图铁碳相图第四节铁碳相图与铁碳合金
- 格式:ppt
- 大小:1.59 MB
- 文档页数:57
第4讲铁碳合⾦基本组织及铁碳合⾦相图分析第三章铁碳合⾦第⼀节基本组织⼀、铁碳合⾦的基本组织1、铁素体(F)铁素体是碳溶解在α-Fe中形成的间隙固溶体。
由于α-Fe晶粒的间隙⼩,溶解碳量极微,其最⼤溶碳量只有0.0218%(727℃)所以是⼏乎不含碳的纯铁。
=180~230Mpa性能:σbHB=50~80δ=30~50%φ=70~80%ak=156~196J·cm-2显微镜下观察,铁素体呈灰⾊并有明显⼤⼩不⼀的颗粒形状。
Array C)2、渗碳体(Fe3渗碳体是铁与碳形成的稳定化合物。
含碳量为6.69%性能:HB=800,硬度很⾼,脆性极⼤,是钢中的强化相。
显微镜下观察,渗碳体呈银⽩⾊光泽。
渗碳体在⼀定条件下可以分解出⽯墨,3、奥⽒体(A)奥⽒体是碳溶解在γ-Fe中形成的间隙固溶体。
γ-Fe的溶碳能⼒较⾼,最⼤为2.11%(1148℃)。
由于γ-Fe⼀般存在于727~1394℃之间,所以奥⽒体也只出现在⾼温区域内。
显微镜观察,奥⽒体呈现外形不规则的颗粒状结构,并有明显的界限。
性能:δ=40~50%,具有良好的塑性和低的变形抗⼒。
是绝⼤多数钢种在⾼温进⾏压⼒加⼯所需的组织。
4、珠光体(P)珠光体是铁素体和渗碳体组成的共析体。
珠光体的平均含碳量为0.77%,在727℃以下温度范围内存在。
显微镜观察,珠光体呈层⽚状特征,表⾯具有珍珠光泽,因此得名。
=750Mpa性能:σbHB=160~180较⾼δ=20~25%φ=30~40%适中5、莱⽒体(Ld)莱⽒体是由奥⽒体和渗碳体组成的共晶体。
铁碳合⾦中含碳量为4.3%的液体冷却到1148℃时发⽣共晶转变,⽣成⾼温莱⽒体。
合⾦继续冷却到727℃时,其中的奥⽒体转变为珠光体,故室温时由珠光体和渗碳体组成,叫低温莱⽒体。
统称莱⽒体。
第⼆节铁碳合⾦相图分析各主要线的意义:相图中的线是把具有相同转变性质的各个成分合⾦的开始点和终了点,分别⽤光滑曲线连接起来得到的,代表了铁碳合⾦内部组织发⽣转变的界限。
钢(Steels)和铸铁(Cast irons)是应用最广的金属材料,虽然它们的种类很多,成分不一,但是它们的基本组成都是铁(Fe)和碳(C)两种元素。
因此,学习铁碳相图、掌握应用铁碳相图的规律解决实际问题是非常重要的。
Fe和C能够形成Fe3C, Fe2C 和FeC等多种稳定化合物。
所以,Fe-C相图可以划分成Fe-Fe3C, Fe3C-Fe2C, Fe2C-FeC和FeC-C四个部分。
由于化合物是硬脆相,后面三部分相图实际上没有应用价值(工业上使用的铁碳合金含碳量不超过5%),因此,通常所说的铁碳相图就是Fe-Fe3C部分。
化合物Fe3C称为渗碳体(Cementite),是一种亚稳定的化合物,在一定条件下可以分解为Fe和C,C原子聚集到一起就是石墨。
因此,铁碳相图常表示为Fe-Fe3C和Fe-石墨双重相图(图5.6-1)。
Fe-Fe3C相图主要用于钢,而Fe-石墨相图则主要用于铸铁的研究和生产。
这里主要分析讨论Fe-Fe3C相图,Fe-石墨相图与此类似,只是右侧的单相是石墨而不是Fe3C。
【说明】图5.6-1中虚线表示Fe-石墨相图,没有虚线的地方意味着两个相图完全重合。
铁具有异晶转变,即固态的铁在不同的温度具有不同的晶体结构。
纯铁的同素异晶转变如下:由于Fe的晶体结构不同,C在Fe中的溶解度差别较大。
碳在面心立方(FCC)的γ-Fe中的最大溶解度为2.11%,而在体心立方(BCC)的α-Fe和δ-Fe中最大仅分别为0.0218%和0.09%。
纯铁纯铁的熔点1538℃,固态下具有同素异晶转变:912℃以下为体心立方(BCC)晶体结构,912℃到1394℃之间为面心立方(FCC), 1394℃到熔点之间为体心立方。
工业纯铁的显微组织见图5.6-2。
纯铁纯铁的熔点1538℃,固态下具有同素异晶转变:912℃以下为体心立方(BCC)晶体结构,912℃到1394℃之间为面心立方(FCC), 1394℃到熔点之间为体心立方。