y227=2.解:4??326a、﹣﹣7a3 2=2、﹣故答案为﹣159xm、﹣12p yxx+y∵2x+5y﹣3=0,即2x+5y=3, 3=6.解:4a;=a?a=2×3=8 =2∴原式22xyy2x﹣÷3==2=a÷aa mm,×2713.解:∵3×92m3m3m2n,5.解:原式=3×3 ,×3=3×31+5m2nm3,(=3)3×(=3),1+5m3216,3 =3=xy ∴11511∴1+5m=16,;(2)=32.解:6a=11114解得m=3 ;(b=3)=81nm311311n3m333n3m+3,b(ab)(c=4) =48;=a(b14.解:∵(a bb))=11211∴3n=9,3m+3=15,;(d=5)=25解得:d acb可见,>>> m=4,n=3,m+n2737=128(﹣7.解:2m)+m÷=2∴2 ,m563223610610﹣64÷x +m,=x15.解:原式=(x=x)÷x=xm)(﹣=2×()2n23n+2266 a)?÷﹣=8m+m,a.解:16(a4n63n+22﹣=7m ?=aa ÷a4n﹣3n﹣22 ?=aa433﹣29﹣6﹣2﹣2﹣2 n﹣22mn=?n)﹣()n2m(8.解:?mn=8m a=a?n﹣2+2=a n1=0 =.解:原式9×+4)4(﹣=a2m﹣3nm2n3, a=())÷(a17.解:a1 ÷(﹣=.解:原式10×)+2nm=,aa∵=8, 2+2 =﹣ =06/ 4∴n=2m①,.÷∴原式=64=5123nnm+3,)27=9×3∵(3m+323n512故答案为)=3×3,∴(3m+53nn+12nn+1nnn∴3=3,93=9﹣=9(9﹣1)=9×8,而72=918.解:∵9﹣∴3n=m+58,②,×n2nn+18=9×8,∴当9﹣3=72时,9×由①②得:n,=9∴9 ,∴n=1 m=1,n=2解得:2010nm2﹣m)∴(19.解:原式=(x)?x n20102﹣1=3×5 )=(2 5 =1 =9×226866202m﹣23=45)(30.解:∵16×4×2=2×2×2=2=210,122nn2nn2m2.=10,.解:由题意得,209=3=2,3=6=36 =104n4n+12m ﹣2m﹣2=20,2n=12,∴2m 33故=3×3÷3=36×÷4=27354354解得:m=11,n=6,=]x=x)](x﹣y)[(﹣y)﹣)21.解:(x﹣y[(y17125m+n=11+6=17∴)y=﹣y)(x﹣x(x﹣y)?(5+125m+2nn1222﹣,=1622.解:∵x,x=2 )=÷(﹣)=﹣aa31.原式=(﹣a)?a÷(﹣a15m+nn172m+2n∴x÷x=x=16÷a.a÷2=8, a=﹣3n3nm+2nm﹣ =2 =16÷2=xx÷x22﹣﹣1﹣3﹣24﹣322﹣2 ?.解:(ab b(5a(b)?a))(2ab)3223.解:2﹣﹣684﹣ab=25ab?4﹣63﹣2? =(ab)(ab)6﹣10 b=25a14﹣ ab= ==mmmm24.解:由题意知,3?9?27?81,m2m3ma+b2b﹣a94m=3?3?3?3, 33.解:∵x?x=x,m+2m+3m+4m∴a+b+2b﹣a=9, =3,30解得:b=3,,=3b3333 m+2m+3m+4m=30∴,=23)=2×(﹣3)3)+(﹣3)=(﹣3)+(﹣∴(﹣×(﹣, 27)=﹣54 整理,得10m=30888m=3 解得 9x,34.解:原式=a+a﹣886﹣b4﹣b2b+1511a﹣125.解:∵x?x9x=x,且y=y, y=2a﹣?3n﹣﹣n315m+3n6m5m+n2m,xy)=xy35.解:(1565m+n2m﹣n3∴,,y)=xy∵(x,∴解得:,解得:,则a+b=10m326.解:∵2x+3y﹣4=0,则n=(﹣9)=﹣243mn,∴2x+3y=436.解:∵a=2,a=7,3m+2n2n﹣21x﹣y2x﹣23y2x+3y﹣23mm3n2n2m3∴a﹣a=(a)?(a)﹣(a)=9 ?9∴?27=33=3=3 ÷(a)=8×49126621261232436﹣(x(27.解:3a)2ax)xxx﹣4a=23a=27a8= 49÷﹣32 28.解:原式=?ab=n2n+2n23337.解:(﹣3xy)÷[(﹣xy)],6n+6m3n32n2n﹣2=﹣27xy÷(﹣xy)2.解:∵2916=4×,,6n+63n2m422n﹣6n2n= 2=2∴(2)×,﹣27xy÷xy,6n2+22n4m﹣=﹣27x,2∴=2 y﹣2﹣3﹣12﹣32﹣∴2n,2+2=4m38.解:(x?y)?(x?y),6/ 5234﹣625)x﹣﹣y)y, ?((=x2y)原式?x=y﹣(x736﹣)x﹣, y=x=y﹣(22﹣ = ())(49.解:(1)原式=?3n2n32m3m2?b﹣(b,a39.解:())+a3n2m32m3n2? = =(a,)?﹣(b)b+a23×+2=23﹣3, =5=;6n6n﹣40.解:原式=27x4x6n =23x23n =23(x)÷?2)原式= (7 ×=23×7 =11272n =5,.解:∵41x26 z=?y3n223n﹣34(3x)x)∴(6n6n 34x=9x﹣32n=125(x)=﹣23﹣1323﹣13+36;b=2a)50.解:(1)a25=﹣×5 bb(2a =2ab =﹣3125﹣2﹣3622n2n6n6nn﹣13,(bc(2)(a42.解:原式=ab)+5ab3﹣(ab))66n2n3﹣36n2n, =ab b=6acb﹣3a6n2n =3ab=;150505010050(x=43.解:原式())x?=x2﹣6m5n﹣2n+2﹣432633n﹣3m﹣3m+2﹣2,),))÷(ab)(.解:原式44=a3a(b2()+a2abbcb(﹣2﹣3n3﹣﹣4﹣6226m﹣﹣﹣6m43n34 c,)÷(ba)=abb(+a=2(﹣b4a,)66﹣46m33n﹣﹣6m﹣3n34﹣4 c,a=8ab =a,bb﹣ =0ba 45,xx1.解:()∵=2,=6 =b﹣aba;÷=x÷x=26=x∴ba)∵(2x=2,,x=62ab2b2a﹣÷xx(=)÷=2∴x6=33bca 46.解:∵×=2,3×3737?23? a=1∴c=1,,,b=11998 1﹣(=∴原式1)1=1 ﹣19981998 4)4×(﹣×(﹣,))=.解:原式47﹣(19981998)44×﹣(=)×(﹣,1998)4×=﹣(×(﹣,)4 ×(﹣﹣=1,)4 =4)n(+3+)2n+1(﹣4 =)原式1(.解:48)2a+b(3n(=;)2a+b6/ 6。
幂的运算评估测试题及
答案
Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】
七(下)数学第八章幂的运算评估测试卷
(时间:90分钟满分:100分)
一、选择题(每小题2分,共50分)
1.下列计算不正确的是
( )
A.30+2-1=
1
1
2
B.10-4÷10-2=0.01 C.a2n÷a n=a2 D.()3
3
1
3
2
8
b
ab
a
-
-
-=-
2.下列计算不正确的是
( )
A.a m÷a m=a0=1 B.a m÷(a n÷a p)=a m-n-p
C.(-x) 5÷(-x) 4=-x D.9-3÷(3-3) 2=l
3.下列计算正确的是
( )
A.x8÷x4=x2 B.a8÷a-8=1 C.3100÷399=3 D.510÷55÷5-2=53 4.100m÷1000n的计算结果是
( )
A.100000m-n B.102m-3n C.100mn D.1000mn
5.若1
x
=2,则x2+x-2的值是
( )
A.4 B.
1
4
4
C.0 D.
1
4
6.在等式a m+n÷A=a m-2中A的值应是 ( )
A.a m+n+2 B.a n-2 C.a m+n+3 D.a n+2
7.a2m+4等于 ( ) A.2a m+2 B.(a m) 2a4 C.a2·a m+4 D.a2a m+a4
8.x m+1x m-1÷(x m) 2的结果是 ( ) A.-l B.1 C.0 D.±1
9.下列等式正确的是
( )
①0.000 126=1.26×10-4 ②3.10×104=31 000
③1.1×10-5=0.000 011 ④12 600 000=1.26×106
A.①② B.②④ C.①②③ D.①③④
10.(-2
3
×103) 2×(1.5×104) 2的值是
( )
A.-1.5×1011 B.1014 C.-4×1014 D.-1014 11.下列各式中-定正确的是
( )
A.(2x-3) 0=1 B.π0=0 C.(a2-1) 0=1 D.(m2+1) 0=1
12.计算
20082009
11
22
⎛⎫⎛⎫
-+-
⎪ ⎪
⎝⎭⎝⎭
的结果是 ( )
A.
2009
1
1
2
⎛⎫
+
⎪
⎝⎭
B.
2009
1
2
⎛⎫
- ⎪
⎝⎭
C.
2008
1
2
⎛⎫
- ⎪
⎝⎭
D.
2009
1
2
⎛⎫
⎪
⎝⎭
13.若26m>2x>23m,m为正整数,则x的值是 ( ) A.4m B.3m C.3 D.2m
14.在算式a m+n÷( )=a m-2中括号内的式子应是 ( ) A.a m+n+2 B.a n-2 C.a m+n-2 D.a n+2
15.(2×3-12÷2) 0结果为
( )
A.0 B.1 C.12 D.无意义16.结果为a2的式子是
( )
A.a6÷a3 B.a4a-2 C.(a-1) 2 D.a4-a2
17.下面计算正确的是
( )
A.a4a2=a8 B.b3+b3=b6 C.x5+x2=x7 D.x x7=x8
18.(-2a3) 2等于
( )
A.4a5 B.4a6 C.4a9 D.-4a6
19.下列运算正确的是
( )
A.x5x=x5 B.x5-x2=x3 C.(-y) 2 (-y) 7=y9 D.-y3·(-y)
7=y10
20.下列运算正确的是
( )
A.x10÷(x4÷x2)=x8 B.(xy) 6÷(xy) 2=(xy) 3=x3y3
C.x n+2÷x n+1=x-n D.x4n÷x2n x3n=x-n
21.计算25m÷5m得 ( ) A.5 B.20 C.5m D.20m
22.1纳米=0.000 000 001米,则2.5纳米应表示为
( )
A.2.5×10-8米 B.2.5×10-9米 C.2.5×10-10米 D.2.5×109米23.国家游泳中心——“水立方”是北京2008奥运会场馆之一,它的外层膜的展开面积约260 000平方米,将260 000用科学记数法表示应为
( )
A.0.26×106 B.26×104 C.2.6×105 D.2.6×106
24.下列运算正确的是
( )
A.a2a3=a6 B.(-y2) 3=y6 C.(m2n) 3=m5n3 D.-2x2+5x2=3x2 25.国家教育部最近提供的数据娃示,2008年全国普通高考计划招生667万人,这一数据科学记数法表示为(结果保留两个有效数字) ( )
A.6.6×106 B.66×106 C.6.7×106 D.67×106
二、填空题(每小题2分,共44分)
26.a2·(-a)2=____________.
27.(x2)-3·(x3)-1÷x=____________.
28.-b2·(-b) 2 (-b3)=_____________.
29.(x-y) 2 (y-x) 3=______________.
30. 0.1252008×82009=_____________.
31.-4n ÷8n -1=_____________.
32.a 3__________a m+1=a 2m+4
33.已知10a =5,10b =25,则103a
-b =____________. 34.已知Ax n+1=x 2n+1,则A=_____________. 35.0.258×643×258×48=______________. 36.-52×(-5) 2×5-4=_____________.
37.(a 2) 2 (a b) 3-(-a 2b) 3(-a )=______________. 38.(-a )6÷(-a )3=____________. 39.a 2a 5÷a 6=____________. 40.50×5-2+25-1=____________. 41.m 3·(m 2) 6÷m 10=___________. 42.-x m+1÷x m -1=___________. 43.(a m -1) n ÷a mn =___________. 44.若22n =4,则n=__________. 45.若64×83=2x ,则x=___________. 46.若x 3=(-2) 5÷(
12
)-2
,则x=____________. 47.用科学记数法表示0.000 000 125=____________.
三、计算题(48~51题每小题4分,52、53题每小题5分,共26分) 48.(-3a 3) 2÷a 2
49.x n+1÷x n -1(x n ) 2 (x ≠0) 50.x 5x 4-x 6·x 2·x 51.( -3) 0+(-
12)3-(13
)-2 52.3x 2·x n -2+3(-x) 2·x n -3·(-x) 53.(-3×3-2)-3-(-32) 2÷32×20090
参考答案
1.C 2.B 3.C 4.B 5.B 6.D 7.B 8.B 9.C 10.B 11.D 12.D 13.A 14.D 15.D 16.B 17.D 18.B 19.D 20.A 21.C 22.B 23.C 24.D 25.C 26.a 4 27.
10
1x 28.b 7 29.(y -x) 5 30.8 31.-23-n 32.a m
33.5 34.x n 35.4
36.-1 37.0 38.-a 3 39.a 40.1 41.m 5 42.-x 2 43.1
n
a 44.1 45.15 46.-2 47.1.25×10-7 48.解:(-3a 3) 2÷a 2 =9a 6÷a 2 =9a 6-2=9a 4 49.解:x n+1·x n -1÷(x n ) 2 =x (n+1)+(n -1)-2n =x 0=1 50.解:x 5·x 4-x 6 x 2x=x 9-x 29=0.
51.解:()32
111131982388π-⎛⎫⎛⎫⎛⎫
-+--=+--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
52.解:原式=3x n -3x n =0.
53.解:(-3×3-2)-3-(-32) 2÷32×20090=-27-9×1=-36。