高中数学必修三《简单随机抽样及系统抽样》课后练习(含答案)
- 格式:doc
- 大小:80.00 KB
- 文档页数:5
人教A版高中数学必修三第2章2.1.1简单随机抽样学校:___________姓名:___________班级:___________考号:___________一、单选题1.在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析.在这个问题中,5000名居民的阅读时间的全体是()A.总体B.个体C.样本的容量D.从总体中抽取的一个样本2.下面的抽样方法是简单随机抽样的是()A.在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2709的为三等奖B.某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,称其重量是否合格C.某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解学校机构改革的意见D.用抽签法从10件产品中选取3件进行质量检验3.下列抽样实验中,适合用抽签法的有( )A.从某厂生产的3 000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中取6件进行质量检验C.从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3 000件产品中抽取10件进行质量检验4.某班有34位同学,座位号记为01至34,用下面的随机数表选取5组数作为参加青年志愿者活动的五位同学的座号.选取方法是从随机数表第一行的第6列和第7列数字开始,由左到右依次选取两个数字,则选出来的第4个志愿者的座号是()495443548217379323788735209643842634916457245506887704744767217633502583921206A.23 B.09 C.02 D.165.从某批零件中抽取50个,然后再从50个中抽出40个进行合格检查,发现合格品有36个,则该批产品的合格率为( )A.36% B.72%C.90% D.25%二、解答题6.上海某中学从40名学生中选1名作为上海男篮拉拉队的成员,采用下面两种方法:方法一:将这40名学生从1~40进行编号,相应的制作写有1~40的40个号签,把这40个号签放在一个暗箱中搅拌均匀,最后随机地从中抽取1个号签,与这个号签对应的学生幸运入选.方法二:将39个白球与一个红球混合放在一个暗箱中搅拌均匀,让40名学生逐一从中摸取一个球,摸到红球的学生成为拉拉队的成员.试问这两种方法是否都是抽签法?为什么?这两种方法有何异同?参考答案1.A【解析】试题分析:从5000份中抽取200份,样本的容量是200,抽取的200份是一个样本,每个居民的阅读时间就是一个个体,5000名居民的阅读时间的全体是总体.所以选A.【考点定位】统计基本概念.2.D【分析】根据简单随机抽样的概念与特征,逐项判断,即可得出结果.【详解】A选项,在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2709的为三等奖;为系统抽样;B选项,某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,称其重量是否合格;为系统抽样;C选项,某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解学校机构改革的意见;为分层抽样;D选项,用抽签法从10件产品中选取3件进行质量检验;为简单随机抽样;故选D【点睛】本题主要考查简单随机抽样,熟记概念与特征即可,属于基础题型.3.B【解析】A,D中个体的总数较大,不适合用抽签法;C中甲、乙两厂生产的两箱产品性质可能差别较大,因此未达到搅拌均匀的条件,也不适于用抽签法;B中个体数和样本容量较小,且同厂生产的两箱产品,性质差别不大,可以看作是搅拌均了.考点:简单随机抽样.4.D【解析】试题分析:从随机数表第一行的第6列和第7列数字35开始,由左到右依次选取两个数字,不超过34的依次为:21,32,09,16,17,第四个志愿者的座号为16,故选D.考点:随机抽样.5.C【解析】36×100%=90%406.见解析【解析】抽签法抽样时给总体中的N个个体编号各不相同,由此可知方法一是抽签法,方法二不是抽签法.因为抽签法要求所有的号签编号互不相同,而方法二中39个白球无法相互区分.这两种方法的相同之处在于每名学生被选中的机会都相等.考点:简单随机抽样.。
第二章 2.1 2.1.2一、选择题1.一个年级有12个班,每个班有50名学生,按1到50排学号,为了交流学习经验,要求每班学号为14的学生留下进行交流,这里运用的是( )A .分层抽样B .抽签法C .随机数表法D .系统抽样[答案] D[解析] 符合系统抽样的特点.2.中央电视台动画城节目为了对本周的热心小观众给予奖励,要从已确定编号的一万名小观众中抽出十名幸运小观众.现采用系统抽样的方法抽取,其组容量为( )A .10B .100C .1 000D .10 000 [答案] C[解析] 依题意,要抽十名幸运小观众,所以要分十个组,其组容量为10 000÷10=1 000. 3.为了解1 200名学生对学校某项教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔(抽样距)k 为( )A .40B .30C .20D .12 [答案] A[解析] k =N n =1 20030=40.4.下列抽样中不是系统抽样的是( )A .从标有1~15号的15个球中,任选3个作样本,按从小号到大号排序,随机选起点i 0,以后i 0+5,i 0+10(超过15则从1再数起)号入样B .工厂生产的产品,用传送带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品进行检验C .搞某一市场调查,规定在某一路段随机抽一个人进行询问,直到调查到事先规定调查人数为止D .电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈[答案] C[解析] C 中因为事先不知道总体,抽样方法不能保证每个个体按事先规定的可能性入样.故C不是系统抽样.5.从2 004名学生中选取50名组成参观团,若采用下面的方法选取:先用简单随机抽样从2 004人中剔除4人,剩下的2 000人再按系统抽样的方法进行,则每人入选的机会() A.不会相等B.均不相等C.都相等D.无法确定[答案] C[解析]由系统抽样的定义知,上述抽样方法为系统抽样,因此,每人入选的机会都相等,故选C.6.为了检查某超市货架上的奶粉是否含有三聚氰胺,要从编号依次为1到50的袋装奶粉中抽取5袋进行检验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5袋奶粉的编号可能是()A.5,10,15,20,25 B.2,4,8,16,32C.1,2,3,4,5 D.7,17,27,37,47[答案] D[解析]利用系统抽样,把编号分为5段,每段10袋,每段抽取一袋,号码间隔为10,故选D.二、填空题7.高三某班有学生56人,学生编号依次为1,2,3,…,56. 现用系统抽样的方法抽取一个容量为4的样本,已知编号为6,34,48的同学都在样本中,那么样本中另一位同学的编号应该是________.[答案]20[解析]由于系统抽样的样本中个体编号是等距的,且间距为56/4=14,所以样本编号应为6,20,34,48.8.将参加数学夏令营的100名同学编号为001,002,…,100.现采用系统抽样方法抽取一个容量为25的样本,且第一段中随机抽得的号码为004,则在046至078号中,被抽中的人数为________.[答案]8[解析]抽样距为4,第一个号码为004,故001~100中是4的整数倍的数被抽出,在046至078号中有048,052,056,060,064,068,072,076,共8个.三、解答题9.一个体育代表队有200名运动员,其中两名是种子选手,现从中抽取13人参加某项运动.若种子选手必须参加,请用系统抽样法给出抽样过程.[解析](1)将除种子选手以外的198名运动员用随机方式编号,编号为001,002, (198)(2)将编号按顺序每18个为一段,分成11段;(3)在第一段001,002,…,018,这十八个编号中用简单随机抽样法抽出一个(如010)作为起始号码;(4)将编号为010,028,046,…,190的个体抽出,与种子选手一起参加这项运动.一、选择题1.用系统抽样的方法从个体数为1 003的总体中,抽取一个容量为50的样本,在整个抽样过程中每个个体被抽到的可能性是( )A .11 000B .11 003C .501 003D .120[答案] C[解析] 根据系统抽样的方法可知,每个个体入样的可能性相同,均为nN ,所以每个个体入样的可能性为501 003.2.系统抽样又称为等距抽样,从N 个个体中抽取n 个个体为样本,先确定抽样间隔,即抽样距k =⎣⎡⎦⎤N n (取整数部分),从第一段1,2,…,k 个号码中随机抽取一个入样号码i 0,则i 0,i 0+k ,…,i 0+(n -1)k 号码均入样构成样本,所以每个个体的入样可能性是( )A .相等的B .不相等的C .与i 0有关D .与编号有关[答案] A[解析] 由系统抽样的定义可知,每个个体入样的可能性相等与抽样距无关,也与第一段入样号码无关,系统抽样所得样本的代表性与具体的编号有关,要求编号不能呈现个体特征随编号周期性变化,各个个体入样可能性与编号无关.3.为了了解参加某次数学考试的1 252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本,那么总体中应随机剔除的个体数目为( )A .2B .3C .4D .52 [答案] A[解析] 因为1 252=50×25+2,所以应随机剔除2个个体,故选A.4.从编号为1~60的60枚最新研制的某型号导弹中随机抽取5枚来进行发射试验,用系统抽样方法抽取5枚导弹的编号可能是( )A .1,3,4,7,9,5B .10,15,25,35,45C .5,17,29,41,53D .3,13,23,33,43[答案] C[解析] 分段间隔为605=12,即相邻两个编号间隔为12,故选C.二、填空题5.一个总体中有100个个体,随机编号0,1,2,…,99,依从小到大的编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m +k 的个位数字相同,若m =8,则在第8组中抽取的号码是________.[答案] 76[解析] 若m =8,在第8组抽取的数字的个位数与8+8=16的个位数6相同,又在第8组,所以应抽取的号码为76.6.一个总体中100个个体编号为0,1,2,3,…,99,并依次将其分为10个小组,组号为0,1,…,9,要用系统抽样方法抽取一个容量为10的样本,规定如果第0组(号码0~9)随机抽取的号码为l ,那么依次错位地抽取后面各组的号码,即第k 组中抽取的号码的个位数为(l +k )或(l +k -10)(如果l +k ≥10),若l =6,则所抽取的10个号码依次是________.[答案] 6,17,28,39,40,51,62,73,84,95[解析] 由题意,第0组抽取的号码为6,第1组抽取的号码个位为6+1=7,号码为17.第2组抽取的号码的个位数为6+2=8,号码为28. 第3组抽取的号码为39.第4组抽取的号码个位为6+4-10=0,号码为40. 第5组抽取的号码为51,…. 三、解答题7.要从某学校的10 000名学生中抽取100名进行健康体检,采用何种抽样方法较好?并写出抽样过程.[解析] 由于总体数较多,因而应采用系统抽样法.具体过程如下: S1 采用随机的方法将总体中的个体编号:1,2,3,…,10 000. S2 把总体均分成10 000100=100(段).S3 在第1段用简单随机抽样确定起始个体编号l .S4 将l +100,l +200,l +300,…,l +9 900依次取出,就得到100个号码.将这100个号码对应的学生组成一个样本,进行健康体检.8.为了解参加某次测验的2 607名学生的成绩,决定作系统抽样的方法抽取一个容量为260的样本.请根据所学的知识写出抽样过程.[解析]第一步,将2 607名学生用随机方式编号(分别为0001,0002,…,2607).第二步,从总体中剔除7人(剔除方法可用随机数表法),将剩下的2 600名学生重新编号(分别为0001,0002,…,2600),并分成260段.第三步,在第一段0001,0002,…,0010这十个编号中用简单随机抽样法抽出一个(如0003)作为起始号码.第四步,将编号为0003,0013,0023,…,2593的个体抽出,组成样本.9.某校高三年级共有403名学生,为了对某次考试的数学成绩作质量分析,打算从中抽出40人的成绩作样本.请你设计一个系统抽样,抽取上面所需的样本.[解析]总体中的个体数不能被样本容量整除,需在总体中剔除一些个体.先用简单随机抽样从总体中剔除3个个体(可用随机数表法),将剩下的400名学生进行编号:1,2,3,…,400,然后将总体分为40个部分,其中每个部分包括10个个体,如第一部分的个体编号为:1,2,3,…,10,从中随机抽取一个号码,比如为6,那么可以从第6个号码开始,每隔10个抽取1个,这样得到容量为40的样本:6,16,26,36,…,396(共40个).。
2.1.1 简单随机抽样、系统抽样、分层抽样1.简单随机抽样的定义设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.2.简单随机抽样的分类简单随机抽样⎩⎨⎧ 抽签法随机数法3.简单随机抽样的优点及适用类型 简单随机抽样有操作简便易行的优点,在总体个体数不多的情况下是行之有效的.4.系统抽样的概念先将总体中的个体逐一编号,然后按号码顺序以一定的间隔k 进行抽取,先从第一个间隔中随机地抽取一个号码,然后按此间隔依次抽取即得到所求样本.5.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本,步骤为:(1)先将总体的N个个体编号.有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等.(2)确定分段间隔k,对编号进行分段.当Nn(n是样本容量)是整数时,取k=Nn ;(3)在第1段用简单随机抽样确定第一个个体编号l(l≤k);(4)按照一定的规则抽取样本.通常是将l加上间隔k得到第2个个体编号(l+k),再加k得到第3个个体编号(l+2k),依次进行下去,直到获取整个样本.6.分层抽样的概念在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.7.分层抽样的适用条件分层抽样尽量利用事先所掌握的各种信息,并充分考虑保持样本结构与总体结构的一致性,这对提高样本的代表性非常重要.当总体是由差异明显的几个部分组成时,往往选用分层抽样的方法.一、选择题1.抽签法中确保样本代表性的关键是( )A.制签B.搅拌均匀C.逐一抽取D.抽取不放回答案 B 解析由于此问题强调的是确保样本的代表性,即要求每个个体被抽到的可能性相等.所以选B.2.下列抽样实验中,用抽签法方便的有( )A.从某厂生产的3 000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3 000件产品中抽取10件进行质量检验答案B解析A总体容量较大,样本容量也较大不适宜用抽签法;B总体容量较小,样本容量也较小可用抽签法;C中甲、乙两厂生产的两箱产品有明显区别,不能用抽签法;D总体容量较大,不适宜用抽签法.3.为调查参加运动会的1 000名运动员的年龄情况,从中抽查了100名运动员的年龄,就这个问题来说,下列说法正确的是( )A.1 000名运动员是总体B.每个运动员是个体C.抽取的100名运动员是样本D.样本容量是100答案 D 解析:此问题研究的是运动员的年龄情况,不是运动员,故A、B、C错,故选D.4.用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a“第一次被抽到”的可能性,“第二次被抽到”的可能性分别是( )A.110,110B.310,15C.15,310D.310,310答案A5.某会议室有50排座位,每排有30个座位.一次报告会坐满了听众.会后留下座号为15的所有听众50人进行座谈.这是运用了( )A.抽签法B.随机数表法C.系统抽样D.有放回抽样答案C解析从第1排到第50排每取一个人的间隔人数是相同的,符合系统抽样的定义.6.要从已经编号(1~50)的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射试验,用系统抽样方法确定所选取的5枚导弹的编号可能是( )A.5,10,15,20,25 B.3,13,23,33,43 C.1,2,3,4,5 D.2,4,8,16,32答案B解析由题意知分段间隔为10.只有选项B中相邻编号的差为10,选B.7.有40件产品,其中一等品10件,二等品25件,次品5件,现从中抽出8件进行质量分析,问应采取何种抽样方法( )A.抽签法B.随机数表法C.系统抽样D.分层抽样答案D8.某城市有学校700所.其中大学20所,中学200所,小学480所,现用分层抽样方法从中抽取一个容量为70的样本,进行某项调查,则应抽取中学数为( )A.70 B.20 C.48 D.2答案B由于70070=10,即每10所学校抽取一所,又因中学200所,所以抽取200÷10=20(所).9.下列问题中,最适合用分层抽样方法抽样的是( )A.某电影院有32排座位,每排有40个座位,座位号是1~40.有一次报告会坐满了听众,报告会结束以后为听取意见,要留下32名听众进行座谈B.从10台冰箱中抽出3台进行质量检查C.某乡农田有山地8 000亩,丘陵12 000亩,平地24 000亩,洼地4 000亩,现抽取农田480亩估计全乡农田平均产量D.从50个零件中抽取5个做质量检验答案C解析A的总体容量较大,宜采用系统抽样方法;B的总体容量较小,用简单随机抽样法比较方便;C总体容量较大,且各类田地的产量差别很大,宜采用分层抽样方法;D与B类似.10.要从其中有50个红球的1 000个球中,采用按颜色分层抽样的方法抽取100个进行分析,则应抽取红球的个数为( )A.5个B.10个C.20个D.45个答案A解析由题意知每1000100=10(个)球中抽取一个,现有50个红球,应抽取5010=5(个).11.在简单随机抽样中,某一个个体被抽到的可能性( )A.与第几次抽样有关,第一次抽到的可能性大一些B.与第几次抽样无关,每次抽到的可能性相等C.与第几次抽样有关,最后一次抽到的可能性大些D.与第几次抽样无关,每次都是等可能的抽取,但各次抽取的可能性不同答案B解析由简单随机抽样的特点知与第n次抽样无关,每次抽到的可能性相等.二、填空题12.福利彩票的中奖号码是从1~36个号码中选出7个号码来按规则确定中奖情况,这种从36个号码中选7个号码的抽样方法是________.答案抽签法13.用随机数表法进行抽样,有以下几个步骤:①将总体中的个体编号;②获取样本号码;③选定随机数表开始的数字,这些步骤的先后顺序应该是________.(填序号)答案①③②14.某班级共有学生52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、29号、42号同学在样本中,那么样本中还有一个同学的学号为________.答案16解析用系统抽样的方法是等距离的.42-29=13,故3+13=16.15.某农场在三种地上种玉米,其中平地210亩,河沟地120亩,山坡地180亩,估计产量时要从中抽取17亩作为样本,则平地、河沟地、山坡地应抽取的亩数分别是________.答案7,4,6解析应抽取的亩数分别为210×17510=7,120×17510=4,180×17510=6.16.将一个总体分为A、B、C三层,其个体数之比为5∶3∶2.若用分层抽样方法抽取容量为100的样本,则应从C中抽取________个个体.答案20解析由题意可设A、B、C中个体数分别为5k,3k,2k,所以C中抽取个体数为2k5k+3k+2k×100=20.17.某工厂生产A、B、C、D四种不同型号的产品,产品数量之比依次为2∶3∶5∶1.现用分层抽样方法抽出一个容量为n的样本,样本中A种型号有16件,那么此样本的容量n为________.答案88解析在分层抽样中,每一层所抽的个体数的比例与总体中各层个体数的比例是一致的.所以,样本容量n=2+3+5+12×16=88.。
实用文档必修3 第6章 统计 参考答案6.1.1 简单随机抽样1.C 2.C 3.A 4.抽签法,随机数表法,向上、向下、向左、向右5.21 6.60,30 7.相等,Nn 8.略 9.(1)不是简单随机抽样,由于被抽取样本的总体的个数是无限的而不是有限的。
(2)不是简单随机抽样,由于它是放回抽样10.选法二不是抽签法,因为抽签法要求所有的签编号互不相同,而选法二中39个白球无法相互区分。
这两种选法相同之处在于每名学生被选中的概率都相等,等于401。
6.1.2 系统抽样1.A 2.B 3.B 4.B 5.A 、B 、D 6. 200450 7.(一)简单随机抽样(1) 将每一个人编一个号由0001至1003;(2) 制作大小相同的号签并写上号码;(3) 放入一个大容器,均匀搅拌;(4)依次抽取10个号签具有这十个编号的人组成一个样本。
(二)系统抽样(1)将每一个人编一个号由0001至1003;(2)选用随机数表法找3个号,将这3个人排除;(3)重新编号0001至1000;(4)在编号为0001至0100中用简单随机抽样法抽得一个号L;(5)按编号将:L,100+L,…,900+L共10个号选出。
这10个号所对应的人组成样本。
8.系统抽样适用于总体中的个体数较多的情况;系统抽样与简单随机抽样之间存在着密切联系,即在将总体中的个体均分后的每一段进行抽样时,采用的是简单随机抽样;与简单随机抽样相同的是,系统抽样也属于等可能抽样。
9.是用系统抽样的方法确定的三等奖号码的,共有100个。
10.略(参考第7小题)6.1.3 分层抽样实用文档Nm1.B 2.B 3.104 4.n5.70,80 6.系统抽样,100个7.总体中的个体个数较多,差异不明显;总体由差异明显的几部分组成中年:200人;青年:120人;老年:80人8.分层抽样,简单随机抽样9.因为总体共有彩电3000台,数量较大,所以不宜采用简单随机抽样,又由于三种彩电的进货数量差异较大,故也不宜用系统方法,而以分层抽样为妥。
数学·必修3(人教A版)统计2.1.1 简单随机抽样和系统抽样基础达标1.从2 000个编号中抽取20个号码入样,采用系统抽样的方法,则抽样的间隔为( )A.99 B.100 C.101 D.200答案: B2.在简单随机抽样中,某一个个体被抽中的可能性是( )A.与第几次抽样有关,第1次抽中的可能性要大些B.与第几次抽样无关,每次抽中的可能性都相等C.与第几次抽样有关,最后一次抽中的可能性大些D.与第几次抽样无关,每次都是等可能的抽取,但各次抽取的可能性不一样答案:B3.(2013·陕西卷)某单位有840名职工,现采用系统抽样方法,抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为( )A.11人 B.12人 C.13人 D.14人解析:根据系统抽样的方法结合不等式求解.抽样间隔为84042=20.设在1,2,…,20中抽取号码x0(x0∈[1,20]),在[481,720]之间抽取的号码记为20k+x0,则481≤20k+x0≤720,k∈N*.∴24120≤k+x020≤36.∵x020∈⎣⎢⎡⎦⎥⎤120,1,∴k=24,25,26, (35)∴k值共有35-24+1=12(个),即所求人数为12.答案:B4.某工厂的质检人员对生产的100件产品,采用随机数表法抽取10件检查,对100件产品采用下列编号方法:①01,02,…,100;②001,002,…,100;③00,01,…,99.其中正确的序号是( )A.①② B.①③ C.②③ D.仅③答案:C5.某厂将在64名员工中用系统抽样的方法抽取4名参加2013年职工劳技大赛,将这64名员工编号为1~64,若已知8号、24号、56号在样本中,那么样本中另一名员工的编号为________.答案:406.为了考察一段时间内某路口的车流量,测得每小时的平均车流量是576辆,所测时间内的总车流量是11 520辆,那么,这个问题中,样本的容量是_______________________________________________________________________ _.答案:11 520巩固提升7.下列抽样中不是系统抽样的是( )A.从标有1~15号的15个小球中任选3个作为样本,按从小号到大号排序,随机确定起点i,以后为i+5, i+10(超过15则从1再数起)号入样B.工厂生产的产品,用传送带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品检验C.搞某一市场调查,规定在商场门口随机抽一个人进行询问,直到调查到事先规定的调查人数为止D.电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈答案:C8.从编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是( )A.5,10,15,20,25 B.3,13,23,33,43C.1,2,3,4,5 D.2,4,6,16,32答案:B9.一个总体的60个个体编号为00,01,02,…,59,现需从中抽取一个容量为8的样本,请从随机数表的倒数第5行(下表为随机数表的最后5行)第6列开始,向右读取,直到取足样本,则抽取样本的号码是________.95 33 95 22 00 18 74 72 00 18 38 79 58 69 32 81 76 80 26 92 82 80 84 25 3990 84 60 79 80 24 36 59 87 38 82 07 53 89 35 96 35 23 79 18 05 98 90 07 3546 40 62 98 80 54 97 20 56 95 15 74 80 08 32 16 64 70 50 80 67 72 16 42 7920 31 89 03 43 38 46 82 68 72 32 14 82 99 70 80 60 47 18 97 63 49 30 21 3071 59 73 05 50 08 22 23 71 77 91 01 93 20 49 82 96 59 26 94 66 39 67 98 60答案:18,00,38,58,32,26,25,3910.为了了解某地区今年高一学生期末考试数学科的成绩,拟从参加考试的15 000名学生的数学成绩中抽取容量为150的样本.请用系统抽样写出抽取过程.答案:解析:(1)对全体学生的数学成绩进行编号:1,2,3,…,15 000.(2)分段:由于样本容量与总体容量的比是1∶100,所以将总体平均分为150个部分,其中每一部分包括100个个体.(3)在第一部分即1号到100号用简单随机抽样,抽取一个号码,比如是56.(4)以56作为起始数,然后顺次抽取156,256,356,…,14 956,这样就得到容量为150的一个样本.1.抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力,又不方便,如果标号的签搅拌得不均匀,会导致抽样不公平;随机数表法的优点与抽签法相同,缺点是当总体容量较大时,仍然不是很方便,但是比抽签法公平,因此这两种方法只适合总体容量较少的抽样类型.简单随机抽样每个个体入样的可能性都相等,均为n/N.2.系统抽样的一般步骤:(1)将总体中的N个对象逐个编号.(2)将整体按编号进行分段,确定分段间隔k(k∈N,L≤k).(3)在第一段用简单随机抽样确定起始个体的编号L(L∈N,L≤k).(4)按照一定的规则抽取样本,通常是将起始编号L加上间隔k得到第2个个体编号L+k,再加上k得到第3个个体编号L+2k,这样继续下去,直到获取整个样本.。
高中数学人教A版必修3课后练习12分层抽样1.对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则()A.p1=p2<p3B.p2=p3<p1C.p1=p3<p2D.p1=p2=p3解析:不管是简单随机抽样、系统抽样还是分层抽样,它们都是等可能抽样,每个个体被抽中的概率均.为nn答案:D2.某学校高一、高二、高三共有学生3 500人,其中高三学生人数是高一学生人数的两倍,高二学生人的抽样比用分层抽样的方法抽取样本,则抽取高一学生的人数为数比高一学生人数多300,现在按1100()A.8 B.11 C.16 D.10解析:设高一有x人,则高三有2x人,高二有(x+300)人,∵高一、高二、高三共有学生3 500人,∴x+2x+x+300=3 500,∴x=800.∵按1的抽样比用分层抽样的方法抽取样本,100∴抽取高一学生的人数为1×800=8.100答案:A3.某校共有2 000名学生,各年级男、女生人数如表所示.现用分层抽样的方法在全校抽取64名学生,则A.24 B.18 C.16 D.12解析:依题意可知,高三年级学生人数为500,占总体学生人数比例为500∶2 000=1∶4,故用分层抽=16,故选C.样抽取高三年级学生人数为64×14答案:C4.某商场有四类食品,其中粮食类、植物油类、肉食品类、果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是()A.4 B.5 C.6 D.7=2,抽取的果蔬类的种数为解析:四类食品的比例为4∶1∶3∶2,则抽取的植物油类的种数为20×110=4,二者之和为6,故选C.20×210答案:C5.分层抽样是将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,组成一个样本的抽样方法.在《九章算术》第三章“衰分”中有如下问题:“今有甲持钱五百六十,乙持钱三百五十,丙持钱一百八十,凡三人俱出关,关税百钱,欲以钱数多少衰出之,问各几何?”其译文为:今有甲持560钱,乙持350钱,丙持180钱,甲、乙、丙三人一起出关,关税共100钱,要按照各人带多少的比例进行交税,问三人各应付多少税?则下列说法错误的是()A.甲应付5141109钱B.乙应付3224109钱C.丙应付1656109钱D.三者中甲付的钱最多,丙付的钱最少解析:由分层抽样可知,抽样比为100560+350+180=10109,则甲应付10109×560=5141109(钱);乙应付10109×350=3212109(钱);丙应付10109×180=1656109(钱),故选B.答案:B6.古代科举制度始于隋而成于唐,完善于宋、元.明代则处于其发展的鼎盛阶段.其中表现之一为会试分南卷、北卷、中卷,按比例录取,其录取比例为11∶7∶2.若明宣德五年会试录取人数为100.则中卷录取人数为__________.解析:由题意知,明宣德五年会试录取人数为100,则中卷录取人数为100×211+7+2=10(人).答案:107.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取__________名学生.解析:根据题意,应从一年级本科生中抽取的人数为44+5+5+6×300=60人.答案:608.某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体状况,从他们中抽取容量为36的样本,最适合抽取样本的方法是________.(填序号)①简单随机抽样②系统抽样③分层抽样④先从老年人中剔除1人,再用分层抽样解析:总人数为28+54+81=163.样本容量为36,由于总体由差异明显的三部分组成,考虑用分层抽样.若按36∶163取样,无法得到整解,故考虑先剔除1人,抽取比例变为36∶162=2∶9,则中年人取12人,青年人取18人,先从老年人中剔除1人,老年人取6人,组成36的样本.答案:④9.某校500名学生中,O型血有200人,A型血有125人,B型血有125人,AB型血有50人,为了研究血型与色弱的关系,需从中抽取一个容量为20的样本.怎样抽取样本?解用分层抽样抽取样本.∵20500=125,即抽样比为125,∴200×125=8,125×125=5,50×125=2.故O型血抽8人,A型血抽5人,B型血抽5人,AB型血抽2人. 抽样步骤:①确定抽样比为125;②按比例分配各层所要抽取的个体数,O型血抽8人,A型血抽5人,B型血抽5人,AB型血抽2人;③用简单随机抽样分别在各种血型中抽取样本,直至取出容量为20的样本.。
(1)很难确定总体中所有个体的数目,例如调查对象是生产线上生产的产品.(2)成本高,要产生真正的简单随机抽样,需要利用类似于抽签法中的抽签试验来产生非负整数值随机数.(3)耗时多,产生非负整数值随机数和从总体中挑选出随机数所对应的个体都需要时间.2.中央电视台希望在春节联欢晚会播出后一周内获得当年春节联欢晚会的收视率.下面是三名同学为电视台设计的调查方案.同学A :我把这张<春晚调查表>放在互联网上,只要上网登录该网址的人就可以看到这张表,他们填表的信息可以很快地反馈到我的电脑中.这样,我就可以很快统计出收视率同学B :我给我们居民小区的每一份住户发一个是否在除夕那天晚上看过中央电视台春节联欢的调查表,只要一两天就可以统计出收视率.同学C :我在电话号码本上随机地选出一定数量的电话号码,然后逐个给他们打电话,问一下他们是否收看了中央电视台联欢晚会,我不出家门就可以统计出春晚收视率.请问:上述三名同学设计的调查方案能够获得比较准确的收视率吗?为什么?A :不能上网的人群或者不登录某网址的人群被排除在外,样本代表性差.B :只是考虑小区居民,有一定的片面性,样本代表性差.C :只考虑有电话的人群,有一定的片面性,样本代表性差.因此,三种调查方案都有一定的代表性,不能得到比较准确的收视率.3.校学生会希望调查有关本学期学生活动计划的意见.您自愿担任调查员,并打算在学校里抽取10%的同学作为样本.(1)您怎样安排抽样,以保证样本的代表性?(2)在抽样中您可能遇到哪些问题?(3)您打算怎样解决这些问题?(1)因为各年级学习任务和学生年龄等因素,影响各年级学生对调查活动的看法,所以按照分层抽样进行抽样调查,可以得到更有代表性的样本.(2)抽样过程中可能遇到的问题如敏感性问题:有些学生担心提出意见对自己不利;又如不响应问题:由于种种原因,有些学生不能发表意见;等等.这些问题都可能导致样本的统计推断结果的误差.(3)对于敏感性问题,可参考<阅读与思考>的方法设计问卷;对于不响应问题,可事先向全体学生宣传调查的意义,并安排专人负责发放和催收调查问卷,最大程度地回收有效调查问卷.4.请用简单随机抽样和系统抽样,设计一个调查某地区一年内空气质量状况的方案,哪一个方案更便于实施.将每一天看作一个个体,则总体由365天组成.假设要抽取50个样本,将一年中的各天按先后次序编号为0~364天.简单随机抽样方案:制作365个号签,依次标上0~364,将号签放在容器里充分搅拌均匀,不放回取出50个号签.以此构成样本,检测样本中所有个体的空气质量.系统抽样方案:先从365天中随机抽出15天,再把剩下的350天按先后次序编号为0~349天,制作7个标有0~7的号签,放在容器里充分搅拌均匀,从中任取一个号签a ,则编号为a+7k(0≤k<50)所对应的50个天构成样本,检测样本中所有个体的空气质量.从样本的代表性来说,系统抽样的代表性更好,因为样本一定包含四季,简单随机抽样的方案不一定.)631,,2.1..P 在抽样过程中如果总体中的每个个体都有相等的机会被抽中那么我们就称这样产生的样本为随机样本举例说明产生随机样本习题的困难.5.一支田径队有男运动员56人,女运动员42人,用分层抽样的方法从全体运动员中抽出一个容量为28的样本6.在一次游戏中,获奖者可以得到5件不同的奖品,这些奖品要从由1~50编号的50种不同奖品中随机抽取确定,用系统抽样的方法为某位获奖者确定5件奖品的编号.以10为分段间隔,首先在1~10的编号中,随机选取一个编号如6,怎样获奖者奖品的编号是6,16,26,36,46.7.设计一个抽样方案,调查你们学校学生的近视率.可按年级分层抽样的方法设计方案.1.您可能想了解许多问题.比如,全班同学比较喜欢哪门课程,中学生每月的零花钱平均是多少,喜欢看<新闻联播>的同学的比例是多少,中学生每天大约什么时间起床,每天睡眠的平均时间是多少等.选一些自己关心的问题,设计一份调查问卷,利用抽样的方法调查你们学校的学生情况,并解释您所得到的结论.可按年级分层抽样的方法设计方案.主要从引起结论的可能原因及结论本身含义来解释.2.设计一个抽样方案,调查中央电视台春节联欢晚会的收视率.利用分层抽样的方案效果比较好,可以按年龄、职业、环境等等分层.28256427=+()()225616,421277⨯=⨯=人人。
人教A版高中数学必修三第2章2.1-2.1.2系统抽样3学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列问题中,最适合用系统抽样法抽样的是( )A.从某厂生产的20个电子元件中随机抽取5个入样B.一个城市有210家超市,其中大型超市20家,中型超市40家,小型超市150家,为了掌握各超市的营业情况,要从中抽取一个容量为21的样本C.从参加竞赛的1500名初中生中随机抽取100人分析试题作答情况D.从参加期末考试的2400名高中生中随机抽取10人了解某些情况2.某牛奶生产线上每隔30分钟抽取一袋进行检验,该抽样方法记为①;从某中学的30名数学爱好者中抽取3人了解学业负担情况,该抽样方法记为②.那么( ) A.①是系统抽样,②是简单随机抽样B.①是简单随机抽样,②是简单随机抽样C.①是简单随机抽样,②是系统抽样D.①是系统抽样,②是系统抽样3.为了了解某地参加计算机水平测试的5 008名学生的成绩,从中抽取了200名学生的成绩进行统计分析,运用系统抽样方法抽取样本时,每组的容量为( )A.24B.25C.26D.284.用系统抽样法从160名学生中抽取容量为20的样本,将160名学生从1~160编号.按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组抽出的号码为125,则第1组中按此抽签方法确定的号码是()A.7B.5C.4D.35.学校为了了解高二年级1 203名学生对某项教改试验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段间隔k为()A.40B.30.1C.30D.126.有20位同学,编号从1至20,现在从中抽取4人作问卷调查,用系统抽样方法确定所抽的编号为( )A.2,6,10,14 B.5,10,15,20 C.2,4,6,8 D.5,8,11,14 7.在一个个体数目为2 003的总体中,利用系统抽样抽取一个容量为100的样本,则总体中每个个体被抽到的机会为( )A.120B.1100C.1002003D.120008.高二(3)班共有学生56人,现根据座号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、31号、45号同学在样本中,那么样本中还有一个同学的座号是A.15B.16C.17D.18二、填空题9.将参加数学夏令营的100名学生编号为001,002,…,100,现采用系统抽样方法抽取一个容量为25的样本,且第一段中随机抽得的号码为004,则在046号至078号中,被抽中的人数为________.10.从高三(八)班42名学生中,抽取7名学生了解本次考试数学成绩情况,已知本班学生学号是1~42号,现在该班数学老师已经确定抽取6号,那么,用系统抽样法确定其余学生号码为____.11.将参加学校期末考试的高三年级的400名学生编号为:001,002,…,400,已知这400名学生到甲乙丙三栋楼去考试,从001到200在甲楼,从201到295在乙楼,从296到400在丙楼;采用系统抽样方法抽取一个容量为50的样本且随机抽得的首个号码为003,则三个楼被抽中的人数依次为.12.已知某商场新进3000袋奶粉,为检查其三聚氰胺是否超标,现采用系统抽样的方法从中抽取150袋检查,若第一组抽出的号码是11,则第61组抽出的号码为____.13.某学校有学生4 022人.为调查学生对【最新】巴西里约奥运会的了解状况,现用系统抽样的方法抽取一个容量为30的样本,则分段间隔是____.三、双空题14.采用系统抽样的方法,从个体数为1 003的总体中抽取一个容量为50的样本,则在抽样过程中,被剔除的个体数为____,抽样间隔为____.15.若总体中含有1 645个个体,现在要采用系统抽样,从中抽取一个容量为35的样本,编号后应均分为____段,每段有____个个体.四、解答题16.某学校高一有30个班级,每班50名学生,上级要到学校进行体育达标验收.需要抽取10%的学生进行体育项目的测验.请你制定一个简便易行的抽样方案(写出实施步骤).17.为了了解某地区今年高一学生期末考试数学科的成绩,拟从参加考试的15 000名学生的数学成绩中抽取容量为150的样本.请用系统抽样写出抽取过程.18.某单位的在岗职工为620人,为了调查上班时,从家到单位的路上平均所用的时间,决定抽取10%的职工调查这一情况,如何采用系统抽样抽取样本?19.一个总体中的100个个体的编号分别为0,1,2,3,…,99,依次将其分成10个小段,段号分别为0,1,2,…,9.现要用系统抽样的方法抽取一个容量为10的样本,规定如果在第0段随机抽取的号码为l,那么依次错位地取出后面各段的号码,即第k 段中所抽取的号码的个位数为l+k或l+k-10(l+k≥10),则当l=6时,求所抽取的10个号码.20.从某厂生产的802辆轿车中抽取80辆测试某项性能.请合理选择抽样方法进行抽样,并写出抽样过程.21.一个总体中的1 000个个体编号为0,1,2,…,999,并依次将其分为10个小组,组号为0,1,2,…,9.抽取一个容量为10的样本,规定如果在第0组随机抽取的号码为x,那么第k(1≤k≤9,k∈N*)组抽取的号码的后两位数是x+33k的后两位数.(1)当x=24时,写出所抽样本的10个号码;(2)若所抽取样本的10个号码中有一个的后两位数是87,求x的取值范围.参考答案1.C【解析】选项A中,由于总体容量较小,样本容量也较小,可采用抽签法;选项B中,由于总体中的个体有明显的层次,不适宜用系统抽样法;选项C中,由于总体容量较大,样本容量也较大,可用系统抽样法;选项D中,总体容量较大,样本容量较小,可用随机数表法.故选C。
习题解答练习(第47页)1.抽样调查和普查的比较见下表:抽样调查的好处是可以节省人力、物力和财力,可能出现的问题是推断的结果与实际情况之间有误差.如抽取的部分个体不能很好地代表总体,那么我们分析出的结果就会有偏差.2.(1)抽签法:对高一年级全体学生450人进行编号,将学生的名字和对应的编号分别写在卡片上,并把450张卡片放人一个容器中,搅拌均匀后,每次不放回地从中抽取一张卡片,连续抽取50次,就得到参加这项活动的50名学生的编号.(2)随机数表法:第一步,先将450名学生编号,可以编为000,001, (449)第二步,在随机数表中任选一个数.例如选出第7行第5列的数1(为了便于说明,下面摘取了附表的第6~10行).第三步,从选定的数1开始向右读,得到一个三位数175,由于175<450,说明号码175在总体内,将它取出;继续向右读,得到331,由于331<450,说明号码331在总体内,将它取出;继续向右读,得到572,由于572>450,将它去掉.按照这种方法继续向右读,依次下去,直到样本的50个号码全部取出.这样我们就得到了参加这项活动的50名学生.3.用抽签法抽取样本的例子:为检查某班同学的学习情况,可用抽签法取出容量为5的样本.用随机数表法抽取样本的例子:部分学生的心理调查等.抽签法能够保证总体中任何个体都以相同的概率被选到样本之中,因此保证了样本的代表性.4.与抽签法相比,随机数表法抽取样本的主要优点是节省人力、物力、财力和时间,缺点是所产生的样本不是真正的简单样本.练习(第49页)1.系统抽样的优点是:(1)简便易行;(2)当对总体结构有一定了解时,充分利用已有信息对总体中的个体进行排队后再抽样,可提高抽样效率;(3)当总体中的个体存在一种自然编号(如生产线上产品的质量控制)时,便于施行系统抽样法.系统抽样的缺点是在不了解样本总体的情况下,所抽出的样本可能有一定的偏差.2.(1)对这118名教师进行编号;(2)计算间隔16118 k =7.375,由于k 不是一个整数,我们从总体中随机剔除6个样本,再来进行系统抽样.例如我们随机剔除了3,46,59,57,112,93这6名教师,然后再对剩余的112位教师进行编号,计算间隔k =7;(3)在l ~7之间随机选取一个数字,例如选5,将5加上间隔7得到第2个个体编号12,再加7得到第3个个体编号19,依次进行下去,直到获取整个样本.3.由于身份证(18位)的倒数第二位表示性别,后三位是632的观众全部是男性。
随机抽样【学习目标】1、了解简单随机抽样的概念,掌握实施简单随机抽样的常用方法:抽签法和随机数表法;2、了解系统抽样的意义,并会用系统抽样的方法从总体中抽取样本;3、了解分层抽样的概念与特征,清楚简单随机抽样、系统抽样、分层抽样的区别和联系.【要点梳理】要点一、简单随机抽样简单随机抽样是一种最简单、最基本的抽样方法.抽样中选取个体的方法有两种:放回和不放回.我们在抽样调查中用的是不放回抽取.1、简单随机抽样的概念:一般地,从元素个数为N的总体中不放回地抽取容量为n的样本,如果每一次抽取时总体中的各个个体被抽到的可能性是相同的,那么这种抽样方法叫简单随机抽样,这样抽取的样本,叫做简单随机样本.2、简单随机抽样的特点:(1)被抽取样本的总体个数N是有限的;(2)简单随机样本数n小于等于样本总体的个数N;(3)从总体中逐个进行抽取,使抽样便于在实践中操作;(4)它是不放回抽取,这使其具有广泛应用性;(5)每一次抽样时,每个个体等可能的被抽到,保证了抽样方法的公平性.3、实施抽样的方法:(1)抽签法:抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力又不方便,若标号的纸片或小球搅拌得不均匀还可能导致抽样的不公平.抽签法的一般步骤:①将总体中的N个个体编号;②把这N个号码写在形状、大小相同的号签上;③将号签放在同一箱中,并搅拌均匀;④从箱中每次抽取一个号签,连续抽取n次;⑤将总体中与抽到的号签的编号一致的n个个体取出.(2)随机数表法:要理解好随机数表,即表中每个位置上等可能出现0,1,2,…,9这十个数字的数表.随机数表中各个位置上出现各个数字的等可能性,决定了利用随机数表进行抽样时抽取到总体中各个个体序号的等可能性.随机数表法的步骤:①将总体的个体编号(每个号码的位数一致);②在随机数表中任选一个数字作为开始;③从选定的数开始按一定的方向读下去,若得到的数码在编号中,则取出;若得到的号码不在编号中或前面已经取出,则跳过,如此继续下去,直到取满为止.注意:①选定开始数字,要保证所选数字的随机性;②确定读数方向获取样本号码时,读数方向可向左、向右、向上、向下,样本号码不能重复,否则舍去.要点诠释:1、简单随机抽样是一种最简单、最基本的抽样方法,简单随机抽样有两种选取个体的方法:放回和不放回,我们在抽样调查中用的是不放回抽样,常用的简单随机抽样方法有抽签法和随机数法.2、抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力,又不方便,如果标号的签搅拌得不均匀,会导致抽样不公平,随机数表法的优点与抽签法相同,缺点上当总体容量较大时,仍然不是很方便,但是比抽签法公平,因此这两种方法只适合总体容量较少的抽样类型.3、简单随机抽样每个个体入样的可能性都相等,均为Nn ,但是这里一定要将每个个体入样的可能性、第n 次每个个体入样的可能性、特定的个体在第n 次被抽到的可能性这三种情况区分开来,避免在解题中出现错误.要点二、系统抽样1、系统抽样的概念:当总体中的个体比较多时,将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分中抽取一个个体,得到所需要的样本,这样的抽样方法称为系统抽样,也称作等距抽样.2、系统抽样的特征:(1)当总体容量N较大时,采用系统抽样;(2)将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,因此,系统抽样又称等距抽样;(3)预先制定的规则指的是:在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整倍数即为抽样编号.3、系统抽样的一般步骤:(1)采用随机的方法将总体中的N个个体编号;(2)将编号按间隔k分段,当Nn是整数时,取Nkn=,当Nn不是整数时,从总体中剔除一些个体,使剩下的总体中个体的个数'N能被n整除,这时取'Nkn=,并将剩下的总体重新编号;(3)在第一段用简单随机抽样确定起始个体的编号()l l N l k∈≤,;(4)按照一定的规则抽取样本,通常是将编号为2(1)l l k l k l n k+++-L L,,,,的个体取出.要点诠释:1、从系统抽样的步骤可以看出,系统抽样是把一个问题划分成若干部分分块解决,从而把复杂问题简单化,体现了数学转化思想.2、系统抽样与简单随机抽样之间存在着密切联系,即在将总体中的个体均分后的每一段中进行抽样时,采用的是简单随机抽样.要点三、分层抽样1、分层抽样的概念:当总体由有明显差别的几部分组成时,为了使抽取的样本更好地反映总体的情况,可将总体中各个个体按某种特征分成若干个互不重叠的几部分,每一部分叫做层,在各层中按层在总体中所占比例进行简单随机抽样或系统抽样,这种抽样方法叫做分层抽样.2、分层抽样的特点:(1)适用于总体是由有明显差别的几部分组成时的情况;(2)分层抽样对各个个体来说被抽取的可能性相同.3、分层抽样的优点:(1)样本具有较强的代表性;(2)在各层抽样时,可灵活地选用不同的抽样方法.4、分层抽样的步骤:(1)将总体按一定的标准分层;(2)计算各层的个体数与总体的个体数的比;(3)按各层个体数占总体的个体数的比确定各层应抽取的样本容量;(4)在每一层进行抽样(各层可以按简单随机抽样或系统抽样的方法抽取)要点诠释:1、应用分层抽样应遵循以下要求:(1)分层:将相似的个体归入一类,即为一层,分层要求每层的各个个体互不交叉,即遵循不重复、不遗漏的原则.(2)分层抽样为保证每个个体等可能入样,需遵循在各层中进行简单随机抽样,每层样本数量与每层个体数量的比与这层个体数量与总体容量的比相等.2、分层抽样是当总体有差异明显的几部分组成时采用的抽样方法,进行分层抽样时应注意以下几点:(1)分层抽样中分多少层,如何分层要视具体情况而定,总的原则是,层内样本的差异要小,而层之间的样本差异要大,且互不重叠.(2)为了保证每个个体等可能入样,所有层应采用同一抽样比等可能抽样.(3)在每层抽样时,应采用简单随机抽样或系统抽样的方法进行抽样.3、分层抽样的优点是:使样本具有较强的代表性,并且抽样过程中可综合选用各种抽样方法,因此分层抽样是一种实用、操作性强、应用比较广泛的抽样方法.要点四、三种抽样方法的比较【典型例题】类型一:简单随机抽样例1.下面的抽样方法是简单随机抽样吗?为什么?(1)从无数个个体中抽取50个个体作为样本;(2)仓库中有l万支奥运火炬,从中一次性抽取100支火炬进行质量检查;(3)某连队从200名党员官兵中,挑选出50名最优秀的官兵赶赴四川参加抗震救灾工作;(4)一彩民选号,从装有36个大小、形状都相同的号签的盒子中无放回地抽出6个号签.【解析】(1)不是简单随机抽样.因为简单随机抽样要求被抽取的样本总体的个数是有限的.(2)不是简单随机抽样.虽然“一次性抽取”和“逐个抽取”不影响个体被抽到的可能性,但简单随机抽样要求的是“逐个抽取”.(3)不是简单随机抽样.因为这50名官兵是从中挑选出来的,是最优秀的,每个个体被抽到的可能性不同,不符合简单随机抽样中“等可能抽样”的要求.(4)是简单随机抽样.因为总体中的个体数是有限的,并且是从总体中逐个进行抽取的,是不放回、等可能的抽样.【总结升华】要判断所给的抽样方法是否是简单随机抽样.关键是看它们是否符合简单随机抽样的定义,即简单随机抽样的四个特点:(1)总体的个数有限;(2)逐个抽取;(3)是不放回的抽取;(4)每个个体被抽到的可能性必须是相同的.举一反三:【变式1】下面的抽样方法是简单随机抽样吗?为什么?(1)某班45名同学,指定个子最高的5名同学参加学校组织的某项活动.(2)从20个零件中一次性抽出3个进行质量检验.(3)一小孩从玩具箱中的20件玩具中随意拿出一件来玩.玩后放回再拿下一件,连续玩了5件.【解析】(1)不是简单随机抽样.因为这不是等可能抽样.(2)不是简单随机抽样.因为这是“一次性”抽取,而不是“逐个”抽取.(3)不是简单随机抽样.因为这是有放回抽样.例2.某大学为了支援西部教育事业,现从报名的18名志愿者中选取6人组成志愿小组.请用抽签法设计抽样方案.【解析】方案如下:第一步:将18名志愿者编号,号码是01,02, (18)第二步:将号码分别写在形状、大小相同的纸条上,揉成团,制成号签;第三步:将得到的号签放入一个不透明的袋子中,并充分搅匀;第四步:从袋子中依次抽取6个号签,并记录上面的编号:第五步:所得号码对应的志愿者就是志愿小组的成员.【总结升华】一个抽样试验能否用抽签法,关键看两点:一是制签是否方便;二是号签是否容易被搅匀.一般地,当样本容量和总体容量较小时可用抽签法.举一反三:【变式1】一个学生在一次竞赛中要回答的8道题是这样产生的:从15道物理题中随机抽3道;从20道化学题中随机抽3道;从12道生物题中随机抽2道.使用合适的方法确定这个学生所要回答的三门学科问题的序号(物理题的编号为01~15,化学题的编号为16~35,生物题的编号为36~47).【解析】第一步:将试题的编号01~47分别写在形状、大小相同的纸条上,将纸条揉成团制成号签,并将物理、化学、生物题的号签分别放在三个不透明的袋子中,充分搅匀.第二步:从装有物理题的袋子中逐个抽取3个号签,从装有化学题的袋子中逐个抽取3个号签,从装有生物题的袋子中逐个抽取2个号签,并记录所得号签上的编号.这便是所要回答的三门学科问题的序号.例3.现有120台机器,请用随机数表法抽取10台机器,写出抽样过程.【思路点拨】已知N=120,n=10,用随机数表法抽样时编号000,001,…,119,抽取10个编号(都是三位数),对应的机器组成样本.【解析】使用随机数表法步骤如下:第一步,先将120台机器编号,可以编为000,001,002, (119)第二步,在随机数表中任选一个数作为开始,任选一个方向作为读数方向,例如选出第9行第7列的数3,向右读;第三步,从选定的数3开始向右读,每次读取三位,凡不在000~119中的数跳过去不读,前面已经读过的也跳过去不读.依次可得到074,100,094,052,080,003,105,107,083,092;第四步,以上这10个号码074,100,094,052,080,003,105,107,083,092所对应的10台机器就是要抽取的对象.【总结升华】用随机数表法抽取样本,编号时要注意使号码的位数相同.如本题将个体编号的位数统一为3位,即在位数较少的数前添加“0”,方便读表.举一反三:【变式1】某校有学生1200人,为了调查某种情况,打算抽取一个样本容量为50的样本,问此样本若采用简单随机抽样将如何进行?【解析】首先将该校学生都编上号码:0001,0002,0003,…,1200,如用随机数表法,则先在随机数表中选定一个数,如第5行第9列的数字6,从6开始向右连续读取数字,以4个数为一组,遇到右边线时向下错一行向左继续读取,所得数字如下:6438,5482,4622,3162,4309,9006,1844,3253,2383,0130,3046,1943,6248,3469,0253,7887,3239,737l,2845,3445,9493,4977,2261,8442,…,所抽取的数字如果小于或等于1 200,则对应此号的学生就是被抽取的个体;如果所抽取的数字大于1200,而小于或等于2400,则减去1200,剩余数字即是被抽取的学生号码;如果所抽取的数字大于2400,而小于或等于3600,则减去2400;依此类推.如果遇到相同的号码,则只留取第一次读取的数字,其余的舍去,这样被抽取的学生所对应的号码依次是:0438,0682,1022,0762,0709,0606,0644,0853,1183,0130,0646,0743.0248,1069,0253,0687,0839,0171,0445,1045,1093,0177,1061,0042,…,一直取足50人为止.【变式2】要从10架钢琴中抽取4架进行质量检验,请你设计抽样方案.【解析】解法一:(随机数表法)第一步,将10架钢琴编号,号码是0,1, (9)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第3行第6列的数“2”,向右读.第三步,从数“2”开始,向右读,每次读取1位,重复数字只记录一次,依次可得到2,7,6,5.第四步,以上号码对应的4架钢琴就是要抽取的对象.解法二:(抽签法)第一步,将10架钢琴编号,号码是0,1, (9)第二步,将号码分别写在一张纸条上,揉成团,制成号签第三步,将得到的号签放入一个不透明的袋子中,并充分搅匀.第四步,从袋子中逐个抽取4个号签,并记录上面的编号.第五步,所得号码对应的4架钢琴就是要抽取的对象.【总结升华】(1)将钢琴编号从0开始,10架钢琴用0—9就可表示,这样总体中的所有个体可用一位数表示,便于使用随机数表.(2)用抽签法抽样关键是将号签搅匀.类型二:系统抽样例4.下列抽样中不是系统抽样的是().A.从号码为1~15的15个球中任选3个作为样本,先在1~5号球中用抽签法抽出i0号,再将号码为i0+5,i0+10的球也抽出B.工厂生产的产品,用传送带将产品送入包装车间的过程中,检查人员从传送带上每5 min 抽取一件产品进行检验C.弄某项市场调查,规定在商店门口随机地抽一个人进行询问,直到调查到事先规定的调查人数为止D.某电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈【答案】C【解析】本题的判定依据是系统抽样方法的特征:系统抽样适用于个体数目较多但均衡的总体.判断一种抽样是不是系统抽样,首先看是否在抽样前知道总体是由什么构成的,抽样的方法能否保证每个个体按事先规定的条件等可能入样,再看抽样过程中是否将总体分成了几个均衡的部分,是否在每个部分中进行简单随机抽样.本题C显然不是系统抽样,因为事先不知道总体,抽样方法也不能保证每个个体等可能入样,总体也没有分成均衡的几部分,故C不是系统抽样.【总结升华】系统抽样的特点:①适用于总体容量较大的情况;②剔除多余个体及第一段抽样都用简单随机抽样,因而与简单随机抽样有密切联系;③是等可能抽样,每个个体被抽到的可能性都是n/N.【变式1】下列抽样中,最适宜用系统抽样法的是()A.某市的4个区共有2000名学生,且4个区的学生人数之比为3∶8∶8∶2,从中抽取200名学生做样本B.从某厂生产的2000个电子元件中随机抽取5个做样本C.从某厂生产的2000个电子元件中随机抽取200个做样本D.从某厂生产的20个电子元件中随机抽取5个做样本【答案】 C【解析】A中各区学生有区别,不好分成均衡的几部分,不适宜,B中抽取样本容量太小,不适宜.D中总体个数较少,不适宜.故选C【总结升华】系统抽样适合总体容量较大且个体间差异较小的情况.例5.为了了解某大学一年级新生英语学习的情况,拟从503名大学一年级学生中抽取50名作为样本,如何采用系统抽样方法完成这一抽样?【思路点拨】由题设条件可知总体的个数为503,样本容量为50,不能整除,可采用随机抽样的方法从总体中剔除3个个体,使剩下的个体数500能被样本容量50整除,然后再采用系统抽样方法进行抽样.【解析】第一步,将503名学生用随机方式编号为1,2,3, (503)第二步,用抽签法或随机数表法剔除3个个体,这样剩下500名学生,对剩下的500名学生重新编号为1,2,3, (500)第三步,确定分段间隔k,将总体分为50个部分,每一部分包括10个个体,这时,第l 部分的个体编号为1,2,...,10;第2部分的个体编号为11,12,...,20;依此类推,第50部分的个体编号为491,492, (500)第四步:在第1部分用简单随机抽样的方法确定起始的个体编号,例如5.第五步:依次在第2部分,第3部分,…,第50部分取出号码为15,25,…,495的个体,这样就得到一个容量为50的样本.【总结升华】总体中的每个个体都必须等可能的入样,为了实现“等距”入样且又等概率,应先剔除,再“分段”,后定起始位.采用系统抽样是为了减少工作量,提高其可操作性,减少人为误差.【变式1】为了了解某年级学习情况,计划从该年级504名学生中抽取50名学生作为样本,问如何采用系统抽样的方法完成这一抽样?【解析】第一步:将504名学生随机编号为1,2,3,…,503,504;第二步:用抽签法或者随机数表法,剔除4个个体.这样剩下500名学生,对剩下的500名学生重新编号为1,2,3, (500)第三步:由于样本容量与总体容量的比为50:500=1:10,我们可将总体平均分成50部分,其中每一部分包含10 个个体,这样第一部分的个体编号为1,2,3,...,10;第二部分的个体编号为11,12,13,...,20;依次类推,第50 部分的个体编号为491,492,493, (500)第四步:从1到10号进行简单随机抽样,抽取一个号码,比如是5;第五步,依次在第2部分,第3部分,…,第50部分,取出号码分别为15,25,35,…,495.这样就得到了一个样本容量为50的样本.【变式2】某校高中三年级有学生322名,为了了解学生的某种情况,按1∶8的比例抽取一个样本,请用系统抽样的方法进行抽取,并写出抽样过程.【解析】因为322÷8=40余2,故先剔除2名学生,把剩下的320名学生编号为1,2,3,…,320.把总体分为40个部分,每一个部分都有8个个体,例如第一部分的个体编号为:1,2,3,…,8.然后在第一部分随机抽取一个号码,比如6号,那么从6号开始,每隔8个号码抽取1个,得到号码6,14,22,30,…,310,318,这样就得到一个容量为40的样本.类型三:分层抽样例6.在下列问题中,各采用什么抽样方法抽取样本?(1)从20台彩电中抽取4台进行质量检验;(2)科学会堂有32排座位,每排有40个座位(座号为1~40),一次报告会坐满了听众,会后为听取意见留下了座号为18的所有32名听众进行座谈;(3)光远中学有180名教职工,其中教师136名,管理人员20名,后勤服务人员24名,为征求某项意见,现从中抽取一个容量为15的样本.【答案】(1)简单随机抽样;(2)系统抽样;(3)分层抽样.【解析】(1)所述问题中总体中的个体数和样本容量均较少,故宜用简单随机抽样法;(2)所述问题具有总体中的个体数较多,且每个个体无明显差异的特点,所以适宜用系统抽样法;(3)所述问题的总体中的个体具有明显差异,即出现了3个层次,因此适宜用分层抽样法.【总结升华】总体容量较小宜用抽签法;总体容量较大,而样本容量较小宜用随机数表法;总体容量较大,样本容量也较大的宜用系统抽样法;总体是由差异明显的几个层次组成,宜用分层抽样法.举一反三:【变式1】一个单位有职工160人,其中业务人员96人,管理人员40人,后勤服务人员24人,为了了解职工的收入情况,要从中抽取一个容量为20的样本,如何去抽取?方法一:将160人从1到160编上号,然后将用白纸做成的有1~160号的160个号签放入箱内搅匀,最后从中抽取20个签,与签号相同的20个人被选出.方法二:将160人从1至160编号,按编号顺序分成20组,每组8人,令1~8号为第一组,9~16号为第二组,……,153~160号为第20组.从第一组中用抽签方式抽到一个为k 号(1≤k≤8),其余组是(k+8n)号(n=1,2,3,…,19),以此抽取20人.方法三:按20∶160=1∶8的比例,从业务员中抽取12人,从管理人员中抽取5人,从后勤服务人员中抽取3人,都用简单随机抽样法从各类人员中抽取所需人数,他们合在一起恰好抽到20人.以上的抽样方法,依次是简单随机抽样、分层抽样、系统抽样的顺序是().A.方法一、方法二、方法三B.方法二、方法一、方法三C.方法一、方法三、方法二D.方法三、方法一、方法二【答案】C例7.一个单位有职工500人,其中不到35岁的有125人,35岁至49岁的有280人,50岁及50岁以上的有95人,为了了解这个单位职工与身体状态有关的某项指标,要从中抽取100名职工作为样本,职工年龄与这项指标有关,应该怎样抽取?【思路点拨】总体由不到35岁、35岁至49岁与50岁及50岁以上的个体构成,个体的差异较大,适合用分层抽样法.【解析】用分层抽样来抽取样本,步骤是:(1)分层.按年龄将职工分成三层:不到35岁的职工;35岁至49岁的职工;50岁及50岁以上的职工.(2)确定每层抽取个体的个数.抽样比为10015005,则在不到35岁的职工中抽125×15=25(人);在35岁至49岁的职工中抽280×15=56(人);在50岁及50岁以上的职工中抽95×15=19(人).(3)在各层分别按抽签法或随机数表法抽取样本.(4)综合每层抽样,组成样本.【总结升华】本小题主要考查分层抽样的概念和运算以及抽样过程. 求解总体由差异明显的个体构成的问题时,适合用分层抽样法.分层后,各层的个体数较多时,可采用系统抽样或随机数表法抽取出各层中的个体,一定要注意按比例抽取.举一反三:【高清课堂:随机抽样400439 例1】【变式1】某学院的A,B,C三个专业共有1200名学生,为了调查这些学生勤工俭学的情况,拟采用分层抽样的方法抽取一个容量为120的样本.已知该学院的A专业有380名学生,B专业有420名学生,则在该学院的C专业应抽取____名学生.【答案】40【变式2】某单位200名职工的年龄分布情况如图所示,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是________.若用分层抽样方法,则40岁以下年龄段应抽取________人.【答案】37 20【变式3】某地为了调查职业满意度,决定用分层抽样的方法从公务员、教师、自由职业者三个群体的相关人员中,抽取若干人组成调查小组,有关数据见下表,则调查小组的总人数为.相关人员数抽取人数公务员32 x教师48 y自由职业者64 4【解析】采用分层抽样,抽样比为2:3:4,由题可知x=2,y=3.则调查小组的总人数为2+3+4=9人,即为9人.【巩固练习】1.某校期末考试后,为了解该校高一年级1 000名学生的学习成绩,从中抽取了100名学生的成绩单进行分析,就这个问题来说,下面说法中正确的是()A.1000名学生是总体B.每个学生是个体C.100名学生的成绩是一个个体D.样本容量是1002.抽签法中确保样本代表性的关键是().A.抽签B.搅拌均匀C.逐一抽取D.抽取不放回3.下列抽样方法是简单随机抽样的是().A.从50个零件中一次性抽取5个做质量检验B.从50个零件中有放回地抽取5个做质量检验C.从实数集中逐个抽取10个做奇偶性分析D.运动员从8个跑道中随机选取一个跑道4.从总数为N的一批零件中抽取一个容量为30的样本,若每个零件被抽取的可能性为25%,则N为().A.150 B.200 C.100 D.1205.为了了解1 200名学生对学校某项校改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔k为().A.40 B.30 C.20 D.126.从已编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是().A.5,10,15,20,25 B.3,13,23,33,43C.1,2,3,4,5 D.2,4,6,16,327.某林场有树苗30 000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为().A.30 B.25 C.20 D.15。
第二章 统 计2.1.1 简单随机抽样 课时目标 1.理解并掌握简单随机抽样的概念、特点和步骤.2.掌握简单随机抽样的两种方法.1.简单随机抽样的定义设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.2.简单随机抽样的分类简单随机抽样⎩⎪⎨⎪⎧ 抽签法随机数法 3.简单随机抽样的优点及适用类型 简单随机抽样有操作简便易行的优点,在总体个体数不多的情况下是行之有效的.一、选择题1.为了了解某种花的发芽天数,种植某种花的球根200个,进行调查发芽天数的试验,样本是( )A .200个表示发芽天数的数值B .200个球根C .无数个球根发芽天数的数值集合D .无法确定答案 A2.某校有40个班,每班50人,要求每班随机选派3人参加“学生代表大会”.在这个问题中样本容量是( )A .40B .50C .120D .150答案 C解析 由于样本容量即样本的个数,抽取的样本的个数为40×3=120.3.抽签法中确保样本代表性的关键是( )A .制签B .搅拌均匀C .逐一抽取D .抽取不放回答案 B解析 由于此问题强调的是确保样本的代表性,即要求每个个体被抽到的可能性相等.所以选B .4.下列抽样实验中,用抽签法方便的有( )A .从某厂生产的3 000件产品中抽取600件进行质量检验B .从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C .从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D .从某厂生产的3 000件产品中抽取10件进行质量检验答案 B解析 A 总体容量较大,样本容量也较大不适宜用抽签法;B 总体容量较小,样本容量也较小可用抽签法;C 中甲、乙两厂生产的两箱产品有明显区别,不能用抽签法;D 总体容量较大,不适宜用抽签法.5.为调查参加运动会的1 000名运动员的年龄情况,从中抽查了100名运动员的年龄,就这个问题来说,下列说法正确的是( )A .1 000名运动员是总体B .每个运动员是个体C .抽取的100名运动员是样本D .样本容量是100答案 D解析 此问题研究的是运动员的年龄情况,不是运动员,故A 、B 、C 错,故选D .6.用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a “第一次被抽到”的可能性,“第二次被抽到”的可能性分别是( )A .110,110B .310,15C .15,310D .310,310答案 A二、填空题7.要检查一个工厂产品的合格率,从1 000件产品中抽出50件进行检查,检查者在其中随意抽取了50件,这种抽样法可称为________.答案 简单随机抽样解析 由简单随机抽样的特点可知,该抽样方法是简单随机抽样.8.福利彩票的中奖号码是从1~36个号码中选出7个号码来按规则确定中奖情况,这种从36个号码中选7个号码的抽样方法是________.答案 抽签法9.用随机数表法进行抽样,有以下几个步骤:①将总体中的个体编号;②获取样本号码;③选定随机数表开始的数字,这些步骤的先后顺序应该是________.(填序号)答案 ①③②三、解答题10.要从某汽车厂生产的30辆汽车中随机抽取3辆进行测试,请选择合适的抽样方法,写出抽样过程.解利用抽签法,步骤如下:(1)将30辆汽车编号,号码是01,02, (30)(2)将号码分别写在一张纸条上,揉成团,制成号签;(3)将得到的号签放入一个不透明的袋子中,并搅拌均匀;(4)从袋子中依次抽取3个号签,并记录上面的编号;(5)所得号码对应的3辆汽车就是要抽取的对象.11.现有一批编号为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验.如何用随机数表法设计抽样方案?解(1)将元件的编号调整为010,011,012,…,099,100,…600;(2)在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第6行第7列数“9”,向右读;(3)从数“9”开始,向右读,每次读取三位,凡不在010~600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到544,354,378,520,384,263;(4)以上号码对应的6个元件就是要抽取的样本.能力提升12.在简单随机抽样中,某一个个体被抽到的可能性()A.与第几次抽样有关,第一次抽到的可能性大一些B.与第几次抽样无关,每次抽到的可能性相等C.与第几次抽样有关,最后一次抽到的可能性大些D.与第几次抽样无关,每次都是等可能的抽取,但各次抽取的可能性不同答案B解析由简单随机抽样的特点知与第n次抽样无关,每次抽到的可能性相等.13.某车间工人已加工一种轴50件,为了了解这种轴的直径是否符合要求,要从中抽出5件在同一条件下测量,试用两种方法分别取样.解方法一抽签法.(1)将50个轴进行编号01,02, (50)(2)把编号写在大小、形状相同的纸片上作为号签;(3)把纸片揉成团,放在箱子里,并搅拌均匀;(4)依次不放回抽取5个号签,并记下编号;(5)把号签对应的轴组成样本.方法二随机数法(1)将50个轴进行编号为00,01, (49)(2)在随机数表中任意选定一个数并按向右方向读取;(3)每次读两位,并记下在00~49之间的5个数,不能重复;(4)把与读数相对应的编号相同的5个轴取出组成样本1.判断所给的抽样是否为简单随机抽样的依据是随机抽样的特征:简单随机抽样⎩⎪⎨⎪⎧ 个体有限逐个抽取不放回等可能性如果四个特征有一个不满足就不是简单随机抽样.2.利用抽签法抽取样本时应注意以下问题:(1)编号时,如果已有编号(如学号、标号等)可不必重新编号.(2)号签要求大小、形状完全相同.(3)号签要搅拌均匀.(4)要逐一不放回抽取.3.在利用随机数表法抽样的过程中注意:(1)编号要求数位相同.(2)第一个数字的抽取是随机的.(3)读数的方向是任意的,且事先定好的.。
2.1.1 简单随机抽样、系统抽样、分层抽样1.简单随机抽样的定义设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.2.简单随机抽样的分类简单随机抽样⎩⎨⎧ 抽签法随机数法3.简单随机抽样的优点及适用类型简单随机抽样有操作简便易行的优点,在总体个体数不多的情况下是行之有效的.4.系统抽样的概念先将总体中的个体逐一编号,然后按号码顺序以一定的间隔k 进行抽取,先从第一个间隔中随机地抽取一个号码,然后按此间隔依次抽取即得到所求样本.5.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本,步骤为:(1)先将总体的N 个个体编号.有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等.(2)确定分段间隔k ,对编号进行分段.当N n (n 是样本容量)是整数时,取k =N n; (3)在第1段用简单随机抽样确定第一个个体编号l(l≤k);(4)按照一定的规则抽取样本.通常是将l 加上间隔k 得到第2个个体编号(l +k),再加k 得到第3个个体编号(l+2k),依次进行下去,直到获取整个样本.6.分层抽样的概念在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.7.分层抽样的适用条件分层抽样尽量利用事先所掌握的各种信息,并充分考虑保持样本结构与总体结构的一致性,这对提高样本的代表性非常重要.当总体是由差异明显的几个部分组成时,往往选用分层抽样的方法.一、选择题1.抽签法中确保样本代表性的关键是( )A.制签B.搅拌均匀C.逐一抽取D.抽取不放回答案 B 解析由于此问题强调的是确保样本的代表性,即要求每个个体被抽到的可能性相等.所以选B.2.下列抽样实验中,用抽签法方便的有( )A.从某厂生产的3 000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3 000件产品中抽取10件进行质量检验答案B解析A总体容量较大,样本容量也较大不适宜用抽签法;B总体容量较小,样本容量也较小可用抽签法;C中甲、乙两厂生产的两箱产品有明显区别,不能用抽签法;D总体容量较大,不适宜用抽签法.3.为调查参加运动会的1 000名运动员的年龄情况,从中抽查了100名运动员的年龄,就这个问题来说,下列说法正确的是( )A.1 000名运动员是总体B.每个运动员是个体C.抽取的100名运动员是样本D.样本容量是100答案 D 解析:此问题研究的是运动员的年龄情况,不是运动员,故A、B、C错,故选D. 4.用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a“第一次被抽到”的可能性,“第二次被抽到”的可能性分别是( )A.110,110B.310,15C.15,310D.310,310答案A5.某会议室有50排座位,每排有30个座位.一次报告会坐满了听众.会后留下座号为15的所有听众50人进行座谈.这是运用了( )A.抽签法B.随机数表法C.系统抽样D.有放回抽样答案C解析从第1排到第50排每取一个人的间隔人数是相同的,符合系统抽样的定义.6.要从已经编号(1~50)的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射试验,用系统抽样方法确定所选取的5枚导弹的编号可能是( )A.5,10,15,20,25 B.3,13,23,33,43 C.1,2,3,4,5 D.2,4,8,16,32答案B解析由题意知分段间隔为10.只有选项B中相邻编号的差为10,选B.7.有40件产品,其中一等品10件,二等品25件,次品5件,现从中抽出8件进行质量分析,问应采取何种抽样方法( )A.抽签法B.随机数表法C.系统抽样D.分层抽样答案D8.某城市有学校700所.其中大学20所,中学200所,小学480所,现用分层抽样方法从中抽取一个容量为70的样本,进行某项调查,则应抽取中学数为( )A.70 B.20 C.48 D.2答案B由于70070=10,即每10所学校抽取一所,又因中学200所,所以抽取200÷10=20(所).9.下列问题中,最适合用分层抽样方法抽样的是( )A.某电影院有32排座位,每排有40个座位,座位号是1~40.有一次报告会坐满了听众,报告会结束以后为听取意见,要留下32名听众进行座谈B.从10台冰箱中抽出3台进行质量检查C.某乡农田有山地8 000亩,丘陵12 000亩,平地24 000亩,洼地4 000亩,现抽取农田480亩估计全乡农田平均产量D.从50个零件中抽取5个做质量检验答案C解析A的总体容量较大,宜采用系统抽样方法;B的总体容量较小,用简单随机抽样法比较方便;C总体容量较大,且各类田地的产量差别很大,宜采用分层抽样方法;D与B类似.10.要从其中有50个红球的1 000个球中,采用按颜色分层抽样的方法抽取100个进行分析,则应抽取红球的个数为( )A.5个B.10个C.20个D.45个答案A解析由题意知每1000100=10(个)球中抽取一个,现有50个红球,应抽取5010=5(个).11.在简单随机抽样中,某一个个体被抽到的可能性( )A.与第几次抽样有关,第一次抽到的可能性大一些B.与第几次抽样无关,每次抽到的可能性相等C.与第几次抽样有关,最后一次抽到的可能性大些D.与第几次抽样无关,每次都是等可能的抽取,但各次抽取的可能性不同答案B解析由简单随机抽样的特点知与第n次抽样无关,每次抽到的可能性相等.二、填空题12.福利彩票的中奖号码是从1~36个号码中选出7个号码来按规则确定中奖情况,这种从36个号码中选7个号码的抽样方法是________.答案抽签法13.用随机数表法进行抽样,有以下几个步骤:①将总体中的个体编号;②获取样本号码;③选定随机数表开始的数字,这些步骤的先后顺序应该是________.(填序号)答案①③②14.某班级共有学生52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、29号、42号同学在样本中,那么样本中还有一个同学的学号为________.答案16解析用系统抽样的方法是等距离的.42-29=13,故3+13=16.15.某农场在三种地上种玉米,其中平地210亩,河沟地120亩,山坡地180亩,估计产量时要从中抽取17亩作为样本,则平地、河沟地、山坡地应抽取的亩数分别是________.答案7,4,6解析应抽取的亩数分别为210×17510=7,120×17510=4,180×17510=6.16.将一个总体分为A、B、C三层,其个体数之比为5∶3∶2.若用分层抽样方法抽取容量为100的样本,则应从C中抽取________个个体.答案20解析由题意可设A、B、C中个体数分别为5k,3k,2k,所以C中抽取个体数为2k5k+3k+2k×100=20.17.某工厂生产A、B、C、D四种不同型号的产品,产品数量之比依次为2∶3∶5∶1.现用分层抽样方法抽出一个容量为n的样本,样本中A种型号有16件,那么此样本的容量n为________.答案88解析在分层抽样中,每一层所抽的个体数的比例与总体中各层个体数的比例是一致的.所以,样本容量n=2+3+5+12×16=88.。
高中数学第二章统计2.1.1 简单随机抽样练习(含解析)新人教A版必修3 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第二章统计2.1.1 简单随机抽样练习(含解析)新人教A版必修3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第二章统计2.1.1 简单随机抽样练习(含解析)新人教A版必修3的全部内容。
2。
1。
1简单随机抽样一、选择题:1.为了了解某种花的发芽天数,种植某种花的球根200个,进行调查发芽天数的试验,样本是( )A.200个表示发芽天数的数值B.200个球根C.无数个球根发芽天数的数值集合D.无法确定【答案】A【解析】根据样本的概念可知,为了了解某种花的发芽天数,种植某种花的球根200个,进行调查发芽天数的试验,样本是“200个表示发芽天数的数值”。
2.某校有40个班,每班50人,要求每班随机选派3人参加“学生代表大会”.在这个问题中样本容量是()A.40 B.50 C.120 D.150【答案】C【解析】由于样本容量即样本的个数,抽取的样本的个数为40×3=120。
3.用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a“第一次被抽到”的可能性,“第二次被抽到”的可能性分别是()A。
错误!,错误! B。
错误!,错误!C。
错误!,错误! D.错误!,错误!【答案】A【解析】简在抽样过程中,个体a每一次被抽中的概率是相等的,∵总体容量为10,故个体a“第一次被a“第一次被抽到”的可能性,“第二次被抽到”的可能性均为110。
4.下列抽样实验中,用抽签法方便的是() A.从某厂生产的3 000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3 000件产品中抽取10件进行质量检验【答案】B【解析】A总体容量较大,样本容量也较大不适宜用抽签法;B总体容量较小,样本容量也较小可用抽签法;C中甲、乙两厂生产的两箱产品有明显区别,不能用抽签法;D总体容量较大,不适宜用抽签法.5.利用随机数表法对一个容量为500编号为000,001,002,…,499的产品进行抽样检验,抽取一个容量为10的样本,若选定从第12行第4列的数开始向右读数,(下面摘取了随机数表中的第11行至第15行),根据下图,读出的第3个数是()A.584 B.114 C.311 D.146【答案】C【解析】最先读到的1个的编号是238,向右读下一个数是977,977它大于499,故舍去,再下一个数是584,舍去,再下一个数是160,再下一个数是744,舍去再下一个数是998,舍去,再下一个数是311.读出的第3个数是311.故选C.6.总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )A。
简单随机抽样及系统抽样课后练习题一:下列说法中正确说法的个数是()①总体中的个体数不多时宜用简单随机抽样法;②在总体均分后的每一部分进行抽样时,采用的是简单随机抽样;③百货商场的抓奖活动是抽签法;④整个抽样过程中,每个个体被抽取的概率相等(有剔除时例外).A.1 B.2 C.3 D.4题二:在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本.①采用随机抽样法:抽签取出20个样本.②采用系统抽样法:将零件编号为00,01,…,99,然后平均分组抽取20个样本.③采用分层抽样法:从一级品,二级品,三级品中抽取20个样本.下列说法中正确的是()A.无论采用哪种方法,这100个零件中每一个被抽到的概率都相等B.①②两种抽样方法,这100个零件中每一个被抽到的概率都相等;③并非如此C.①③两种抽样方法,这100个零件中每一个被抽到的概率都相等;②并非如此D.采用不同的抽样方法,这100个零件中每一个零件被抽到的概率是各不相同的题三:在某班的50名学生中,依次抽取学号为5、10、15、20、25、30、35、40、45、50的10名学生进行作业检查,这种抽样方法是() .A.随机抽样B.分层抽样C.系统抽样D.以上都不是题四:(1)某学校为了了解2012年高考数学的考试成绩,在高考后对1 200名学生进行抽样调查,其中文科400名考生,理科600名考生,艺术和体育类考生共200名,从中抽取120名考生作为样本.(2)从10名家长中抽取3名参加座谈会.Ⅰ.简单随机抽样法Ⅱ.系统抽样法Ⅲ.分层抽样法.问题与方法配对正确的是()A.(1)Ⅲ,(2)ⅠB.(1)Ⅰ,(2)ⅡC.(1)Ⅱ,(2)ⅢD.(1)Ⅲ,(2)Ⅱ题五:一个总体的60个个体编号为00,01,…,59,现需从中抽取一容量为8的样本,请从随机数表的倒数第5行(下表为随机数表的最后5行)第11列开始,向右读取,直到取足样本,则抽取样本的号码是________.95 33 95 22 0018 74 72 00 1838 79 58 69 3281 76 80 26 9282 80 84 25 3990 84 60 79 8024 36 59 87 3882 07 53 89 3596 35 23 79 1805 98 90 07 3546 40 62 98 8054 97 20 56 9515 74 80 08 3216 46 70 50 8067 72 16 42 7920 31 89 03 4338 46 82 68 7232 14 82 99 7080 60 47 18 9763 49 30 21 3071 59 73 05 5008 22 23 71 7791 01 93 20 4982 96 59 26 9466 39 67 98 60题六:设某校共有100名教师,为了支援西部教育事业,现要从中随机抽出12名教师组成暑期西部讲师团,请写出利用随机数法抽取该样本的步骤.随机数表(部分):6964736614699698162 9774246762428123732 16766713 125685992696966827310503729315 555956356438548246223162430990 162277943949544354821737932378 8442175337704744767 6355567199810507175 3321123429786456428 5762796544917460962 18716582 2662389775841663224 2342477810745321408 6236281995556763138 3785943512833959688题七:在120个零件中,一级品24个,二级品36个,三级品60个,用系统抽样方法从中抽取容量为20的样本,则三级品a被抽到的可能性为________.题八:在一个个体数目为2 003的总体中,利用系统抽样抽取一个容量为100的样本,则总体中每个个体被抽到的机会为().(A)120(B)1100(C)1002 003(D)12 000题九:为了了解参加某次知识竞赛的1252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本,那么从总体中应随机剔除的个体数目为()A.2B.3C.4 D.5题十:学校为了了解某企业 1 203名职工对公司餐厅建设的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔k为().(A)40 (B)30.1 (C)30 (D)12题十一:要从已经编号(1~50)的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5枚导弹的编号可能是().A.5, 10, 15, 20, 25 B.3, 13, 23, 33, 43C.1, 2, 3, 4, 5 D.2, 4, 8, 16, 32题十二:用系统抽样法从160名学生中抽取容量为20的样本,将160名学生随机地从1~160编号,按编号顺序平均分成20组(1~8,9~16,…,153~160),若第16组得到的号码为126,则第1组中用抽签的方法确定的号码是().(A)8 (B)6 (C)4 (D)2题十三:将参加学校期末考试的高三年级的400名学生编号为001,002,…,400,已知这400名学生到甲乙丙三栋楼去考试,从001到200在甲楼,从201到295在乙楼,从296到400在丙楼;采用系统抽样方法抽取一个容量为50的样本且随机抽得的首个号码为003,则三个楼被抽中的人数依次为___________.题十四:采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,……,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间的人做问卷A,编号落入区间的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷B的人数为()A.7B.9C.10 D.15题十五:一个总体中有100个个体,随机编号为00,01,02,…,99,依编号顺序平均分成10个小组,组号分别为1,2,3,…,10.现抽取一个容量为10的样本,规定如果在第1组中随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k的个位数字相同.若m=6,则在第7组中抽取的号码是________.题十六:一个总体中的100个个体的编号分别为0,1,2,3,…,99,依次将其分成10个小段,段号分别为0,1,2,…,9.现要用系统抽样的方法抽取一个容量为10的样本,规定如果在第0段随机抽取的号码为l,那么依次错位地取出后面各段的号码,即第k段中所抽取的号码的个位数为l+k或l+k-10(l+k≥10),则当l=6时,所抽取的10个号码依次是________.简单随机抽样及系统抽样课后练习参考答案题一:C.详解:①②③显然正确,系统抽样无论有无剔除都是等概率抽样;④不正确.题二:A.详解:上述三种方法均是可行的,每个个体被抽到的概率均等于20100=15.故选A.题三:C.详解:由系统抽样的特点——等距,可知C正确.题四:A.详解:通过分析可知,对于(1),应采用分层抽样法,对于(2),应采用简单随机抽样法.题五:18, 00, 38, 58, 32, 26, 25, 39.详解:由随机数表法抽取的规则,所取的数要在00~59之间,且重复出现的仅算一次可得.题六:见详解.详解:第一步,将100名教师进行编号:00,01,02, (99)第二步,在随机数表中任取一数作为开始,如从第12行第9列开始.第三步,依次向右读取(两位、两位读取),75,84,16,07,44,99,83,11,46,32,24,23.以这12个编号对应的教师组成样本.题七:1 6.详解:每一个个体被抽到的概率都是样本容量除以总体,即20120=16.题八:C.详解:采用系统抽样的方法从个体数目为2003的总体中抽取一个样本容量为100的样本,每个个体被抽到的可能性都相等,于是每个个体被抽到的机会都是1002 003.题九:A.详解:因为1252=50×25+2,所以应随机剔除2个个体,故选A.题十:C.详解:了解1 203名职工对公司餐厅建设的意见,打算从中抽取一个容量为40的样本,∵1 203除以40不是整数,∴先随机去掉3个人,再除以40,得到每一段有30个人,则分段的间隔k为30.题十一:B.详解:根据系统抽样的特点,可将50枚导弹分成5组(10枚/组),再等距抽取.题十二:B.详解:∵16020=8,∴第1组中号码为126-15×8=6.题十三:25, 12, 13.详解:由系统抽样的方法先确定分段的间隔k,k =40050=8,故甲楼被抽中的人数为:2008=25(人).因为95=11×8+7,故乙楼被抽中的人数为12人.故丙楼被抽中的人数为50-25-12=13(人).题十四:C.详解:采用系统抽样方法从960人中抽取32人,将整体分成32组,每组30人,即l=30,第k组的号码为(k-1)30+9,令451≤(k-1)30+9≤750,而k∈z,解得16≤k≤25,则满足16≤k≤25的整数k有10个,故答案应选C.题十五:63.详解:由题意知第7组中的数为“60~69”10个数.由题意知m=6,k=7,故m+k=13,其个位数字为3,即第7组中抽取的号码的个位数是3,综上知第7组中抽取的号码为63.题十六:6, 17, 28, 39, 40, 51, 62, 73, 84, 95.详解:在第0段随机抽取的号码为6,则由题意知,在第1段抽取的号码应是17,在第2段抽取的号码应是28,依次类推,故正确答案为6, 17, 28, 39, 40, 51, 62, 73, 84, 95.。
2.1随机抽样2.1.1简单随机抽样[提出问题]继“地沟油”“瘦肉精”“镉大米”“皮革奶”及“毒生姜”等国内食品安全事件的不断曝光,食品安全问题越来越受到人们的关注,也得到各级政府部门的重视.问题1:某报告称,食品质量检测人员对某品牌牛奶的抽检合格率为99.9%,你知道这一数据是怎么得到的吗?提示:是抽取少量的牛奶来检测得到的.问题2:你认为质检人员是怎样抽取样本的?提示:在所有牛奶中,随机地逐个抽取得到样本.[导入新知]简单随机抽样的定义设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.[化解疑难]简单随机抽样的特点[提出问题]问题:在“知识点一”的事例中,质检人员在对某个体经商户所销售的牛奶进行抽检和对生产厂家所生产的牛奶进行抽检采取的方式一样吗?提示:个体经商户销售的牛奶数量较少,可用抽签法(抓阄法);而生产厂家生产的牛奶太多,可用计算机按生产批号进行抽取.[导入新知]1.抽签法把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.2.随机数法随机抽样中,另一个经常被采用的方法是随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样.[化解疑难]1.抽签法的一般步骤2.抽签法的特点(1)优点:简单易行,当总体的个体数不多时,使总体处于“搅拌”均匀的状态比较容易,这时,每个个体都有均等的机会被抽中,从而能够保证样本的代表性.(2)缺点:仅适用于个体数较少的总体,当总体容量较大时,费时费力又不方便,况且,如果号签搅拌的不均匀,可能导致抽样不公平.3.随机数表法的步骤4.随机数表法的特点(1)优点:操作简单易行,它很好地解决了用抽签法当总体中的个数较多时制签难的问题,在总体容量不大的情况下是行之有效的.(2)缺点:如果总体中的个体数很多,对个体编号的工作量太大,即使用随机数表法操作也不方便快捷.[例1](1)从无数个个体中抽取50个个体作为样本;(2)仓库中有1万支奥运火炬,从中一次性抽取100支火炬进行质量检查;(3)某连队从200名党员官兵中,挑选出50名最优秀的官兵赶赴灾区参加救灾工作;(4)一彩民选号,从装有36个大小、形状都相同的号签的盒子中无放回地抽出6个号签.[解](1)不是简单随机抽样.因为简单随机抽样要求被抽取的样本总体的个数是有限的.(2)不是简单随机抽样.虽然“一次性抽取”和“逐个抽取”不影响个体被抽到的可能性,但简单随机抽样要求的是“逐个抽取”.(3)不是简单随机抽样.因为这50名官兵是从中挑选出来的,是最优秀的,每个个体被抽到的可能性不同,不符合简单随机抽样中“等可能抽样”的要求.(4)是简单随机抽样.因为总体中的个体数是有限的,并且是从总体中逐个进行抽取的,是不放回、等可能的抽样.[类题通法]简单随机抽样的判断策略判断一个抽样能否用简单随机抽样,关键是看它是否满足四个特点:①总体的个体数目有限;②从总体中逐个进行抽取;③是不放回抽样;④是等可能抽样.同时还要注意以下几点:①总体的个体性质相似,无明显的层次;②总体的个体数目较少,尤其是样本容量较小;③用简单随机抽样法抽出的样本带有随机性,个体间无固定的距离.[活学活用]下列问题中,最适合用简单随机抽样方法抽样的是()A.某电影院有32排座位,每排有40个座位,座位号是1~40,有一次报告会坐满了听众,报告会结束后为听取意见,要留下32名听众进行座谈B.从10台冰箱中抽出3台进行质量检查C.某学校有在编人员160人,其中行政人员16人,教师112人,后勤人员32人,教育部门为了解在编人员对学校机构改革的意见,要从中抽取一个容量为20的样本D.某乡农田有:山地800公顷,丘陵1 200公顷,平地2 400公顷,洼地400公顷,现抽取农田48公顷估计全乡农田平均每公顷产量解析:选B A的总体容量较大,用简单随机抽样法比较麻烦;B的总体容量较少,用简单随机抽样法比较方便;C由于学校各类人员对这一问题的看法可能差异很大,不宜采用简单随机抽样法;D总体容量大,且各类田地的差别很大,也不宜采用简单随机抽样法.[例2](1)A.从某厂生产3 000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两工厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3 000件产品中抽取10件进行质量检验(2)某大学为了选拔世博会志愿者,现从报名的18名同学中选取6人组成志愿小组,请用抽签法写出抽样过程.[解](1)选B A,D两项总体容量较大,不适合用抽签法;对C项甲、乙两厂生产的产品质量可能差异明显.(2)第一步,将18名同学编号,号码是01,02, (18)第二步,将号码分别写在一张纸条上,揉成团,制成号签;第三步,将得到的号签放入一个不透明的袋子中,并充分搅匀;第四步,从袋子中依次抽取6个号签,并记录上面的编号;第五步,所得号码对应的同学就是志愿小组的成员.[类题通法]1.抽签法的适用条件一个抽样能否用抽签法,关键看两点:一是制签是否方便;二是号签是否容易被搅匀.一般地,当总体容量和样本容量都较小时适宜用抽签法.2.应用抽签法的关注点(1)对个体编号时,也可以利用已有的编号.例如,从某班学生中抽取样本时,可以利用学生的学号、座位号等.(2)在制作号签时,所使用的工具(纸条、卡片或小球等)应形状、大小都相同,以保证每个号签被抽到的概率相等.(3)用抽签法抽样的关键是将号签搅拌均匀.只有将号签搅拌均匀,才能保证每个个体有相等的机会被抽中,从而才能保证样本具有代表性.(4)要逐一不放回抽取.[活学活用]1.抽签法中确保样本具有代表性的关键是()A.制签B.搅拌均匀C.逐一抽取D.抽取不放回解析:选B只有将号签搅拌均匀,才能保证每个个体有相等的机会被抽中,从而才能保证样本具有代表性.2.现有30本《三维设计》,要从中随机抽取5本进行印刷质量检验,请用抽签法进行抽样,并写出抽样过程.解:总体和样本数目较小,可采用抽签法进行:①先将30本书进行编号,从1编到30;②把号码写在形状、大小均相同的号签上;③将号签放在某个箱子中进行充分搅拌,然后依次从箱子中取出5个号签,按这5个号签上的号码取出样品,即得样本.[例3](1)随机数表法抽取种子,先将850颗种子按001,002,…,850进行编号,如果从随机数表第3行第6列的数开始向右读,请依次写出最先检验的4颗种子的编号________________________________________________________________________.(下面抽取了随机数表第1行至第5行.)03 47 43 73 8636 96 47 36 6146 98 63 71 6233 26 16 80 4560 11 14 10 9597 74 24 67 6242 81 14 57 2042 53 32 37 3227 07 36 07 5124 51 79 89 7316 76 62 27 6656 50 26 71 0732 90 79 78 5313 55 38 58 5988 97 54 14 1012 56 85 99 2696 96 68 27 3105 03 72 93 1557 12 10 14 2188 26 49 81 7655 59 56 35 6438 54 82 46 2231 62 43 09 9006 18 44 32 5323 83 01 30 30(2)现有一批零件,其编号为600,601,602,…,999.利用原有的编号从中抽取一个容量为10的样本进行质量检查,若用随机数表法,怎样设计方案?[解](1)从随机数表第3行第6列的数2开始向右读第一个小于850的数字是227,第二个数字665,第三个数字650,第四个数字267,符合题意.(2)第一步,在随机数表中任选一数字作为开始数字,任选一方向作为读数方向.比如:选第7行第6个数“7”,向右读.第二步,从“7”开始向右每次读取三位,凡在600~999中的数保留,否则跳过去不读,依次得753,724,688,770,721,763,676,630,785,916.第三步,以上号码对应的10个零件就是要抽取的对象.(答案不唯一)[答案](1)227,665,650,267[类题通法]利用随机数表法抽样时应注意的问题(1)编号要求位数相同,若不相同,需先调整到一致再进行抽样,如当总体中有100个个体时,为了操作简便可以选择从00开始编号,那么所有个体的号码都用两位数字表示即可,从00~99号.如果选择从1开始编号那么所有个体的号码都必须用三位数字表示,从001~100.很明显每次读两个数字要比读三个数字节省读取随机数的时间.(2)第一个数字的抽取是随机的.(3)当随机数选定,开始读数时,读数的方向可左,可右,可上,可下,但应是事先定好的.[活学活用]现有一批编号为10,11,…,98,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验,如何用随机数表法设计抽样方案?解:第一步,将元件的编号调整为010,011,012,...,099,100, (600)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第6行第7个数“9”.第三步,从数9开始,向右读,每次读取三位,凡不在010~600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到544,354,378,520,384,263.第四步,以上这6个号码所对应的6个元件就是所要抽取的对象.(答案不唯一)3.概念不清致误[典例]为了了解参加第27届世界大学生运动会的2 000名运动员的身高情况,从中抽取100名运动员进行调查.就这个问题,下面说法中正确的是()①2 000名运动员是总体;②每个运动员是个体;③所抽取的100名运动员是一个样本;④样本容量为100;⑤每个运动员被抽到的可能性相等.A.④⑤B.①②③C.①②④⑤D.①②③④⑤[解析]抽样的目的是了解参加运动会的2 000名运动员的身高情况,故总体应该是2 000名运动员的身高,而不是这2 000名运动员,同理,个体应该是每个运动员的身高,样本应该是所抽取的100名运动员的身高.故①②③都不正确,④⑤正确.[答案] A[易错防范]1.解决本题易搞错考察的对象,误认为考察对象为运动员,从而误认为①②③也正确.2.解决此类问题,关键是明确考察的对象,根据有关的概念可得总体、个体与样本的考察对象是相同的.[成功破障]某学校为了解高一800名新入学同学的数学学习水平,从中随机抽取100名同学的中考数学成绩进行分析,在这个问题中,下列说法正确的是()A.800名同学是总体B.100名同学是样本C.每名同学是个体D.样本容量是100解析:选D据题意总体是指800名新入学同学的中考数学成绩,样本是指抽取的100名同学的中考数学成绩,个体是指每名同学的中考数学成绩,样本容量是100,故只有D正确.[随堂即时演练]1.下列抽样方法是简单随机抽样的是()A.在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位是2 709的为三等奖B.某车间包装一种产品,在自动包装传送带上,每隔30分钟抽一包产品,称其重量是否合格C.从8台电脑中逐个不放回地随机抽取2台,进行质量检验,假设8台电脑已编好号,对编号随机抽取D.从20个零件中一次性抽出3个进行质量检查解析:选C由简单随机抽样的特点可知选项C正确.2.用随机数表法进行抽样有以下几个步骤:①将总体中的个体编号;②获取样本号码;③选定开始的数字;④选定读数的方向.这些步骤的先后顺序应为()A.①②③④B.①③④②C.③②①④D.④③①②解析:选B由随机数表法的步骤知选B.3.用随机数法从100名学生(男生25人)中抽选20人进行评教,某男学生被抽到的可能性是________.解析:因为样本容量为20,总体容量为100,所以总体中每一个个体被抽到的可能性都为20100=0.2.答案:0.24.一个总体的60个个体编号为00,01,…,59,现需从中抽取一容量为8的样本,请从随机数表的倒数第5行(下表为随机数表的最后5行)第11列开始,向右读取,直到取足样本,则抽取样本的号码是.95 33 95 22 0018 74 72 00 1838 79 58 69 3281 76 80 26 9282 80 84 25 3990 84 60 79 8024 36 59 87 3882 07 53 89 3596 35 23 79 1805 98 90 07 3546 40 62 98 8054 97 20 56 9515 74 80 08 3216 46 70 50 8067 72 16 42 7920 31 89 03 4338 46 82 68 7232 14 82 99 7080 60 47 18 9763 49 30 21 3071 59 73 05 5008 22 23 71 7791 01 93 20 4982 96 59 26 9466 39 67 98 60解析:所取的号码要在00~59之间且重复出现的号码仅取一次.答案:18,00,38,58,32,26,25,395.某校高一年级有43名足球运动员,要从中抽出5人抽查学习负担情况.用抽签法设计一个抽样方案.解:第一步,编号,把43名运动员编号为1~43;第二步,制签,做好大小、形状相同的号签,分别写上这43个数;第三步,搅拌,将这些号签放在暗箱中,进行均匀搅拌;第四步,抽签入样,每次从中抽取一个,连续抽取5次,从而得到容量为5的入选样本.[课时达标检测]一、选择题1.在简单随机抽样中,某一个个体被抽到的可能性()A.与第几次有关,第一次可能性最大B.与第几次有关,第一次可能性最小C.与第几次无关,与抽取的第几个样本有关D.与第几次无关,每次可能性相等答案:D2.为了了解全校240名学生的身高情况,从中抽取40名学生进行测量,下列说法正确的是()A.总体是240B.个体是每名学生C.样本是40名学生D.样本容量是40答案:D3.某工厂的质检人员对生产的100件产品,采用随机数法抽取10件检查,对100件产品采用下面的编号方法:①1,2,3,...,100;②001,002, (100)③00,01,02,...,99;④01,02,03, (100)其中正确的序号是()A.②③④B.③④C.②③D.①②答案:C4.用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a“第一次被抽到”的可能性、“第二次被抽到”的可能性分别是()A.110,110B.310,15C.15,310D .310,310答案:A 5.从一群游戏的小孩中随机抽出k 人,一人分一个苹果,让他们返回继续游戏.过了一会儿,再从中任选m 人,发现其中有n 个小孩曾分过苹果,估计参加游戏的小孩的人数为( )A.kn mB .k +m -n C.km nD .不能估计答案:C二、填空题6.某种福利彩票是从1~36的号码中,选出7个号码来按规则确定中奖情况,这种从36个号码中选7个号码的抽样方法是________.解析:符合抽签法的特点:①个体数较少;②样本容量小.答案:抽签法7.假设要检验某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表法抽取样本时,先将800袋牛奶按000,001,…,799进行编号,如果从随机数表第8行第7列的数开始向右读,请你依次写出最先被检测的5袋牛奶的编号____________.(下面摘取的是随机数表第7行至第9行.)84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54解析:找到第8行第7列的数开始向右读,第一个符合条件的是785,第二个数916大于800,要舍去,第三个数955也要舍去,第四个数667符合题意,这样依次读出结果.答案:785,667,199,507,1758.从个体数为N 的总体中抽出一个样本容量是20的样本,每个个体被抽到的可能性是15,则N 的值是________.解析:从个体数为N 的总体中抽出一个样本容量是20的样本,∴每个个体被抽取的可能性是20N .∵每个个体被抽取的可能性是15,∴20N =15, ∴N =100.答案:100三、解答题9.要从某汽车厂生产的30辆汽车中随机抽取3辆进行测试,请选择合适的抽样方法,并写出抽样过程.解:利用抽签法:第一步,将30辆汽车编号,号码是1,2,…,30;第二步,将号码分别写在形状、大小相同的纸条上,制成号签;第三步,将得到的号签放入一个不透明的袋子中,并充分搅匀;第四步,从袋子中依次不放回地抽取3个号签,并记录上面的号码;第五步,所得号码对应的3辆汽车就是要抽取的对象.10.某企业调查消费者对某产品的需求量,要从95户居民中抽选10户居民,请用随机数表法抽选样本.附部分随机数表:85 38 44 05 2748 98 76 06 0216 08 52 99 7161 27 94 30 2192 98 02 77 6826 91 62 77 8384 57 27 84 8339 82 06 14 5939 07 37 92 4220 37 22 10 48解:第一步:将95户居民编号,每一户一个编号,即01~95.第二步:两位一组的表中,随机确定抽样的起点和抽样的顺序.如假定从第6列和第7列这两列的第1行开始读取,读数顺序从左往右.(横的数列称为“行”,纵的数列称为“列”).第三步:依次抽出10个号码.可能有号码如96,98两个号码不在总体编号范围内,应排除在外,再补充两个号码.得到的样本号码是:40,52,74,89,87,60,21,85,29,16.由此产生10个样本号码,编号为这些号码的居民家庭就是抽样调查的对象.11.为制定本市初中七、八、九年级学生校服的生产计划,有关部门准备对180名初中男生的身高作调查,现有三种调查方案:A.测量少年体校中180名男子篮球、排球队员的身高;B.查阅有关外地180名初中男生身高的统计资料;C.在本市的市区和郊县各任选一所完全中学和两所初级中学,在这六所学校有关的年级(1)班中,用抽签的方法分别选出10名男生,然后测量他们的身高.为了达到估计本市初中这三个年级男生身高分布的目的,你认为采用上述哪一种调查方案比较合理,为什么?解:方案C比较合理,理由如下:由于A中,少年体校的男子篮球、排球的运动员的身高一定高于一般的情况,因此无法用测量的结果去估计总体的结果;B中,用外地学生的身高也不能准确地反映本地学生身高的实际情况;而C中的抽样方法符合简单随机抽样,因此用C方案比较合理.。
简单随机抽样及系统抽样课后练习题一:下列说法中正确说法的个数是()①总体中的个体数不多时宜用简单随机抽样法;②在总体均分后的每一部分进行抽样时,采用的是简单随机抽样;③百货商场的抓奖活动是抽签法;④整个抽样过程中,每个个体被抽取的概率相等(有剔除时例外).A.1 B.2 C.3 D.4题二:在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本.①采用随机抽样法:抽签取出20个样本.②采用系统抽样法:将零件编号为00,01,…,99,然后平均分组抽取20个样本.③采用分层抽样法:从一级品,二级品,三级品中抽取20个样本.下列说法中正确的是()A.无论采用哪种方法,这100个零件中每一个被抽到的概率都相等B.①②两种抽样方法,这100个零件中每一个被抽到的概率都相等;③并非如此C.①③两种抽样方法,这100个零件中每一个被抽到的概率都相等;②并非如此D.采用不同的抽样方法,这100个零件中每一个零件被抽到的概率是各不相同的题三:在某班的50名学生中,依次抽取学号为5、10、15、20、25、30、35、40、45、50的10名学生进行作业检查,这种抽样方法是() .A.随机抽样B.分层抽样C.系统抽样D.以上都不是题四:(1)某学校为了了解2012年高考数学的考试成绩,在高考后对1 200名学生进行抽样调查,其中文科400名考生,理科600名考生,艺术和体育类考生共200名,从中抽取120名考生作为样本.(2)从10名家长中抽取3名参加座谈会.Ⅰ.简单随机抽样法Ⅱ.系统抽样法Ⅲ.分层抽样法.问题与方法配对正确的是()A.(1)Ⅲ,(2)ⅠB.(1)Ⅰ,(2)ⅡC.(1)Ⅱ,(2)ⅢD.(1)Ⅲ,(2)Ⅱ题五:一个总体的60个个体编号为00,01,…,59,现需从中抽取一容量为8的样本,请从随机数表的倒数第5行(下表为随机数表的最后5行)第11列开始,向右读取,直到取足样本,则抽取样本的号码是________.95 33 95 22 0018 74 72 00 1838 79 58 69 3281 76 80 26 9282 80 84 25 3990 84 60 79 8024 36 59 87 3882 07 53 89 3596 35 23 79 1805 98 90 07 3546 40 62 98 8054 97 20 56 9515 74 80 08 3216 46 70 50 8067 72 16 42 7920 31 89 03 4338 46 82 68 7232 14 82 99 7080 60 47 18 9763 49 30 21 3071 59 73 05 5008 22 23 71 7791 01 93 20 4982 96 59 26 9466 39 67 98 60题六:设某校共有100名教师,为了支援西部教育事业,现要从中随机抽出12名教师组成暑期西部讲师团,请写出利用随机数法抽取该样本的步骤.随机数表(部分):034743738636964736614699698162 977424676242811457204253323732 167602276656502671073290797853 125685992696966827310503729315 555956356438548246223162430990 162277943949544354821737932378 844217533157245506887704744767 630163785916955567199810507175 332112342978645607825242074428 576086324409472796544917460962 181807924644171658097983861962 266238977584160744998311463224 234240547482977777810745321408 623628199550922611970056763138 378594351283395008304234079688题七:在120个零件中,一级品24个,二级品36个,三级品60个,用系统抽样方法从中抽取容量为20的样本,则三级品a被抽到的可能性为________.题八:在一个个体数目为2 003的总体中,利用系统抽样抽取一个容量为100的样本,则总体中每个个体被抽到的机会为().(A)120(B)1100(C)1002 003(D)12 000题九:为了了解参加某次知识竞赛的1252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本,那么从总体中应随机剔除的个体数目为()A.2B.3C.4 D.5题十:学校为了了解某企业 1 203名职工对公司餐厅建设的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔k为().(A)40 (B)30.1 (C)30 (D)12题十一:要从已经编号(1~50)的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5枚导弹的编号可能是().A.5, 10, 15, 20, 25 B.3, 13, 23, 33, 43C.1, 2, 3, 4, 5 D.2, 4, 8, 16, 32题十二:用系统抽样法从160名学生中抽取容量为20的样本,将160名学生随机地从1~160编号,按编号顺序平均分成20组(1~8,9~16,…,153~160),若第16组得到的号码为126,则第1组中用抽签的方法确定的号码是().(A)8 (B)6 (C)4 (D)2题十三:将参加学校期末考试的高三年级的400名学生编号为001,002,…,400,已知这400名学生到甲乙丙三栋楼去考试,从001到200在甲楼,从201到295在乙楼,从296到400在丙楼;采用系统抽样方法抽取一个容量为50的样本且随机抽得的首个号码为003,则三个楼被抽中的人数依次为___________.题十四:采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,……,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间的人做问卷A,编号落入区间的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷B的人数为()A.7B.9C.10 D.15题十五:一个总体中有100个个体,随机编号为00,01,02,…,99,依编号顺序平均分成10个小组,组号分别为1,2,3,…,10.现抽取一个容量为10的样本,规定如果在第1组中随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k的个位数字相同.若m=6,则在第7组中抽取的号码是________.题十六:一个总体中的100个个体的编号分别为0,1,2,3,…,99,依次将其分成10个小段,段号分别为0,1,2,…,9.现要用系统抽样的方法抽取一个容量为10的样本,规定如果在第0段随机抽取的号码为l,那么依次错位地取出后面各段的号码,即第k段中所抽取的号码的个位数为l+k或l+k-10(l+k≥10),则当l=6时,所抽取的10个号码依次是________.简单随机抽样及系统抽样课后练习参考答案题一:C.详解:①②③显然正确,系统抽样无论有无剔除都是等概率抽样;④不正确.题二:A.详解:上述三种方法均是可行的,每个个体被抽到的概率均等于20100=15.故选A.题三:C.详解:由系统抽样的特点——等距,可知C正确.题四:A.详解:通过分析可知,对于(1),应采用分层抽样法,对于(2),应采用简单随机抽样法.题五:18, 00, 38, 58, 32, 26, 25, 39.详解:由随机数表法抽取的规则,所取的数要在00~59之间,且重复出现的仅算一次可得.题六:见详解.详解:第一步,将100名教师进行编号:00,01,02, (99)第二步,在随机数表中任取一数作为开始,如从第12行第9列开始.第三步,依次向右读取(两位、两位读取),75,84,16,07,44,99,83,11,46,32,24,23.以这12个编号对应的教师组成样本.题七:1 6.详解:每一个个体被抽到的概率都是样本容量除以总体,即20120=16.题八:C.详解:采用系统抽样的方法从个体数目为2003的总体中抽取一个样本容量为100的样本,每个个体被抽到的可能性都相等,于是每个个体被抽到的机会都是1002 003.题九:A.详解:因为1252=50×25+2,所以应随机剔除2个个体,故选A.题十:C.详解:了解1 203名职工对公司餐厅建设的意见,打算从中抽取一个容量为40的样本,∵1 203除以40不是整数,∴先随机去掉3个人,再除以40,得到每一段有30个人,则分段的间隔k为30.题十一:B.详解:根据系统抽样的特点,可将50枚导弹分成5组(10枚/组),再等距抽取.题十二:B.详解:∵16020=8,∴第1组中号码为126-15×8=6.题十三:25, 12, 13.详解:由系统抽样的方法先确定分段的间隔k,k =40050=8,故甲楼被抽中的人数为:2008=25(人).因为95=11×8+7,故乙楼被抽中的人数为12人.故丙楼被抽中的人数为50-25-12=13(人).题十四:C.详解:采用系统抽样方法从960人中抽取32人,将整体分成32组,每组30人,即l=30,第k组的号码为(k-1)30+9,令451≤(k-1)30+9≤750,而k∈z,解得16≤k≤25,则满足16≤k≤25的整数k有10个,故答案应选C.题十五:63.详解:由题意知第7组中的数为“60~69”10个数.由题意知m=6,k=7,故m+k=13,其个位数字为3,即第7组中抽取的号码的个位数是3,综上知第7组中抽取的号码为63.题十六:6, 17, 28, 39, 40, 51, 62, 73, 84, 95.详解:在第0段随机抽取的号码为6,则由题意知,在第1段抽取的号码应是17,在第2段抽取的号码应是28,依次类推,故正确答案为6, 17, 28, 39, 40, 51, 62, 73, 84, 95.。