误差椭圆
- 格式:ppt
- 大小:2.06 MB
- 文档页数:69
第十章 误差椭圆知识点习题与解析10.01 从已知点A 确定点P 的坐标(如图10-1所示),观测了角度L 、边长S ,T 为已知方向,已知AP 边边长为200m ,测角和测边的中误差分别为βσ=2″,S σ=3cm ,试求待定点P 的点位中误差。
10.02 角ψ和ψσ是怎样定义的?ψϕ、及E ϕ之间有什么关系?10.03 已知某平面控制网经平差后得出待定点P 的坐标平差值ˆˆˆTPP X X Y ⎡⎤=⎢⎥⎣⎦的协因数阵为:22ˆ20(/())01X Q d m ⎡⎤="⎢⎥⎣⎦单位权中误差为0ˆ0.5σ=",试求该点的点位中误差。
10.04 已知某平面控制网经平差后得出待定点P 的坐标平差值ˆˆˆTPP X XY ⎡⎤=⎢⎥⎣⎦的协因数阵为:22ˆ20.5(/())0.53X Q d m ⎡⎤="⎢⎥⎣⎦单位权中误差为0ˆ0.5σ=",试求ϕ=30°方向上的位差。
10.05 在某测边网中,设待定点P 1的坐标为未知参数,即11ˆTXX Y ⎡⎤=⎢⎥⎣⎦,平差后得到ˆX的协因数阵为⎥⎦⎤⎢⎣⎡=∧∧75.015.015.025.0XX Q ,且单位权方差220ˆ 3.0cm σ=。
(1)计算P 1点纵、横坐标中误差和点位中误差; (2)计算P 1点误差椭圆三要素E ϕ、E 、F ; (3)计算P 1点在方位角为90°方向上的位差。
10.06 在某测边网中,设待定点P 1的坐标为未知参数,即11ˆˆˆTXX Y ⎡⎤=⎣⎦,平差后得到x 的协因数阵为⎥⎦⎤⎢⎣⎡--=∧∧25.125.025.075.1XX Q,且单位权中误差0ˆσ=cm 。
(1)计算P 1点误差椭圆三要素E ϕ、E 、F ; (2)计算P 2点在方位角为45°方向上的位差。
10.07 已知平差后待定点P 坐标的协因数和互协因数为∧∧∧∧Y X Y X 、Q、QQ 则当∧∧YX Q=0且∧∧YX>QQ 时,P 点位差的极大值方向为 ,E ϕ= ;位差的极小值方向为 ,F ϕ= 。
误差椭圆,也被称为置信椭圆或测量误差椭圆,是在统计学和测量学中广泛使用的一个概念。
主要用于表示二维数据点的分布、测量误差的范围或不确定性。
它由三个主要参数定义:中心、主轴和次轴。
中心:这是误差椭圆的几何中心,代表了所有测量数据的平均位置或最可能的位置。
在理想的情况下,如果我们有无限精确的测量设备,所有的测量数据都会落在这个点上。
然而,在现实世界中,由于各种因素的影响,如设备误差、环境噪声等,测量数据通常会在这个点附近分布。
主轴:主轴是误差椭圆的长轴,代表了数据点分布的主要方向。
它的长度通常被定义为包含一定比例(例如,68%,95%或99%)测量数据的椭圆的半径。
这个比例的选择取决于我们对误差的容忍度或我们对数据的信心水平。
主轴的方向也是非常重要的,因为它可以告诉我们哪些因素对测量结果的影响最大。
次轴:次轴是误差椭圆的短轴,与主轴垂直。
次轴的长度代表了数据点在垂直于主轴的方向上的分布范围。
与主轴一样,次轴的长度也被定义为包含一定比例测量数据的椭圆的半径。
如果次轴的长度小于主轴的长度,这意味着测量数据在主轴方向上的变化比在次轴方向上的变化更大,也就是说,某些因素对测量结果的影响较小。
这三个参数共同定义了误差椭圆,为我们提供了一个直观的方式来理解和表示二维测量数据的不确定性或误差范围。
通过分析和比较不同误差椭圆的这三个参数,我们可以更好地理解我们的测量系统的性能,找出可能的改进方向,以及更准确地解释我们的测量结果。