数学选修4-4单元测试题(一)及答案
- 格式:pdf
- 大小:527.61 KB
- 文档页数:4
一、选择题1.已知1,0()1,0ax x f x x x x +≤⎧⎪=⎨->⎪⎩,则下列关于[()]1y f f x =+的零点的判断正确的是( ) A .当0a >时,有4个零点,当0a <时,有1个零点; B .当0a >时,有3个零点,当0a <时,有2个零点; C .无论a 为何值,均有2个零点; D .无论a 为何值,均有4个零点.2.已知函数,01()11,10(1)x x f x x f x ≤<⎧⎪=⎨--<<⎪+⎩,()()4g x f x mx m =--,其中m 是非零的实数,若函数()g x 在区间(1,1)-内有且仅有两个零点,则实数m 的取值范围是( ) A .1,(0,1)5⎛⎫-∞-⋃ ⎪⎝⎭B .1(,1),5⎛⎫-∞-⋃+∞ ⎪⎝⎭C .1(,1)0,5⎛⎫-∞-⋃ ⎪⎝⎭D .1,(1,)5⎛⎫-∞-⋃+∞ ⎪⎝⎭3.已知在R 上的函数()f x 满足如下条件:①函数()f x 的图象关于y 轴对称;②对于任意R x ∈,()()220f x f x +--=;③当[]0,2x ∈时,()f x x =;④函数()()()12n n f x f x -=⋅,*n N ∈,若过点()1,0-的直线l 与函数()()4f x 的图象在[]0,2x ∈上恰有8个交点,在直线l 斜率k 的取值范围是( )A .80,11⎛⎫⎪⎝⎭B .110,8⎛⎫⎪⎝⎭C .80,19⎛⎫⎪⎝⎭D .190,8⎛⎫⎪⎝⎭4.流行病学基本参数:基本再生数0R 指一个感染者传染的平均人数,世代间隔T 指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可用模型:0()rtI t N e =(其中0N 是开始确诊病例数)描述累计感染病例()I t 随时间t (单位:天)的变化规律,指数增长率r 与0R ,T 满足01R rT =+,有学者估计出0 3.4,6R T ==.据此,在新冠肺炎疫情初始阶段,当0()2I t N =时,t 的值为(ln 20.69≈)( ) A .1.2B .1.7C .2.0D .2.55.已知函数()223,021,0x x x f x x -+≤⎧⎪=⎨->⎪⎩,若存在三个实数m n q ≠≠,使得()()()f m f n f q ==成立,则111222m n q ++的取值范围是( )A .[]0,1B .51,22⎛+⎝ C .(2,D .()0,16.对于定义域为R 的函数()f x ,若存在非零实数0x ,使函数()f x 在()0,x -∞和()0,x +∞上与 x 轴都有交点,则称0x 为函数()f x 的一个“界点”.则下列四个函数中,不存在“界点”的是( ) A .()22xf x x =-B .()()22f x x bx b R =+-∈C .()12f x x =--D .()sin x x x f -=7.用二分法求方程x 2–2=0在(1,2)内近似解,设f (x )=x 2–2,得f (1)<0,f (1.5)>0, f (1.25)<0,则方程的根在区间( ) A .(1.25,1.5)B .(1,1.25)C .(1, 1.5)D .不能确定8.蔬菜价格随着季节的变化而有所变化.根据对农贸市场蔬菜价格的调查得知,购买2千克甲种蔬菜与1千克乙种蔬菜所需费用之和大于8元,而购买4千克甲种蔬菜与5千克乙种蔬菜所需费用之和小于22元.设购买2千克甲种蔬菜所需费用为A 元,购买3千克乙种蔬菜所需费用为B 元,则( ). A .A B < B .A B =C .A B >D .A ,B 大小不确定9.已知()11xf x e =-+,若函数2()[()](2)()2g x f x a f x a =+--有三个零点,则实数a 的取值范围是( ) A .(2,1)--B .(1,0)-C .(0,1)D .(1,2)10.把物体放在冷空气中冷却,如果物体原来的温度为1θC ,空气的温度是0θC ,那么t 分钟后物体的温度θ(单位C )可由公式:()010kt e θθθθ-=+-求得,其中k 是一个随着物体与空气的接触状况而定的正常数.现有100℃的物体,放在20C 的空气中冷却,4分钟后物体的温度是60C ,则再经过( )分钟,物体的温度是40C (假设空气的温度保持不变). A .2B .4C .6D .811.为了衡量星星的明暗程度,古希腊天文学家喜帕恰斯在公元前二世纪首先提出了星等这个概念.星等的数值越小,星星就越亮;星等的数值越大它的光就越暗.到了1850年,由于光度计在天体光度测量的应用,英国天文学家普森又提出了亮度的概念,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足()12212.5lg lg m m E E -=-,其中星等为k m 的星的亮度为(1,2)k E k =.已知“心宿二”的星等是1.00,“天津四”的星等是1.25,则“心宿二”的亮度大约是“天津四”的( )倍.(当||x 较小时,2101 2.3 2.7x x x ≈++)A .1.27B .1.26C .1.23D .1.2212.已知函数3,0,(),0.x x f x x x ⎧=⎨-<⎩若函数2()()2()g x f x kx xk =--∈R 恰有4个零点,则k的取值范围是()A.1,(22,)2⎛⎫-∞-+∞⎪⎝⎭B.1,(0,22)2⎛⎫-∞-⎪⎝⎭C.(,0)(0,22)-∞D.(,0)(22,)-∞+∞二、填空题13.定义在R上的函数()f x,满足()()f x f x-=-且()(2)f x f x=-,当01x<≤时,2()logf x x=,则方程()f x x=-在()2,2-上的实数根之和为___________.14.已知函数2()log(2)f x x=+与2()()1g x x a=-+,若对任意的1[2,6)x∈,都存在2[0,2]x∈,使得()()12f xg x=,则实数a的取值范围是______.15.若关于x的方程24x x m-=+有两个不同实数解,则m的取值范围是______. 16.小菲在学校选修课中了解到艾宾浩斯记忆曲线,为了解自己记忆一组单词的情况,她记录了随后一个月的有关数据,绘制散点图,拟合了记忆保持量与时间(天)之间的函数关系:()1271012019130.520x xf xx x,<,<-⎧-+≤⎪⎪=⎨⎪+≤⎪⎩某同学根据小菲拟合后的信息得到以下结论:①随着时间的增加,小菲的单词记忆保持量降低;②9天后,小菲的单词记忆保持量低于40%;③26天后,小菲的单词记忆保持量不足20%.其中正确的结论序号有______.(注:请写出所有正确结论的序号)17.已知函数()y f x=是定义域为R的偶函数,当0x≥时,()21,02413,224xx xf xx⎧-≤≤⎪⎪=⎨⎛⎫⎪-->⎪⎪⎝⎭⎩,若关于x的方程()()27016af x af x++=⎡⎤⎣⎦,a R∈有且仅有8个不同实数根,则实数a的取值范围是__________.18.已知函数241,0()3,0xx x xf xx⎧--+≤=⎨>⎩,则函数(())3f f x=的零点的个数是________.19.规定[]t 为不超过t 的最大整数,如[]3.33=,[]2.43-=-.若函数()[][]()2f x x x x =-∈R ,则方程()()22f x f x -=的解集是______.20.(文)已知函数2cos ,1()21,1xx f x x x π⎧≤⎪=⎨⎪->⎩,则关于x 的方程2()3()20f x f x -+=的实根的个数是________个.三、解答题21.新冠肺炎疫情发生后,某公司生产A 型抗疫商品,第一个月是为国内生产,当地政府决定对该型商品免税,该型商品出厂价为每件20元,月销售量为12万件;后来国内疫情得到有效控制,从第二个月开始,该公司为国外生产该型抗疫商品,当地政府开始对该型抗疫商品征收税率为%p (0100p <<,即销售1元要征收100p元)的税,于是该型抗疫商品出厂价就上升到每件100202p-元,预计月销售量将减少2p 万件.(1)将第二个月政府对该商品征收的税y (万元)表示成p 的函数,并指出这个函数的定义域;(2)要使第二个月该公司缴纳的税额不少于1万元的前提下,又要让该公司当月获得最大销售金额,p 应为多少? 22.已知函数()((1,1))1||xf x x x =∈--,有下列结论: ①(1,1)x ∀∈-,等式()()0f x f x 恒成立;②[)0,m ∀∈+∞,方程|()|f x m =有两个不等的实根; ③12,,(11)x x ∀∈-,若12x x ≠,则一定有12()()f x f x ≠;④存在无数多个实数k ,使得函数()()g x f x kx =-在(1,1)-上有三个零点 则其中正确结论的序号为?23.2020年初,新冠肺炎疫情袭击全国,对人民生命安全和生产生活造成严重影响.为降低疫情影响,某厂家拟尽快加大力度促进生产.已知该厂家生产某种产品的年固定成本为200万元,每生产x 千件,需另投入成本为()C x ,当年产量不足80千件时,21()202C x x x =+(万元).当年产量不小于80千件时,10000()51600C x x x=+-(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完. (1)写出年利润()L x (万元)关于年产量x (千件)的函数解析式;(2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?最大利润是多少? 24.某工厂生产某种产品,每日的成本C (单位:万元)与日产量x (单位:吨)满足函数关系式3C x =+,每日的销售额S (单位:万元)与日产量x 的函数关系式35,07819,7kx xS xx⎧++<<⎪=-⎨⎪≥⎩.已知每日的利润L S C=-,且当2x=时,143L=.(1)求k的值,并将该产品每日的利润L万元表示为日产量x吨的函数;(2)当日产量为多少吨时,每日的利润可以达到最大,并求出最大值.25.对于函数()f x,若在定义域内存在实数x,满足()()f x f x-=-,则称()f x为“局部奇函数”.(1)二次函数()224f x ax x a=-+(a R∈且0a≠).①若[)0,x∀∈+∞,有()0f x>恒成立,求a的取值范围;②判断()f x是否为“局部奇函数”?并说明理由;(2)若()1423x xg x m m+=-⋅+-为R上的“局部奇函数”,求实数m的取值范围. 26.如图所示,ABCD是一个矩形花坛,其中6AB=米,4=AD米.现将矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求:B在AM上,D在AN上,对角线MN过C点,且矩形AMPN的面积小于150平方米.(1)设AN长为x米,矩形AMPN的面积为S平方米,试用解析式将S表示成x的函数,并确定函数的定义域;(2)当AN的长度是多少时,矩形AMPN的面积最小?并求最小面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】按0a>和0a<分类讨论[()]1y f f x=+的零点个数,即确定[()]10f f x+=的解的个数,可得正确选项.【详解】x>时,1()f x xx=-是增函数,()(,)f x∈-∞+∞,此时()f x m=对任意m R∈均有一解.0x ≤时,若0a >,()1f x ax =+是增函数,()(,1]f x ∈-∞,此时()f x m =在1m 时有一解,1m 时无解,若0a <,()1f x ax =+是减函数,()[1,)f x ∈+∞,此时()f x m =在m 1≥时有一解,1m <时无解,由[())10f f x +=得[()]1f f x =-,设()1f t =-,则0a >时,()1f t =-的解为2t a =-和12t =, 20a-<,1012<<,因此2()f x a =-有两解,1()2f x =有两解,共4解. 0a <时,()1f t =-只有一解1t =<,()f x = ∴函数[()]1y f f x =+在0a >时,有4个零点,当0a <时,有1个零点. 故选:A . 【点睛】关键点点睛:本题考查函数的零点,解题方法是转化与化归思想,转化为方程[()]10f f x +=的解.通过换元法,先求得()1f t =-的解,若0t 是其解,再求0()f x t =的解,从而得出结论.2.C解析:C 【分析】先求得分段函数的解析式,函数()g x 零点等价于函数()y f x =的图象与直线4y mx m =+公共点,做出图像,数形结合,即可求得答案.【详解】当10x -<<时,011x <+<,满足上支范围,所以()11f x x +=+,所以,01()11,101x x f x x x ≤<⎧⎪=⎨--<<⎪+⎩,作函数()y f x =的图象,如图所示.函数()g x 零点的个数等价于函数()y f x =的图象与直线4y mx m =+公共点的个数. 当直线4y mx m =+过点(1,1)时,15m =, 所以当105m <<时, 直线4y mx m =+与函数()y f x =图象有两个公共点.当直线4y mx m =+与曲线111y x =-+(10x -<<)相交时, 联立4111y mx m y x =+⎧⎪⎨=-⎪+⎩消去y 得,24(51)0mx m x m -++=, 因此22(51)160m m ∆=+->且510m +<时,解得1m <-.综上知,实数m 的取值范围是1(,1)0,5⎛⎫-∞-⋃ ⎪⎝⎭. 故选:C 【点睛】本题的关键是根据x 的范围,先求得函数解析式,做出图像,再将零点问题转化为图像交点问题,易错点为,4y mx m =+可以与函数两支都有交点,也可以与函数111y x =-+单支产生交点,需分别检验和计算,属中档题.3.A解析:A 【分析】先由条件①②,得到函数()f x 是周期为4的周期函数;根据③求出函数()f x 在一个周期[]22-,上的表达式为(),02,20x x f x x x ≤≤⎧=⎨--≤<⎩,根据④得到()()4f x 的周期为12,其图象可由()f x 的图象压缩为原来的18得到,作出()()4f x 的图象,结合图象,即可求出结果. 【详解】因为函数()f x 是偶函数,由()()220f x f x +--=得()()()222f x f x f x +=-=-,即()()4f x f x +=,所以函数()f x 是周期为4的周期函数; 若[]2,0x ∈-,则[]0,2x ∈;因为当[]0,2x ∈时,()f x x =, 所以[]0,2x -∈时,()f x x -=-,因为函数()f x 是偶函数,所以()()f x x f x -=-=, 即()f x x =-,[]2,0x ∈-,则函数()f x 在一个周期[]22-,上的表达式为(),02,20x x f x x x ≤≤⎧=⎨--≤<⎩, 因为()()()12n n f x f x -=⋅,*n N ∈,所以函数()()()48f x f x =,*n N ∈,故()()4f x 的周期为12,其图象可由()f x 的图象压缩为原来的18得到,作出()()4f x 的图象如图:易知过()1,0M -的直线l 斜率存在,设过点()1,0-的直线l 的方程为()1y k x =+, 则要使直线l 与()()4f x 的图象在[]0,2x ∈上恰有8个交点,则0MA k k <<,因为7,24A ⎛⎫⎪⎝⎭,所以20871114MA k -==+,故8011k <<. 故选:A. 【点睛】 关键点点睛:求解本题的关键在于,根据条件,由函数基本性质,得到()()4f x 的图象,再由函数交点个数,利用数形结合的方法,即可求解.4.B解析:B 【分析】根据所给模型求得0.4r =,代入已知模型,再由0()2I t N =,得002rtN e N =,求解t 值得答案 【详解】解:把0 3.4,6R T ==代入01R rT =+,得3.416r =+,解得0.4r =,所以0.40()tI t N e =,由0()2I t N =,得0.4002tN eN =,则0.42t e =,两边取对数得,0.4ln 2t =,得ln 20.691.70.40.4t =≈≈, 故选:B 【点睛】关键点点睛:此题考查函数模型的实际应用,考查计算能力,解题的关键是准确理解题意,弄清函数模型中各个量的关系,属于中档题5.B解析:B 【分析】作出函数()f x 的示意图,令()()()f m f n f q t ===,m n q <<,由图象及指数运算得到1222nq --+=和3(,1)2m ∈--,再利用不等式的性质即可得到答案. 【详解】令()()()f m f n f q t ===,不妨设m n q <<,作出函数()f x 的图象如图所示,则(0,1)t ∈,23m t +=,所以33(,1)22t m -=∈--,2m -∈ 又22|21||21|nq ---=-,所以222112n q ---=-,即1222n q --+=所以1111512(,222222mm n q -++=+∈+ 故选:B【点睛】关键点睛:本题解题关键是准确作出函数图象,令()()()f m f n f q t ===,m n q <<得到1222nq --+=以及m 及2m -的范围,从而使问题得到解决. 6.D解析:D 【分析】由“界点”定义可知,存在“界点”要求函数至少有2个零点.通过对四个函数零点个数的判断,得到最终结果. 【详解】A 选项:令3na n nb a =,即22x x =,根据2x y =与2y x =图像如图所示:可知当0x >时,有2x =与4x =两个交点 当0x <时,有1个交点因此两函数共有3个交点,故()f x 必有“界点”;B 选项:令220x bx +-=,可知280b ∆=+>,方程恒有2个不等式根,即()f x 必有2个零点,故()f x 必有“界点”;C 选项:令120x --=,解得3x =或1x =,即()f x 有2个零点,故()f x 必有“界点”;D 选项:令sin 0x x -=,令()sin g x x x =-,则()1cos g x x =-'又cos 1≤x ,所以()0g x '≥()g x ∴在(),-∞+∞上单调递增又()00g =,即()g x 只有0x =一个零点,故()f x 不存在“界点”. 本题正确选项:D 【点睛】本题属于新定义问题,考查转化化归的数学思想.解题关键在于明确“界点”的定义,从而转化为零点个数问题.7.A解析:A 【分析】根据零点存在定理,结合条件,即可得出结论. 【详解】已知(1)0,(1.5)0,(1.25)0f f f <><, 所以(1,25)(1.5)0f f ⋅<,可得方程的根落在区间(1.25,1.5)内, 故选A. 【点睛】该题考查的是有关判断函数零点所在区间的问题,涉及到的知识点有二分法,函数零点存在性定理,属于简单题目.8.C解析:C 【解析】设甲、乙两种蔬菜的价格分别为x ,y 元,则284522x y x y +>⎧⎨+<⎩,2A x =,3B y =,两式分别乘以22,8, 整理得12180x y ->,即230x y ->, 所以A B >. 故选C .9.A解析:A 【分析】利用十字相乘法解()0g x =,得()2f x =或()f x a =-,利用函数与方程之间的关系转化为两个图象的交点个数问题进行求解即可. 【详解】解:若2()[()](2)()2[()2][()]g x f x a f x a f x f x a =+--=-+有三个零点, 即()[()2][()]0g x f x f x a =-+=有三个根,即()2f x =或()f x a =-.当()2f x =时,由|1|12x e -+=,即|1|1x e -=,则11x e -=或11x e -=-, 即2x e =或0x e =,则2x ln =或x 无解,此时方程只有一个解, 则()f x a =-.有两个不同的根, 作出()f x 的图象如图:由图象知,则12a <-<,即21a -<<-, 即实数a 的取值范围是(2,1)--, 故选:A .【点睛】本题主要考查函数零点个数的应用,利用数形结合转化为两个函数图象的交点个数问题是解决本题的关键.10.B解析:B 【分析】根据题意将数据120θ=,0100θ=,60θ=,4t =代入()010kte θθθθ-=+-,可得1412k e -⎛⎫= ⎪⎝⎭,再将40θ代入即可得8t =,即可得答案.【详解】由题意知:120θ=,0100θ=,60θ=,4t =代入()010kte θθθθ-=+-得:()4602010020ke-=+-,解得1412k e -⎛⎫= ⎪⎝⎭所以当40θ时,()1440201002012t ⎛⎫ -⎪⎭=+⎝,解得:124114212t ⎛⎫== ⎛⎫ ⎝⎪⎭⎪⎭⎝,所以8t =,所以再经过4分钟物体的温度是40C , 故选:B 【点睛】本题主要考查了指数函数的综合题,关键是弄清楚每个字母的含义,属于中档题.11.B解析:B 【分析】把已知数据代入公式计算12E E .【详解】由题意211 1.25 2.5(lg lg )E E -=-,12lg 0.1E E =, ∴0.1212101 2.30.1 2.70.1 1.257 1.26E E =≈+⨯+⨯=≈. 故选:B . 【点睛】本题考查数学新文化,考查阅读理解能力.解题关键是在新环境中抽象出数学知识,用数学的思想解决问题.12.D解析:D 【分析】由(0)0g =,结合已知,将问题转化为|2|y kx =-与()()||f x h x x =有3个不同交点,分0,0,0k k k =<>三种情况,数形结合讨论即可得到答案.【详解】注意到(0)0g =,所以要使()g x 恰有4个零点,只需方程()|2|||f x kx x -=恰有3个实根 即可, 令()h x =()||f x x ,即|2|y kx =-与()()||f x h x x =的图象有3个不同交点.因为2,0()()1,0x x f x h x x x ⎧>==⎨<⎩, 当0k =时,此时2y =,如图1,2y =与()()||f x h x x =有1个不同交点,不满足题意; 当0k <时,如图2,此时|2|y kx =-与()()||f x h x x =恒有3个不同交点,满足题意;当0k >时,如图3,当2y kx =-与2yx 相切时,联立方程得220x kx -+=,令0∆=得280k -=,解得22k =(负值舍去),所以22k >. 综上,k 的取值范围为(,0)(22,)-∞+∞.故选:D.【点晴】本题主要考查函数与方程的应用,考查数形结合思想,转化与化归思想,是一道中档题.二、填空题13.0【分析】首先由条件求出函数周期为再利用当时作出和的图象方程在上的实数根之和为由图象结合奇函数的性质即可求解【详解】因为函数满足且所以即所以所以函数周期为由可得所以对称轴为当时作函数和图象如图所示:解析:0 【分析】首先由条件求出函数()f x 周期为4,再利用当01x <≤时,2()log f x x =,作出和y x =-的图象,方程()f x x =-在()2,2-上的实数根之和为1234x x x x +++,由图象结合奇函数的性质即可求解. 【详解】因为函数()f x 满足()()f x f x -=-且()(2)f x f x =-, 所以[](2)2(2)()f x f x f x +=-+=-,即(2)()f x f x +=-,所以(4)(2)()f x f x f x +=-+=, 所以函数()f x 周期为4,由()(2)f x f x =-可得(1)(1)f x f x +=-,所以()f x 对称轴为1x =, 当01x <≤时,2()log f x x =, 作函数()y f x =和y x =-图象如图所示:其中()y f x =时奇函数,y x =-也是奇函数, 设两个函数图象交点的横坐标分别为1x 、2x 、3x 、4x 方程()f x x =-在()2,2-上的实数根之和为1234x x x x +++, 由图象结合奇函数的性质可得:14230x x x x +=+=,O 所以12340x x x x +++=,方程()f x x =-在()2,2-上的实数根之和为0, 故答案为:0 【点睛】关键点点睛:本题的关键点是利用已知条件求出()f x 周期为4,方程()f x x =-在()2,2-上的实数根之和等价于()y f x =和y x =-图象交点的横坐标之和,关键点是作出()y f x =在()2,2-的图象,数形结合即可求解.14.【分析】由对数函数的性质可得转化条件为由二次函数的图象与性质即可得解【详解】因为所以即函数的图象开口朝上对称轴为①当函数在上单调递增所以即所以解得;②当时函数在上单调递减所以即所以解得;③当时所以解解析:1,222,3⎡⎡⎤-⎣⎣⎦由对数函数的性质可得()123f x ≤<,转化条件为()2max 3g x ≥、()2min 2g x ≤,由二次函数的图象与性质即可得解. 【详解】因为1[2,6)x ∈,所以()()()126f f x f ≤<即()123f x ≤<,函数2()()1g x x a =-+的图象开口朝上,对称轴为x a =,①当0a ≤,函数()g x 在[0,2]上单调递增,所以()()()202g g x g ≤≤, 即()2221,45g x a a a ⎡⎤∈+-+⎣⎦,所以22124530a a a a ⎧+≤⎪-+≥⎨⎪≤⎩,解得10a -≤≤;②当2a ≥时,函数()g x 在[0,2]上单调递减,所以()()()220g g x g ≤≤, 即()22245,1g x a a a ⎡⎤∈-++⎣⎦,所以22452132a a a a ⎧-+≤⎪+≥⎨⎪≥⎩,解得23a ≤≤;③当01a <≤时,()()22max 245g x g a a ==-+,()()2min 12g x g a ==<,所以245301a a a ⎧-+≥⎨<≤⎩,解得02a <≤④当12a <<时,()()22max 01g x g a ==+,()()2min 12g x g a ==<,所以21312a a ⎧+≥⎨<<⎩2a ≤<;综上,实数a的取值范围是1,22,3⎡⎡⎤-⎣⎣⎦.故答案为:1,22,3⎡⎡⎤-⎣⎣⎦.【点睛】解决本题的关键是将条件转化为()2max 3g x ≥、()2min 2g x ≤,结合二次函数的图象与性质讨论即可得解.15.【分析】先由题中条件得到方程在上有两个不同实数解且对任意恒成立分别求出的范围进而可得出结果【详解】由得且即且因为关于的方程有两个不同实数解所以方程在上有两个不同实数解且对任意恒成立令则函数在区间上有 解析:2,⎡⎣先由题中条件,得到方程222240x mx m ++-=在[]2,2x ∈-上有两个不同实数解,且0x m +≥对任意[]2,2x ∈-恒成立,分别求出m 的范围,进而可得出结果.【详解】x m =+得()224x x m -=+且240x -≥, 即222240x mx m ++-=且22x -≤≤,因为关于xx m =+有两个不同实数解,所以方程222240x mx m ++-=在[]2,2x ∈-上有两个不同实数解,且0x m +≥对任意[]2,2x ∈-恒成立,令()22224f x x mx m =++-,[]2,2x ∈-,则函数()f x 在区间[]22-,上有两不同零点, 因为函数()22224f x x mx m =++-是开口向上,对称轴为x m =-的二次函数,因此只需()()()2220204840f f m m ⎧-≥⎪⎪≥⎨⎪∆=-->⎪⎩,解得m -<<又0x m +≥对任意[]2,2x ∈-恒成立,所以m x ≥-对任意[]2,2x ∈-恒成立, 因此只需2m ≥综上,2m ≤<故答案为:2,⎡⎣. 【点睛】 关键点点睛:求解本题的关键在于根据题中条件,得到方程222240x mx m ++-=在[]2,2x ∈-上有两个不同实数解,且0x m +≥对任意[]2,2x ∈-恒成立,(一定要注意0x m +≥),转化为一元二次方程根的分布问题求解即可.16.①②【分析】由分段函数可得函数的单调性可判断①;由的值可判断②;由的值可判断③【详解】可得随着的增加而减少故①正确;当时9天后小菲的单词记忆保持量低于故②正确;故③错误故答案为①②【点睛】本题考查分解析:①② 【分析】由分段函数可得函数的单调性,可判断①;由()9f 的值可判断②;由()26f 的值可判断③.()1271012019130.520x x f x x x ,<,<-⎧-+≤⎪⎪=⎨⎪+≤⎪⎩, 可得()f x 随着x 的增加而减少,故①正确;当130x <≤时,()1219520f x x -+=,()1219990.35520f -=+⋅=,9天后,小菲的单词记忆保持量低于40%,故②正确;()1219126265205f -=+⋅>,故③错误,故答案为①②.【点睛】本题考查分段函数的图象和性质,主要是单调性和函数的取值范围的求法,考查判断能力和运算能力,属于基础题.17.【分析】判断出函数的单调性求出函数的最值可得要使关于的方程有且仅有个不同实数根转化为的两根均在区间由二次函数的零点分布列出不等式组解得即可【详解】当时递减当时递增由于函数是定义域为的偶函数则函数在和解析:716,49⎛⎫⎪⎝⎭【分析】判断出函数()y f x =的单调性,求出函数的最值,可得要使关于x 的方程()()27016a f x af x ++=⎡⎤⎣⎦,a R ∈有且仅有8个不同实数根,转化为27016a t at ++=的两根均在区间31,4⎛⎫-- ⎪⎝⎭,由二次函数的零点分布列出不等式组,解得即可. 【详解】当02x ≤≤时,214y x =-递减,当2x >时,1324xy ⎛⎫=-- ⎪⎝⎭递增,由于函数()y f x =是定义域为R 的偶函数,则函数()y f x =在(),2-∞-和()0,2上递减,在()2,0-和()2,+∞上递增,当0x =时,函数()y f x =取得最大值0;当2x =±时,函数()y f x =取得最小值1-.当02x ≤≤时,[]211,04y x =-∈-;当2x >时,1331,244xy ⎛⎫⎛⎫=--∈-- ⎪ ⎪⎝⎭⎝⎭. 要使关于x 的方程()()27016af x af x ++=⎡⎤⎣⎦,a R ∈,有且仅有8个不同实数根,设()t f x =,则27016at at ++=的两根均在区间31,4⎛⎫--⎪⎝⎭. 则有2704312471016937016416a a a a a a a ⎧∆=->⎪⎪⎪-<-<-⎪⎨⎪-+>⎪⎪⎪-+>⎩,即为70432216995a a a a a ⎧><⎪⎪⎪<<⎪⎨⎪<⎪⎪⎪<⎩或,解得71649a <<.因此,实数a 的取值范围是716,49⎛⎫⎪⎝⎭.故答案为:716,49⎛⎫⎪⎝⎭.【点睛】本题考查函数的单调性和奇偶性的运用,主要考查方程与函数的零点的关系,掌握二次函数的零点分布是解题的关键,属于中档题.18.4【分析】根据分段函数的解析式当时令则解得当时做出函数的图像即可求解【详解】当时令则解得时令得作出函数的图像由图像可知与有两个交点与有一个交点则的零点的个数为4故答案为:4【点睛】本题考查了分段函数解析:4 【分析】根据分段函数的解析式当0x ≤时,令()3f x =,则2413x x --+=,解得22x =-±0x >时,()31xf x =>,1x =,做出函数()f x ,1,22,22y y y ==-=--.【详解】241,0()3,0x x x x f x x ⎧--+≤=⎨>⎩,∴当0x ≤时,()()2241255f x x x x =--+=-++≤,令()3f x =,则2413x x --+=,解得22x =-±,1220,4223,-<-+<-<--<-0x >时,()31xf x =>,令()3f x =得1x =,作出函数()f x ,1,22,22y y y ==-=--由图像可知,()f x 与1y =有两个交点,与22y =-+ 则(())3f f x =的零点的个数为4. 故答案为:4 【点睛】本题考查了分段函数的零点个数,考查了数形结合的思想,属于基础题.19.【分析】先计算出的取值再结合题目中的规定计算出结果【详解】由方程可得或若则故或由题目中的规定为不超过的最大整数当时可得当时可得;若则无解综上方程的解集是故答案为:【点睛】本题考查了新定义内容结合函数 解析:[)[)1,02,3-【分析】先计算出()f x 的取值,再结合题目中的规定计算出结果. 【详解】 由方程()()22fx f x -=,可得()2f x =或()1f x =-,若()2f x =,则[][]()22x x x -=∈R ,故[]2x =或[]1x =-,由题目中的规定[]t 为不超过t 的最大整数, 当[]2x =时,可得23x ≤<, 当[]1x =-时,可得10x -≤<;若()1f x =-,则[][]()21x x x -=-∈R 无解,综上方程()()22fx f x -=的解集是[)[)1,02,3-.故答案为:[)[)1,02,3-【点睛】本题考查了新定义内容,结合函数思想来解题,需要理清题意,抓住题目的核心,通常考查函数的性质、零点等问题.20.5【分析】先解方程再根据图象确定实根个数【详解】或图象如图:则由图可知实根的个数是5个故答案为:5【点睛】本题考查函数与方程考查综合分析求解能力属中档题解析:5 【分析】先解方程2()3()20f x f x -+=,再根据()f x 图象确定实根个数.【详解】2()3()20()1f x f x f x -+=∴=或()2f x =,2cos,1()21,1xx f x x x π⎧≤⎪=⎨⎪->⎩图象如图:则由图可知,实根的个数是5个 故答案为:5 【点睛】本题考查函数与方程,考查综合分析求解能力,属中档题.三、解答题21.(1)2610p p y p-=-,定义域为()0,6;(2)2p =时,公司销售金额最大.【分析】(1)由题可得第二个月该商品销量为()122p -万件,月销售收入为100(122)202p p-⋅-万元,则可得出对该商品征收的税; (2)由1y ≥可得25p ≤≤,销售收入()100(6)()2510p g p p p-=≤≤-单调递减,即可求出最值. 【详解】解:(1)依题意,第二个月该商品销量为()122p -万件, 月销售收入为100(122)202p p-⋅-万元,当地政府对该商品征收的税为100(122)(6)20210010p py p p p p=-⋅⋅=-⋅--(万元).所以所求函数为2610p p y p-=-. 由60p ->及0p >得,所求函数的定义域为()0,6.(2)由1y ≥得26110p p p-≥-化简得27100p p -+≤, 即(2)(5)0p p --≤,解得25p ≤≤, 所以当25p ≤≤,税收不少于1万元;第二个月,当税收不少于1万元时,公司的销售收入为()100(6)()2510p g p p p-=≤≤-,因为100(6)400()1001010p g p p p -==+--在区间[]2,5上是减函数,所以max ()(2)50g p g ==(万元). 所以当2p =时,公司销售金额最大. 【点睛】本题考查函数的实际应用,解题的关键是正确理解题目,建立正确的函数关系式,根据函数的单调性求最值. 22.①③④ 【分析】根据()f x 与()f x -的解析式代入运算可知①正确;取0m =可知②错误;分析函数()f x 的单调性可知③正确,由(0)0g =,当1k >时,()g x 在(0,1)和(1,0)-内都必有一个零点,可知④正确. 【详解】对于①,(1,1)x ∀∈-,()()01||1||1||1||x xx x f x f x x x x x ,①正确;对于②,当0m =时,|()|0f x =,即||01||xx =-只有一个实根0,错误; 对于③,任取1201x x ≤<<,则12()()f x f x -=12121||1||x x x x ---121211x xx x =--- 122112(1)(1)(1)(1)x x x x x x ---=--1212(1)(1)x x x x -=--, 因为1201x x ≤<<,所以120x x -<,12(1)(1)0x x -->,所以12()()f x f x <,所以()f x 在[0,1)上为增函数,又由①知,()f x 为奇函数, 所以()f x 在(1,1)-上为增函数,所以③正确; 对于④,1()()1||1||x g x kx x k x x =-=---,因为(0)0g =,所以0恒是()g x 的一个零点,当1k >,01x <<时,101k x -=-必有一个解, 当1,10k x >-<<时,11k x-+0=也必有一解, 所以④正确,综上所述:正确结论的序号为①③④. 【点睛】关键点点睛:对于③,判断出函数的单调性是解题关键;对于④,分01x <<和(1,0)-两种情况判断零点是解题关键.23.(1)2130200,0802()10000400(),80x x x L x x x x ⎧-+-<<⎪⎪=⎨⎪-+≥⎪⎩;(2)当年产量为30千件时,该厂在这一商品生产中所获利润最大,最大利润为250万元. 【分析】(1)可得销售额为0.051000x ⨯万元,分080x <<和80x ≥即可求出;(2)当080x <<时,利用二次函数性质求出最大值,当80x ≥,利用基本不等式求出最值,再比较即可得出. 【详解】解:(1)因为每件商品售价为0.05万元,则x 千件商品销售额为0.051000x ⨯万元, 依题意得:当080x <<时,2211()(0.051000)(20)2003020022L x x x x x x =⨯-+-=-+-, 当80x ≥时,1000010000()(0.051000)(51600)200400()L x x x x x x=⨯-+--=-+,所以2130200,0802()10000400(),80x x x L x x x x ⎧-+-<<⎪⎪=⎨⎪-+≥⎪⎩;(2)当080x <<时,21()(30)2502L x x =--+, 此时,当30x =时,即()(30)250L x L ≤=万元.当80x ≥时,10000()400()400400200200L x x x =-+≤-=-=, 此时10000,100x x x==,即()(100)200L x L ≤=万元, 由于250200>,所以当年产量为30千件时,该厂在这一商品生产中所获利润最大,最大利润为250万元. 【点睛】关键点睛:本题考查函数模型的应用,解题的关键是理解清楚题意,正确的建立函数关系,再求最值时,需要利用函数性质分段讨论比较得出.24.(1)8k ,822(07)816(7)x x L x xx ⎧++<<⎪=-⎨⎪-⎩(2)当日产量为6吨时,日利润达到最大10万元. 【分析】(1)利用每日的利润L S C =-,且当2x =时,3L =,可求k 的值; (2)利用分段函数,分别求出相应的最值,即可得出函数的最大值. 【详解】解:由题意,每日利润L 与日产量x 的函数关系式为22(07)816(7)k x x L x xx ⎧++<<⎪=-⎨⎪-⎩ (1)当2x =时,143L =,即:14222283k ⨯++=- 8k ∴=所以822(07)816(7)x x L x xx ⎧++<<⎪=-⎨⎪-⎩(2)当7x 时,16L x =-为单调递减函数, 故当7x =时,9max L = 当07x <<时,888222(8)182(8)18888L x x x x x x ⎡⎤=++=-++=--+-⎣-+⎢⎥-⎦1810≤-= 当且仅当82(8)(07)8x x x-=<<-, 即6x =时,10max L =综合上述情况,当日产量为6吨时,日利润达到最大10万元. 【点睛】本题考查函数解析式的确定,考查函数的最值,确定函数的解析式是关键,属于中档题. 25.(1)①1,2⎛⎫+∞ ⎪⎝⎭;②()f x 不是“局部奇函数”,答案见解析;(2)[)2,-+∞. 【分析】(1)①由()00f >可得0a >;由0x >且()0f x >结合参变量分离法可得出24a x x>+,利用基本不等式求得24x x +的最大值,由此可得出实数a 的取值范围; ②利用“局部奇函数”的定义得出240ax a +=,判断该方程是否有解即可得出结论;(2)利用“局部奇函数”的定义可得出4462221x x x xm --+-=+-,换元222x xt -=+≥,求得函数281t y t -=-在区间[)2,+∞上的值域,由此可解得实数m 的取值范围. 【详解】(1)①由题意可得()040f a =>,解得0a >; 当0x >时,由()0f x >,可得()242axx +>,则22244x a x x x>=++,由基本不等式可得2142x x≤=+,当且仅当2x =时,等号成立,12a ∴>.综上所述,实数a 的取值范围是1,2⎛⎫+∞ ⎪⎝⎭;②若函数()224f x ax x a =-+为局部奇函数,则存在x ∈R 使得()()f x f x -=-,即()()222424a x x a ax x a ⋅-++=--+,可得出240ax a +=,0a ≠,240x +>,则等式240ax a +=不成立.因此,函数()f x 不是“局部奇函数”; (2)()14234223x x x x g x m m m m +=-⋅+-=-⋅+-为“局部奇函数”,则存在x ∈R 使得()()g x g x -=-,即()()0g x g x -+=,可得()()44222260xx x x m m --+-++-=,可得出()2221446x x x x m --+-=+-,4462221x x x xm --+-∴=+-,令222x x t -=+≥=,当且仅当0x =时,等号成立,则()2222442xx xxt --=+=++,()22178721111t t m t t t t ---∴===+----, 由于函数1y t =+和71y t =--在[)2,t ∈+∞上都为增函数,所以,函数711y t t =+--在[)2,t ∈+∞上为增函数,713741t t ∴+-≥-=--, 24m ∴≥-,解得2m ≥-. 因此,实数m 的取值范围是[)2,-+∞. 【点睛】求解二次方程在区间上有解的问题,一般利用分类讨论法与参变量分离法求解,利用分类讨论法求解时要分析二次函数的对称轴与定义域的位置关系,结合端点函数值符号以及判别式求解,本题利用参变量分离法得出2m 的取值范围即为函数711y t t =+--在区间[)2,+∞上值域问题,极大地简化了分析步骤.26.(1)264x S x =-,()5,20x ∈;(2)8AN =,96.【详解】(1)由NDC NAM ∆~∆可得,466,4x x AM x AM x -=⇒=-,∴264x S x =-. 由4x >,且261504x S x =<-,解得520x <<,∴函数的定义域为()5,20. (2)令4x t -=,则()1,16t ∈,()22646166868964t x S t x t t ⎛⎫+⎛⎫===++≥= ⎪ ⎪ ⎪-⎝⎭⎝⎭, 当且仅当4t =时,S 取最小值96,故当AN 的长度为8米时,矩形花坛AMPN 的面积最小,最小面积为96平方米. 考点:1.分式不等式;2.均值不等式.。
一、选择题1.如图,正三角形ACB 与正三角形ACD 所在平面互相垂直,则二面角B CD A --的余弦值是( )A .12B .22C .33D .552.如图,正方体1111ABCD A B C D -中,12AP PA =,点M 在侧面11AA B B 内.若1D M CP ⊥,则点M 的轨迹为( )A .线段B .圆弧C .抛物线一部分D .椭圆一部分3.如图,在三棱锥P ﹣ABC 中,△ABC 为等边三角形,△PAC 为等腰直角三角形,PA =PC =4,平面PAC ⊥平面ABC ,D 为AB 的中点,则异面直线AC 与PD 所成角的余弦值为( )A .14B 2C .2D .124.如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,且1,2AB BC ==,60ABC ∠=,AP ⊥平面ABCD ,AE PC ⊥于E ,下列四个结论:①AB AC ⊥;②AB ⊥平面PAC ;③PC ⊥平面ABE ;④BE PC ⊥ .其中正确的个数是( )A .1B .2C .3D .45.正方体1111ABCD A B C D -中,动点M 在线段1A C 上,E ,F 分别为1DD ,AD 的中点.若异面直线EF 与BM 所成的角为θ,则θ的取值范围为( ) A .[,]63ππB .[,]43ππC .[,]62ππD .[,]42ππ6.如图,正四棱锥P ABCD -中,已知PA a =,PB b =,PC c =,12PE PD =,则BE =( )A .131222a b c -+ B .111222a b c --- C .131222a b c --+ D .113222a b c --+ 7.在一直角坐标系中,已知(1,6),(3,8)A B --,现沿x 轴将坐标平面折成60︒的二面角,则折叠后,A B 两点间的距离为( ) A .41B 41C 17D .178.在三棱锥P ABC -中,2AB BC ==,22AC =PB ⊥平面ABC ,点M ,N 分别AC ,PB 的中点,6MN =,Q 为线段AB 上的点,使得异面直线PM 与CQ 所成的角的余弦值为3434,则BQ BA为( )A .14B .13C .12D .349.如图,平行六面体中1111ABCD A B C D -中,各条棱长均为1,共顶点A 的三条棱两两所成的角为60°,则对角线1BD 的长为( )A .1B .2C .3D .210.如图,在菱形ABCD 中,23ABC π∠=,线段AD 、BD 的中点分别为E 、F .现将ABD ∆沿对角线BD 翻折,当二面角A BD C --的余弦值为13时,异面直线BE 与CF 所成角的正弦值是( )A .35 B .16C .26D .1511.已知在四面体ABCD 中,点M 是棱BC 上的点,且3BM MC =,点N 是棱AD 的中点,若MN xAB y AC z AD =++其中,,x y z 为实数,则x y z ++的值是( )A .12B .12-C .-2D .212.如图在一个120︒的二面角的棱上有两点,A B ,线段,AC BD 分别在这个二面角的两个半平面内,且均与棱AB 垂直,若2AB =1AC =,2BD =,则CD 的长为( ).A .2B .3C .23D .413.已知A ,B ,C 三点不共线,O 是平面ABC 外一点,下列条件中能确定点M 与点A ,B ,C 一定共面的是( ) A .OM OA OB OC =++ B .23OM OA OB OC =++ C .111222OM OA OB OC =++ D .111333OM OA OB OC =++ 二、填空题14.若面α的法向量(1,,1)n λ=,面β的法向量(2,1,2)m =--,两面夹角的正弦值为346,则λ=________. 15.如图所示,长方体1111ABCD A B C D -中,2AB BC ==,14CC =,点E 是线段1CC 的中点,点F 是正方形ABCD 的中心,则直线1A E 与直线1B F 所成角的余弦值为___16.如图,在棱长为2的正方体1111ABCD A B C D -中,E 为BC 的中点,点P 在底面ABCD 上移动,且满足11B P D E ⊥,则线段1B P 的长度的最大值为______17.a ,b 为空间两条互相垂直的直线,直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以AC 为旋转轴旋转,30ABC ∠=︒,有下列结论: ①当直线AB 与a 成60°角时,AB 与b 成30°角; ②当直线AB 与a 成60°角时,AB 与b 成45°角; ⑤直线AB 与a 所成角的最大值为60°; ④直线AB 与a 所成角的最小值为30°;其中正确的是___________.(填写所有正确结论的编号)18.如图,四棱锥P ABCD -中,ABCD 是矩形,PA ⊥平面ABCD ,1==PA AB ,2BC =,四棱锥外接球的球心为O ,点E 是棱AD 上的一个动点,给出如下命题:①直线PB 与直线CE 所成的角中最小的角为45︒;②BE 与PC 一定不垂直;③三棱锥E BCO -的体积为定值;④CE PE +的最小值为22,其中正确命题的序号是__________.(将你认为正确的命题序号都填上)19.在一直角坐标系中,已知()1,6A -,()3,8B -,现沿x 轴将坐标平面折成60︒的二面角,则折叠后A ,B 两点间的距离为__________.20.如图,在正四棱柱1111ABCD A B C D -中,底面边长为2,直线1CC 与平面1ACD 所成角的正弦值为13,则正四棱柱的高为_____.21.平行六面体ABCD ﹣A 1B 1C 1D 1中,棱AB 、AD 、AA 1的长均为1,∠A 1AD =∠A 1AB =∠DAB 3π=,则对角线AC 1的长为_____.22.已知向量()()2,1,3,1,2,1a b =-=-,若()a ab λ⊥-,则实数λ的值为______. 23.如图,长方体1111ABCD A B C D -中,2AB AD ==,122AA =,若M 是1AA 的中点,则BM 与平面11B D M 所成角的正弦值是___________.24.正三棱柱ABC A B C '''-,2,22AB AA ='=,M 是直线BC 上的动点,则异面直线AB '与C M '所成角的范围为_____________.25.设向量(2,23,2),(4,21,32)a m n b m n =-+=+-,且//a b ,则a b ⋅的值为__________.26.若平面α,β的法向量分别为(4,0,3)u =,(1,1,0)v =-,则这两个平面所成的锐角的二面角的余弦值为________.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】取AC 的中点E ,连接BE,DE,证明BE 垂直于平面ACD ,以点E 为原点建立空间直角坐标系,分别求出平面BCD 和平面CDA 的法向量,利用空间向量公式即可求出所求二面角的余弦. 【详解】如图示,取AC 中点E ,连结BE 、DE ,在正三角形ACB 与正三角形ACD 中, BE ⊥AC ,DE ⊥AC ,因为面ACB ⊥面ACD ,面ACB 面=ACD AC ,所以BE ⊥面ADC ,以E 为原点,ED 为x 轴正方向,EC 为y 轴正方向,EB 为z 轴正方向,建立空间直角坐标系,设AC =2,则())()()(0,0,0,3,0,0,0,1,0,0,1,0,3E DC A B -,平面ACD 的一个法向量为(3EB = 而()()0,1,3,3,1,0CB CD =-=-,设(),,n x y z =为面BCD 的一个法向量,则:·0·0n CB n DC ⎧=⎨=⎩即 3030y z y x ⎧-+=⎪⎨-+=⎪⎩,不妨令x =1,则()1,3,1n = 设二面角B CD A --的平面角为θ,则θ为锐角, 所以35cos |cos ,||||||||35EB n EB n EB n θ⋅====⨯.故选:D 【点睛】向量法解决立体几何问题的关键:(1)建立合适的坐标系; (2)把要用到的向量正确表示; (3)利用向量法证明或计算.2.A解析:A 【分析】首先建立空间直角坐标系,利用向量数量积的坐标表示求点M 的轨迹. 【详解】如图建立空间直角坐标系,设棱长为3,()3,0,2P ,()0,3,0C,()10,0,3D ,()3,,M y z ,()13,,3D M y z =-,()3,3,2CP =-, ()193230D M CP y z ⋅=-+-=,整理为:3230y z --=,点M 的轨迹方程是关于,y z 的二元一次方程,所以轨迹是平面11ABB A 平面内,直线3230y z --=内的一段线段.故选:A 【点睛】关键点点睛:本题考查利用几何中的轨迹问题,本题的关键是解题方法,建立空间直角坐标系后,转化为坐标运算,根据方程形式判断轨迹.3.B解析:B 【分析】取AC 的中点O ,连结OP ,OB ,以O 为坐标原点,建立如图所示的空间直角坐标系,利用向量法能求出异面直线AC 与PD 所成角的余弦值. 【详解】取AC 的中点O ,连结OP ,OB ,PA PC =,AC OP ∴⊥,平面PAC ⊥平面ABC ,平面PAC平面ABC AC =,OP ∴⊥平面ABC ,又AB BC =,AC OB ∴⊥,以O 为坐标原点,建立如图所示的空间直角坐标系,PAC ∆是等腰直角三角形,4PA PC ==,ABC ∆为直角三角形,(22A ∴,0,0),(22C -,0,0),(0P ,0,22), (2D ,6,0),∴(42AC =-,0,0),(2PD =,6,22)-,cos AC ∴<,2||||424AC PD PD AC PD >===-⨯.∴异面直线AC 与PD 所成角的余弦值为24. 故选:B .【点睛】本题考查异线直线所成角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算与求解能力,考查化归与转化思想,是中档题.4.D解析:D 【详解】已知1260AB BC ABC ==∠=︒,,, 由余弦定理可得2222cos60AC AB BC AB BC =+-︒3=, 所以22AC AB +2BC =,即AB AC ⊥,①正确;由PA ⊥平面ABCD ,得AB PA ⊥,所以AB ⊥平面PAC ,②正确;AB ⊥平面PAC ,得AB ⊥PC ,又AE PC ⊥,所以PC ⊥平面ABE ,③正确;由PC ⊥平面ABE ,得PC BE ⊥,④正确,故选D .5.A解析:A 【详解】以D 点为原点,1,,DA DC DD 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系, 如图设DA 2=,易得()1,0,1EF=-,设()()()12,2,20122,2,2CM CA BM λλλλλλλλ==-≤≤=--,, 则cos θcos ,?BM EF =, 即())222201122321222823()33cos θλλλλλλ===≤≤-+-+-+.当13λ=时,cos θ31λ=时,cos θ取到最小值12,所以θ的取值范围为,63ππ⎡⎤⎢⎥⎣⎦. 故选:A.点睛:本题主要考查异面直线所成的角,属于难题.求异面直线所成的角主要方法有两种:一是向量法,根据几何体的特殊性质建立空间直角坐标系后,分别求出两直线的方向向量,再利用空间向量夹角的余弦公式求解;二是传统法,利用平行四边形、三角形中位线等方法找出两直线成的角,再利用平面几何性质求解.6.A解析:A 【分析】连接AC BD 、交点为O ,根据根据向量加法运算法则1122PO PA PC =+,1122PO PD PB =+,求得PD ,然后由BE BP PE =+求解.【详解】 如图所示:连接AC BD 、交点为O ,则1122PO a c =+, 又1122PO PD PB =+, 所以PD a c b =+-, 又11112222PE PD a c b ==+-, 所以131222BE BP PE a b c =+=-+. 故选:A. 【点睛】本题主要考查空间向量基本定理,还考查了数形结合的思想和运算求解的能力,属于中档题.7.D解析:D 【分析】画出图形,作,AC CD BD CD ⊥⊥,则6,8,4AC BD CD ===,可得0,0AC CD BD CD ⋅=⋅=,沿x 轴将坐标平面折成60︒的二面角,故两异面直线,CA DB所成的角为60︒,结合已知,即可求得答案. 【详解】如图为折叠后的图形,其中作,AC CD BD CD ⊥⊥则6,8,4AC BD CD ===,∴0,0AC CD BD CD ⋅=⋅=沿x 轴将坐标平面折成60︒的二面角∴两异面直线,CA DB 所成的角为60︒.可得:.cos6024CA DB CA DB ︒⋅=⋅= 故由AB AC CD DB =++ 得22||||AB AC CD DB =++2222+22AC CD DB AC CD CD DB AC DB +++⋅⋅+⋅=2222+22AC CD DB AC CD CD DB CA DB +++⋅⋅-⋅=36166448=++-68=||AB ∴=故选:D. 【点睛】本题考查了立体几何体中求线段长度,解题的关键是作图和掌握空间向量的距离求解公式,考查了分析能力和空间想象能力,属于中档题.8.A解析:A 【分析】以B 为原点,,,BA BC BP 坐标轴建立空间直角坐标系,设BQ BA λ=,由异面直线PM 与CQ 可列式22234343244PM CQ PMCQ,求出λ即可. 【详解】如图,在三棱锥P ABC -中,2AB BC ==,AC =BA BC ∴⊥,PB ⊥平面ABC ,以B 为原点,,,BA BC BP 坐标轴建立空间直角坐标系,可知()0,0,0B ,()0,2,0C ,()1,1,0M ,2,6BM MN,222BN MN BM ,4PB ∴=,则()0,0,4P ,设BQBAλ=,且01λ<<,则2,0,0Q ,可知1,1,4,2,2,0PM CQ, 12124022PM CQ , 22211432PM,244CQ,异面直线PM 与CQ 34, 22234343244PM CQ PM CQ ,解得14λ=或4λ=(舍去), 14BQ BA∴=. 故选:A. 【点睛】本题考查向量法求空间线段的比例分点,属于中档题.9.B解析:B 【分析】在平行六面体中1111ABCD A B C D -中,利用空间向量的加法运算得到11BD BA BB BC =++,再根据模的求法,结合各条棱长均为1,共顶点A 的三条棱两两所成的角为60°,由()()2211BD BA BB BC =++222111222BA BB BC BA BB BC BA BB BC =+++⋅+⋅+⋅求解.【详解】在平行六面体中1111ABCD A B C D -中,因为各条棱长均为1,共顶点A 的三条棱两两所成的角为60°,所以111111cos120,11cos6022BA BB BA BC BC BB ⋅=⋅=⨯⨯=-⋅=⨯⨯=, 所以11BD BA BB BC =++, 所以()()2211BD BA BB BC =++,222111222BA BB BC BA BB BC BA BB BC =+++⋅+⋅+⋅,113+22+2222⎛⎫=⨯-⨯⨯= ⎪⎝⎭,所以12BD =故选:B 【点睛】本题主要考查空间向量的运算以及向量模的求法,还考查了运算求解的能力,属于中档题.10.A解析:A 【分析】过E 作EH BD ⊥,交BD 于H 点,设二面角A BD C --的大小为α,设BE 与CF 的夹角为θ,则0,2π⎡⎤θ∈⎢⎥⎣⎦,由向量数量积的运算律得出CF BE CF HE ⋅=⋅,由题意可得出12HE BE =,利用数量积的定义可求出cos ,CF BE <>的值,即可求出cos θ的值,进而利用同角三角函数的平方关系可求出sin θ的值. 【详解】如下图所示,过E 作EH BD ⊥,交BD 于H 点,设BE 与CF 的夹角为θ,则0,2π⎡⎤θ∈⎢⎥⎣⎦, 记二面角A BD C --的大小为α,()CF BE CF BH HE CF HE ⋅=⋅+=⋅, 即()cos CF BE CF HE πα⋅=⋅-,即11cos ,23CF BE CF BE CF BE ⎛⎫⋅<>=⋅⋅- ⎪⎝⎭,1cos ,6CF BE ∴<>=-,所以1cos 6θ=,即35sin 6θ=,故选:A .【点睛】本题考查异面直线所成角的计算,同时也考查了二面角的定义,涉及利用空间向量数量积的计算,考查计算能力,属于中等题.11.B解析:B 【分析】利用向量运算得到131442MN AB AC AD =--+得到答案. 【详解】()3113142442MN MB BA AN AB AC AB AD AB AC AD =++=--+=--+ 故12x y z ++=- 故选:B 【点睛】本题考查了空间向量的运算,意在考查学生的计算能力.12.B解析:B 【分析】由CD CA AB BD =++,两边平方后展开整理,即可求得2CD ,则CD 的长可求. 【详解】 解:CD CA AB BD =++,∴2222222CD CA AB BD CA AB CA BD AB BD =+++++,CA AB ⊥,BD AB ⊥,∴0CA AB =,0BD AB =,()1||||cos 1801201212CA BD CA BD =︒-︒=⨯⨯=.∴2124219CD =+++⨯=,||3CD ∴=,故选:B . 【点睛】本题考查了向量的多边形法则、数量积的运算性质、向量垂直与数量积的关系,考查了空间想象能力,考查了推理能力与计算能力,属于中档题.13.D解析:D 【分析】首先利用坐标法,排除错误选项,然后对符合的选项验证存在,λμ使得AM AB AC λμ=+,由此得出正确选项.【详解】不妨设()()()()0,0,0,1,0,1,0,0,1,0,1,1O A B C .对于A 选项,()1,1,3OM OA OB OC =++=,由于M 的竖坐标31>,故M 不在平面ABC 上,故A 选项错误.对于B 选项,()231,3,6OM OA OB OC =++=,由于M 的竖坐标61>,故M 不在平面ABC 上,故B 选项错误. 对于C 选项,111113,,222222OM OA OB OC ⎛⎫=++= ⎪⎝⎭,由于M 的竖坐标312>,故M 不在平面ABC 上,故C 选项错误.对于D 选项,11111,,133333OM OA OB OC ⎛⎫=++= ⎪⎝⎭,由于M 的竖坐标为1,故M 在平面ABC 上,也即,,,A B C M 四点共面.下面证明结论一定成立: 由111333OM OA OB OC =++,得()()1133OM OA OB OA OC OA -=-+-, 即1133AM AB AC =+,故存在13λμ==,使得AM AB AC λμ=+成立,也即,,,A B C M 四点共面.故选:D.【点睛】本小题主要考查空间四点共面的证明方法,考查空间向量的线性运算,考查数形结合的数学思想方法,考查化归与转化的数学思想方法,属于中档题.二、填空题14.【分析】设平面的夹角为利用空间向量夹角公式得:由已知知建立关于的方程解方程即可得到答案【详解】设平面的夹角为又面的法向量面的法向量则利用空间向量夹角公式得:由已知得故故即解得:故答案为:【点睛】结论 解析:2±【分析】设平面,αβ的夹角为θ,利用空间向量夹角公式得:2cos 32⋅==+m n m nλθλ,由已知34sin 6=θ,知21cos 18=θ,建立关于λ的方程,解方程即可得到答案.【详解】设平面,αβ的夹角为θ,又面α的法向量(1,,1)n λ=,面β的法向量(2,1,2)m =--, 则利用空间向量夹角公式得:2222cos 1141432⋅--===+++++m n m nλλθλλ由已知得sin 6=θ,故22221cos 1sin 1118=-=-=-=⎝⎭⎝⎭θθ故2118=,即2222119(2)1822=⇒=++λλλλ,解得:λ=故答案为: 【点睛】结论点睛:本题考查利用空间向量求立体几何常考查的夹角:设直线,l m 的方向向量分别为,a b ,平面,αβ的法向量分别为,u v ,则 ①两直线,l m 所成的角为θ(02πθ<≤),cos a b a bθ⋅=;②直线l 与平面α所成的角为θ(02πθ≤≤),sin a u a uθ⋅=;③二面角l αβ--的大小为θ(0θπ≤≤),cos .u v u vθ⋅=15.【分析】以点为坐标原点所在直线分别为轴建立空间直角坐标系写出向量的坐标利用空间向量法可求得直线与直线所成角的余弦值【详解】如下图所示以点为坐标原点所在直线分别为轴建立空间直角坐标系则点因此直线与直线 【分析】以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系,写出向量1A E 、1B F 的坐标,利用空间向量法可求得直线1A E 与直线1B F 所成角的余弦值. 【详解】如下图所示,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系D xyz -,则点()12,0,4A 、()12,2,4B、()0,2,2E 、()1,1,0F , ()12,2,2A E =--,()11,1,4B F =---,11111126cos ,2332A EB F A E B F A E B F⋅<>===⨯⋅, 因此,直线1A E 与直线1B F 26. 故答案为:269. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.16.3【分析】以为原点以分别为轴轴轴正方向建立空间直角坐标系设根据则可得从而点在底面内的轨迹为一条线段从而可得答案【详解】以为原点以分别为轴轴轴正方向建立空间直角坐标系则设则由则即则当时设所以点在底面内解析:3 【分析】以D 为原点,以,,DA DC DD '分别为x 轴,y 轴,z 轴正方向建立空间直角坐标系,设(),,0P x y ,根据11B P D E ⊥,则110PB ED ⋅=,可得220x y +-=,从而点P 在底面ABCD 内的轨迹为一条线段AF ,从而可得答案.【详解】以D 为原点,以,,DA DC DD '分别为x 轴,y 轴,z 轴正方向建立空间直角坐标系, 则()()()112,2,2,1,2,0,0,0,2B E D ,设(),,0P x y ,则02,02x y ≤≤≤≤()12,2,2PB x y =--,()11,2,2ED =--由11B P D E ⊥,则110PB ED ⋅=,即()22240x y -+⨯-+=,则220x y +-= 当0x =时,1y =,设()0,1,0F所以点P 在底面ABCD 内的轨迹为一条线段AF , 所以()()2221224548B P x y y y =-+-+=-+,则01y ≤≤又二次函数2548t y y =-+的对称轴为25,当01y ≤≤时,当1y =时,1B P 有最大值3. 故答案为:3【点睛】关键点睛:本题考查根据垂直关系得出动点的轨迹从而求线段的长度的最值,解答的关键是建立坐标系,利用向量根据11B P D E ⊥,则110PB ED ⋅=,可得220x y +-=,从而点P 在底面ABCD 内的轨迹为一条线段AF ,可得01y ≤≤,从而可出答案,属于中档题.17.②④【分析】由题意知abAC 三条直线两两相互垂直构建如图所示的长方体|AC|=1|AB|=2斜边AB 以直线AC 为旋转轴则A 点保持不变B 点的运动轨迹是以C 为圆心为半径的圆以C 坐标原点以CD 为x 轴CB 为解析:②④ 【分析】由题意知,a 、b 、AC 三条直线两两相互垂直,构建如图所示的长方体,|AC |=1,|AB |=2,斜边AB 以直线AC 为旋转轴,则A 点保持不变,B 点的运动轨迹是以C 为圆心,3为半径的圆,以C 坐标原点,以CD 为x 轴,CB 为y 轴,CA 为z 轴,建立空间直角坐标系,利用向量法求出结果.【详解】由题意知,a 、b 、AC 三条直线两两相互垂直,画出图形如图,不妨设图中所示的长方体高为13 故|AC |=1,|AB |=2,斜边AB 以直线AC 为旋转轴,则A 点保持不变, B 点的运动轨迹是以C 3为半径的圆,以C 坐标原点,以CD 为x 轴,CB 为y 轴,CA 为z 轴,建立空间直角坐标系,则D 3,0,0),A (0,0,1),直线a 的方向单位向量a =(0,1,0),|a |=1, 直线b 的方向单位向量b =(1,0,0),|b |=1,设B 点在运动过程中的坐标中的坐标B ′3θ3θ,0),其中θ为B ′C 与CD 的夹角,[02θπ∈,),∴AB ′在运动过程中的向量,'AB =3θ3θ,﹣1),|'AB |=2, 设'AB 与a 所成夹角为α∈[0,2π], 则()()10103cos 233,,,,θθα--⋅=='⋅cos sin a AB |sin θ|∈[03, ∴α∈[6π,2π],∴③错误,④正确. 设'AB 与b 所成夹角为β∈[0,2π], ()()11003c 33os ,-,,,θθβ-⋅'⋅===''⋅⋅cos sin AB b AB bb AB θ|,当'AB 与a 夹角为60°时,即α3π=,|sin θ|3πα===,∵cos 2θ+sin 2θ=1,∴cos β=|cos θ|=,∵β∈[0,2π],∴4πβ=,此时'AB 与b 的夹角为45°,∴②正确,①错误. 故答案为:②④. 【点睛】本题考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,涉及空间向量的知识点,属于中档题.18.①③④【分析】由三垂直可采用以为轴建立空间直角坐标系①中通过异面直线的夹角公式和不等式性质即可判断正确;②中结合向量数量积公式可判断错误;③采用补形法将四棱锥还原为长方体再结合等体积法即可求解三棱锥解析:①③④ 【分析】由,,AB AD AP 三垂直,可采用以,,AB AD AP 为,,x y z 轴建立空间直角坐标系,①中通过异面直线的夹角公式和不等式性质即可判断正确;②中结合向量数量积公式可判断错误;③采用补形法将四棱锥还原为长方体,再结合等体积法即可求解三棱锥E BCO -的体积为定值;④中将平面ABCD 以AD 为轴旋转到平面PAD 内形成平面''AB C D ,结合两点间直线最短即可判断正确 【详解】如图所示:以,,AB AD AP 为,,x y z 轴建立空间直角坐标系,则(0,0,1)P ,()1,0,0B ,(1,2,0)C ,设(0,,0)E y ,[]0,2y ∈,则(1,0,1)BP =-,(1,2,0)CE y =--,||cos ,||||2BP CE BP CE BP CE ⋅〈〉==≤⋅2y =时等号成立, 此时,4BP CE π〈〉=,故直线PB 与直线CE 所成的角中最小的角为45︒,①正确;(1,,0)(1,2,1)21BE PC y y ⋅=-⋅-=-,当12y =时,BE PC ⊥,②错误; 将四棱锥放入对应的长方体中,则球心为体对角线交点, 1111112323226BCE E BCO O BCE AP V V S --==⨯⨯=⨯⨯⨯⨯=△,③正确;如图所示:将平面ABCD 以AD 为轴旋转到平面PAD 内形成平面''AB C D ,则22''2222CE PE C E PE PC +=+≥=+=,当'PEC 共线时等号成立,④正确.故答案为:①③④.【点睛】本题考查向量法在立体几何中的实际应用,合理建系,学会将所求问题有效转化是解决问题的关键,如本题求线线角的最小值转化为求线线夹角的余弦值,求两直线垂直转化为数量积为0,求三棱锥体积的补形法和等体积法,利用旋转将异面直线的距离转化为共面直线的距离,属于中档题19.【分析】通过用向量的数量积转化求解距离即可【详解】解:在直角坐标系中已知现沿轴将坐标平面折成的二面角后在平面上的射影为作轴交轴于点所以所以所以故答案为:【点睛】此题考查与二面角有关的立体几何综合题考 解析:17【分析】通过用向量的数量积转化求解距离即可 【详解】解:在直角坐标系中,已知()1,6A -,()3,8B -,现沿x 轴将坐标平面折成60︒的二面角后,()1,6A -在平面xOy 上的射影为C ,作BD x ⊥轴,交x 轴于点D , 所以AB AC CD DB =++,所以2222222AB AC CD DB AC CD CD DB AC DB =+++⋅+⋅+⋅2221648268682=++-⨯⨯⨯=, 所以217AB =, 故答案为:17【点睛】此题考查与二面角有关的立体几何综合题,考查了数形结合的思想,属于中档题.20.4【分析】以为坐标原点所在直线分别为轴轴轴建立空间直角坐标系设求出平面的一个法向量则则可以得到答案【详解】解:以为坐标原点所在直线分别为轴轴轴建立如图所示的空间直角坐标系设则故设平面的一个法向量为则解析:4 【分析】以D 为坐标原点,1,,DA DC DD 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系, 设1DD a =,求出平面1ACD 的一个法向量n ,则11cos ,3n CC <>=,则可以得到答案. 【详解】解:以D 为坐标原点,1,,DA DC DD 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,设1DD a =,则(2,0,0)A ,(0,2,0)C ,1(0,0,)D a ,故(2,2,0)=-AC ,1(2,0,)AD a =-,1(0,0, )CC a =,设平面1ACD 的一个法向量为(,,)n x y z =,则122020n AC x y n AD x az ⎧⋅=-+=⎨⋅=-+=⎩,可取21,1,n a ⎛⎫= ⎪⎝⎭,故112122cos ,||||4242n CC n CC n CC a a a⋅<>===+⋅+, 又直线1CC 与平面1ACD 所成角的正弦值为13,21324a ∴=+,解得4a =.故答案为:4.【点睛】本题考查根据线面角,利用向量法求柱体的高,属于中档题.21.【分析】由题知:再给式子平方即可求出的长度【详解】如图由题意可知所以所以故答案为:【点睛】本题主要考查利用向量法求线段长度解题时要认真审题注意向量法的合理应用属于中档题 6【分析】由题知:11AC AB AD AA =++,再给式子平方即可求出1AC 的长度 【详解】如图,由题意可知,111AC AB AD CC AB AD AA =++=++,所以1221())(AC AB AD AA =++ 222111222AB AD AA AB AD AB AA AD AA +=++++1112(cos 60cos 60cos 60)6+++++==.所以16AC =6 【点睛】本题主要考查利用向量法求线段长度,解题时要认真审题,注意向量法的合理应用.属于中档题.22.2【分析】由题意知向量所以由空间向量的坐标运算即可求解【详解】由题意知向量所以又由解得【点睛】本题主要考查了空间向量的坐标运算及空间向量的数量积的运算其中解答中熟记空间向量的数量积的运算公式准确运算解析:2【分析】由题意知,向量()a a b λ⊥-,所以()0a a b λ⋅-=,由空间向量的坐标运算,即可求解. 【详解】由题意知,向量()a ab λ⊥-,所以()0a a b λ⋅-=, 又由()()()()222222132112311470a a b a a b λλλλ⎛⎫⎡⎤⋅-=-⋅=-++--⨯-+⨯+⨯=-=⎪⎣⎦⎝⎭,解得2λ=. 【点睛】本题主要考查了空间向量的坐标运算,及空间向量的数量积的运算,其中解答中熟记空间向量的数量积的运算公式,准确运算是解答的关键,着重考查了运算与求解能力,属于基础题.23.【分析】以点为坐标原点所在直线分别为轴建立空间直角坐标系利用空间向量法可求得直线与平面所成角的正弦值【详解】以点为坐标原点所在直线分别为轴建立如下图所示的空间直角坐标系则设平面的法向量为由可得令则可 解析:63【分析】以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系D xyz -,利用空间向量法可求得直线BM 与平面11B D M 所成角的正弦值.【详解】以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系D xyz -,则()2,2,0B、(12,2,B、(10,0,D、(M ,设平面11B D M 的法向量为(),,n x y z =,()112,2,0D B =,(12,0,D M =,由111100n D B n D M ⎧⋅=⎪⎨⋅=⎪⎩,可得22020x y x +=⎧⎪⎨=⎪⎩,令1x =,则1y =-,z =()1,1,n =-,(0,2,2BM =-,cos ,32n BM n BM n BM⋅<>===⨯⋅, 因此,BM 与平面11B D M 所成角的正弦值是3. . 【点睛】方法点睛:计算线面角,一般有如下几种方法:(1)利用面面垂直的性质定理,得到线面垂直,进而确定线面角的垂足,明确斜线在平面内的射影,即可确定线面角;(2)在构成线面角的直角三角形中,可利用等体积法求解垂线段的长度h ,从而不必作出线面角,则线面角θ满足sin hlθ=(l 为斜线段长),进而可求得线面角; (3)建立空间直角坐标系,利用向量法求解,设a 为直线l 的方向向量,n 为平面的法向量,则线面角θ的正弦值为sin cos ,a n θ=<>.24.【分析】建立如图所示的空间直角坐标系设由向量法求两异面直线所成角的余弦表示为的函数求出最大值和最小值后得的范围这里需引入函数用导数求出函数的最小值从而得出的最大值【详解】以为轴为轴建立如图所示的空间解析:,62ππ⎡⎤⎢⎥⎣⎦【分析】建立如图所示的空间直角坐标系,设CM kCB =,由向量法求两异面直线所成角的余弦cos θ表示为k 的函数,求出最大值和最小值后得θ的范围.这里需引入函数()f x 用导数求出函数的最小值,从而得出cos θ的最大值. 【详解】以AB 为x 轴,AA '为z 轴建立如图所示的空间直角坐标系A xyz -,则(2,0,B ',(2,0,0)B ,(1,3,0)C,(1,3,2C ',设CM kCB =,则k ∈R ,(1,CB =,(0,0,(1,(,,C M C C CM k k ''=+=-+=-.又(2,0,AB '=, 设直线AB '与C M '所成角为θ, 则cos 2AB C M AB C M θ''⋅==''=, 4k =时,min (cos )0θ=,设()f x =,则32224()(2)x f x x +'==+,12x <-时,()0f x '<,()f x 递减,12x >-时,()0f x '>,()f x 递增,∴12x =-时,()f x 取得极小值也是最小值132f ⎛⎫-=- ⎪⎝⎭,4x <时,()0f x <,4x >时,222(4)8162x x x x -=-+<+1<,∴max ()3f x =,max (cos )2θ==, 即0cos 2θ≤≤,∴,62ππθ⎡⎤∈⎢⎥⎣⎦.故答案为:,62ππ⎡⎤⎢⎥⎣⎦.【点睛】方法点睛:本题考查求异面直线所成的角.解题方法是空间向量法.求异面直线所成角的方法:(1)几何法(定义法):作出异面直线所成的角并证明,然后解三角形得解;(2)向量法:建立空间直角坐标系,求出两直线的方向向量的夹角余弦的绝对值得异面直线所成角的余弦值,从而得角.25.168【分析】根据向量设列出方程组求得得到再利用向量的数量积的运算公式即可求解【详解】由题意向量设又因为所以即解得所以所以故答案为:【点睛】本题主要考查了向量的共线的坐标运算以及向量的数量积的运算其解析:168 【分析】根据向量//a b ,设λab ,列出方程组,求得12λ=,得到(2,4,8),(4,8,16)a b ==,再利用向量的数量积的运算公式,即可求解. 【详解】由题意,向量//a b ,设λab ,又因为(2,23,2),(4,21,32)a m n b m n =-+=+-, 所以(2,23,2)(4,21,32)m n m n λ-+=+-,即2423(21)2(32)m m n n λλλ=⨯⎧⎪-=+⎨⎪+=-⎩,解得17,,622m n λ===,所以(2,4,8),(4,8,16)a b ==, 所以2448816168a b ⋅=⨯+⨯+⨯=.故答案为:168. 【点睛】本题主要考查了向量的共线的坐标运算,以及向量的数量积的运算,其中解答中熟记向量的共线条件,熟练应用向量的数量积的运算公式求解是解答的关键,着重考查了推理与运算能力,属于基础题.26.【分析】直接利用空间向量的数量积求解两个平面的二面角的大小即可【详解】解:两个平面的法向量分别为则这两个平面所成的锐二面角的大小是这两个平面所成的锐二面角的余弦值为故答案为:【点睛】本题考查空间二面解析:5【分析】直接利用空间向量的数量积求解两个平面的二面角的大小即可. 【详解】解:两个平面α,β的法向量分别为(4,0,3)u →=,(1,1,0)v →=-, 则这两个平面所成的锐二面角的大小是θ,2cos 4a ba bθ→→→→+===这两个平面所成的锐二面角的余弦值为5.故答案为:5. 【点睛】本题考查空间二面角的求法,空间向量的数量积的应用,考查计算能力.。
高中数学选修一直线与圆单元测试卷题目一:(选择题)1. 设直线L过点A(3,2),斜率为3/2,则直线L的解析式为:A. y = 3/2x + 1B. y = 2/3x + 1C. y = 3/2x - 1D. y = 2/3x - 12. 设直线L过点A(2,1)和点B(-3,5),则直线L的斜率为:A. 3/7B. -7/3C. -4/5D. 5/43. 设直线L过点A(4,1)且垂直于直线y = 2x - 3,则直线L的解析式为:A. y = -1/2x + 3B. y = -1/2x - 5C. y = 2x - 7D. y = -2x + 7题目二:(填空题)1. 设直线L过点A(2,3)和点B(-1,-4),则直线L的斜率为__________。
2. 设直线L过点A(5,2)且平行于直线y = 3x - 5,则直线L的解析式为__________。
3. 设直线L过点A(-2,3)且垂直于直线y = -2x + 4,则直线L 的解析式为__________。
题目三:(解答题)1. 两条直线分别为L1:2x - 3y + 4 = 0和L2:x + 5y - 7 = 0,求直线L1和直线L2的交点坐标。
2. 圆C的圆心为(2,-1),半径为3。
求证直线y = 2x + 1与圆C 有且仅有一个交点,并求出该交点坐标。
3. 直线L过点A(1,2)且垂直于直线y = -3x + 5,求直线L的解析式。
参考答案:题目一:1. A2. C3. B题目二:1. -7/32. y = 3x - 133. y = 1/2x + 4题目三:1. 直线L1和直线L2的交点坐标为(-11/13, -1/13)。
2. a) 将直线代入圆的方程,得到4x^2 + y^2 - 8x + 2y + 3 = 0b) 解该方程得到唯一解为(2,3)。
3. 直线L的解析式为 y = 1/3x + 5/3。
一、选择题1.已知方程923310x x k -⋅+-=有两个实根,则实数k 的取值范围为( )A .2,13⎡⎤⎢⎥⎣⎦B .12,33⎛⎤ ⎥⎝⎦C .2,3⎡⎫+∞⎪⎢⎣⎭D .[1,)+∞2.已知函数()()223,ln 1,x x x f x x x λλ⎧--≤⎪=⎨->⎪⎩,若()f x 恰有两个零点,则λ的取值范围是( ) A .[)[)1,23,-+∞ B .[)[)1,23,+∞C .[)()1,22,⋃+∞D .[)1,+∞3.对于函数()f x 和()g x ,设(){}0x R f x α∈∈=,(){}0x R g x β∈∈=,若存在α、β,使得1αβ-≤,则称()f x 与()g x 互为“零点关联函数”.若函数()12x f x e x -=+-与()23g x x ax a =--+互为“零点关联函数”,则实数a 的取值范围为( ) A .7,33⎡⎤⎢⎥⎣⎦B .72,3⎡⎤⎢⎥⎣⎦C .[]2,3D .[]2,44.设函数3,()log ,x x af x x x a⎧≤=⎨>⎩()0a >, 若函数()2y f x =-有且仅有两个零点,则a的取值范围是( ) A .. ()0,2B .()0,9C .()9,+∞D .()()0,29,⋃+∞5.函数()32xy x x =-的图象大致是( )A .B .C .D .6.若函数2()x f x x e a =-恰有3个零点,则实数a 的取值范围是( ) A .24(,)e +∞ B .24(0,)e C .2(0,4)e D .(0,)+∞7.已知方程2mx e x =在(]0,8上有两个不等的实数根,则实数m 的取值范围为( )A .1ln 2,84⎛⎫ ⎪⎝⎭B .1ln 2,164⎡⎫⎪⎢⎣⎭C .3ln 22,4e ⎡⎫⎪⎢⎣⎭ D .122,4n e ⎡⎫⎪⎢⎣⎭ 8.下列函数中,既是偶函数又存在零点的是( )A .y =lnxB .21y x =+C .y =sinxD .y =cosx9.蔬菜价格随着季节的变化而有所变化.根据对农贸市场蔬菜价格的调查得知,购买2千克甲种蔬菜与1千克乙种蔬菜所需费用之和大于8元,而购买4千克甲种蔬菜与5千克乙种蔬菜所需费用之和小于22元.设购买2千克甲种蔬菜所需费用为A 元,购买3千克乙种蔬菜所需费用为B 元,则( ). A .A B < B .A B =C .A B >D .A ,B 大小不确定10.已知函数()21xf x x =++,()2log 1g x x x =++,()2log 1h x x =-的零点依次为,,a b c ,则( )A .a b c <<B .a c b <<C .b c a <<D .b a c <<11.某高校为提升科研能力,计划逐年加大科研经费投人.若该高校2018年全年投入科研经费1300万元,在此基础上,每年投人的科研经费比上一年增长12%,则该高校全年投入的科研经费开始超过2000万元的年份是(参考数据:lg1.120.05≈,lg1.30.11≈,lg 20.30≈)( )A .2020年B .2021年C .2022年D .2023年12.若函数()22f x x x a =--有4个零点,则实数a 的取值范围为( ) A .01a <≤B .10a -<<C .0a =或1a >D .01a <<二、填空题13.已知函数()()()[)21,,12,1,x x x f x x ⎧+∈-∞⎪=⎨∈+∞⎪⎩,若存在实数1x ,2x ,3x ,当123x x x <<时,有()()()123f x f x f x ==成立,则()()123x x f x +⋅的取值范围是________.14.已知函数227,03()1108,333x x f x x x x ⎧-<≤⎪=⎨-+>⎪⎩,若()y f x =的图象与y m =的图象有A ,B ,C ,D 四个不同的交点,交点横坐标为1234,,,x x x x ,满足1234x x x x <<<,则()()341233222x x x x --++的取值范围是________15.函数()11f x x =-,()g x kx = ,若方程()()f x g x =有3个不等的实数根,则实数k 的取值范围为________.16.小菲在学校选修课中了解到艾宾浩斯记忆曲线,为了解自己记忆一组单词的情况,她记录了随后一个月的有关数据,绘制散点图,拟合了记忆保持量与时间(天)之间的函数关系:()1271012019130.520x x f x x x ,<,<-⎧-+≤⎪⎪=⎨⎪+≤⎪⎩某同学根据小菲拟合后的信息得到以下结论: ①随着时间的增加,小菲的单词记忆保持量降低; ②9天后,小菲的单词记忆保持量低于40%; ③26天后,小菲的单词记忆保持量不足20%.其中正确的结论序号有______.(注:请写出所有正确结论的序号)17.已知函数()2log ,02sin ,2104x x f x x x π⎧<<⎪=⎨⎛⎫≤≤ ⎪⎪⎝⎭⎩,若1234x x x x <<<且()()()()1234f x f x f x f x ===,则()()341222x x x x --的取值范围为____________.18.已知定义域为R 的奇函数()f x 满足()()2f x f x -=+,且当01x ≤≤时,()3f x x x =+.若函数()()th x f x x=-在[)(]4,00,4-⋃上有4个不同的零点,则实数t的取值范围是_____________.19.用符号[]x 表示不超过x 的最大整数,例如:[]0.60=;[]2.32=;[]55=.设函数()()()()2222ln 22ln 2f x ax x ax x =-+-有三个零点1x ,2x ,3x ()123x x x <<且[][][]1233x x x ++=,则a 的取值范围是_____________.20.若函数()231f x x x a x =+--恰有4个零点,则实数a 的取值范围为______.三、解答题21.已知函数()11f x x=-,实数a 、b 满足a b <. (1)在下面平面直角坐标系中画出函数()f x 的图象;(2)若函数在区间[],a b 上的值域为1,33⎡⎤⎢⎥⎣⎦,求+a b 的值;(3)若函数()f x 的定义域是[],a b ,值域是[](),0ma mb m >,求实数m 的取值范围. 22.如图,电路中电源的电动势为E ,内电阻为r ,1R 为固定电阻,2R 是一个滑动变阻器.其中电功率与外电阻2R 满足关系式2212()EP R r R R =++.(1)若 6.0=E V , 1.0r =Ω,10.5R =Ω,求 5.625P W =时的滑动电阻值2R . (2)当2R 调至何值时,消耗的电功率P 最大?最大电功率是多少?23.某厂家拟定在2020年举行促销活动,经调查测算,该产品的年销量(即该厂的年产量)x 万件与年促销费用m (m ≥0)万元满足x =3-1km + (k 为常数).如果不搞促销活动,那么该产品的年销量只能是1万件.已知2020年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2020年该产品的利润y 万元表示为年促销费用m 万元的函数; (2)该厂家2020年的促销费用投入多少万元时,厂家利润最大?24.某公司为了变废为宝,节约资源,新上了一个从生活垃圾中提炼生物柴油的项目,经测算该项目月处理成本y (元)与月处理量x (吨)之间的函数关系可以近似地表示为:[)[)3221805040,120,1443120080000,144,5002x x x x y x x x ⎧-+∈⎪⎪=⎨⎪-+∈⎪⎩,且每处理一吨生活垃圾,可得到能利用的生物柴油价值为200元.(1)当[]200,300x ∈时,判断该项目能否获利?如果获利,求出最大利润:如果不获利,则月处理量x 为多少吨时可使亏损量最小?(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?25.已知函数()91xf x =-,()31xg x a =-.(1)若函数()()()h x f x g x =-有两个零点,求实数a 的取值范围; (2)当R x ∈时,不等式()()f x g x ≥恒成立,求实数a 的取值范围; (3)当0a >时,求函数()()()x f x g x ϕ=+在区间[]1,1-上的最值. 26.已知函数22,01,()ln ,1x x f x x x e-≤<⎧=⎨≤≤⎩,其中e 为自然对数的底数.(1)求(f f 的值;(2)作出函数()()1F x f x =-的图象,并指出单调递减区间(无需证明) ;(3)若实数0x 满足00(())f f x x =,则称0x 为()f x 的二阶不动点,求函数()f x 的二阶不动点的个数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】先将指数型方程的解的问题转化为二次方程的根的问题,再利用判别式和韦达定理即可求出实数k 的取值范围. 【详解】设3x t =,则0t >,则方程923310x x k -⋅+-=有两个实根可转化为方程22310t t k -+-=有两个正根,则利用判别式和韦达定理得()()22431020310k k ⎧∆=---≥⎪>⎨⎪->⎩,解得:1233k <≤; 所以实数k 的取值范围为12,33⎛⎤⎥⎝⎦. 故选:B. 【点睛】关键点睛:将指数型方程的解的问题转化为二次方程的根的问题是解决本题的关键.2.A解析:A 【分析】分别求出函数223y x x =--和()ln 1y x =-的零点,然后作出函数223y x x =--与函数()ln 1y x =-的图象,结合函数()f x 恰有两个零点,可得出实数λ的取值范围. 【详解】解方程2230x x --=,解得11x =-,23x =, 解方程()ln 10x -=,解得2x =.作出函数223y x x =--与函数()ln 1y x =-的图象如下图所示:要使得函数()()223,ln 1,x x x f x x x λλ⎧--≤⎪=⎨->⎪⎩恰有两个零点,则12λ-≤<或3λ≥.因此,实数λ的取值范围是[)[)1,23,-+∞.故选:A. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.3.C解析:C 【分析】先求得函数()f x 的零点为1x =,进而可得()g x 的零点β满足02β≤≤,由二次函数的图象与性质即可得解. 【详解】由题意,函数()12x f x ex -=+-单调递增,且()10f =,所以函数()f x 的零点为1x =, 设()23g x x ax a =--+的零点为β,则11β-≤,则02β≤≤,由于()23g x x ax a =--+必过点()1,4A -,故要使其零点在区间[]0,2上,则()()020g g ⋅≤或()()00200022g g a ⎧>⎪>⎪⎪⎨∆≥⎪⎪≤≤⎪⎩,即()()3730a a -+-≤或()230370430022a a a a a -+>⎧⎪-+>⎪⎪⎨--+≥⎪⎪≤≤⎪⎩,所以23a ≤≤,故选:C. 【点睛】关键点点睛:解决本题的关键是将题目条件转化为函数()g x 零点的范围,再由二次函数的图象与性质即可得解.4.D解析:D 【分析】函数()2y f x =-有且仅有两个零点等价于()y f x =与2y =两个函数图象有且仅有两个交点,数形结合即可求出a 的取值范围. 【详解】令2x =可得12x =-,22x =;令3log 2x =得39x =函数()2y f x =-有且仅有两个零点等价于()y f x =与2y =两个函数图象有且仅有两个交点,作3,()log ,x x a f x x x a⎧≤=⎨>⎩()0a >图象如图:当02a <<时,()y f x =与2y =两个函数图象有且仅有两个交点,交点横坐标为12x =-,39x =,符合题意;当29a ≤≤时,()y f x =与2y =两个函数图象有且仅有3个交点,交点横坐标为12x =-,22x =,39x =,不符合题意;当9a >时,()y f x =与2y =两个函数图象有且仅有2个交点,交点横坐标为12x =-,22x =,不符合题意;所以a 的取值范围是:()()0,29,⋃+∞, 故选:D 【点睛】本题主要考查了已知函数的零点个数求参数的范围,函数的零点转化为对应方程的根,转化为函数图象的交点,属于中档题.5.B解析:B 【分析】先根据函数的奇偶性排除部分选项,然后令y =0,结合图象分析求解. 【详解】因为函数()32xy x x =-定义域为R ,且()()()()()()3322xxf x x x x x f x --=---=--=-,所以函数是奇函数,故排除C ,由()()()32112xxy x x x x x =-=-+,令y =0得x =-1,x =0,x =1,当01x <<时,0y <,当1x >时,0y >,排除AD故选:B 【点睛】本题主要考查函数图象的识别以及函数的奇偶性和零点的应用,还考查了数形结合的思想和分析求解问题的能力,属于中档题.6.B解析:B 【分析】求导函数,求出函数的极值,利用函数2()x f x x e a =-恰有三个零点,即可求实数a 的取值范围. 【详解】函数2xy x e =的导数为2'2(2)x x xy xe x e xe x =+=+, 令'0y =,则0x =或2-,20x -<<上单调递减,(,2),(0,)-∞-+∞上单调递增,所以0或2-是函数y 的极值点, 函数的极值为:224(0)0,(2)4f f ee-=-==, 函数2()xf x x e a =-恰有三个零点,则实数的取值范围是:24(0,)e. 故选B. 【点睛】该题考查的是有关结合函数零点个数,来确定参数的取值范围的问题,在解题的过程中,注意应用导数研究函数图象的走向,利用数形结合思想,转化为函数图象间交点个数的问题,难度不大.7.C解析:C 【分析】由题意可得方程2mx e x =在(]0,8上有两个不等的实数根,设()(]ln ,0,8xf x x x=∈,求得函数的导数和单调性,可得极值和最值,画出()y f x =的图象,可得m 的不等式,即可求解. 【详解】由题意,方程2mx e x =在(]0,8上有两个不等的实数根, 即为2ln mx x =在(]0,8上有两个不等的实数根, 即1ln 2x m x=在(]0,8上有两个不等的实数根, 设()(]ln ,0,8x f x x x =∈,则()21ln xf x x -'=, 当(,8)x e ∈时,()0f x '<,函数()f x 递减, 当(0,)x e ∈时,()0f x '>,函数()f x 递增,所以当x e =时,函数()f x 取得最大值1e,且()ln83ln 2888f ==, 所以3ln 2182m e ≤<,解得3ln 224m e≤<,故选C.【点睛】本题主要考查了函数与方程,以及导数在函数中的综合应用,其中解答中把方程的根转化为1ln 2x m x =在(]0,8上有两个不等的实数根,利用导数求得函数()ln x f x x =的单调性与最值是解答的关键,着重考查了转化思想,以及推理与运算能力.8.D解析:D 【详解】选项A :ln y x =的定义域为(0,+∞),故ln y x =不具备奇偶性,故A 错误;选项B :21y x =+是偶函数,但210y x =+=无解,即不存在零点,故B 错误;选项C :sin y x =是奇函数,故C 错; 选项D :cos y x =是偶函数, 且cos 02y x x k ππ==⇒=+,k z ∈,故D 项正确.考点:本题主要考查函数的奇偶性和零点的概念.9.C解析:C 【解析】设甲、乙两种蔬菜的价格分别为x ,y 元, 则284522x y x y +>⎧⎨+<⎩,2A x =,3B y =,两式分别乘以22,8, 整理得12180x y ->, 即230x y ->, 所以A B >. 故选C .10.A解析:A 【解析】令函数()210xf x x =++=,可得0x <,即0a <,令()2log 10g x x x =++=,则01x <<,即01b <<,令()2log 10h x x =-=,可知2x =,即2c =,显然a b c <<,故选A.11.C解析:C 【分析】由题意知,2019年是第1年,则第n 年全年投入的科研经费为1300 1.12n ⨯万元,然后解不等式1300 1.122000n ⨯>,将指数式化为对数式,得出n 的取值范围,即可得出答案. 【详解】若2019年是第1年,则第n 年全年投入的科研经费为1300 1.12n ⨯万元, 由1300 1.122000n ⨯>可得1.3 1.122n ⨯>,lg1.3lg1.12lg 2n ∴+>, 所以0.050.19n ⨯>, 得 3.8n >,则正整数n 的最小值为4, 所以第4年,即2022年全年投入的科研经费开始超过2000万元, 故选:C. 【点睛】本题考查指数函数模型的应用,解题的关键就是列出指数不等式,考查函数思想的应用与计算能力,属于中等题.12.D解析:D 【分析】 令0f x,可得22x x a -=,作出()22g x x x =-的图象,令直线y a =与()g x 的图象有4个交点,可求出实数a 的取值范围. 【详解】 令0f x,则22x x a -=,构造函数()22g x x x =-,作出()g x 的图象,如下图,()g x 在()0,2上的最大值为()1121g =-=,当01a <<时,直线y a =与()g x 的图象有4个交点, 所以函数()f x 有4个零点,实数a 的取值范围为01a <<. 故选:D. 【点睛】本题考查函数的零点,注意利用数形结合方法,考查学生的计算求解能力,属于中档题.二、填空题13.【分析】由函数解析式得到函数图象根据已知条件结合图象知即可求的取值范围【详解】由解析式可得如下图象:如图知:当时有成立则且即∴故答案为:【点睛】关键点点睛:由函数解析式画出函数图象由已知条件知的范围 解析:(]8,4--【分析】由函数解析式得到函数图象,根据已知条件结合图象知()()()123[2,4)f x f x f x ==∈,1212x x +=-,即可求()()123x x f x +⋅的取值范围. 【详解】由解析式可得如下图象:如图知:123,,x x x R ∃∈,当123x x x <<时,有()()()123f x f x f x ==成立,则()()()123[2,4)f x f x f x ==∈,且1212x x +=-,即122x x +=-, ∴()()123(8,4]x x f x +⋅∈--, 故答案为:(]8,4--. 【点睛】关键点点睛:由函数解析式画出函数图象,由已知条件知()3f x 的范围以及()12x x +的值,进而求出对应函数式的范围.14.【分析】根据题意得进而得由于故的取值范围是【详解】解:如图根据题意得满足:即关于直线对称故所以所以由于所以所以故答案为:【点睛】本题考查函数与方程的综合应用考查数形结合思想与运算求解能力是中档题本题 解析:(15,22)【分析】根据题意得122214x x +=,3410x x +=,进而得()()2334312103321142222x x x x x x -+---=+++,由于()33,4x ∈,故()()341233222x x x x --++的取值范围是(15,22).【详解】解:如图,根据题意得12,x x 满足:1227270x x -+-=,即122214x x +=.34,x x 关于直线5x =对称,故3410x x +=,所以4310x x =-,()33,4x ∈所以()()()()23343331210333721141422222x x x x x x x x --+----=+=+++,由于()33,4x ∈,()()3232321540,031x x x -=--+∈-+,所以()233120121,8x x --+∈所以()()()()()233433312103337211414215,222222x x x x x x x x -+-----++=+=+∈故答案为:(15,22) 【点睛】本题考查函数与方程的综合应用,考查数形结合思想与运算求解能力,是中档题.本题解题的关键在于根据题意作图得122214x x +=,3410x x +=,()33,4x ∈,故将问题转化为求2331102142x x -+-+,()33,4x ∈的值域问题.15.【分析】作出函数的图象及与函数的图象求出相切时的值即可得答案;【详解】分别作出函数的图象即当与相切时方程有3个不等的实数根两函数图象有3个交点由图可知时符合题意故答案为:【点睛】利用数形结合思想作出 解析:4k >【分析】 作出函数()11f x x =-的图象及与函数()g x kx =的图象,求出相切时k 的值即可得答案; 【详解】分别作出函数的图象, 即21101kx kx kx x -=⇒-+=- 当()g x kx =与()11f x x =-相切时, 24040k k k k ⎧∆=-=⇒=⎨≠⎩,, 方程()()f x g x =有3个不等的实数根,∴两函数图象有3个交点,由图可知4k >时符合题意, 故答案为:4k >.【点睛】利用数形结合思想,作出两函数的图象,首先找到临界位置,即相切位置.16.①②【分析】由分段函数可得函数的单调性可判断①;由的值可判断②;由的值可判断③【详解】可得随着的增加而减少故①正确;当时9天后小菲的单词记忆保持量低于故②正确;故③错误故答案为①②【点睛】本题考查分解析:①② 【分析】由分段函数可得函数的单调性,可判断①;由()9f 的值可判断②;由()26f 的值可判断③. 【详解】()1271012019130.520x xf x x x ,<,<-⎧-+≤⎪⎪=⎨⎪+≤⎪⎩, 可得()f x 随着x 的增加而减少,故①正确;当130x <≤时,()1219520f x x -+=,()1219990.35520f -=+⋅=,9天后,小菲的单词记忆保持量低于40%,故②正确;()1219126265205f -=+⋅>,故③错误,故答案为①②.【点睛】本题考查分段函数的图象和性质,主要是单调性和函数的取值范围的求法,考查判断能力和运算能力,属于基础题.17.【分析】根据解析式画出函数图象去绝对值并结合对数的运算性质求得根据正弦函数的对称性求得将化为结合二次函数的性质即可得出结果【详解】函数画出函数图象如下图所示:由函数图象可知若则因为与关于对称则且去绝 解析:()0,12【分析】根据解析式,画出函数图象.去绝对值并结合对数的运算性质求得12x x ⋅,根据正弦函数的对称性求得34x x +,将()()341222x x x x --化为2441220x x -+-,结合二次函数的性质,即可得出结果. 【详解】函数()2log ,02sin ,2104x x f x x x π⎧<<⎪=⎨⎛⎫≤≤ ⎪⎪⎝⎭⎩,画出函数图象如下图所示:由函数图象可知,若()()()()1234f x f x f x f x k ====,则()0,1k ∈, 因为1234x x x x <<<,3x 与4x 关于6x =对称, 则2122log log x x =,3412x x +=,且4810x <<, 去绝对值化简可得2122log log x x -=,即2122log log 0x x +=,由对数运算可得()212log 0x x ⋅= 所以121x x ⋅=,则()()()3434343412222420x x x xx x x x x x --=-=++-()23444442012201220x x x x x x =-=--=-+-,令21220y x x =-+-,()8,10x ∈,因为21220y x x =-+-是开口向下,对称轴为6x =的二次函数, 所以21220y x x =-+-在()8,10x ∈上单调递减,所以10012020649620y -+-<<-+-, 即012y <<; 即()()()34244122212200,12x x x xx x --=-+-∈故答案为: ()0,12.【点睛】本题考查了分段函数的性质及应用,涉及求二次函数的最值,根据数形结合的方法求解即可,属于中档题.18.【分析】推导出函数的周期和对称轴方程并作出函数在上的图象数形结合可得出关于的不等式进而可求得实数的取值范围【详解】由得:所以函数的周期为由得所以函数关于直线对称所以函数在上单调递增在上的图象如下:函 解析:()6,2-【分析】推导出函数()y f x =的周期和对称轴方程,并作出函数()y f x =在[]4,4-上的图象,数形结合可得出关于t 的不等式,进而可求得实数t 的取值范围. 【详解】由()()()()2f x f x f x f x ⎧-=+⎪⎨-=-⎪⎩得:()()4f x f x +=,所以,函数()y f x =的周期为4, 由()()2f x f x -=+得()()11f x f x -=+,所以,函数()y f x =关于直线1x =对称,()3f x x x =+,[]0,1x ∈,()2310f x x '=+>,所以,函数()y f x =在[]0,1x ∈上单调递增,()y f x =在[]4,4x ∈-上的图象如下:函数()()t h x f x x =-的零点,即()y f x =与()tg x x=的图象的交点. ①当0t >时,要有四个交点,则需满足()()11g f <,即2t <,此时02t <<; ②当0t <时,要有四个交点,则需满足()()33g f >,即23t>-,即60t -<<; ③当0t =时,()0g x =,即()y f x =在[)(]4,00,4-⋃上的零点,有4个,分别是4x =-、2-、2、4,满足题意.综上:()6,2t ∈-. 故答案为:()6,2-. 【点睛】本题利用函数的零点个数求参数,一般转化为两个函数的交点个数,考查分类讨论思想与数形结合思想的应用,属于中等题.19.【分析】由题意可知得;令可知单调递增区间为单调递减为作出的草图由图可知所以而所以即可得由此即可求出结果【详解】因为所以①或②由①得由②得令则所以当时单调递增时单调递减事实上当时当时由图显然所以而所以解析:2ln 2,ln 69⎡⎫--⎪⎢⎣⎭【分析】由题意可知()()()21ln 22ln 20f x x ax x =-+=,得22ln 2x a x -=;令()22ln 2xg x x =,可知()g x 单调递增区间为e ⎛ ⎝⎭,()g x 单调递减为e ⎛⎫+∞ ⎪ ⎪⎝⎭,作出()g x 的草图,由图可知()10,1x ∈,()21,22ex =∈,所以[]10x =,[]21x =,而[][][]1233x x x ++=,所以[]32x =,即[)32,3x ∈,可得()()23a g a g ⎧-≤⎪⎨->⎪⎩,由此即可求出结果.【详解】因为()()()2222ln 22ln 22ln 21ln 22ln 21ln 2f x ax ax x x x ax x x x =-+-=-+-()()21ln 22ln 20x ax x =-+=,0x >,所以1ln 20x -=①或22ln 20ax x +=②. 由①得2e x =,由②得22ln 2x a x -=. 令()22ln 2x g x x =,则()()3212ln 20x g x x -'==,所以ex =. 当0,2e x ⎛⎫∈ ⎪ ⎪⎝⎭时,()0g x '>,()g x 单调递增,,e x ⎛⎫∈+∞ ⎪ ⎪⎝⎭时,()0g x '<,()g x 单调递减.事实上,当102x <<时,()0g x <,当1x >时,()0g x >. 由图显然()10,1x ∈,()21,22ex =∈,所以[]10x =,[]21x =, 而[][][]1233x x x ++=,所以[]32x =,即[)32,3x ∈.所以()()23a g a g ⎧-≤⎪⎨->⎪⎩,即2ln 4,42ln 6,9a a ⎧-≤⎪⎪⎨⎪->⎪⎩解得2ln 6ln 29a -≤<-. 故答案为:2ln 2,ln 69⎡⎫--⎪⎢⎣⎭. 【点睛】本题主要考查了导函数在函数零点中的应用,属于难题.20.【分析】函数恰有四个不同的零点即方程恰有四个互异的实数根即可判断从而或原方程恰有四个不同的实数根当且仅当两个方程各有两个不同的实数根列出不等式组解得即可;【详解】解:函数恰有四个不同的零点即方程恰有 解析:()()0,19,⋃+∞【分析】函数2()|3||1|f x x x a x =+--恰有四个不同的零点,即方程2|3||1|x x a x +=-恰有四个互异的实数根,即可判断0a >,从而()231x x a x +=-或()231x x a x +=--,原方程恰有四个不同的实数根,当且仅当两个方程各有两个不同的实数根,列出不等式组解得即可; 【详解】 解:函数2()|3||1|f x x x a x =+--恰有四个不同的零点,即方程2|3||1|x x a x +=-恰有四个互异的实数根,显然0a >,否则若0a =方程只有两个实数根0和3-,若0a <时,方程无解;因此()231x x a x +=-,所以()231x x a x +=-或()231x x a x +=--,原方程恰有四个不同的实数根,当且仅当两个方程各有两个不同的实数根,即2122010901090a a a a a >⎧⎪∆=-+>⎨⎪∆=++>⎩,解得01a <<或9a >,即()()0,19,a ∈+∞故答案为:()()0,19,⋃+∞.【点睛】本题考查函数方程思想,转化化归思想,属于中档题.三、解答题21.(1)图象见解析;(2)1;(3)10,4⎛⎫ ⎪⎝⎭. 【分析】(1)化简函数()f x 的解析式,进而可作出函数()f x 的图象; (2)分别解方程()13f x =和()3f x =,结合图象可得出a 、b 的值,进而可求得结果; (3)由题意可知函数()f x 在区间[],a b 上单调递增,分析得出方程210mx x -+=在[)1,+∞上有两个不等的实根,利用二次函数的零点分布可得出关于实数m 的不等式组,由此可解得实数m 的取值范围. 【详解】(1)由题意可得()(]()() 11,0,11111,,01,xxf xxxx⎧-∈⎪⎪=-=⎨⎪-∈-∞⋃+∞⎪⎩,则由图形变换可画出函数图象,如图:(2)当()13f x=时,此时1113x-=,解得32x=或34x=;当()3f x=时,此时113x-=,解得12x=-或14x=.由(1)中的图象可知,若使得函数()f x在区间[],a b上的值域为1,33⎡⎤⎢⎥⎣⎦,则[](),0,a b⊆+∞,由图象可得1344a b==,,所以1a b+=;(3)因为函数()f x的定义域是[],a b,值域是[](),0ma mb m>,分以下几种情况讨论:①若0a b<<,则0ma mb<<,由图象可知,函数()f x在[],a b上单调递增,函数()f x在[],a b上的值域为()(),f a f b⎡⎤⎣⎦,由图象可知()()f af b⎧>⎪⎨>⎪⎩,不合乎题意;②若01a b<<<,则函数()f x在[],a b上单调递减,所以函数()11f xx=-在[],a b上的值域为()(),f b f a⎡⎤⎣⎦,则()()1111f b mabf a mba⎧=-=⎪⎪⎨⎪=-=⎪⎩,上述两个等式相减得1mab=,将1mab=代入11mab-=可得10,矛盾;③若01a b <<≤,则[]0,ma mb ∈,而0ma >,0mb >,矛盾; ④若1b a >≥,函数()f x 在[],a b 上单调递增,又函数()f x 在[)1,+∞上单调递增,所以()()f a ma fb mb ⎧=⎪⎨=⎪⎩,即1111ma a mbb⎧-=⎪⎪⎨⎪-=⎪⎩,则a 、b 为方程11mx x-=的两个根,即210mx x -+=在[)1,+∞上有两个不等实根, 可设()21g x mx x =-+,则有()14010112m g m m⎧⎪∆=->⎪=≥⎨⎪⎪>⎩,解得104m <<,所以实数m 的取值范围为10,4⎛⎫ ⎪⎝⎭. 【点睛】方法点睛:本题考查利用二次函数的零点分布求参数,一般要分析以下几个要素: (1)二次项系数的符号; (2)判别式; (3)对称轴的位置; (4)区间端点函数值的符号. 结合图象得出关于参数的不等式组求解.22.(1)0.9或2.5;(2)当2R 调至1R r +时,消耗的电功率P 最大,最大电功率是2144E R r+.【分析】(1)代入数据,解方程可得答案;(2)由已知得221212()2()E P R r R R r R =++++,再利用基本不等式可得最值. 【详解】(1)当 6.0=E V , 1.0r =Ω,10.5R =Ω, 5.625P W =时,22222222456()2068450(109)(25)01812R R R R R R =⇒-+=⇒--=++, 解得290.910R ==,或252.52R ==故2R 的值为0.9或2.5.(2)由题意,120,0,0,0E r R R >>>>,于是222222221122211212()()2()()2()E R E E P R R r r R R R R R r R r R R r R ===++++++++++2221112()2()44E E R r R r R r ==++++,当且仅当2122()R r R R +=,即21R R r =+时,等号成立.也就是说,当外电路的电阻等于内电阻时电源的输出功率最大;将电阻1R 与电源等效成等效电源考虑求解. 【点睛】关键点点睛:解决函数模型的应用问题时,关键在于将生活中的数据转化到函数模型中的数据,注意数据所满足的实际的意义.23.(1)y =-16(1)1m m -+++29(m ≥0);(2)该厂家2020年的促销费用投入3万元时,厂家的利润最大为21万元.. 【分析】(1)根据0,1m x ==(万件)求出2k =,求出每件产品的销售价格,则可得利润关于m 的函数;(2)利用基本不等式可求得最大值. 【详解】(1)由题意知,当m =0时,x =1(万件), 所以1=3-k ⇒k =2,所以x =3-21m + (m ≥0), 每件产品的销售价格为1.5×816xx + (元), 所以2020年的利润y =1.5x ×816xx+-8-16x -m =-16(1)1m m -+++29(m ≥0). (2)因为m ≥0时,161m ++(m +8, 所以y ≤-8+29=21,当且仅当161m +=m +1⇒m =3(万元)时,y max =21(万元). 故该厂家2020年的促销费用投入3万元时,厂家的利润最大为21万元. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方24.(1)不能获利,当月处理量为300吨时可使亏损最小;(2)每月处理量为400吨时,才能使每吨的平均处理成本最低. 【分析】(1)设项目获利为S ,根据二次函数知识可知,当[]200,300x ∈时,0S <,因此,该项目不会获利:当300x =时,S 取得最大值-5000;(2)根据题意可知,[)[)21805040,120,1443180000200,144,5002x x x y x x x x ⎧-+∈⎪⎪=⎨⎪+-∈⎪⎩,分段求出最小值,比较可得答案. 【详解】(1)当[]200,300x ∈时,该项目获利为S ,则()2221112002008000040080000400222S x x x x x x ⎛⎫=--+=-+-=-- ⎪⎝⎭,当[]200,300x ∈时,0S <,因此,该项目不会获利:当300x =时,S 取得最大值-5000,故当月处理量为300吨时可使亏损最小,为5000元;(2)由题意知,生活垃圾每吨的平均处理成本为:[)[)21805040,120,1443180000200,144,5002x x x y x x x x ⎧-+∈⎪⎪=⎨⎪+-∈⎪⎩当[)120,144x ∈时,()211202403y x x =-+,所以当120x =时,y x 取得最小值240,当[)144,500x ∈时,1800002002002002y x x x =+-≥=, 当且仅当1800002x x =时等号成立,即400x =时,yx取得最小值200, ∵200240∴每月处理量为400吨时,才能使每吨的平均处理成本最低. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.25.(1)(1,2)(2,)⋃+∞;(2)(,2]-∞-;(3)最大值为28a +,最小值为0 【分析】(1)由()()3131xxh x a =-⋅+-,易知0x =是函数()h x 的一个零点,可知31=-x a ()0x ≠有解,进而可求出a 的范围;(2)原不等式可化为()()313131+-≥-xxxa ,分0x =,0x >和0x <两种情况,分别讨论,可求出实数a 的取值范围;(3)()9131=-+-xxx a ϕ,当01x ≤≤时,令3(13)xt t =≤≤,可将()ϕx 转化为二次函数,可求出最大值与最小值;当10x -≤<时,令1313xk k ⎛⎫=≤<⎪⎝⎭,可将()ϕx 转化为二次函数,进而可求()ϕx 的取值范围,综合两种情况,可求得()ϕx 的最大值与最小值. 【详解】(1)由()()()()3131313131=+---=-⋅+-xxx xxh x a a , 由(0)0h =,可知0x =是函数()h x 的一个零点, 若函数()f x 有两个零点,只需要31=-x a (0x ≠)有解, 因为30x >,所以1011a a ->⎧⎨-≠⎩,可得1a >且2a ≠.故若函数()h x 有两个零点,则实数a 的取值范围为(1,2)(2,)⋃+∞.(2)若不等式()()f x g x ≥恒成立,有9131-≥-x xa ,可化为()()313131+-≥-xx x a .①当0x =时,显然原不等式恒成立;②当0x >时,31x >,原不等式可化为31+≥x a , 因为312x +>,所以2a ≤;③当0x <时,031x <<,原不等式可化为31--≥x a , 因为2311x -<--<-,所以2a ≤-.由上知,当x ∈R 时,不等式()()f x g x ≥恒成立,则实数a 的取值范围为(,2]-∞-. (3)()9131=-+-xxx a ϕ,①当01x ≤≤时,令3(13)x t t =≤≤,则()ϕx 可化为()221(1)1y t a t t at a =-+-=+--,令2()1=+--t t at a μ(13)t ≤≤,二次函数()t μ的对称轴为2a t =-, 故()t μ在区间[1,3]上单调递增,可得()ϕx 的最小值为(1)110a a μ=+--=,()ϕx 的最大值为(3)93128a a a μ=+--=+; ②当10x -≤<时,令1313xk k ⎛⎫=≤<⎪⎝⎭,则()ϕx 可化为()221(1)1y k a k k ak a =--+-=--++,令21()113k k ak a k σ⎛⎫=--++≤< ⎪⎝⎭,二次函数()k σ的对称轴为02=-<a k ,故函数()k σ在区间1,13⎡⎫⎪⎢⎣⎭单调递减,由211128()133339a a a σ⎛⎫=--++=+ ⎪⎝⎭,(1)110a a σ=--++=,得280()39k a σ<≤+. 因为282839+>+a a , 所以函数()ϕx 在[1,1]-上的最大值为28a +,最小值为0. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.26.(1)(1f f =;(2)图象见解析,递减区间为10,2⎡⎤⎢⎥⎣⎦,[]1,e .(3)3【分析】(1)分段函数求值,根据x 的范围代入即可;(2)画出函数图象,结合图象求出函数单调性;(3)写出(())f f x 分段函数,根据(())f f x x =,求出解的个数 【详解】解:(11>,所以12f ==,所以1(()12f f f ==. (2)()|()1|F x f x =-,所以函数图象如下所示:递减区间为10,2⎡⎤⎢⎥⎣⎦,[]1,e .(3)根据题意,012x,(())(22)f f x ln x =-,当112x <<,(())42f f x x =-,当1x e ,(())22f f x lnx =-,当012x时,由(())(22)f f x ln x x =-=,记()(22)g x ln x x =--,则()g x 在1[0,]2上单调递减,且(0)20g ln =>,11()022g =-<, 故()g x 在1[0,]2上有唯一零点1x ,即函数()f x 在1[0,]2上有唯一的二阶不动点1x . 当112x <<时,由(())42f f x x x =-=,得到方程的根为223x =,即函数()f x 在1(,1)2上有唯一的二阶不动点223x =. 当1x e 时,由(())22f f x lnx x =-=,记()22h x lnx x =--,则()h x 在[1,]e 上单调递减,且()110h =>, ()0h e e =-<,故()h x 在[1,]e 上有唯一零点3x ,即函数()f x 在[1,]e 上有唯一的二阶不动点3x . 综上所述,函数()f x 的二阶不动点有3个. 【点睛】(1)这是分段函数求值,基础题;(2)含绝对值的函数单调性的判断,比较容易;(3)这道题难点是要写出(())f f x 分段函数,根据(())f f x x =,求出解的个数,一定注意x 的范围.。
一、选择题1.把5名同学分配到图书馆、食堂、学生活动中心做志愿者,每个地方至少去一个同学,不同的安排方法共有( )种. A .60B .72C .96D .1502.中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)的一种,现有十二生肖的吉祥物各一个,甲、乙、丙三位同学依次选一个作为礼物,甲同学喜欢牛、马和羊,乙同学喜欢牛、兔、狗和羊,丙同学哪个吉祥物都喜欢,则让三位同学选取的礼物都满意的概率是( ) A .166B .155C .566D .5113.已知()52x a x x ⎛⎫+- ⎪⎝⎭的展开式中所有项的系数和为2-,则展开式中的常数项为( ) A .80B .80-C .40D .40-4.712x x ⎛⎫- ⎪⎝⎭的展开式中5x 的系数为( )A .448B .448-C .672D .672-5.已知231(1)nx x x ⎛⎫++ ⎪⎝⎭的展开式中没有2x 项,*n N ∈,则n 的值可以是( )A .5B .6C .7D .86.某煤气站对外输送煤气时,用1至5号五个阀门控制,且必须遵守以下操作规则: ①若开启3号,则必须同时开启4号并且关闭2号; ②若开启2号或4号,则关闭1号; ③禁止同时关闭5号和1号. 则阀门的不同开闭方式种数为( ) A .7B .8C .11D .147.在某次体检中,学号为i (1,2,3,4i =)的四位同学的体重()f i 是集合{45,48,52,57,60}kg kg kg kg kg 中的元素,并满足(1)(2)(3)(4)f f f f ≤≤≤,则这四位同学的体重所有可能的情况有( ) A .55种B .60种C .65种D .70种8.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,由四个全等的直角三角形和一个正方形构成.现有五种不同的颜色可供涂色,要求相邻的区域不能用同一种颜色,则不同的涂色方案有( )A .180B .192C .420D .4809.六安一中高三教学楼共五层,甲、乙、丙、丁四人走进该教学楼2~5层的某一层楼上课,则满足且仅有一人上5楼上课,且甲不在2楼上课的所有可能的情况有( )种 A .27B .81C .54D .10810.212nx x ⎛⎫ ⎪⎝⎭-的展开式中二项式系数之和是64,含6x 项的系数为a ,含3x 项系数为b ,则a b -=( )A .200B .400C .-200D .-40011.若0,0a b >>,二项式6()ax b +的展开式中3x 项的系数为20,则定积分22abxdx xdx +⎰⎰的最小值为( )A .0B .1C .2D .312.从A ,B ,C ,D ,E 5名学生中选出4名分别参加数学、物理、化学、外语竞赛,其中A 不参加物理、化学竞赛,则不同的参赛方案种数为( ) A .24 B .48 C .72D .120二、填空题13.化简:()()()1231223312131n n n n nn n n n C p p C p p C p p nC p ----+-+-++=______.14.4名志愿者被随机分配到、、A B C 三个不同的岗位服务,每个岗位至少有一名志愿者,则甲、乙两名志愿者没有分配到同一个岗位服务的概率为______.15.已知x 、y 满足组合数方程21717x yC C =,则xy 的最大值是_____________. 16.若348,n n A C =则n 的值为_______.17.设0(cos sin )a x x dx π=-⎰,则二项式6(a x x的展开式中含2x 项的系数为______.18.已知33210n n A A =,那么n =__________.19.若二项式nx x ⎛⎝展开式中各项系数的和为64,则该展开式中常数项为____________.20.()()611ax x -+的展开式中,3x 项的系数为10-,则实数a =___________.三、解答题21.在二项式()32nx -的展开式中.(1)若前3项的二项式系数和等于67,求二项式系数最大的项; (2)若第3项的二项式系数等于第18项的二项式系数,求奇次项系数和.22.已知()*3n x n N⎛∈ ⎝的展开式中第2项与第3项的二项式系数之比是1∶3, (1)求n 的值;(2)求二项展开式中各项二项式系数和以及各项系数和; (3)求展开式中系数的绝对值最大的项.23.(1)解不等式:222213A 12A 11A x x x +++≤; (2)已知2*012(21)(N )n n n x a a x a x a x n -=++++∈,且284a =-.求0246a a a a +++的值.24.已知n的展开式的各项系数之和等于5⎛⎝展开式中的常数项,求n展开式中含1a -的项的二项式系数. 25.在2(n x+的展开式中,第4项的系数与倒数第4项的系数之比为12.(1)求n 的值;(2)求展开式中所有的有理项; (3)求展开式中系数最大的项.26.已知二项式n⎛⎝的展开式中各项二项式系数的和为256,其中实数a 为常数.(1)求n 的值;(2)若展开式中二项式系数最大的项的系数为70,求a 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先把5名同学分成3组,有113,122++++两种情况,再将他们分配下去即可求出.【详解】5名同学分成3组,有113,122++++两种情况,故共有1235452225C C C A +=种分组方式,再将他们分配到图书馆、食堂、学生活动中心有336A =种方式,根据分步乘法计数原理可知,不同的安排方法共有256150⨯=种. 故选:D . 【点睛】本题主要考查有限制条件的排列组合问题的解法应用,解题关键是对“至少”的处理,属于中档题.方法点睛:常见排列问题的求法有: (1)相邻问题采取“捆绑法”; (2)不相邻问题采取“插空法”; (3)有限制元素采取“优先法”;(4)特殊元素顺序确定问题,先让所有元素全排列,然后除以有限制元素的全排列数.2.C解析:C 【分析】对甲分甲选牛或羊作礼物、甲选马作礼物,利用分步计数原理和分类计数原理计算出事件“三位同学都选取了满意的礼物”所包含的基本事件数,然后利用古典概型的概率公式可计算出所求事件的概率. 【详解】若甲选牛或羊作礼物,则乙有3种选择,丙同学有10种选择,此时共有231060⨯⨯=种;若甲选马作礼物,则乙有4种选择,丙同学有10种选择,此时共有141040⨯⨯=种. 因此,让三位同学选取的礼物都满意的概率为31260401005132066A +==. 故选:C. 【点睛】本题考查古典概型概率的计算,同时也涉及了分类计数和分步计数原理的应用,考查分析问题和解决问题的能力,属于中等题.3.B解析:B 【分析】令1x =,由展开式中所有项的系数和为2-,列出方程并求出a 的值,得出展开式中常数项为52x x ⎛⎫- ⎪⎝⎭中1x -的系数与52x x ⎛⎫- ⎪⎝⎭的0x 的系数之和,然后利用二项展开式的通项公式求解. 【详解】解:由题可知,()52x a x x ⎛⎫+- ⎪⎝⎭的展开式中所有项的系数和为2-, 令1x =,则所有项的系数和为()()5211121a a ⎛⎫+-=-+=- ⎪⎝⎭,解得:1a =,()()555522221x a x x x x x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫∴+-=+-=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,则()521x x x ⎛⎫+- ⎪⎝⎭展开式中的常数项为: 52x x ⎛⎫- ⎪⎝⎭中1x -的系数与52x x ⎛⎫- ⎪⎝⎭的0x 的系数之和, 由于52x x ⎛⎫- ⎪⎝⎭展开式的通项公式为:()5515522rr r r r r r T C x C x x --+⎛⎫=⋅-=⋅-⋅ ⎪⎝⎭,当521r -=-时,即3r =时,52x x ⎛⎫- ⎪⎝⎭中1x -的系数为:()335280C ⨯-=-,当520r -=时,无整数解,所以()521x x x ⎛⎫+- ⎪⎝⎭展开式中的常数项为80-.故选:B. 【点睛】本题考查二项式定理的应用,考查利用赋值法求二项展开式所有项的系数和,以及二项展开式的通项公式,属于中档题.4.B解析:B 【分析】求出展开式的通项公式,利用x 的次数为5进行求解即可. 【详解】展开式的通项公式77727171(2)(1)2rr rrr r r rx T C x C x ---+⎛⎫=-=- ⎪⎝⎭, 由725r -=得1r =,所以展开式中5x 的系数为1717(1)2764448C --⋅=-⨯=-,故选:B . 【点睛】该题考查的是有关二项式定理的问题,涉及到的知识点有求二项展开式指定项的系数,属于简单题目.5.C解析:C 【分析】将条件转化为31nx x ⎛⎫+ ⎪⎝⎭的展开式中不含常数项,不含x 项,不含2x 项,然后写出31nx x ⎛⎫+ ⎪⎝⎭的展开式的通项,即可分析出答案. 【详解】因为231(1)nx x x ⎛⎫++ ⎪⎝⎭的展开式中没有2x 项, 所以31nx x ⎛⎫+ ⎪⎝⎭的展开式中不含常数项,不含x 项,不含2x 项31nx x ⎛⎫+ ⎪⎝⎭的展开式的通项为:4131,0,1,2,,rr n r r n r r n n T C x C x r n x --+⎛⎫=== ⎪⎝⎭所以当n 取5,6,7,8时,方程40,41,42n r n r n r -=-=-=无解检验可得7n = 故选:C 【点睛】本题考查的是二项式定理的知识,在解决二项式展开式的指定项有关的问题的时候,一般先写出展开式的通项.6.A解析:A 【分析】分两类解决,第一类:若开启3号,然后对2号和4号开启其中一个即可判断出1号和5号情况,第二类:若关闭3号,关闭2号关闭4号,对1号进行讨论,即可判断5号,由此可计算出结果. 【详解】解:依题意,第一类:若开启3号,则开启4号并且关闭2号,此时关闭1号,开启5号, 此时有1种方法; 第二类:若关闭3号,①开启2号关闭4号或关闭2号开启4号或开启2号开启4号时,则关闭1号,开启5号,此时有种3方法;②关闭2号关闭4号,则开启1号关闭5号或开启1号开启5号或关闭1号,开启5号,此时有种3方法;综上所述,共有1337++=种方式. 故选:A. 【点睛】本题考查分类加法计数原理,属于中档题.7.D解析:D 【分析】根据(1)(2)(3)(4)f f f f ≤≤≤中等号所取个数分类讨论,利用组合知识求出即可. 【详解】解:当(1)(2)(3)(4)f f f f ≤≤≤中全部取等号时,情况有155C =种;当(1)(2)(3)(4)f f f f ≤≤≤中有两个取等号,一个不取等号时,情况有215330C C =种;当(1)(2)(3)(4)f f f f ≤≤≤中有一个取等号,两个不取等号时,情况有315330C C =种;当(1)(2)(3)(4)f f f f ≤≤≤中都不取等号时,情况有455C =种;共560+60+5=70+种. 故选:D. 【点睛】本题考查分类讨论研究组合问题,关键是要找准分类标准,是中档题.8.C解析:C 【分析】就使用颜色的种类分类计数可得不同的涂色方案的总数. 【详解】相邻的区域不能用同一种颜色,则涂5块区域至少需要3种颜色.若5块区域只用3种颜色涂色,则颜色的选法有35C ,相对的两个直角三角形必同色,此时共有不同的涂色方案数为335360C A =(种).若5块区域只用4种颜色涂色,则颜色的选法有45C ,相对的两个直角三角形必同色,余下两个直角三角形不同色,此时共有不同的涂色方案数为414524240C C A =(种).若5块区域只用5种颜色涂色,则每块区域涂色均不同,此时共有不同的涂色方案数为55120A =(种).综上,共有不同的涂色方案数为420(种). 故选:C. 【点睛】本题考查排列组合的应用,注意根据题设要求合理分类分步,此类问题属于中档题.9.B解析:B以特殊元素甲为主体,根据分类计数原理,计算出所有可能的情况,求得结果. 【详解】甲在五楼有33种情况,甲不在五楼且不在二楼有11232354C C ⨯=种情况,由分类加法计数原理知共有542781+=种不同的情况, 故选B. 【点睛】该题主要考查排列组合的有关知识,需要理解排列组合的概念,根据题目要求分情况计数,属于简单题目.10.B解析:B 【分析】由展开式二项式系数和得n =6,写出展开式的通项公式,令r=2和r=3分别可计算出a 和b 的值,从而得到答案. 【详解】由题意可得二项式系数和2n =64,解得n =6.∴212n x x ⎛⎫ ⎪⎝⎭-的通项公式为:()()6261231661212rr r r r r rr T C x C x x ---+⎛⎫=-=- ⎪⎝⎭, ∴当r=2时,含x 6项的系数为()2262612240C a --==, 当r=3时,含x 3项的系数为()3363612160C b --=-=,则400a b -=, 故选B . 【点睛】本题考查二项式定理的通项公式及其性质,考查推理能力与计算能力,属于基础题.11.C解析:C 【分析】由二项式定理展开项可得1ab =,再22022abxdx xdx a b +=+⎰⎰利用基本不等式可得结果.【详解】二项式()6ax+b 的展开式的通项为6616r r r r r T C a b x --+=当63,3r r -==时,二次项系数为3336201C a b ab =∴=而定积分2202222abxdx xdx a b ab +=+≥=⎰⎰当且仅当a b =时取等号 故选C本题考查了二项式定理,定积分和基本不等式综合,熟悉每一个知识点是解题的关键,属于中档题.12.C解析:C 【分析】根据题意,分2种情况讨论: ①A 不参加任何竞赛,此时只需要将,,,B C D E 四个人全排列,对应参加四科竞赛即可;②A 参加竞赛,依次分析A 与其他四人的情况数目,由分步计数原理可得此时参加方案的种数,进而由分类计数原理计算可得结论. 【详解】A 参加时参赛方案有31342348C A A = (种),A 不参加时参赛方案有4424A = (种),所以不同的参赛方案共72种,故选C. 【点睛】本题主要考查分类计数原理与分步计数原理及排列组合的应用,属于难题.有关排列组合的综合问题,往往是两个原理及排列组合问题交叉应用才能解决问题,解答这类问题理解题意很关键,一定多读题才能挖掘出隐含条件.解题过程中要首先分清“是分类还是分步”、“是排列还是组合”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率.二、填空题13.【分析】由将原式转化为再由二项式定理可得答案【详解】∴故答案为:【点睛】本题考查组合数公式和二项式定理的应用考查转化思想属于中档题 解析:np【分析】由11=kk n n kC nC --将原式转化为()()()1232311110121111n n n n nn n n n nC p p nC p p nC p p nC p ---------+-+-++,再由二项式定理可得答案. 【详解】()()()()111!1!!=!()!1!()!1!()!kk n n nk n n n kn kC nC k n k k k n k k n k ----===-----,∴()()()1231223312131n n n n nn n n n C p p C p p C p p nC p ----+-+-++()()()123212311111=111n n n n nn n n n nC p p nC p p nC p p nC p ---------+-+-++()()11211111=11n n n n n n n np C p C p C p p -------+⎦+⎡⎤-+-⎣1[(1)]n np p p -=-+11n np -=⋅np =故答案为:np 【点睛】本题考查组合数公式和二项式定理的应用,考查转化思想,属于中档题.14.【分析】要保证每个岗位至少一人人所以首先将四个人分成三组在将三组全排列求出总事件数然后再将甲乙分到不同两组得出甲乙不在同一岗位的基本事件数总而得出概率【详解】因为每个岗位至少有一人所以要将四个人分成解析:56【分析】要保证每个岗位至少一人人,所以首先将四个人分成三组,在将三组全排列求出总事件数,然后再将甲乙分到不同两组,得出甲乙不在同一岗位的基本事件数,总而得出概率. 【详解】因为每个岗位至少有一人,所以要将四个人分成三组,则只能是211、、所以总事件数为: 2113421322=36C C C A A ⋅⋅⋅, 甲乙不在同一岗位的基本事件数:()11232223+=30C C C A ⋅⋅ 所以甲、乙两名志愿者没有分配到同一个岗位服务的概率305=366P =, 故答案为:56. 【点睛】本题考查等可能性事件的概率,利用排列组合公式求出基本事件的总数和满足某个事件的基本事件个数是解答本题的关键.15.【分析】由组合数的性质得出或然后利用二次函数的性质或基本不等式求出的最大值并比较大小可得出结论【详解】满足组合数方程或当时则;当时因此当时取得最大值故答案为【点睛】本题考查组合数基本性质的应用同时也 解析:128【分析】由组合数的性质得出()208y x x =≤≤或217x y +=,然后利用二次函数的性质或基本不等式求出xy 的最大值,并比较大小可得出结论. 【详解】x 、y 满足组合数方程21717x yC C =,()208y xx ∴=≤≤或217x y +=,当2y x =时,则[]220,128xy x =∈;当217x y +=时,222172892224x y xy +⎛⎫⎛⎫≤== ⎪ ⎪⎝⎭⎝⎭. 因此,当216x y ==时,xy 取得最大值128.故答案为128. 【点睛】本题考查组合数基本性质的应用,同时也考查了两数乘积最大值的计算,考查了二次函数的基本性质的应用以及基本不等式的应用,考查运算求解能力,属于中等题.16.【分析】由排列数和组合数展开可解得n=6【详解】由排列数和组合数可知化简得所以n=6经检验符合所以填6【点睛】本题考查排列数组合数方程一般用公式展开或用排列数组合公式化简求得n 注意n 取正整数且有范围 解析:6【分析】由排列数和组合数展开可解得n=6. 【详解】由排列数和组合数可知(1)(2)(3)(1)(2)8()4321n n n n n n n -----=⨯⨯⨯,化简得313n -=,所以n=6,经检验符合,所以填6. 【点睛】本题考查排列数组合数方程,一般用公式展开或用排列数组合公式化简,求得n,注意n 取正整数且有范围限制.17.192【分析】根据微积分基本定理首先求出的值然后再根据二项式的通项公式求出的值问题得以解决【详解】的通项公式为令故含项的系数为故答案为【点睛】本题主要考查定积分二项式定理的应用二项式展开式的通项公式解析:192 【分析】根据微积分基本定理首先求出a 的值,然后再根据二项式的通项公式求出r 的值,问题得以解决. 【详解】()()sin cos 1120a cosx sinx dx x x ππ=-=+=--=-⎰66⎛⎛∴-= ⎝⎝的通项公式为63162r r r r T C x --+= 令32r -=,1r = 故含2x 项的系数为61162192C -=故答案为192 【点睛】本题主要考查定积分、二项式定理的应用,二项式展开式的通项公式,属于基础题.18.8【详解】分析:利用排列数公式展开解方程即可详解:解得即答案为8点睛:本题考查排列数公式的应用属基础题解析:8 【详解】分析:利用排列数公式展开,解方程即可. 详解:33210n n A A = ,()()()()221221012,n n n n n n ∴--=-- ()()22152,n n -=-解得8n =. 即答案为8.点睛:本题考查排列数公式的应用,属基础题.19.15【解析】二项式展开式中各项系数的和为64令得的通项为令常数项为故答案为【方法点晴】本题主要考查二项展开式定理的通项系数及各项系数和的求法属于简单题二项展开式定理的问题也是高考命题热点之一关于二项解析:15 【解析】二项式nx⎛+ ⎝展开式中各项系数的和为64,∴令1x =,得6264,8,n n x⎛== ⎝的通项为36622166r r r r r r T C x x C x ---+=⋅=,令360,42r r -==,常数项为4615C =,故答案为15.【方法点晴】本题主要考查二项展开式定理的通项、系数及各项系数和的求法,属于简单题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式1C r n r rr n T a b -+=;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.20.【分析】由分别写出和的展开式通项分别令的指数为求出对应的参数值代入通项可得出关于的等式进而可求得实数的值【详解】的展开式通项为所以的展开式通项为令可得由题意可得解得故答案为:【点睛】方法点睛:对于求 解析:2【分析】由()()()()6661111ax x x ax x -+=+-+,分别写出()61x +和()61ax x +的展开式通项,分别令x 的指数为3,求出对应的参数值,代入通项可得出关于a 的等式,进而可求得实数a 的值. 【详解】()()()()6661111ax x x ax x -+=+-+,()61x +的展开式通项为16kkk T C x +=⋅,所以,()61ax x +的展开式通项为1166r r r r r A axC x aC x ++=⋅=⋅,令313k r =⎧⎨+=⎩,可得32k r =⎧⎨=⎩,由题意可得3266201510C aC a -=-=-,解得2a =. 故答案为:2. 【点睛】方法点睛:对于求多个二项式的和或积的展开式中某项的系数问题,要注意排列、组合知识的运用,还要注意有关指数的运算性质.对于三项式问题,一般是通过合并其中的两项或进行因式分解,转化成二项式定理的形式去求解.三、解答题21.(1)5610777536T x =-,677185024T x =;(2)19152+.【分析】(1)由题意得01267n n n C C C ++=,化简为21320n n +-=,解得n 的值,可以写出结果;(2)由题意得217n n C C =,解得n =19,在()1932x -的展开式中,分别令1x =和1x =-,得到2个式子,相减可得要求式子的值. 【详解】(1)在二项式()32nx -的展开式中,前3项的二项式系数和为01267n n n C C C ++=,化简为21320n n +-=,解得11n =或12n =-(舍),二项式为()1132x -,展开式共有12项,∴则展开式中二项式系数最大的项为第6和第7项,()55656113210777536T C x x =-=-和()6656711327185024T C x x =-=.(2)当第3项的二项式系数等于第18项的二项式系数,得217n n C C =,计算得19n =,二项式为()1932x -.在()192319012319..32.a a x a x a x x a x =+++++-中, 令1x =,则0123191...a a a a a =+++++,①令1x =-,则190123195...a a a a a =-+-+-,②①+②得()1902418152...a a a a +=++++,奇次项系数和为19152+.【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,展开式的奇次项系数和,属于中档题.22.(1)7n =;(2)二项式系数和为128,各项系数和为1;(3)展开式中系数的绝对值最大的项为5222680x -. 【分析】(1由已知得12:1:3n n C C =,解得可得7n =;(2)由(1)将原式化为73x ⎛- ⎝,求得二项展开式中各项二项式系数和为72,令1x =时,可得二项展开式中各项系数和;(3)设第+1r 项的系数的绝对值最大,设()7732rrr f r C -=⨯⨯,建立不等式组()()()()+11f r f r f r f r ⎧≥⎪⎨≥-⎪⎩,解之求得以3r =,从而可得答案. 【详解】(1)()*3nx n N ⎛∈ ⎝的展开式的通项为:()()321332rrn n rr rr n r r n n T C x C x---+⎛==⨯⨯- ⎝, 又展开式中第2项与第3项的二项式系数之比是1∶3,所以12:1:3n n C C =,解得7n =;(2)由(1)得原式为73x ⎛- ⎝,所以二项展开式中各项二项式系数和为72128=, 令1x =,得二项展开式中各项系数和为7131⎛⨯ ⎝=;(3)73x ⎛ ⎝展开式的通项为()()37772177332rrr r r r r r T C x C x---+⎛==⨯⨯- ⎝,设第+1r 项的系数的绝对值最大, 设()7732r rrf r C -=⨯⨯,则()()()()+11f r f r f r f r ⎧≥⎪⎨≥-⎪⎩,即7+16+17771817732323232r r r r r r r r r r r r C C C C ------⎧⨯⨯≥⨯⨯⎨⨯⨯≥⨯⨯⎩,解得131855r ≤≤,又r N *∈,所以3r =, 所以展开式中系数的绝对值最大的项为()3357337322473222680T C xx ⨯--=⨯⨯-=-.【点睛】本题考查二项式展开的通项,二项式系数,系数,二项式系数和,各项系数和,属于中档题.23.(1){}23,;(2)1093-. 【分析】(1)由排列数公式转化已知,再解一元二次不等式,最后注意排列数公式中n m ≥; (2)由二项展开式的通项公式表示2x 的系数,从而求得n ,最后由赋值法分别赋值1x =与x =-1再相加除以2即可. 【详解】(1)由题得()()()()321121111x x x x x x +++-≤+, 化简得22730x x -+≤,即()()2130x x --≤,所以132x ≤≤. 因为2x ≥,且*x N ∈所以不等式的解集为{}23,. (2)二项式展开中2x 的系数为()222C 12n n --,所以()222C 1284n n --=-,化简得2420n n --=,即()()760n n -+=, 因为*n N ∈,所以7n =.所以()72345670123456721x a a x a x a x a x a x a x a x -=+++++++, 当012345671,1x a a a a a a a a =+++++++=① 当1x =-,012345672187a a a a a a a a -+-+-+-=-②①+②得()024622186a a a a +++=-,所以02461093a a a a +++=-. 【点睛】本题考查运用排列数公式求参数取值范围,还考查了二项展开式中由指定项系数求参数并利用赋值法求系数和问题,属于中档题. 24.35 【分析】先研究5的展开式的通项为105556155((4,(0,1,2,3,4,5)r r rrr rr r T C C br ---+===.求出n 的展开式的各项系数之和,解方程求出n ,再由二项展开式的通项公式求得1a -的项是第4项 【详解】设5⎛⎝的展开式中的通项为1055561554,(0,1,2,3,4,5)rrrrrr r r T C C br ---+⎛⎛==⋅⋅= ⎝⎝.若求常数项,则令1050,26rr-=∴=,代入上式732T∴=.即常数项是72,又n的展开式的各项系数之和为722n=,∴7n=,而7的通项公式(()77177526731r rr r r rrrT C aC---++==-,令75126r-+=-,解得3r=,即二项式系数是3735C=【点睛】本题考查二项式的系数的性质,解题的关键是熟练掌握二项式的性质,考查了利用二项式的性质进行变形,属于中档题,25.(1)7n=;(2)14x,984x,4560x,1448x-; (3)32672x.【分析】(1)由二项展开式的通项公式分别求出第4项的系数与倒数第4项的系数,然后计算出结果(2)由通项公式分别计算当0246r=、、、时的有理项(3)设展开式中第1r+项的系数最大,列出不等式求出结果【详解】(1)由题意知:52212n rr rr nT C x-+=,则第4项的系数为332n C,倒数第4项的系数为332n nnC--,则有33332122nn nnCC--=即61122n-=,7n∴=.(2)由(1)可得()51421720,1,,7rr rrT C x r-+==,当0,2,4,6r=时所有的有理项为1357,,,T T T T即001414172T C x x==,229937284T C x x==,4444572560T C x x==,6611772448T C x x--==.(3)设展开式中第1r+项的系数最大,则117711772222r r r rr r r rC CC C++--⎧≥⇒⎨≥⎩()()12728r rr r⎧+≥-⎪⎨-≥⎪⎩131633r⇒≤≤,5r∴=,故系数最大项为335522672672T C x x==.【点睛】本题考查了二项式定理的展开式,尤其是通项公式来解题时的运用一定要非常熟练,针对每一问求出结果,需要掌握解题方法.26.(1)8n =;(2)12a =±. 【分析】(1)根据二项式系数和列方程,解方程求得n 的值.(2)根据二项式系数最大项为70,结合二项式展开式的通项公式列方程,解方程求得a 的值. 【详解】(1)由题知,二项式系数和1202256n n n n n n C C C C ++++==,故8n =;(2)二项式系数分别为01288888,,,,C C C C ,根据其单调性知其中48C 最大,即为展开式中第5项,∴44482()70C a -⋅⋅=,即12a =±. 【点睛】本小题主要考查二项式展开式有关计算,属于中档题.。
⼈教A版⾼中数学选修2-3全册同步练习及单元检测含答案⼈教版⾼中数学选修2~3 全册章节同步检测试题⽬录第1章《计数原理》同步练习 1.1测试1第1章《计数原理》同步练习 1.1测试2第1章《计数原理》同步练习 1.1测试3第1章《计数原理》同步练习 1.2排列与组合第1章《计数原理》同步练习 1.3⼆项式定理第1章《计数原理》测试(1)第1章《计数原理》测试(2)第2章同步练习 2.1离散型随机变量及其分布列第2章同步练习 2.2⼆项分布及其应⽤第2章测试(1)第2章测试(2)第2章测试(3)第3章练习 3.1回归分析的基本思想及其初步应⽤第3章练习 3.2独⽴性检验的基本思想及其初步应⽤第3章《统计案例》测试(1)第3章《统计案例》测试(2)第3章《统计案例》测试(3)1. 1分类加法计数原理与分步乘法计数原理测试题⼀、选择题1.⼀件⼯作可以⽤2种⽅法完成,有3⼈会⽤第1种⽅法完成,另外5⼈会⽤第2种⽅法完成,从中选出1⼈来完成这件⼯作,不同选法的种数是()A.8 B.15C.16 D.30答案:A2.从甲地去⼄地有3班⽕车,从⼄地去丙地有2班轮船,则从甲地去丙地可选择的旅⾏⽅式有()A.5种B.6种C.7种D.8种答案:B3.如图所⽰为⼀电路图,从A 到B 共有()条不同的线路可通电()A.1 B.2 C.3 D.4答案:D4.由数字0,1,2,3,4可组成⽆重复数字的两位数的个数是()A.25 B.20 C.16 D.12答案:C5.李芳有4件不同颜⾊的衬⾐,3件不同花样的裙⼦,另有两套不同样式的连⾐裙.“五⼀”节需选择⼀套服装参加歌舞演出,则李芳有()种不同的选择⽅式()A.24 B.14 C.10 D.9答案:B 6.设A ,B 是两个⾮空集合,定义{}()A B a b a A b B *=∈∈,,|,若{}{}0121234P Q ==,,,,,,,则P *Q 中元素的个数是()A.4 B.7 C.12 D.16答案:C⼆、填空题7.商店⾥有15种上⾐,18种裤⼦,某⼈要买⼀件上⾐或⼀条裤⼦,共有种不同的选法;要买上⾐,裤⼦各⼀件,共有种不同的选法.答案:33,2708.⼗字路⼝来往的车辆,如果不允许回头,共有种⾏车路线.答案:129.已知{}{}0341278a b ∈∈,,,,,,,则⽅程22()()25x a y b -+-=表⽰不同的圆的个数是.答案:1210.多项式123124534()()()()a a a b b a a b b ++++++··展开后共有项.答案:1011.如图,从A →C ,有种不同⾛法.答案:612.将三封信投⼊4个邮箱,不同的投法有种.答案:34三、解答题 13.⼀个⼝袋内装有5个⼩球,另⼀个⼝袋内装有4个⼩球,所有这些⼩球的颜⾊互不相同.(1)从两个⼝袋内任取⼀个⼩球,有多少种不同的取法?(2)从两个⼝袋内各取⼀个⼩球,有多少种不同的取法?解:(1)549N =+=种;(2)5420N =?=种.14.某校学⽣会由⾼⼀年级5⼈,⾼⼆年级6⼈,⾼三年级4⼈组成.(1)选其中1⼈为学⽣会主席,有多少种不同的选法?(2)若每年级选1⼈为校学⽣会常委,有多少种不同的选法?(3)若要选出不同年级的两⼈参加市⾥组织的活动,有多少种不同的选法?解:(1)56415N =++=种;(2)564120N =??=种;(3)56644574N =?+?+?=种15.已知集合{}321012()M P a b =---,,,,,,,是平⾯上的点,a b M ∈,.(1)()P a b ,可表⽰平⾯上多少个不同的点?(2)()P a b ,可表⽰多少个坐标轴上的点?解:(1)完成这件事分为两个步骤:a 的取法有6种,b 的取法也有6种,∴P 点个数为N =6×6=36(个);(2)根据分类加法计数原理,分为三类:①x 轴上(不含原点)有5个点;②y 轴上(不含原点)有5个点;③既在x 轴,⼜在y 轴上的点,即原点也适合,∴共有N =5+5+1=11(个).1. 1分类加法计数原理与分步乘法计数原理测试题⼀、选择题 1.从集合{ 0,1,2,3,4,5,6}中任取两个互不相等的数a ,b 组成复数a bi +,其中虚数有() A .30个 B .42个 C .36个 D .35个答案:C2.把10个苹果分成三堆,要求每堆⾄少1个,⾄多5个,则不同的分法共有() A .4种 B .5种 C .6种 D .7种答案:A3.如图,⽤4种不同的颜⾊涂⼊图中的矩形A ,B ,C ,D 中,要求相邻的矩形涂⾊不同,则不同的涂法有() A .72种 B .48种 C .24种 D .12种答案:A4.教学⼤楼共有五层,每层均有两个楼梯,由⼀层到五层的⾛法有() A .10种 B .52种C.25种D.42种答案:D5.已知集合{}{}023A B x x ab a b A ===∈,,,,,|,则B 的⼦集的个数是()A.4 B.8 C.16 D.15答案:C6.三边长均为正整数,且最⼤边长为11的三⾓形的个数为()A.25 B.26 C.36 D.37答案:C⼆、填空题7.平⾯内有7个点,其中有5个点在⼀条直线上,此外⽆三点共线,经过这7个点可连成不同直线的条数是.答案:128.圆周上有2n 个等分点(1n >),以其中三个点为顶点的直⾓三⾓形的个数为.答案:2(1)n n -9.电⼦计算机的输⼊纸带每排有8个穿孔位置,每个穿孔位置可穿孔或不穿孔,则每排可产⽣种不同的信息.答案:25610.椭圆221x y m n+=的焦点在y 轴上,且{}{}123451234567m n ∈∈,,,,,,,,,,,,则这样的椭圆的个数为.答案:20 11.已知集合{}123A ,,ü,且A 中⾄少有⼀个奇数,则满⾜条件的集合A 分别是.答案:{}{}{}{}{}13122313,,,,,,,12.整数630的正约数(包括1和630)共有个.答案:24三、解答题 13.⽤0,1,2,3,4,5六个数字组成⽆重复数字的四位数,⽐3410⼤的四位数有多少个?解:本题可以从⾼位到低位进⾏分类.(1)千位数字⽐3⼤.(2)千位数字为3:①百位数字⽐4⼤;②百位数字为4: 1°⼗位数字⽐1⼤;2°⼗位数字为1→个位数字⽐0⼤.所以⽐3410⼤的四位数共有2×5×4×3+4×3+2×3+2=140(个).14.有红、黄、蓝三种颜⾊旗⼦各(3)n n >⾯,任取其中三⾯,升上旗杆组成纵列信号,可以有多少种不同的信号?若所升旗⼦中不允许有三⾯相同颜⾊的旗⼦,可以有多少种不同的信号?若所升旗⼦颜⾊各不相同,有多少种不同的信号?解: 1N =3×3×3=27种; 227324N =-=种; 33216N =??= 种.15.某出版社的7名⼯⼈中,有3⼈只会排版,2⼈只会印刷,还有2⼈既会排版⼜会印刷,现从7⼈中安排2⼈排版,2⼈印刷,有⼏种不同的安排⽅法.解:⾸先分类的标准要正确,可以选择“只会排版”、“只会印刷”、“既会排版⼜会印刷”中的⼀个作为分类的标准.下⾯选择“既会排版⼜会印刷”作为分类的标准,按照被选出的⼈数,可将问题分为三类:第⼀类:2⼈全不被选出,即从只会排版的3⼈中选2⼈,有3种选法;只会印刷的2⼈全被选出,有1种选法,由分步计数原理知共有3×1=3种选法.第⼆类:2⼈中被选出⼀⼈,有2种选法.若此⼈去排版,则再从会排版的3⼈中选1⼈,有3种选法,只会印刷的2⼈全被选出,有1种选法,由分步计数原理知共有2×3×1=6种选法;若此⼈去印刷,则再从会印刷的2⼈中选1⼈,有2种选法,从会排版的3⼈中选2⼈,有3种选法,由分步计数原理知共有2×3×2=12种选法;再由分类计数原理知共有6+12=18种选法.第三类:2⼈全被选出,同理共有16种选法.所以共有3+18+16=37种选法.1. 1 分类加法计数原理与分步乘法计数原理综合卷⼀.选择题:1.⼀个三层书架,分别放置语⽂书12本,数学书14本,英语书11本,从中取出⼀本,则不同的取法共有()(A ) 37种(B ) 1848种(C ) 3种(D ) 6种2.⼀个三层书架,分别放置语⽂书12本,数学书14本,英语书11本,从中取出语⽂、数学、英语各⼀本,则不同的取法共有()(A ) 37种(B ) 1848种(C ) 3种(D ) 6种3.某商业⼤厦有东南西3个⼤门,楼内东西两侧各有2个楼梯,从楼外到⼆楼的不同⾛法种数是()(A ) 5 (B )7 (C )10 (D )124.⽤1、2、3、4四个数字可以排成不含重复数字的四位数有()(A )265个(B )232个(C )128个(D )24个5.⽤1、2、3、4四个数字可排成必须含有重复数字的四位数有()(A )265个(B )232个(C )128个(D )24个6.3科⽼师都布置了作业,在同⼀时刻4名学⽣都做作业的可能情况有()(A )43种(B )34种(C )4×3×2种(D ) 1×2×3种7.把4张同样的参观券分给5个代表,每⼈最多分⼀张,参观券全部分完,则不同的分法共有()(A )120种(B )1024种(C )625种(D )5种8.已知集合M={l ,-2,3},N={-4,5,6,7},从两个集合中各取⼀个元素作为点的坐标,则这样的坐标在直⾓坐标系中可表⽰第⼀、⼆象限内不同的点的个数是()(A )18 (B )17 (C )16 (D )109.三边长均为整数,且最⼤边为11的三⾓形的个数为()(A )25 (B )36 (C )26 (D )3710.如图,某城市中,M 、N 两地有整齐的道路⽹,若规定只能向东或向北两个⽅向沿途中路线前进,则从M 到N 不同的⾛法共有()(A )25 (B )15 (C)13 (D )10 ⼆.填空题:11.某书店有不同年级的语⽂、数学、英语练习册各10本,买其中⼀种有种⽅法;买其中两种有种⽅法.12.⼤⼩不等的两个正⽅形玩具,分别在各⾯上标有数字1,2,3,4,5,6,则向上的⾯标着的两个数字之积不少于20的情形有种.13.从1,2,3,4,7,9中任取不相同的两个数,分别作为对数的底数和真数,可得到个不同的对数值.14.在连结正⼋边形的三个顶点组成的三⾓形中,与正⼋边形有公共边的有个.15.某班宣传⼩组要出⼀期向英雄学习的专刊,现有红、黄、⽩、绿、蓝五种颜⾊的粉笔供选⽤,要求在⿊板中A 、B 、C 、D 每⼀部分只写⼀种颜⾊,如图所⽰,相邻两块颜⾊不同,则不同颜⾊的书写⽅法共有种.三.解答题:16.现由某校⾼⼀年级四个班学⽣34⼈,其中⼀、⼆、三、四班分别为7⼈、8⼈、9⼈、10⼈,他们⾃愿组成数学课外⼩组.(1)选其中⼀⼈为负责⼈,有多少种不同的选法?(2)每班选⼀名组长,有多少种不同的选法?(3)推选⼆⼈做中⼼发⾔,这⼆⼈需来⾃不同的班级,有多少种不同的选法?17.4名同学分别报名参加⾜球队,蓝球队、乒乓球队,每⼈限报其中⼀个运动队,不同的报名⽅法有⼏种?[探究与提⾼]1.甲、⼄两个正整数的最⼤公约数为60,求甲、⼄两数的公约数共有多个?2.从{-3,-2,-1,0,l,2,3}中,任取3个不同的数作为抛物线⽅程y=ax2+bx+c(a≠0)的系数,如果抛物线过原点,且顶点在第⼀象限,这样的抛物线共有多少条?3.电视台在“欢乐今宵”节⽬中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的群众来信,甲信箱中有30封,⼄信箱中有20封.现由主持⼈抽奖确定幸运观众,若先确定⼀名幸运之星,再从两信箱中各确定⼀名幸运伙伴,有多少种不同的结果?综合卷1.A 2.B 3.D 4.D 5.B 6.B 7.D 8.B 9.B 10.B11.30;300 12.513.17 14.40 15.1801. 2排列与组合1、排列综合卷1.90×9l ×92×……×100=()(A )10100A (B )11100A (C )12100A (D )11101A 2.下列各式中与排列数mn A 相等的是()(A )!(1)!-+n n m (B )n(n -1)(n -2)……(n -m) (C )11m n nA n m --+ (D )111m n n A A --3.若 n ∈N 且 n<20,则(27-n )(28-n)……(34-n)等于()(A )827n A - (B )2734nn A -- (C )734n A - (D )834n A -4.若S=123100123100A A A A ++++,则S 的个位数字是()(A )0 (B )3 (C )5 (D )85.⽤1,2,3,4,5这五个数字组成没有重复数字的三位数,其中偶数共有()(A )24个(B )30个(C )40个(D )60个6.从0,l ,3,5,7,9中任取两个数做除法,可得到不同的商共有()(A )20个(B )19个(C )25个(D )30个7.甲、⼄、丙、丁四种不同的种⼦,在三块不同⼟地上试种,其中种⼦甲必须试种,那么不同的试种⽅法共有()(A )12种(B )18种(C )24种(D )96种8.某天上午要排语⽂、数学、体育、计算机四节课,其中体育不排在第⼀节,那么这天上午课程表的不同排法共有()(A )6种(B )9种(C )18种(D )24种9.有四位司机、四个售票员组成四个⼩组,每组有⼀位司机和⼀位售票员,则不同的分组⽅案共有()(A )88A 种(B )48A 种(C )44A ·44A 种(D )44A 种10.有4位学⽣和3位⽼师站在⼀排拍照,任何两位⽼师不站在⼀起的不同排法共有()(A )(4!)2种(B )4!·3!种(C )34A ·4!种(D )3 5A ·4!种11.把5件不同的商品在货架上排成⼀排,其中a ,b 两种必须排在⼀起,⽽c ,d 两种不能排在⼀起,则不同排法共有()(A )12种(B )20种(C )24种(D )48种⼆.填空题::12.6个⼈站⼀排,甲不在排头,共有种不同排法.13.6个⼈站⼀排,甲不在排头,⼄不在排尾,共有种不同排法.14.五男⼆⼥排成⼀排,若男⽣甲必须排在排头或排尾,⼆⼥必须排在⼀起,不同的排法共有种.15.将红、黄、蓝、⽩、⿊5种颜⾊的⼩球,分别放⼊红、黄、蓝、⽩、⿊5种颜⾊的⼝袋中,但红⼝袋不能装⼊红球,则有种不同的放法.16.(1)有5本不同的书,从中选3本送给3名同学,每⼈各⼀本,共有种不同的送法;(2)有5种不同的书,要买3本送给3名同学,每⼈各⼀本,共有种不同的送法.三、解答题:17.⼀场晚会有5个唱歌节⽬和3个舞蹈节⽬,要求排出⼀个节⽬单(1)前4个节⽬中要有舞蹈,有多少种排法?(2)3个舞蹈节⽬要排在⼀起,有多少种排法?(3)3个舞蹈节⽬彼此要隔开,有多少种排法?18.三个⼥⽣和五个男⽣排成⼀排.(1)如果⼥⽣必须全排在⼀起,有多少种不同的排法?(2)如果⼥⽣必须全分开,有多少种不同的排法?(3)如果两端都不能排⼥⽣,有多少种不同的排法?(4)如果两端不能都排⼥⽣,有多少种不同的排法?(5)如果三个⼥⽣站在前排,五个男⽣站在后排,有多少种不同的排法?综合卷1.B 2.D 3.D 4.C 5.A 6.B 7.B 8.C 9.D 10.D 11.C12.600 13.504 14.480 15.9616.(1) 60;(2) 12517.(1) 37440;(2) 4320;(3) 1440018.(1) 4320;(2) 14400;(3) 14400;(4) 36000;(5) 7202、组合综合卷⼀、选择题:1.下列等式不正确的是()(A )!!()!mn n C m n m =- (B )11mm n n m C C n m++=- (C )1111m m n n m C C n +++=+ (D )11m m n n C C ++= 2.下列等式不正确的是()(A )m n m n n C C -= (B )11m m mm m m C C C -++=(C )123455555552C C C C C ++++= (D )11 111m m m m n n n n C C C C --+--=++3.⽅程2551616x x x C C --=的解共有()(A )1个(B )2个(C )3个(D )4个4.若372345n n n C A ---=,则n 的值是()(A )11 (B )12 (C )13 (D )145.已知7781n n n C C C +-=,那么n 的值是()(A )12 (B )13 (C )14 (D )15 6.从5名男⽣中挑选3⼈,4名⼥⽣中挑选2⼈,组成⼀个⼩组,不同的挑选⽅法共有()(A )3254C C 种(B ) 3254C C 55A 种(C ) 3254A A 种(D ) 3254A A 55A 种7.从4个男⽣,3个⼥⽣中挑选4⼈参加智⼒竞赛,要求⾄少有⼀个⼥⽣参加的选法共有()(A )12种(B )34种(C )35种(D )340种8.平⾯上有7个点,除某三点在⼀直线上外,再⽆其它三点共线,若过其中两点作⼀直线,则可作成不同的直线()(A )18条(B )19条(C )20条(D )21条9.在9件产品中,有⼀级品4件,⼆级品3件,三级品2件,现抽取4个检查,⾄少有两件⼀级品的抽法共有()(A )60种(B )81种(C )100种(D )126种10.某电⼦元件电路有⼀个由三节电阻串联组成的回路,共有6个焊点,若其中某⼀焊点脱落,电路就不通.现今回路不通,焊点脱落情况的可能有()(A )5种(B )6种(C )63种(D )64种⼆.填空题:11.若11m m n n C xC --=,则x= .12.三名教师教六个班的课,每⼈教两个班,分配⽅案共有种。
一、选择题1.4(1)x +的展开式中2x 的系数是( )A .8B .7C .6D .42.712x x ⎛⎫- ⎪⎝⎭的展开式中5x 的系数为( ) A .448B .448-C .672D .672-3.将5种不同的花卉种植在如图所示的四个区域中,每个区域种植一种花卉,且相邻区域花卉不同,则不同的种植方法种数是( ).A .420B .180C .64D .254.回文联是我国对联中的一种.用回文形式写成的对联,既可顺读,也可倒读.不仅意思不变,而且颇具趣味.相传,清代北京城里有一家饭馆叫“天然居”,曾有一副有名的回文联:“客上天然居,居然天上客;人过大佛寺,寺佛大过人.”在数学中也有这样一类顺读与倒读都是同一个数的自然数,称之为“回文数”.如44,585,2662等;那么用数字1,2,3,4,5,6可以组成4位“回文数”的个数为( ) A .30B .36C .360D .12965.已知(x a x)5的展开式中,常数项为10,则a =( ) A .﹣1B .1C .﹣2D .26.若0k m n ≤≤≤,且m ,n ,k ∈N ,则0CC mn m k n k n k --==∑( )A .2m n +B .C 2n mmC .2C nmnD .2C m mn7.若()()()()()201923201901232019122222x a a x a x a x a x -=+-+-+-+⋅⋅⋅+-,则01232019a a a a a -+-+⋅⋅⋅-的值为( )A .-2B .-1C .0D .18.已知10件产品中,有7件合格品,3件次品,若从中任意抽取5件产品进行检查,则抽取的5件产品中恰好有2件次品的抽法有( ) A .35种B .38种C .105种D .630种9.若0k m n ≤≤≤,且,,m n k N ∈,则0mn m k n k n k CC --==∑( )A .2m n +B .2mn m CC .2n mn C D .2m mn C10.如图所示的阴影部分由方格纸上3个小方格组成,我们称这样的图案为L 形(每次旋转90°仍为L 形的图案),那么在56⨯个小方格组成的方格纸上可以画出不同位置的L 形需案的个数是()A .36B .64C .80D .9611.已知自然数k ,则(18)(19)(20)(99)k k k k ----…等于( ) A .1899kk C --B .8299k C -C .1899kk A --D .8299k A -12.将编号为1,2,3,4,5,6,7的小球放入编号为1,2,3,4,5,6,7的七个盒子中,每盒放一球,若有且只有三个盒子的编号与放入的小球的编号相同,则不同的放法种数为( ) A .315B .640C .840D .5040二、填空题13.二项式261(2)x x -的展开式中的常数项是_______.(用数字作答)14.()3621()x x x-的展开式中的常数项为_____.(用数字作答)15.在()()()238111x x x ++++++的展开式中,含2x 项的系数是_______________.16.有3名大学毕业生,到5家招聘员工的公司应聘,若每家公司至多招聘一名新员工,且3名大学毕业生全部被聘用,若不允许兼职,则共有________种不同的招聘方案.(用数字作答)17.若二项式nx x ⎛⎝展开式中各项系数的和为64,则该展开式中常数项为____________.18.622x x ⎛ ⎝的展开式中3x 的系数为__________.(用数字作答)19.把4件不同的产品摆成一排.若其中的产品A 与产品B 都摆在产品C 的左侧,则不同的摆法有____种.(用数字作答)20.已知关于x 的方程log (01)xa a x a =<<的实数根的个数为n ,若1101(1)(1)(3)n x x a a x +++=++2101121011(3)(3)(3)a x a x a x +++++++,则1a 的值为______.三、解答题21.已知二项式*1()(,2)2nx n N n x∈≥,若该二项式的展开式中前三项的系数的绝对值成等差数列. (1)求正整数n 的值;(2)求展开式中二项式系数最大项,并指出是第几项? 22.设函数(,)(1)(0,0)x f x y my m y =+>>.(1)当3m =时,求()9,f y 的展开式中二项式系数最大的项;(2)已知(2,)f n y 的展开式中各项的二项式系数和比(,)f n y 的展开式中各项的二项式系数和大4032,若01(,)nn f n y a a y a y =++⋅⋅⋅+,且2135a =,求1i ni a =∑23.计算:(1)2490n n A A =;(2)383321nn nn C C -++.24.已知()10210012101mx a a x a x a x +=++++中,0m ≠,且63140a a +=.(1)求m ;(2)求246810a a a a a ++++.25.已知二项式10x⎛⎝的展开式.(1)求展开式中含4x 项的系数;(2)如果第3r 项和第2r +项的二项式系数相等,求r 的值.26.在①只有第6项的二项式系数最大,②第4项与第8项的二项式系数相等,③所有二项式系数的和为102,这三个条件中任选一个,补充在下面(横线处)问题中,解决下面两个问题.已知()123012321nn n x a a x a x a x a x -=++++⋅⋅⋅+(n *∈N ),若()21nx -的展开式中,______. (1)求n 的值;(2)求123n a a a a +++⋅⋅⋅+的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据二项式定理展开式的通项公式,令2r 即可得出答案.【详解】4(1)x +的展开式中,14,(0,1,2,3,4)r r r r T x +==,令2r ,2x ∴的系数为246C =.故选:C . 【点睛】本题考查二项式定理的应用,考查推理能力与计算能力,属于基础题.2.B解析:B 【分析】求出展开式的通项公式,利用x 的次数为5进行求解即可. 【详解】展开式的通项公式77727171(2)(1)2rr rr r r r rx T C x C x---+⎛⎫=-=- ⎪⎝⎭, 由725r -=得1r =,所以展开式中5x 的系数为1717(1)2764448C --⋅=-⨯=-,故选:B . 【点睛】该题考查的是有关二项式定理的问题,涉及到的知识点有求二项展开式指定项的系数,属于简单题目.3.B解析:B 【分析】由于规定一个区域只涂一种颜色,相邻的区域颜色不同,可分步进行,区域A 有5种涂法,B 有4种涂法,讨论A ,D 同色和异色,根据乘法原理可得结论. 【详解】由题意,由于规定一个区域只涂一种颜色,相邻的区域颜色不同,可分步进行 区域A 有5种涂法,B 有4种涂法,A ,D 不同色,D 有3种,C 有2种涂法,有5432120⨯⨯⨯=种, A ,D 同色,D 有1种涂法,C 有3种涂法,有54360⨯⨯=种, 共有180种不同的涂色方案. 故选:B . 【点睛】本题考查计数原理的应用,解题关键是分步和分类的方法选取,属于中等题.4.B解析:B 【分析】依据回文数对称的特征,可知有两种情况:1、在6个数字中任取1个组成16C 个回文数;2、在6个数字中任取2个26C 种取法,又由两个数可互换位置22A 种,即2262C A 个回文数;结合两种情况即可求出组成4位“回文数”的个数 【详解】由题意知:组成4位“回文数”∴当由一个数组成回文数,在6个数字中任取1个:16C 种 当有两组相同的数,在6个数字中任取2个:26C 种又∵在6个数字中任取2个时,前两位互换位置又可以组成另一个数 ∴2个数组成回文数的个数:22A 种故,在6个数字中任取2个组成回文数的个数:2262C A综上,有数字1,2,3,4,5,6可以组成4位“回文数”的个数为:2262C A +16C =36 故选:B 【点睛】本题考查了排列组合,根据回文数的特征—对称性,先由分类计数得到取数的方法数,再由分步计数得到各类取数中组成回文数的个数,最后加总即为所有组成4位“回文数”的个数5.A解析:A 【分析】先求出二项式展开式的通项公式,再令x 的幂指数等于0,求得r 的值,即可求得展开式中的常数项的值,再根据常数项为10,求得a 的值. 【详解】5()a x x x -的展开式中,通项公式为15552155()()()rr r r r rr a T C x x C a x x--+==--,令15502r-=,求得3r =, 可得常数项为335()10C a -=,求得1a =-. 故选:A 【点睛】本题主要考查二项式定理的应用,考查根据展开式的某一项求参数的值,意在考查学生对这些知识的理解掌握水平.6.D解析:D 【分析】根据已知条件,运用组合数的阶乘可得:n m k m kn k n n m C C C C --=,再由二项式系数的性质,可得所要求的和. 【详解】()()()()()()()()!!!!!!!!!!!!!!!!n m k n knm kn mn k n n C Cn m m k k n k n m m k k n m C C m n m k m k ---=⋅=-⋅-⋅--⋅-⋅=⋅=⋅-⋅-则()012mmn m k m k m m m m n knn m n m m m n k k CC C C C C C C C --====⋅+++=∑∑故选:D 【点睛】本题考查了组合数的计算以及二项式系数的性质,属于一般题.7.B解析:B 【分析】令1x =,即可求01232019a a a a a -+-+⋅⋅⋅-出的值. 【详解】解:在所给等式中,令1x =,可得等式为()20190123201912a a a a a -=-+-+⋅⋅⋅-,即012320191a a a a a -+-+⋅⋅⋅-=-. 故选:B. 【点睛】本题考查二项式定理的展开使用及灵活变求值,特别是解决二项式的系数问题,常采用赋值法,属于中档题.8.C解析:C 【分析】根据题意,分2步进行分析,第一步从3件次品中抽取2件次品,第二步从7件正品中抽取3件正品,根据乘法原理计算求得结果. 【详解】根据题意,分2步进行分析:①.从3件次品中抽取2件次品,有23C 种抽取方法,;②.从7件正品中抽取3件正品,有37C 种抽取方法, 则抽取的5件产品中恰好有2件次品的抽法有2337105C C ⨯=种; 故选:C .【点睛】本题考查排列组合的实际应用,注意是一次性抽取,抽出的5件产品步需要进行排列.9.D解析:D 【分析】先利用特殊值排除A,B,C ,再根据组合数公式以及二项式定理论证D 成立.令0m =得,CC C C 1mn m k n n k n n n k --===∑,在选择项中,令0m =排除A ,C ;在选择项中,令1m =,101110C C C C C C 2mn m k n n n k n n n n n k n -----==+=∑排除B ,()!!()!()!!()!mmn m k n knk k n k n CC n m m k k n k --==-=⋅---∑∑000!!2()!!!()!mm mm k m k m mn m n m n k k k n m C C C C C n m m k m k ====⋅=⋅==--∑∑∑,故选D 【点睛】本题考查组合数公式以及二项式定理应用,考查基本分析化简能力,属中档题.10.C解析:C 【分析】把问题分割成每一个“田”字里,求解. 【详解】每一个“田”字里有4个“L ”形,如图因为56⨯的方格纸内共有4520⨯=个“田”字,所以共有20480⨯=个“L ”形.. 【点睛】本题考查排列组合问题,关键在于把“要做什么”转化成“能做什么”,属于中档题.11.D解析:D 【解析】分析:直接利用排列数计算公式即可得到答案. 详解:()()()()()()829999!181920...9917!k k k k k k A k ------==-.故选:D.点睛:合理利用排列数计算公式是解题的关键.12.A解析:A 【分析】分两步进行,第一步先选三个盒子的编号与放入的小球的编号相同,第二步再将剩下的4个小球放入与小球编号不同的盒子中,然后利用分布计数原理求解.有三个盒子的编号与放入的小球的编号相同有3735C =种放法,剩下的4个小球放入与小球编号不同的盒子有11339C C ⋅=种放法,所以有且只有三个盒子的编号与放入的小球的编号相同,则不同的放法种数为359315⨯=种, 故选:A 【点睛】本题主要考查组合应用题以及分布计数原理,属于中档题.二、填空题13.60【分析】根据二项式展开式的通项公式求解【详解】有题意可得二项式展开式的通项为:令可得此时【点睛】本题考查二项式定理的应用考查通项公式考查计算能力属于基础题解析:60 【分析】根据二项式展开式的通项公式求解. 【详解】有题意可得,二项式展开式的通项为:()62612316612(1)2rrr r r r rr T C xC xx ---+⎛⎫=-=- ⎪⎝⎭令1230r -=可得4r = ,此时2456260T C ==.【点睛】本题考查二项式定理的应用,考查通项公式,考查计算能力,属于基础题.14.180【分析】根据二项式定理结合展开式通项即可确定的指数形式将多项式展开即可确定常数项【详解】的展开式中的通项公式而分别令解得或∴的展开式中的常数项故答案为:180【点睛】本题考查了二项式定理通项展解析:180 【分析】根据二项式定理,结合展开式通项即可确定x 的指数形式.将多项式展开,即可确定常数项. 【详解】62x ⎫⎪⎭的展开式中的通项公式 363216622kkkk k k k T C C x x --+⎛⎫==⋅⋅ ⎪⎝⎭,而()666332221)x x x x x =-⎫⎫⎫-⎪⎪⎪⎭⎭⎭ 分别令3332k -=-,3302k -=,解得4k =,或2k =.∴()6321x x ⎫-⎪⎭的展开式中的常数项44226622180C C -=. 故答案为:180. 【点睛】本题考查了二项式定理通项展开式的应用,多项式的乘法展开式,常数项的求法,属于中档题.15.84【分析】通过求出各项二项展开式中项的系数利用组合数的性质求出系数和即可得结果【详解】的展开式中含项的系数为:故答案是:84【点睛】该题考查的是有关二项式对应项的系数和的问题涉及到的知识点有指定项解析:84 【分析】通过求出各项二项展开式中2x 项的系数,利用组合数的性质求出系数和即可得结果. 【详解】()()()238111x x x ++++++的展开式中,含2x 项的系数为:2222222322222223456783345678C C C C C C C C C C C C C C ++++++=++++++399878432C ⨯⨯===⨯, 故答案是:84. 【点睛】该题考查的是有关二项式对应项的系数和的问题,涉及到的知识点有指定项的二项式系数,组合数公式,属于简单题目.16.【解析】分析:根据排列定义求结果详解:将5家招聘员工的公司看作5个不同的位置从中任选3个位置给3名大学毕业生则本题即为从5个不同元素中任取3个元素的排列问题所以不同的招聘方案共有=5×4×3=60( 解析:60【解析】分析:根据排列定义求结果.详解:将5家招聘员工的公司看作5个不同的位置,从中任选3个位置给3名大学毕业生,则本题即为从5个不同元素中任取3个元素的排列问题.所以不同的招聘方案共有35A =5×4×3=60(种).点睛:本题考查排列定义,考查基本求解能力.17.15【解析】二项式展开式中各项系数的和为64令得的通项为令常数项为故答案为【方法点晴】本题主要考查二项展开式定理的通项系数及各项系数和的求法属于简单题二项展开式定理的问题也是高考命题热点之一关于二项解析:15【解析】二项式nx ⎛+ ⎝展开式中各项系数的和为64,∴令1x =,得6264,8,n n x ⎛== ⎝的通项为36622166r r r r r r T C x x C x ---+=⋅=,令360,42r r -==,常数项为4615C =,故答案为15.【方法点晴】本题主要考查二项展开式定理的通项、系数及各项系数和的求法,属于简单题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式1C r n r rr n T a b -+=;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.18.60【解析】的展开式的通项公式为令得∴的系数为故答案为60解析:60 【解析】62x ⎛ ⎝的展开式的通项公式为()366621661222xrr x r r r r T C x C x ---+⎛⎛⎫==-⋅ ⎪ ⎝⎭⎝ 令3632r -=得2r∴3x 的系数为2622612602C -⎛⎫-⋅⋅= ⎪⎝⎭故答案为6019.8【解析】当在最右边位置时由种排法符合条件;当在从右数第二个位置时由种排法符合条件把件不同的产品摆成一排若其中的产品与产品都摆在产品的左侧则不同的摆法有种故答案为解析:8 【解析】当C 在最右边位置时,由336A = 种排法符合条件;当C 在从右数第二个位置时,由222A =种排法符合条件,把4件不同的产品摆成一排.若其中的产品A 与产品B 都摆在产品C 的左侧,则不同的摆法有6+2=8种,故答案为8.20.【分析】利用图象法判断出关于的方程的实数根的个数由此求得利用结合二项式展开式求得【详解】当时画出和的图象如下图所示由图可知两个函数图象有个交点所以关于的方程的实数根个数为1所以所以所以故答案为:【点 解析:11265【分析】利用图象法判断出关于x 的方程log (01)xa a x a =<<的实数根的个数,由此求得n ,利用132x x +=+-,结合二项式展开式求得1a . 【详解】当01a <<时,画出x y a =和log ay x =的图象如下图所示,由图可知两个函数图象有1个交点,所以关于x 的方程log (01)xa a x a =<<的实数根个数为1,所以1n =.所以()()()()11111113232n x x x x +++=+-++-,所以10101111(2)11265a C =+-=.故答案为:11265【点睛】本小题主要考查方程的根的个数判断,考查二项式展开式,属于中档题.三、解答题21.(1)8;(2)2358x -,展开式中二项式系数最大项为第五项. 【分析】(1)根据二项展开式的通项,分别求得123,,T T T ,结合等差中项公式,列出方程,即可求解;(2)根据二项式系数的性质,即可求解. 【详解】(1)由二项式*1()(,2)2nx n N n x∈≥, 可得021212123111,,222nn n nn n T C x T C x T C x x x x --⎛⎫⎛⎫⎛⎫=-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 因为展开式中前三项的系数的绝对值成等差数列,可得10211224n n n C C C ⨯⨯=+, 整理得1(1)142n n n -=+,即2980n n -+=,解得1n =或8n =.因为*,2n N n ∈≥,所以8n =.(2)当8n =时,展开式中二项式系数最大项为第五项44425813528T C x x -⎛⎫=-= ⎪⎝⎭.【点睛】对于二项式中的项的求解方法:(1)求二项式的特定项问题,实质是在考查通项r n rr r n T C ab -=的特点,一把需要建立方程求得r 的值,在将r 的值代回通项,主要r 的取值范围(0,1,2,,)k n =;(2)若n 为偶数时,中间一项(第12n+项)的二项式系数最大; (3)若n 为奇数时,中间一项(第12n +项和第112n ++项)的二项式系数最大. 22.(1)4511206T y =,5633618T y =;(2)4095. 【分析】(1)根据二项式的性质知二项式系数最大项为第5、第6项,代入通项计算;(2)利用展开式中各项的二项式系数和公式列出等式求解n ,代入(,)f n y 由2135a =列等式求解m ,即可利用赋值法求1i ni a =∑.【详解】(1)9(9,)(13)f y y =+,二项式系数最大项为第5、第6项,44459(3)11206T C y y ==,55569(3)33618T C y y ==.(2)由题意:2224032n n -=,即()()2642630nn-+=,解得6n =,6260126(6,)(1)f y my a a y a y a y =+=+++⋅⋅⋅+,则2226135a C m ==,29m =,解得3m =或3-(舍去),则6(6,)(13)f y y =+,令1y =可得601264a a a a =+++⋅⋅⋅,所以661260126011414095n i ii i a aa a a a a a a a ====++⋅⋅⋅=+++⋅⋅⋅-=-=∑∑.【点睛】本题考查二项式定理,涉及二项式系数最大项、展开式中二项式系数和、赋值法求展开式中项的系数和,属于中档题. 23.(1)12;(2)466. 【分析】(1)由排列数公式化简后再解方程可得;(2)由组合数性质求得n 的范围,求得n ,再利用组合性质变形后计算. 【详解】(1)由2490n n A A =,得90(1)(1)(2)(3)n n n n n n -=---,且4n ≥,解得12n =;(2)由题意383321n nn n -≤⎧⎨≤+⎩,*n N ∈,解得10n =.∴383321n n n n C C -++283021303130313029314662C C C C ⨯=+=+=+=. 【点睛】本题考查排列数公式和组合数公式,掌握排列数和组合数性质是解题关键.在组合数中一定要注意上标不大于下标. 24.(1)2m =-(2)29524 【分析】(1)由二项式定理求出第4项和第7项的系数,代入已知可得m ;(2)令1x =得所有项系数和,令1x =-得奇数项系数和与偶数项系数和的差,两者结合后可得偶数项系数和,0a 是常数项易求,从而可得246810a a a a a ++++, 【详解】(1)因为10iii a C m =,1,2,310i =,依题意得:66331010140C m C m +=,331098710981404321321m m ⨯⨯⨯⨯⨯⎛⎫+=⎪⨯⨯⨯⨯⨯⎝⎭因为0m ≠,所以38m =-,得2m =-. (2)()102100121012x a a x a x a x -=+++令1x =得:()10012345678910121a a a a a a a a a a a ++++++++++=-=.① 令1x =-得:()1010012345678910123a a a a a a a a a a a -+-+-+-+-+=+=.② 由①+②得:()10024*******a a a a a a +++++=+,即10024*******a a a a a a ++++++=. 又()001021a C =-=,所以1010246810133112952422a a a a a +-++++=-==【点睛】本题考查二项式定理的应用和赋值法,考查推理论证能力、运算求解能力,考查化归与转化思想,导向对发展数学抽象、逻辑推理、数学运算等核心素养的关注. 25.(1)3360;(2)1 【分析】(1)写出二项展开式的通项公式,当x 的指数是4时,可得到关于k 方程,解方程可得k 的值,从而可得展开式中含4x 项的系数;(2)根据上一问写出的通项公式,利用第3r 项和第2r +项的二项式系数相等,可得到一个关于r 的方程,解方程即可得结果. 【详解】(1)设第k +1项为T k +1=令10-k =4,解得k =4,故展开式中含x 4项的系数为()441023360C =-.(2)∵第3r 项的二项式系数为,第r +2项的二项式系数为,∵=,故3r -1=r +1或3r -1+r +1=10,解得r =1或r =2.5(不合题意,舍去),∴r =1. 26.(1)10;(2)1031- 【分析】(1)分别选择不同方案,根据展开式系数关系即可求出; (2)令0x =和1x =-可求出. 【详解】(1)选择条件①,若()21nx -的展开式中只有第6项的二项式系数最大,则52n=, 10n ∴=;选择条件②,若()21nx -的展开式中第4项与第8项的二项式系数相等,则37n n C C =,10n ∴=;选择条件②,若()21nx -的展开式中所有二项式系数的和为102,则1022n,10n ∴=;(2)由(1)知10n =,则()101231001231021x a a x a x a x a x -=++++⋅⋅⋅+, 令0x =,得01a =,令1x =-,则100123101012331a a a a a a a a a +=-+-+⋅⋅++⋅⋅⋅⋅++=+,101231031a a a a ∴+++⋅⋅⋅+=-.【点睛】本题考查二项展开式系数关系,属于基础题.。
一、选择题1.对大于1的自然数m 的三次幂可用奇数进行以下形式的“分裂”:仿此,若3m 的“分裂数”中有一个是2017,则m 的值为( )3331373152,39,4,5171119⎧⎧⎪⎧⎪⎪⎨⎨⎨⎩⎪⎪⎩⎪⎩A .44B .45C .46D .472.已知等比数列{}n a 的n 项和2n n S a =-,则22212n a a a +++=( )A .()221n -B .()1213n- C .41n -D .()1413n- 3.已知数列{}n a 满足111n n n n a a a a ++-=+,且113a =,则{}n a 的前2021项之积为( ) A .23B .13C .2-D .3-4.数列{}n a 的通项公式为12n n a +=,其前n 项和为n T ,若不等式()2log 4(1)73n n T n n λ+-++对任意*n N ∈恒成立,则实数λ的取值范围为( )A .3λB .4λC .23λ D .34λ5.定义:在数列{}n a 中,若满足211n n n na a d a a +++-=(n N +∈,d 为常数),称{}n a 为“等差比数列”。
已知在“等差比数列”{}n a 中,1231,3a a a ===则20152013a a =( ) A .2420151⨯- B .2420141⨯- C .2420131⨯-D .242013⨯6.数列{}n a 是等差数列,51260a a =>,数列{}n b 满足123n n n n b a a a +++=,*n N ∈,设n S 为{}n b 的前n 项和,则当n S 取得最大值时,n 的值等于( )A .9B .10C .11D .127.数列{}n a 是等比数列,若21a =,518a =,则12231n n a a a a a a ++++的取值范围是( ) A .8,3⎛⎫-∞ ⎪⎝⎭B .2,23⎛⎤ ⎥⎝⎦C .81,3⎡⎫⎪⎢⎣⎭D .82,3⎡⎫⎪⎢⎣⎭8.数列{a n }中,已知对任意n ∈N *,a 1+a 2+a 3+…+a n =3n ﹣1,则a 12+a 22+a 32+…+a n 2等于( )A .n 2(31)-B .()n1912- C .n 91- D .()n1314- 9.已知正项数列{a n }的前n 项和为S n ,a 1>1,且6S n =a n 2+3a n +2.若对于任意实数a ∈[﹣2,2].不等式()2*1211+<+-∈+n a t at n N n 恒成立,则实数t 的取值范围为( ) A .(﹣∞,﹣2]∪[2,+∞) B .(﹣∞,﹣2]∪[1,+∞) C .(﹣∞,﹣1]∪[2,+∞) D .[﹣2,2]10.函数()2cos 2f x x x =-{}n a ,则3a =( ) A .1312πB .54π C .1712πD .76π 11.已知数列{}n a 是等比数列,11a >,且前n 项和n S 满足11lim n n S a →∞=,那么1a 的取值范围是( ) A.(B .()1,4C .()1,2D .()1,+∞12.已知数列{}n a 满足:11a =,()*12nn n a a n N a +=∈+.若()*+11()1n n b n n N a λ⎛⎫=-+∈ ⎪⎝⎭,1b λ=-,且数列{}n b 是单调递增数列,则实数λ的取值范围为( ) A .2λ>B .3λ>C .2λ<D .3λ<二、填空题13.数列{}n a 的前n 项和是11,1,0,31n n n n n S a a S a a +=≠=+,若2020k a =,则k =______.14.将正整数12分解成两个正整数的乘积有112⨯,26⨯,34⨯,三种,其中34⨯是这三种分解中两数差的绝对值最小的,我们称34⨯为12的最佳分解,当(),,p q p q p N q N **⨯≤∈∈是正整数n 的最佳分解时,我们定义函数()f n q p =-,例如(12)431f =-=,则数列(){}3nf 的前2020项和为______.15.已知{}{},n n a b 均为等差数列,其前n 项和分别为,n n S T ,且233n n S n T n -=+,则55a b =________.16.如图所示,正方形ABCD 的边长为5cm ,取正方形ABCD 各边的中点,,,E F G H ,作第2个正方形EFGH ,然后再取正方形EFGH 各边的中点,,,I J K L ,作第3个正方形IJKL ,依此方法一直继续下去.如果这个作图过程可以一直继续下去,那么所有这些正方形的面积之和将趋近于___2cm ?17.设n S 是数列{}n a 的前n 项和,若点(),n n S a 在直线21y x =+上,则5a =__________. 18.设公差不为零的等差数列{}n a 的前n 项和为n S ,12a =.若存在常数λ,使得2n n a a λ=()*N n ∈恒成立,则910nn S ⎛⎫ ⎪⎝⎭取最大值时,n =________. 19.下表给出一个“直角三角形数阵”:满足每一列成等差数列,从第三行起,每一行的数成等比数列,且每一行的公比相等,记第i 行第j 列的数为(,)i j a (i ,j ∈N *),则(20,20)a =_____. 20.若数列{}n a 满足11a =,且()*1111n nn a a N +∈-=,则 ①数列{}na e是等比数列;②满足不等式:1112n n a a +++≥ ③若函数()f x 在R 上单调递减,则数列(){}n f a 是单调递减数列; ④存在数列{}n a 中的连续三项,能组成三角形的三条边; ⑤满足等式:122311n n n a a a a a a n +++⋅⋅⋅+=+. 正确的序号是________三、解答题21.直线:2l x =与x 轴交于点M ,过动点P 作直线l 的垂线交l 于点N ,若OM 、OP 、PN 成等比数列,其中O 为坐标原点.(1)求动点P 的轨迹方程. (2)求OP PN -的最大值.22.数列{}n a 满足()1121nn n a a n ++-=-,n *∈N 且1a a =(a 为常数).(1)(i )当n 为偶数时,求4n n a a +-的值; (ii )求{}n a 的通顶公式;(2)设n S 是数列{}n a 的前n 项和,求证:48411114n S S S ++⋅⋅⋅+< 23.设等差数列{}n a 的前n 项和为n S ,34a =,43a S =.数列{}n b 满足:对每个*n N ∈,n n S b +,1n n S b ++,2n n S b ++成等比数列.(1)求数列{}n a ,{}n b 的通项公式; (2)记n c =*n N ∈,证明:12n c c c +++<.24.已知数列{}n a 是等差数列,数列{}n b 是等比数列,且满足112a b ==,35730a a a ++=,2316b b a =.(1)求数列{}n a 与和{}n b 的通项公式;(2)设数列{}n a ,{}n b 的前n 项和分别为n S ,n T .①是否存在正整数k ,使得132k k k T T b +=++成立?若存在,求出k 的值,若不存在,请说明理由;②解关于n 的不等式n n S b ≥.25.已知数列{a n }的前n 项和S n =3n +1-t ,求证:数列{a n }是等比数列的充要条件为t =3. 26.已知n S 是数列{}n a 的前n 项和,131n n S S +=+,11a =. (1)证明:数列{}n a 是等比数列,并求n a 的通项公式; (2)若()11n n n b na -=-⋅,求数列{}n b 的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由题意,从32到3m ,正好用去从3开始的连续奇数,共123(2)(1)2m m m +++=+-个,再由2017是从3开始的第1008个奇数,可得选项. 【详解】由题意,从32到3m ,正好用去从3开始的连续奇数,共123(2)(1)2m m m +++=+-个,212017n += ,得1008n =, 所以2017是从3开始的第1008个奇数,当45m =时,从32到345,用去从3开始的连续奇数共474410342⨯=个, 当44m =时,从32到344,用去从3开始的连续奇数共46439892⨯=个, 所以45m =, 故选:B . 【点睛】方法点睛:对于新定义的数列问题,关键在于找出相应的规律,再运用等差数列和等比数列的通项公式和求和公式,得以解决.2.D解析:D 【分析】由n a 与n S 的关系可求得12n n a ,进而可判断出数列{}2n a 也为等比数列,确定该数列的首项和公比,利用等比数列的求和公式可求得所化简所求代数式.【详解】已知等比数列{}n a 的n 项和2n n S a =-. 当1n =时,112a S a ==-;当2n ≥时,()()111222nn n n n n a S S a a ---=-=---=.由于数列{}n a 为等比数列,则12a a =-满足12n na ,所以,022a -=,解得1a =,()12n n a n N -*∴=∈,则()221124n n na --==,2121444n n n n a a +-∴==,且211a =, 所以,数列{}2n a 为等比数列,且首项为1,公比为4, 因此,222121441143n n na a a --+++==-. 故选:D. 【点睛】方法点睛:求数列通项公式常用的七种方法:(1)公式法:根据等差数列或等比数列的通项公式()11n a a n d +-=或11n n a a q -=进行求解;(2)前n 项和法:根据11,1,2n nn S n a S S n -=⎧=⎨-≥⎩进行求解;(3)n S 与n a 的关系式法:由n S 与n a 的关系式,类比出1n S -与1n a -的关系式,然后两式作差,最后检验出1a 是否满足用上面的方法求出的通项;(4)累加法:当数列{}n a 中有()1n n a a f n --=,即第n 项与第1n -项的差是个有规律的数列,就可以利用这种方法; (5)累乘法:当数列{}n a 中有()1nn a f n a -=,即第n 项与第1n -项的商是个有规律的数列,就可以利用这种方法;(6)构造法:①一次函数法:在数列{}n a 中,1n n a ka b -=+(k 、b 均为常数,且1k ≠,0k ≠).一般化方法:设()1n n a m k a m -+=+,得到()1b k m =-,1bm k =-,可得出数列1n b a k ⎧⎫+⎨⎬-⎩⎭是以k 的等比数列,可求出n a ;②取倒数法:这种方法适用于()112,n n n ka a n n N ma p*--=≥∈+(k 、m 、p 为常数,0m ≠),两边取倒数后,得到一个新的特殊(等差或等比)数列或类似于1n n a ka b-=+的式子;⑦1nn n a ba c +=+(b 、c 为常数且不为零,n *∈N )型的数列求通项n a ,方法是在等式的两边同时除以1n c +,得到一个1n n a ka b +=+型的数列,再利用⑥中的方法求解即可.3.B解析:B 【分析】由111n n n n a a a a ++-=+,且113a =,可得:111n n n a a a ++=-,可得其周期性,进而得出结论. 【详解】因为111n n n n a a a a ++-=+,且113a =, 所以111nn na a a ++=-, 21132113a +∴==-,33a =-,412a =-,513a =,⋯⋯,4n n a a +∴=.123411···2(3)()132a a a a ∴=⨯⨯--⋅⨯=.则{}n a 的前2021项之积50511133=⨯=.故选:B 【点睛】方法点睛:已知递推关系式求通项:(1)用代数的变形技巧整理变形,然后采用累加法、累乘法、迭代法、构造法或转化为基本数列(等差数列或等比数列)等方法求得通项公式.(2)通过具体的前几项找到其规律,如周期性等求解.4.A解析:A 【分析】将不等式()2log 4(1)73n n T n n λ+-++对任意*n N ∈恒成立,转化为271n n n λ-++对任意*n N ∈恒成立,由2min71n n n λ⎛⎫-+ ⎪+⎝⎭求解.【详解】 依题意得,()24122412n n nT +-==--,∴不等式()2log 4(1)73n n T n n λ+-++可化为22log 2(1)73n n n n λ+-++,即27(1)n n n λ-++.又*n N ∈,∴271n n n λ-++对任意*n N ∈恒成立.只需满足2min71n n n λ⎛⎫-+ ⎪+⎝⎭即可.设1n t +=,则*t N ∈,2t ,∴27931n n t n tλ-+=+-+.∵993233t t t t+-⋅-=,当且仅当3t =,即2n =时等号成立, ∴2min731n n n ⎛⎫-+= ⎪+⎝⎭.∴3λ,故选:A. 【点睛】方法点睛:恒(能)成立问题的解法:若()f x 在区间D 上有最值,则()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<;若能分离常数,即将问题转化为:()a f x >(或()a f x <),则()()max a f x a f x >⇔>;()()min a f x a f x <⇔<. 5.C解析:C 【分析】 利用定义,可得1n n a a +⎧⎫⎨⎬⎩⎭是以1为首项,2为公差的等差数列,从而121n na n a +=-,利用201520152014201320142013a a a a a a =⋅,可得结论. 【详解】121a a ==,33a =,32212a a a a ∴-=, 1n n a a +⎧⎫∴⎨⎬⎩⎭是以1为首项,2为公差的等差数列, 121n na n a +∴=-, ()()20152015201420132014201322014122013140274025a a a a a a ∴=⋅=⨯-⨯-=⨯ 22(40261)(40261)40261420131=+-=-=⨯-.故选:C. 【点睛】数列的递推关系是给出数列的一种方法,根据给出的初始值和递推关系可以依次写出这个数列的各项,由递推关系求数列的通项公式,常用的方法有:①求出数列的前几项,再归纳猜想出数列的一个通项公式;②将已知递推关系式整理、变形,变成等差、等比数列,或用累加法、累乘法、迭代法求通项.6.D解析:D 【分析】由51260a a =>,得到首项和公差的关系以及公差的范围,然后求得通项公式,判断,n n a b 的正负,再利用通项与前n 项和关系求解.【详解】设数列{}n a 的公差为d , 因为51260a a =>,所以()1104116a a d d +=>+,即1625a d =-, 因为512a a >, 所以0d <,所以167(1)5n a n d n d a ⎛⎫=+-=-⎪⎝⎭, 当113n ≤≤时,0n a >,当14n ≥时,0n a <, 所以12101314...0...b b b b b >>>>>>>, 又因为()111213141215131405db b a a a a a a +=+=>, 所以1210S S >,故n S 中12S 最大 , 故选:D 【点睛】本题主要考查等差数列的通项公式以及数列前n 项和的最值问题,还考查逻辑推理的能力,属于中档题.7.D解析:D 【分析】由题意计算出{}n a 的公比q ,由等比数列的性质可得{}1n n a a +也为等比数列,由等比数列前n 项和计算即可得结果. 【详解】因为数列{}n a 是等比数列,21a =,518a =,所以35218a q a ==,即12q =,所以12a =,由等比数列的性质知{}1n n a a +是以2为首项,以14为公比的等比数列. 所以12122311214881813343142n n n n a a a a a a a a +⎛⎫⎛⎫- ⎪⎪ ⎪⎝⎭⎛⎫⎝⎭≤==-< ⎪⎝⎭=+++-, 故选:D. 【点睛】本题主要考查了等比数列的性质以及等比数列前n 项和的计算,属于中档题.8.B解析:B 【分析】由a 1+a 2+a 3+…+a n =3n ﹣1,可求得a n ,从而可知2n a ,利用等比数列的求和公式即可求得答案. 【详解】∵a 1+a 2+a 3+…+a n =3n ﹣1,①,∴a 1+a 2+a 3+…+a n +1=3n +1﹣1,② ②﹣①得:a n +1=3n +1﹣3n =2×3n ,∴a n =2×3n ﹣1()2n ≥. 当n =1时,a 1=31﹣1=2,符合上式,∴a n =2×3n ﹣1. ∴221211249,4,9n n nna a a a -+=⨯∴==,∴{}2n a 是以4为首项,9为公比的等比数列, ∴a 12+a 22+a 32+…+a n 2=()()419191921n n⨯-=--. 故选B . 【点睛】本题考查数列通项公式的确定及等比数列的判断与求和公式的综合应用,属于中档题.9.A解析:A 【分析】根据a n 与S n 的关系,由6S n =a n 2+3a n +2,得6S n ﹣1=a n ﹣12+3a n ﹣1+2,两式相减整理得a n ﹣a n﹣1=3,由等差数列的定义求得a n 的通项公式,然后将不等式()2*1211+<+-∈+n a t at n N n 恒成立,转化为2t 2+at ﹣4≥0,对于任意的a ∈[﹣2,2],n ∈N *恒成立求解. 【详解】由6S n =a n 2+3a n +2,当n =1时,6a 1=a 12+3a 1+2.解得a 1=2, 当n ≥2时,6S n ﹣1=a n ﹣12+3a n ﹣1+2,两式相减得6a n =a n 2+3a n ﹣(a n ﹣12+3a n ﹣1), 整理得(a n +a n ﹣1)(a n ﹣a n ﹣1﹣3)=0,由a n >0,所以a n +a n ﹣1>0,所以a n ﹣a n ﹣1=3, 所以数列{a n }是以2为首项,3为公差的等差数列, 所以a n +1=2+3(n +1﹣1)=3n +2,所以11n a n ++=321++n n =3﹣11n +<3,因此原不等式转化为2t 2+at ﹣1≥3,对于任意的a ∈[﹣2,2],n ∈N *恒成立, 即为:2t 2+at ﹣4≥0,对于任意的a ∈[﹣2,2],n ∈N *恒成立, 设f (a )=2t 2+at ﹣4,a ∈[﹣2,2], 则f (2)≥0且f (﹣2)≥0,即有222020t t t t ⎧+-⎨--⎩,解得t ≥2或t ≤﹣2,则实数t 的取值范围是(﹣∞,﹣2]∪[2,+∞) 故选:A . 【点睛】本题主要考查数列与不等式的,a n 与S n 的关系,等差数列的定义,方程的根的分布问题,还考查了转化化归思想和运算求解的能力,属于中档题.10.B解析:B 【分析】先将函数化简为()2sin 26f x x π⎛⎫=-⎪⎝⎭4x k ππ=+或512x k ππ=+,k Z ∈,再求3a 即可. 【详解】 解:∵()2cos 22sin 26f x x x x π⎛⎫=-=-- ⎪⎝⎭∴ 令()0f x =得:2263x k πππ-=+或22263x k πππ-=+,k Z ∈, ∴4x k ππ=+或512x k ππ=+,k Z ∈, ∴ 正数零点从小到大构成数列为:12355,,,4124a a a πππ===故选:B. 【点睛】本题考查三角函数的性质,数列的概念,考查数学运算求解能力,是中档题.11.A解析:A 【分析】设等比数列{}n a 的公比为q ,可知10q -<<或01q <<,计算出111lim 1n n a S q a →∞==-,可得出q 关于1a 的表达式,结合q 的范围,可解出1a 的取值范围. 【详解】设等比数列{}n a 的公比为q ,由于11lim n n S a →∞=,则10q -<<或01q <<,()111n n a q S q-=-,则()11111lim lim11n n n n a q a S qq a →∞→∞-===--,得211q a =-. ①若10q -<<,则21110a -<-<,即2112a <<,11a >,解得1a <<; ②当01q <<,则21011a <-<,得2101a <<,11a >,则2101a <<不成立.综上所述,1a的取值范围是(. 故选A. 【点睛】本题考查利用极限求等比数列首项的取值范围,解题的关键就是得出公比与首项的关系,结合公比的取值范围得出关于首项的不等式,考查运算求解能力,属于中等题.12.C解析:C 【分析】 数列{a n }满足()*12nn n a a n N a +=∈+,两边取倒数可得1121n na a +=+,从而得到11=2n n a +,于是b n +1=(n ﹣λ)(11a +1)=(n ﹣λ)•2n ,由于数列{b n }是单调递增数列,可得b n +1>b n ,解出即可. 【详解】∵数列{a n }满足:a 1=1,()*12nn n a a n N a +=∈+, ∴1121n n a a +=+,化为111121n n a a +⎛⎫+=+ ⎪⎝⎭, ∴数列11n a ⎧⎫+⎨⎬⎩⎭是首项为11a +1=2,公比为2的等比数列,∴11=2n na +, ∴b n +1=(n ﹣λ)(11a +1)=(n ﹣λ)•2n ,∵数列{b n }是单调递增数列,∴b n +1>b n ,∴n ≥2时,(n ﹣λ)•2n >(n ﹣1﹣λ)•2n ﹣1,化为λ<n +1, ∵数列{n +1}为单调递增数列,∴λ<3.当n =1时,b 2=(1﹣λ)×2>﹣λ=b 1,解得λ<2. 综上可得:实数λ的取值范围为λ<2. 故选:C . 【点睛】本题考查由数列的递推关系式求数列的通项公式、考查由数列的单调性求解参数问题,考查等比数列的通项公式,考查推理能力与计算能力,属于中档题.二、填空题13.1347【分析】当时则两式相减得到得到代入数据计算得到答案【详解】解:当时当时由则两式相减得到因为故数列的奇数项为以为首项3为公差的等差数列;偶数项为以为首项3为公差的等差数列;所以当为奇数时成立;解析:1347 【分析】当2n ≥时131n n n S a a +=+则1131n n n S a a --=+,两式相减得到113n n a a +--=,得到31,2231,2n n n a n n ⎧-⎪⎪=⎨⎪-⎪⎩为奇数为偶数,代入数据计算得到答案.【详解】解:当1n =时,2112312S a a a =+∴=当2n ≥时,由131n n n S a a +=+则1131n n n S a a --=+,两式相减得到()113n n n n a a a a +-=- 因为0n a ≠113n n a a +-∴-=,故数列的奇数项为以1为首项,3为公差的等差数列;偶数项为以2为首项,3为公差的等差数列;所以31,2231,2n n n a n n ⎧-⎪⎪=⎨⎪-⎪⎩为奇数为偶数 当k 为奇数时,202013473122k a k k ==-=∴,成立; 当k 为偶数时,404220203312k a k k ∴==-=,不成立; 故答案为:1347 【点睛】本题考查了数列的通项公式,灵活运用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩是解题的关键.14.【分析】先通过归纳得再利用等比数列求和得解【详解】由题意得归纳得则故答案为:【点睛】关键点睛:解答本题的关键在通过特殊值归纳出归纳出这个结论之后后面利用等比数列求和就迎刃而解了 解析:101031-【分析】 先通过归纳得()()2111233323,3330k kk k k k k f f ---=-=⨯=-=,再利用等比数列求和得解.【详解】由题意得()()232(3)312,3330,333236f f f =-==-==-=⨯=,()4223330f =-=,归纳得()()2111233323,3330k kk k kkkf f ---=-=⨯=-=,则()()()()()()232020352019(3)333(3)333f f f f f f f f ++++=++++012100923232323=⨯+⨯+⨯++⨯()10101210091010132333323113-=⨯++++=⨯=--.故答案为:101031- 【点睛】关键点睛:解答本题的关键在通过特殊值归纳出()()2111233323,3330k k k k k k k f f ---=-=⨯=-=,归纳出这个结论之后,后面利用等比数列求和就迎刃而解了.15.【分析】根据等差数列的前n 项和公式有结合已知条件令即可得进而求【详解】∵均为等差数列令公差分别为则有∴令则有∴故答案为:【点睛】思路点睛:利用等差数列的前n 项和公式结合等差数列通项公式的特点合理假设解析:54【分析】根据等差数列的前n 项和公式有11(1)2n n n S na d -=+,12(1)2n n n T nb d -=+,结合已知条件,令122,1d d ==即可得11,a b ,进而求55a b .【详解】∵{}{},n n a b 均为等差数列,令公差分别为12,d d ,则有11(1)2n n n S na d -=+,12(1)2n n n T nb d -=+, ∴11121222323n n S nd a d n T nd b d n +--==+-+,令122,1d d ==,则有111,22a b =-=, ∴5115124544a a db b d +==+, 故答案为:54【点睛】思路点睛:利用等差数列的前n 项和公式,结合等差数列通项公式的特点合理假设即可得到数列的基本量11(1)2n n n S na d -=+,12(1)2n n n T nb d -=+,则有11121222n n S nd a d T nd b d +-=+-.结合已知233n n S n T n -=+,假设122,1d d ==,即可求11,a b . 16.50【分析】根据题意正方形边长成等比数列正方形的面积等于边长的平方可得代入求出的通项公式然后根据等比数列的前n 项和的公式得到的和即可求解【详解】记第1个正方形的面积为第2个正方形的面积为第n 个正方形解析:50 【分析】根据题意,正方形边长成等比数列,正方形的面积等于边长的平方可得2n n S a =,代入求出n S 的通项公式,然后根据等比数列的前n 项和的公式得到123n s S S S +++⋯+的和即可求解. 【详解】记第1个正方形的面积为1S ,第2个正方形的面积为2S ,⋯,第n 个正方形的面积为n S ,设第n 个正方形的边长为n a ,则第nn , 所以第n +1个正方形的边长为12n n a a +=,12n n a a +∴=, 即数列{n a }是首项为15a =,公比为2的等比数列,15n n a -∴=⋅, 数列{n S }是首项为125S =,公比为12的等比数列, 123125(1)1250(1)1212nn nS S S S -+++⋯+==⋅-∴-,所以如果这个作图过程可以一直继续下去,那么所有这些正方形的面积之和将趋近于50, 故答案为:5017.【分析】由得两式相减得时然后利用等比数列的定义求解【详解】由题意知当时两式相减得即当时所以数列是首项为公比为的等比数列则故答案为:-1【点睛】本题主要考查数列的递推关系还考查了运算求解能力属于中档题解析:1-【分析】由21n n a S =+,得1121n n a S --=+,两式相减得1n n a a -=-,1n =时,11a =-,然后利用等比数列的定义求解. 【详解】由题意知21n n a S =+, 当2n ≥时,1121n n a S --=+, 两式相减,得12n n n a a a --=, 即1n n a a -=-, 当1n =时,11a =-,所以数列{}n a 是首项为1-,公比为1-的等比数列, 则()()45111a =-⨯-=-. 故答案为:-1 【点睛】本题主要考查数列的递推关系,还考查了运算求解能力,属于中档题.18.或19【分析】利用等差数列的通项公式求出再利用等差数列的前项和公式求出记利用作商法判断出数列的单调性即可求解【详解】设等差数列的公差为由题意当时当时所以解得或(舍去)所以记所以当时此时当时时此时所以解析:18或19 【分析】利用等差数列的通项公式求出λ、d ,再利用等差数列的前n 项和公式求出n S ,记910nn n T S ⎛⎫= ⎪⎝⎭,利用作商法判断出数列的单调性即可求解.【详解】设等差数列{}n a 的公差为d ,由题意, 当1n =时,21a a λ=, 当2n =时,42a a λ=,所以()22232d d d λλ+=⎧⎨+=+⎩,解得22d λ=⎧⎨=⎩ 或10d λ=⎧⎨=⎩(舍去),所以()2112n n n dS na n n -=+=+, 记()2991010nnn n n T S n =⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭+,所以()()()12129119210110910n n nnn n T T n n n ++⎛⎫⎡⎤+++ ⎪⎣⎦⎛⎫⎝⎭==+ ⎪⎝⎭⎛⎫+ ⎪⎝⎭, 当118n ≤≤,n *∈N 时,1921110n n T T n +⎛⎫=+≥ ⎪⎝⎭,此时1n n T T +≥, 当10n >时,n *∈N 时,1921110n n T T n +⎛⎫=+< ⎪⎝⎭,此时1n n T T +<, 所以910nn S ⎛⎫ ⎪⎝⎭取最大值时,18n =或19 故答案为:18或19 【点睛】本题考查了差数列的通项公式、等差数列的前n 项和公式、数列的单调性求数列中的最大项,属于中档题.19.【分析】先计算第一列形成的数列再计算第20行形成的数列得到答案【详解】设第一列形成的数列为则是首项为公差为的等差数列故设第20行形成的数列为是首项为公比为的等比数列故即故答案为:【点睛】本题考查了等 解析:1952 【分析】先计算第一列形成的数列205b =,再计算第20行形成的数列201952c =,得到答案. 【详解】设第一列形成的数列为n b ,则{}n b 是首项为14,公差为14的等差数列,故4n n b =,205b =.设第20行形成的数列为n c ,{}n c 是首项为5,公比为12的等比数列,故201952c =. 即(20,20)201952a c ==. 故答案为:1952. 【点睛】本题考查了等差数列和等比数列的综合应用,意在考查学生对于数列公式方法的灵活运用.20.②④⑤【分析】利用所给递推公式求出的通项公式由证明数列不是等比数列根据的单调性求出范围证明②正确根据复合函数的增减性判断规则说明③错误举出例子证明④正确利用裂项相消法求和证明⑤正确【详解】且数列是以解析:②④⑤ 【分析】利用所给递推公式求出{}n a 的通项公式,由3212b b b b ≠证明数列{}n a e 不是等比数列,根据1111(1)1n n a n a n +++=+++的单调性求出范围证明②正确,根据复合函数的增减性判断规则说明③错误,举出例子证明④正确,利用裂项相消法求和证明⑤正确. 【详解】()*1111n n a a n N +-=∈且111a ,∴数列1{}n a 是以1为首项,1为公差的等差数列,则()*1nn n N a =∈, ()*1n a n N n∴=∈. ①设1n n na b e e ==,则1132123,,b e b e b e ===,因为11326212,b b e e b b --==,所以3212b b b b ≠,因此数列{}na e 不是等比数列;②1111(1)1n n a n a n +++=+++,因为1(1)1y n n =+++在[1,)+∞上单调递增,所以115(1)2122n n ++≥+=+,②正确; ③因为若数列{}n a 是单调递减的数列,所以若函数()f x 在R 上单调递减,则数列(){}nf a 是单调递增数列;④234111,,234a a a ===即可构成三角形的三边,所以④正确; ⑤因为1111(1)1n n n n a n a n +==-++,所以1223111112111231n n n a a a a a a n n n +++⋅⋅⋅+=--=++-+++,⑤正确. 故答案为:②④⑤ 【点睛】本题考查由递推公式求数列的通项公式,用定义证明等比数列,复合函数的单调性,裂项相消法求和,属于中档题.三、解答题21.(1)22(1)5x y ++=;(2)4-. 【分析】(1)本题首先可设(,)P x y ,然后根据OM 、OP 、PN 成等比数列得出2222x y x +=⋅-,最后分为2x >、2x <两种情况进行讨论,即可得出结果;(2)本题首先可根据动点P的轨迹方程得出1x ⎡⎤∈⎣⎦,然后将OP PN -转2x +,最后令()2f x x =+,根据导函数性质即可求出最值.【详解】(1)设(,)P x y ,则(2,)N y ,(2,0)M , 因为OM 、OP 、PN 成等比数列,所以2OP P O N M =⋅,即2222x y x +=⋅-,2x ≠, 当2x >时,2224x y x +=-,即22(1)3x y -+=-(舍去);当2x <时,2242x y x +=-,即22(1)5x y ++=,故动点P 的轨迹方程为22(1)5x y ++=.(2)因为动点P 的轨迹方程为22(1)5x y ++=,所以1x ⎡⎤∈⎣⎦,则(2)2OP PN x x -=-=+,令()2f x x =+,则()1f x '=因为当1x ⎡⎤∈⎣⎦时()0f x '>,所以)max ()121134f x f===+=,故OP PN -的最大值为4. 【点睛】关键点点睛:本题考查动点的轨迹方程的求法以及利用导函数求最值,考查等比中项的性质的应用,利用导函数求最值时,可先通过导函数求出函数单调性,然后根据函数单调性求出最值,考查计算能力,体现了综合性,是中档题.22.(1)(i )8;(ii )()()()(),4323,422,4121,4n a n k n a n k a a n k n a n k ⎧=-⎪+-=-⎪=⎨-=-⎪⎪--=⎩;(2)证明见解析. 【分析】(1)(i )推导出当n 为正偶数时,24n n a a n ++=,可得出+4248n n a a n ++=+,两式作差可得出结论成立;(ii )推导出当n 为正奇数时,4n n a a +=,求出2a 、3a 、4a ,对任意的k *∈N ,分43n k =-,42n k =-,41n k =-,4n k =四种情况讨论,结合等差数列的通项公式以及周期数列的定义可求得数列{}n a 的通项公式;(2)计算出4342414n n n n a a a a ---+++,可求得2482n S n n =+,利用放缩法得出4111142121n S n n ⎛⎫<- ⎪-+⎝⎭,结合裂项相消法可证得所证不等式成立. 【详解】(1)(i )当n 为正偶数时,121n n a a n ++=-,2121n n a a n ++-=+, 两式相加得24n n a a n ++=,① 可得+4248n n a a n ++=+,② ②-①得48n n a a +-=;(ii )当n 为正奇数时,121n n a a n +-=-,2121n n a a n +++=+, 两式作差得22n n a a ++=,所以,422n n a a +++=, 上述两个等式作差得4n n a a +=, 又211a a -=,则2111a a a =+=+,323a a +=,则3232a a a =-=-, 435a a -=,则4357a a a =+=-.对任意的k *∈N ,当43n k =-,则1n a a a ==; 当42n k =-时,()()()422811818722723n k a a a k a k a k a n a n -==+-=++-=+-=++-=+-;当41n k =-时,32n a a a ==-;当4n k =时,()()44817818121n k a a a k a k k a n a ==+-=-+-=--=--.综上所述,()()()(),4323,422,4121,4n a n k n a n k a a n k n a n k ⎧=-⎪+-=-⎪=⎨-=-⎪⎪--=⎩; (2)()434241424232241166n n n n a a a a a n a a n a n ---+++=+-+-+-+⨯--=-,()2410166822n n n S n n +-∴==+,()()2241111114212124241n S n n n n n ⎛⎫∴=<=- ⎪-++-⎝⎭, 所以,48411111111111111433521214214n S S S n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫++⋅⋅⋅+<-+-++-=-< ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. 【点睛】方法点睛:证明数列不等式常用放缩法,常用的放缩公式如下: (1)()()21111211n n n n n n<=-≥--; (2)()()()211111211211n n n n n n ⎛⎫<=-≥ ⎪-+-+⎝⎭; (3)()()2221144112141212121214n n n n n n n ⎛⎫<===- ⎪--+-+⎝⎭-; (4()22n =<=≥. 23.(1)22n a n =-,(1)n b n n =+;(2)证明见解析.【分析】(1)根据等差数列的通项公式求出公差d 可得n a ,根据等差数列的求和公式可得n S ,根据n n S b +,1n n S b ++,2n n S b ++成等比数列可得(1)n b n n =+;(2)将n c 放大后再裂项,利用裂项求和方法求解可证不等式成立.【详解】(1)设等差数列{}n a 的公差为d ,由题意得31413124333a a d a a d S a d =+=⎧⎨=+==+⎩,解得102a d =⎧⎨=⎩, 从而22n a n =-,2(1)(1)2n n n S n n -==-. 因为n n S b +,1n n S b ++,2n n S b ++成等比数列所以()()()212n n n n n n S b S b S b +++=++,从而()211222n n n n n n n n S S b S S b S S +++++=++, 所以2221221(1)(1)(1)(2)2(1)(1)2(1)(1)(2)2(1)2n n n nn n n S S Sn n n n n n n n b n nS S S n n nn n n ++++-+--+++====++--+++-+. (2)证明:因为n c ===<=, 所以122(10211)2n c c c n n n +++<-+-++--=【点睛】关键点点睛:将n c 放大后再裂项,利用裂项求和方法求解是解题关键.24.(1)2n a n =,2n n b =;(2)①存在,5k =;②{}1,2,3,4.【分析】(1)由等差数列以及等比数列的性质以及通项公式得出答案;(2)①11k k k b T T ++-=结合数列{}n b 的通项公式得出k 的值;②由()1n S n n =+将不等式化为()210n n n -+≤,令()()21nf n n n =-+并得出其单调性,再由单调性确定解集. 【详解】(1)因为等差数列{}n a 中,3575330a a a a ++==,所以510a =. 设等差数列{}n a 的公差是d ,所以51251a a d -==- 所以()112n a a n d n =+-=.设等比数列{}n b 的公比是q ,因为2316b b a =所以2331432b q q ==,所以2q ,所以112n n n b b q -==. (2)①若存在正整数k ,使得132k k k T T b +=++成立,则132k k b b +=+ 所以12232k k +=+,即232k =,解得5k =.存在正整数5k =满足条件.②()()112n n n a a S n n +==+ 所以()12n n n +≥,即()210n n n -+≤令()()21nf n n n =-+, 因为()()()()()()11121221221n n n f n f n n n n n n +-⎡⎤+-=-++-++=-+⎣⎦ 所以当4n ≥时,(){}f n 单调递增.又()()210f f -<,()()320f f -<,()()430f f -=所以()()()()()1234f f f f f n >>=<<<因为()10f =,()44f =-,()52f =,所以1n =,2,3,4时,()0f n ≤,5n ≥时,()0f n >,所以不等式n n S b ≥,的解集为{}1,2,3,4.【点睛】解决本题的关键是构造新函数,通过作出确定函数的单调性,从而求得()0f n ≤的解集. 25.证明见解析.【分析】由定义法分别结合n a 和n S 的关系分别证明充分性和必要性成立即可.【详解】当n =1时,S 1=32-t =9-t ,当n ≥2时,由S n =3n +1-t 得S n -1=3n -t ,两式相减得a n =3n +1-3n =2·3n (n ≥2), (1)充分性已知t =3,此时S 1=32-t =9-3=6,令n =1,得a 1=2·31=6=S 1,所以a n =2·3n (n ∈N *) 所以13n na a +=,所以数列{a n }是等比数列. (2)必要性因为数列{a n }是等比数列,所以a 1=2·31=6, 又因为S 1=9-t ,所以9-t =6,所以t =3,综上所述:数列{a n }是等比数列的充要条件为t =3.【点睛】关键点睛:本题考查等比数列的判断和证明,解题的关键是利用n a 和n S 的关系得出()232n n a n =⋅≥,再根据充分必要的定义证明.26.(1)证明见解析,13-=n n a ;(2)()11316164n n n T ⎛⎫=-+⋅- ⎪⎝⎭. 【分析】(1)首先根据131n n S S +=+,131n n S S -=+两式相减得()132n n a a n +=≥,即可得到n a 的通项公式.(2)首先求出()13n n b n -=⋅-,再利用错位相减法求前n 项和n T 即可. 【详解】(1)证明:由131n n S S +=+,当2n ≥时,131n n S S -=+,两式相减得()132n n a a n +=≥,当1n =时,2131S S =+即12131a a a +=+,∴23a =,∴213a a =,∴1n ≥时都有13n n a a +=,∴数列{}n a 是首项为1,公比为3的等比数列,∴13-=n n a .(2)解:()()1113n n n n b na n --=-⋅=⋅-, ∴()()()()()122112333133n n n T n n --=+⋅-+⋅-+⋅⋅⋅+-⋅-+⋅-, ()()()()()12131323133n n n T n n --=⋅-+⋅-+⋅⋅⋅+-⋅-+⋅-, ∴()()()()111413333n n n T n -=+-+-+⋅⋅⋅+--⋅-,∴()()()131********nn n n T n n --⎛⎫=-⋅-=-+⋅- ⎪+⎝⎭∴()11316164n n n T ⎛⎫=-+⋅- ⎪⎝⎭. 【点睛】方法点睛:本题主要考查数列的求和,常见的数列求和方法如下:公式法:直接利用等差、等比数列的求和公式计算即可;分组求和法:把需要求和的数列分成熟悉的数列,再求和即可;裂项求和法:通过把数列的通项公式拆成两项之差,再求和即可;错位相减法:当数列的通项公式由一个等差数列和一个等比数列的乘积构成时,可使用此方法求和.。
一、选择题1.261(12)()x x x+-的展开式中,含2x 的项的系数是( ) A .40-B .25-C .25D .552.在二项式(1)n x +的展开式中,存在系数之比为2:3的相邻两项,则指数*()n n N ∈的最小值为( ) A .6B .5C .4D .33.已知8281239(1)x a a x a x a x +=++++,若数列()*123,,,,19,k a a a a k k N ⋅⋅⋅≤≤∈是一个单调递增数列,则k 的最大值是( ) A .6B .5C .4D .34.在二项式()12nx -的展开式中,所有项的二项式系数之和为256,则展开式的中间项的系数为( ) A .960-B .960C .1120D .16805.将甲、乙、丙、丁四人分配到A 、B 、C 三所学校任教,每所学校至少安排1人,则甲不去A 学校的不同分配方法有( ) A .18种B .24种C .32种D .36种6.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,由四个全等的直角三角形和一个正方形构成.现有五种不同的颜色可供涂色,要求相邻的区域不能用同一种颜色,则不同的涂色方案有( )A .180B .192C .420D .4807.若0k m n ≤≤≤,且,,m n k N ∈,则0mn m k n k n k CC --==∑( )A .2m n+B .2mn m CC .2n mn C D .2m mn C8.()52112x x ⎛⎫-- ⎪⎝⎭展开式的常数项为() A .112B .48C .-112D .-489.如图,用6种不同的颜色把图中A,B,C,D 四块区域涂色分开,若相邻区域不能涂同一种颜色,则不同涂法的种数为( )A .400B .460C .480D .49610.()61211x x ⎛⎫+- ⎪⎝⎭的展开式中的常数项是( ) A .-5B .7C .-11D .1311.某电视台的一个综艺栏目对六个不同的节目排演出顺序,最前只能排甲或乙,最后不能排甲,则不同的排法共有( ) A .240种B .288种C .192种D .216种12.在622x x ⎛⎫- ⎪⎝⎭的展开式中,常数项为( ) A .15-B .15C .60-D .60二、填空题13.512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数之和为2,则该展开式中4x 的系数为___________.14.若投掷一枚质地均匀的骰子,第一次投掷的点数为a ,第二次投掷的点数为b ,则b a >的概率为______.15.计算:01220181232019C C C C ++++=______.16.若28C x=3828C x -,则x 的值为_______. 17.二项式61(2x )x-的展开式中常数项为______(用数字表示). 18.现有红、黄、蓝三种颜色,对如图所示的正五角星的内部涂色(分割成六个不同部分),要求每个区域涂一种颜色且相邻部分(有公共边的两个区域)的颜色不同,则不同的涂色方案有________种.(用数字作答).19.已知()1121011012101112x a a x a x a x a x +=+++++ ,则12101121011a a a a -+-+=_____.20.若102100121013x a a x a x a x -+++⋯+=(),则12310a a a a +++⋯+=_____.三、解答题21.已知(x 2x)n 的展开式中的第二项和第三项的系数相等.(1)求n 的值;(2)求展开式中所有的有理项.22.在13nx ⎫⎪⎭(*n N ∈)的展开式中所有二项式系数之和为256.(1)求展开式中的常数项;(2)求展开式中二项式系数最大的项.23.从1到7的7个数字中取两个偶数和三个奇数组成没有重复数字的五位数.试问: (1)五位数中,两个偶数排在一起的有几个?(2)两个偶数不相邻且三个奇数也不相邻的五位数有几个?(所有结果均用数值表示)24.已知()2*12nx n N x ⎛⎫-∈ ⎪⎝⎭的展开式中所有偶数项的二项式系数和为64. (1)求展开式中二项式系数最大的项;(2)求221122nx x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭展开式中的常数项. 25.请从下面三个条件中任选一个,补充在下面的横线上,并解答.①第5项的系数与第3项的系数之比是14:3;②第2项与倒数第3项的二项式系数之和为55;③22110n n nC C -+-=.已知在n的展开式中,________. (1)求展开式中二项式系数最大的项; (2)求展开式中含5x 的项.26.已知二项式)22nx -.(1)若展开式中第二项系数与第四项系数之比为1:8,求二项展开式的系数之和. (2)若展开式中只有第6项的二项式系数最大,求展开式中的常数项.参考答案【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】写出二项式61()x x-的展开式中的通项,然后观察含2x 项有两种构成,一种是()212x+中的1与61()x x-中的二次项相乘得到,一种是()212x+中的22x与61()x x-中的常数项相乘得到,将系数相加即可得出结果. 【详解】二项式61()x x-的展开式中的通项662166()1C (1)C k kk k k k k T x x x--+=-=-,含2x 的项的系数为223366(1)2(1)25C C -+⨯-=- 故选B. 【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.2.C解析:C 【分析】利用二项式定理的展开式写出满足题意的表达式,然后即可求出指数*()n n N ∈的最小值.【详解】解:由题意知:123k n k n C C -=或者132k n k n C C -=.即123n k k -+= 或132n k k -+= 解得,533k n -= 或522k n -=.当533k n -=时,当3k =时,min 4n =; 当522k n -=时,当2k =时,min 4n =.综上所述: min 4n =. 故选:C. 【点睛】本题考查了二项式定理的应用.本题的易错点是未进行分类讨论.3.B解析:B 【分析】可得结论.写出各项的系数,由组合数性质知123456789a a a a a a a a a <<<<>>>>,结合数列123,,,,k a a a a ⋅⋅⋅是一个单调递增数列,可得结论. 【详解】由二项式定理,得98ii a C -=()*19,i i N≤≤∈,所以根据组合数性质知123456789a a a a a a a a a <<<<>>>>, 又数列()*123,,,,19,k a a a a k k N ⋅⋅⋅≤≤∈是一个单调递增数列,所以k 的最大值为5. 故选:B【点睛】本题主要考查二项式定理的运用,考查学生分析解决问题的能力,属于基础题.4.C解析:C 【分析】先根据条件求出8n =,再由二项式定理及展开式通项公式,即可得答案. 【详解】由已知可得:2256n =,所以8n =,则展开式的中间项为44458(2)1120T C x x =-=,即展开式的中间项的系数为1120. 故选:C . 【点睛】本题考查由二项式定理及展开式通项公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.5.B解析:B 【分析】根据题意,分两种情况讨论:①其他三人中有一个人与甲在同一个学校,②没有人与甲在同一个学校,由加法原理计算可得答案. 【详解】解:根据题意,分两种情况讨论,①其他三人中有一个人与甲在同一个学校,有11232212C A A =种情况, ②没有人与甲在同一个学校,则有12223212C C A =种情况;则若甲要求不到A 学校,则不同的分配方案有121224+=种; 故选:B . 【点睛】本题考查排列、组合的应用,涉及分类加法原理的应用,属于中等题.6.C解析:C 【分析】就使用颜色的种类分类计数可得不同的涂色方案的总数. 【详解】相邻的区域不能用同一种颜色,则涂5块区域至少需要3种颜色.若5块区域只用3种颜色涂色,则颜色的选法有35C ,相对的两个直角三角形必同色,此时共有不同的涂色方案数为335360C A =(种).若5块区域只用4种颜色涂色,则颜色的选法有45C ,相对的两个直角三角形必同色,余下两个直角三角形不同色,此时共有不同的涂色方案数为414524240C C A =(种).若5块区域只用5种颜色涂色,则每块区域涂色均不同,此时共有不同的涂色方案数为55120A =(种).综上,共有不同的涂色方案数为420(种). 故选:C. 【点睛】本题考查排列组合的应用,注意根据题设要求合理分类分步,此类问题属于中档题.7.D解析:D 【分析】先利用特殊值排除A,B,C ,再根据组合数公式以及二项式定理论证D 成立. 【详解】 令0m =得,CC C C 1mn mk n n k n n n k --===∑,在选择项中,令0m =排除A ,C ;在选择项中,令1m =,101110C C C C C C 2mn m k n n n k n n n n n k n -----==+=∑排除B ,()!!()!()!!()!mmn m k n knk k n k n CC n m m k k n k --==-=⋅---∑∑000!!2()!!!()!mm mm k m k m mn m n m n k k k n m C C C C C n m m k m k ====⋅=⋅==--∑∑∑,故选D【点睛】本题考查组合数公式以及二项式定理应用,考查基本分析化简能力,属中档题.8.D解析:D 【分析】把51(2)x -按照二项式定理展开,可得()52112x x ⎛⎫-- ⎪⎝⎭的展开式的常数项.【详解】 由于()()52205142332455555111111121()2()4()8()1632x x C C C C C x x x x x x ⎛⎫⎛⎫---⋅-⋅+⋅-⋅+⋅- ⎪⎭= ⎪⎝⎝⎭故展开式的常数项为3583248C -+=-,故选D .【点睛】本题考查二项式定理的应用,考查了二项式展开式,属于基础题.9.C解析:C 【解析】分析:本题是一个分类计数问题,只用三种颜色涂色时,有31116321C C C C 种方法,用四种颜色涂色时,有41126322C C C A 种方法,根据分类计数原理得到结果.详解:只用三种颜色涂色时,有31116321120C C C C =种方法, 用四种颜色涂色时,有41126432360C C C A =种方法,根据分类计数原理得不同涂法的种数为120+360=480. 故答案为C.点睛:(1)本题主要考查计数原理,考查排列组合的综合应用,意在考查学生对这些知识的掌握水平和分析推理能力.(2)排列组合常用的方法有一般问题直接法、相邻问题捆绑法、不相邻问题插空法、特殊对象优先法、等概率问题缩倍法、至少问题间接法、复杂问题分类法、小数问题列举法.10.C解析:C 【解析】611x ⎛⎫- ⎪⎝⎭的展开式的通项公式是61,rr C x ⎛⎫- ⎪⎝⎭ 其中含1x 的项是1161,C x ⎛⎫- ⎪⎝⎭ 常数项为0611,C x ⎛⎫-= ⎪⎝⎭ 故()61211x x ⎛⎫+- ⎪⎝⎭的展开式中的常数项是116121112111.x C x ⎡⎤⎛⎫⨯-+⨯=-+=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦故选C.11.D解析:D 【详解】最前排甲,共有55A 120=种;最前排乙,最后不能排甲,有种,根据加法原理可得,共有种,故选D .考点:排列及计数原理的应用.12.D解析:D 【分析】根据二项展开式的通项公式计算即可求解. 【详解】631216C (1)2rr r r r T x --+=-,令3120r -=,即4r =, ∴常数项为60, 故选:D 【点睛】本题主要考查了二项式定理,二项展开式的通项公式,属于中档题.二、填空题13.-48【分析】令x=1解得a=1再利用的通项公式进而得出【详解】令x=1=2解得a=1又的通项公式令5−2r=35−2r=5解得r=1r=0∴该展开式中的系数为=−80+32=−48故答案为:−48解析:-48 【分析】令x =1,解得a =1,再利用512x x ⎛⎫- ⎪⎝⎭的通项公式,进而得出. 【详解】令x =1,()()5112a +-=2,解得a =1.又512x x ⎛⎫- ⎪⎝⎭的通项公式()5521512r r rr r T C x --+=-⋅,令5−2r =3,5−2r =5. 解得r =1,r =0.∴该展开式中4x 的系数为()()141505512+12C C --=−80+32=−48, 故答案为:−48. 【点睛】本题考查二项式定理的应用,根据通项公式求系数,属于中等题.14.【分析】将两次点数表示成有序数对分别求出基本事件总数和包含的基本事件个数即可求解概率【详解】将两次点数表示成有序数对根据基本计数原理得:基本事件总数为包含的基本事件个数为所以的概率故答案为:【点睛】 解析:512【分析】将两次点数表示成有序数对(),a b ,分别求出基本事件总数和b a >包含的基本事件个数即可求解概率. 【详解】将两次点数表示成有序数对(),a b ,根据基本计数原理得: 基本事件总数为6636⨯=,b a >包含的基本事件个数为5432115++++=,所以b a >的概率1553612P ==. 故答案为:512【点睛】此题考查古典概型,关键在于准确求出基本事件总数和某一事件包含的基本事件个数.15.【分析】将变为然后利用组合数性质即可计算出所求代数式的值【详解】故答案为:【点睛】本题考查组合数的计算利用组合数的性质进行计算是解题的关键考查计算能力属于中等题 解析:2039190【分析】将01C 变为02C ,然后利用组合数性质111k k k n n n C C C ++++=即可计算出所求代数式的值.【详解】()111,,1k k k n n n C C C n N k N k n ++*++=∈∈≤+, 012201801220181220182018123201922320193320192020C C C C C C C C C C C C ∴++++=++++=+++=2039190=.故答案为:2039190. 【点睛】本题考查组合数的计算,利用组合数的性质进行计算是解题的关键,考查计算能力,属于中等题.16.4或9【解析】分析:先根据组合数性质得解方程得结果详解:因为=所以因此点睛:组合数性质:解析:4或9. 【解析】分析:先根据组合数性质得383828x x x x 或=-+-=,解方程得结果 详解:因为28C x=3828C x -,所以383828x x x x 或=-+-= 因此49.x x ==或点睛:组合数性质:11111,,.m n m m m m k k n n n n n n n C C C C C kC nC -++-+-=+==17.-160【解析】二项式的展开式的通项为令可得即展开式中常数项为答案:解析:-160 【解析】二项式612x x ⎛⎫- ⎪⎝⎭的展开式的通项为66621661(2)()(1)2r r r r r r rr T C x C x x ---+=-=-⋅⋅⋅,0,1,2,,6r =.令3r =,可得33346(1)2160T C =-⋅⋅=-,即展开式中常数项为160-. 答案:160-18.【分析】根据题意假设正五角星的区域依此为分析6个区域的涂色方案数再根据分步计数原理计算即可【详解】根据题意假设正五角星的区域依此为如图所示:要将每个区域都涂色才做完这件事由分步计数原理先对区域涂色有解析:96【分析】根据题意,假设正五角星的区域依此为A 、B 、C 、D 、E 、F ,分析6个区域的涂色方案数,再根据分步计数原理计算即可. 【详解】根据题意,假设正五角星的区域依此为A 、B 、C 、D 、E 、F ,如图所示:要将每个区域都涂色才做完这件事,由分步计数原理,先对A 区域涂色有3种方法,B 、C 、D 、E 、F 这5个区域都与A 相邻,每个区域都有2种涂色方法,所以共有32222296⨯⨯⨯⨯⨯=种涂色方案. 故答案为:96 【点睛】方法点睛:涂色问题常用方法:(1)根据分步计数原理,对各个区域分步涂色,这是处理区域染色问题的基本方法; (2)根据共用了多少种颜色讨论,分别计算出各种情形的种数,再用分类计数原理求出不同的涂色方法种数;(3)根据某两个不相邻区域是否同色分类讨论.从某两个不相邻区域同色与不同色入手,分别计算出两种情形的种数,再用分类计数原理求出不同涂色方法总数.19.【分析】对原方程两边求导然后令求得表达式的值【详解】对等式两边求导得令则【点睛】本小题主要考查二项式展开式考查利用导数转化已知条件考查赋值法属于中档题 解析:22【分析】对原方程两边求导,然后令1x =-求得表达式的值. 【详解】对等式112012(12)x a a x a x +=++10111011a x a x +++两边求导,得101222(12)2x a a x +=+91010111011a x a x +++,令1x =-,则1210112101122a a a a -+-+=.【点睛】本小题主要考查二项式展开式,考查利用导数转化已知条件,考查赋值法,属于中档题.20.1023【分析】赋值法令得:;令得:再两式相减可得【详解】解:∵令得:;①令得:;②由①②可得:;故答案为:【点睛】赋值法在求各项系数和中的应用(1)形如()的式子求其展开式的各项系数之和常用赋值法解析:1023 【分析】赋值法 令0x =得:01a =;令1x = 得:10012310131024a a a a a =++⋯+-=++(),再两式相减可得.【详解】解:∵102100121013x a a x a x a x -+++⋯+=(),令0x =得:01a = ;①令1x = 得:10012310131024a a a a a =++⋯+-=++(); ②由①②可得:12310102411023a a a a +++⋯+-==; 故答案为:1023. 【点睛】赋值法在求各项系数和中的应用(1)形如()n ax b +,2()m ax bx c ++ (a b c R ∈,,)的式子求其展开式的各项系数之和,常用赋值法,只需令1x =即可.(2)对形如()()n ax by a b R +∈,的式子求其展开式各项系数之和,只需令1x y ==即可. (3)若()2012nn f x a a x a x a x +++⋯+=,则()f x 展开式中各项系数之和为()1f .三、解答题21.(1)5n =;(2)51T x =,2352T x =,5516T x=. 【分析】(1)写出二项式(n x +展开式的通项公式,得到第二项和第三项的系数,所以得到关于n 的方程,解得答案;(2)由(1)得到n的值,写出二项式(n x 展开式的通项公式,整理后,得到其x 的指数为整数的r 的值,再写出其展开式中的有理项. 【详解】解:二项式(n x +展开式的通项公式为32112rrn rr n r r r n n T C x C x--+⎛⎫=⋅⋅=⋅⋅ ⎪⎝⎭,()0,1,2r n =⋅⋅⋅; (1)根据展开式中的第二项和第三项的系数相等,得2121122nn C C ⎛⎫⋅=⋅ ⎪⎝⎭,即()111242n n n -=⋅, 解得5n =;(2)二项式展开式的通项公式为3521512rrr r T C x -+⎛⎫=⋅⋅ ⎪⎝⎭,()0,1,2r n =⋅⋅⋅;当0,2,4r =时,对应项是有理项, 所以展开式中所有的有理项为0551512T C x x ⎛⎫=⋅⋅= ⎪⎝⎭, 22532351522T C x x -⎛⎫=⋅⋅= ⎪⎝⎭,44565515216T C x x -⎛⎫=⋅= ⎪⎝⎭. 【点睛】本题考查二项展开式的项的系数,求二项展开式中的有理项,属于中档题.22.(1)289;(2)837081x -【分析】(1)由题意利用二项式系数的性质,求得n 的值,再利用二项式展开式的通项公式,求得展开式中的常数项.(2)由题意利用二项式系数的性质,二项式展开式的通项公式,求得二项式系数最大的项. 【详解】解:(1)*31()3nx n N x ⎛⎫+∈ ⎪⎝⎭的展开式中所有二项式系数之和为2256n =,8n ∴=,故展开式的通项公式为8431813rr r r T C x-+⎛⎫= ⎪⎝⎭.令8403r-=,求得2r ,故展开式中的常数项为2812899C =. (2)由于8n =,故当4r =时,二项式系数最大,故二项式系数最大的项为48843358170381T C x x --⎛⎫==⎪⎝⎭. 【点睛】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,属于中档题.23.(1)576;(2)144 【分析】(1)先从3个偶数抽取2个偶数和从4个奇数中抽取3个奇数,利用捆绑法把两个偶数捆绑在一起,再和另外三个奇数进行全排列;(2)利用插空法,先排两个偶数,再从两个偶数形成的3个间隔中,插入三个奇数,即可得出结果. 【详解】解:可知从1到7的7个数字中,有3个偶数,4个奇数, (1)五位数中,偶数排在一起的有:23413442576C C A A =个,(2)两个偶数不相邻且三个奇数也不相邻的五位数有:23233423144C C A A =个. 【点睛】本题考查数字的排列问题,涉及排列和组合的实际应用以及排列数和组合数的运算公式,考查利用捆绑法解决相邻问题,利用插空法解决不相邻问题,考查运算能力. 24.(1)54500T x =-,25280T x =(2)112 【分析】(1)由偶数项二项式系数可得7n =,可知展开式中间两项二项式系数最大,利用展开式通项公式求解;(2)由(1)利用展开式通项公式求含1x -和2x 项,结合与212x x ⎛⎫+ ⎪⎝⎭相乘即可求解. 【详解】(1)由展开式中所有的偶数项二项式系数和为64,得1264n -=, 所以7n =所以展开式中二项式系数最大的项为第四项和第五项.因为7212x x ⎛⎫- ⎪⎝⎭的展开式的通项公式为()()()72714317712121rrrr r r rr r T C xC x x ---+⎛⎫=-=- ⎪⎝⎭, 所以()f x 的展开式中二项式系数最大的项为54500T x =-,25280T x =(2)由(1)知7n =,且7212x x ⎛⎫- ⎪⎝⎭的展开式中1x -项为684T x =-, 2x 项为25280T x =,所以221122nx x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭展开式的常数项为()2841280112⨯-+⨯=, 【点睛】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,属于中档题. 25.(1)56252x -;(2)5x .【分析】(1)先求出二项展开式的通项,根据条件求出n ,即可知道二项式系数最大的项; (2)令x 的指数为5,即可计算出r ,求出含5x 的项. 【详解】可知3561(1)rn rr n r r r r n n T C C x --+⎛==- ⎝, 方案一:选条件①,(1)由题可知4422(1)14(1)3n n C C -=-, !2!(2)!144!(4)!!3n n n n -∴⨯=-,25500n n ∴--=,解得10n =或5n =-(舍去),所以展开式共有11项,其中二项式系数最大的项是第六项,555566610(1)252T C x x =-=-,所以展开式中二项式系数最大的项是第6项,566252T x =-;(2)由(1)知56110510,(1)r r r rn T C x-+==-,令5556r -=,0r ∴=,51T x ∴=, 所以展开式中含5x 的项是第一项,为5x ; 方案二:选条件②, (1)由题可知21212552n nnnnn nC CC C -++=+==,整理得21100n n +-=,解得10n =或11n =-(舍去), 所以展开式共有11项,其中二项式系数最大的项是第六项,555566610(1)252T C x x =-=-,所以展开式中二项式系数最大的项是第6项,566252T x =-;(2)同方案一(2); 方案三:选条件③, (1)222211110n n nn n n C C C C C -++-=-==,10n ∴=,所以展开式共有11项,其中二项式系数最大的项是第六项,555566610(1)252T C x x =-=-,所以展开式中二项式系数最大的项是第6项,566252T x =-;(2)同方案一(2). 【点睛】本题考查二项展开式的相关性质,属于中档题. 26.(1)-1 (2)180 【分析】(1)先求出n 的值,再求二项展开式的系数之和;(2)根据已知求出n 的值,再求出展开式中的常数项. 【详解】 (1)二项式)22nx--的展开式的通项为5221(2)(2)n r r n rr rr r nnTC x C x---+=-=-,所以第二项系数为1(2)n C -,第四项系数为33(2)n C -,所以13(2)188n n C C -=-,所以5n =.所以二项展开式的系数之和)52211-⨯=-.(2)因为展开式中只有第6项的二项式系数最大, 所以展开式有11项,所以10.n = 令1050,22rr -=∴=. 所以常数项为2210(2)180C -=.【点睛】本题主要考查二项式展开式的系数问题,考查指定项的求法,意在考查学生对这些知识的理解掌握水平.。
一、选择题1.已知正项数列{}n a 满足11a =,1111114n n n n a a a a ++⎛⎫⎛⎫+-=⎪⎪⎝⎭⎝⎭,数列{}n b 满足1111n n nb a a +=+,记{}n b 的前n 项和为n T ,则20T 的值为( ) A .1B .2C .3D .42.已知等比数列{}n a 的n 项和2n n S a =-,则22212n a a a +++=( )A .()221n -B .()1213n- C .41n -D .()1413n- 3.在等差数列{}n a 中,n S 为其前n 项和,若202020210,0S S <>,则下列判断错误的是( )A .数列{}n a 单调递增B .10100a <C .数列{}n a 前2020项最小D .10110a >4.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,667711,01a a a a -><-,则下列结论正确的是( ) A .681a a >B .01q <<C .n S 的最大值为7SD .n T 的最大值为7T5.已知数列{}n a 满足111n n n n a a a a ++-=+,且113a =,则{}n a 的前2021项之积为( ) A .23B .13C .2-D .3-6.已知数列{}n b 满足12122n n b n λ-⎛⎫=-- ⎪⎝⎭,若数列{}n b 是单调递减数列,则实数λ的取值范围是( )A .101,3B .110,23⎛⎫- ⎪⎝⎭C .(-1,1)D .1,12⎛⎫-⎪⎝⎭7.已知等比数列{}n a 的前n 项和为S n ,则下列命题一定正确的是( ) A .若S 2021>0,则a 3+a 1>0 B .若S 2020>0,则a 3+a 1>0 C .若S 2021>0,则a 2+a 4>0D .若S 2020>0,则a 2+a 4>08.两等差数列{}n a 和{}n b ,前n 项和分别为n S ,n T ,且723n n S n T n +=+,则220715a a b b ++的值为( )A .14924B .7914C .165D .51109.“跺积术”是由北宋科学家沈括在《梦溪笔谈》中首创,南宋数学家杨辉、元代数学家朱世杰丰富和发展的一类数列求和方法,有茭草垛、方垛、三角垛等.现有100根相同的圆柱形铅笔,某同学要将它们堆放成横截面为正三角形的垛,要求第一层为1根且从第二层起每一层比上一层多1根,并使得剩余的圆形铅笔根数最少,则剩余的铅笔的根数是( ) A .9B .10C .12D .1310.已知数列{}n a 的前n 项和22n S n n =+,那么它的通项公式是( )A .21n a n =-B .21n a n =+C .41n a n =-D .41n a n =+11.已知数列{}n a 是等比数列,11a >,且前n 项和n S 满足11lim n n S a →∞=,那么1a 的取值范围是( ) A.(B .()1,4C .()1,2D .()1,+∞12.在等差数列{}n a 中,若12336a a a ++=,11121384a a a ++=,则59a a +=( ) A .30B .35C .40D .45二、填空题13.数列{}n a 满足2121231722222n n a a a a n n -+++⋅⋅⋅+=-,若对任意0λ>,所有的正整数n 都有22n k a λλ-+>成立,则实数k 的取值范围是_________.14.将数列{2}n 与{32}n -的公共项从小到大排列得到数列{}n a ,则{}n a 的前n 项和n S =___.15.在数列{}n a 中,112a =,1n n a a n +=+,则na n的最小值为_________. 16.设n S 是数列{}n a 的前n 项和,13a =,当2n ≥时有1122n n n n n S S S S na --+-=,则使122021m S S S ≥成立的正整数m 的最小值为______.17.已知等差数列{}n a 的前n 项和n S 满足318S =,3180n S -=,270n S =,则n =________.18.已知{}n a 是等比数列,14a =,412a =,则12231n n a a a a a a +++⋅⋅⋅+=______. 19.若数列{}n a 满足11a =,且()*1111n nn a a N +∈-=,则 ①数列{}na e是等比数列;②满足不等式:1112n n a a +++≥ ③若函数()f x 在R 上单调递减,则数列(){}n f a 是单调递减数列; ④存在数列{}n a 中的连续三项,能组成三角形的三条边; ⑤满足等式:122311n n n a a a a a a n +++⋅⋅⋅+=+. 正确的序号是________20.已知首项为1a ,公比为q 的等比数列{}n a 满足443210q a a a ++++=,则首项1a 的取值范围是________.参考答案三、解答题21.数列{}n a 满足()1121nn n a a n ++-=-,n *∈N 且1a a =(a 为常数).(1)(i )当n 为偶数时,求4n n a a +-的值; (ii )求{}n a 的通顶公式;(2)设n S 是数列{}n a 的前n 项和,求证:48411114n S S S ++⋅⋅⋅+< 22.已知数列{}n a 的前n 项和n S 满足33n n S a =-,()*323log 1n n b a n N=+∈.(1)求数列{}n a ,{}n b 的通项公式;(2)记2n n n c a b λ=-,若数列{}n c 为递增数列,求λ的取值范围.23.数列{}n a 各项均为正数,其前n 项和为n S ,且满足221n n n a S a -=(1)求数列{}n a 的通项公式; (2)设4241n n b S =-,求数列{}n b 的前n 项和n T ,并求使21(3)6>-n T m m 对所有的*n N ∈都成立的最大正整数m 的值.24.在①535S =,②122114b b S -=,③35S T =这三个条件中任选一个,补充在下面问题中,并解答问题:已知正项等差数列{}n a 的公差是等差数列{}n b 的公差的两倍,设n S 、n T 分别为数列{}n a 、{}n b 的前n 项和,且13a =,23T =,________,设2n b n n c a =⋅,求{}n c 的前n 项和n A .注:如果选择多个条件分别解答,按第一个解答计分. 25.对于任意的*n N ∈,数列{}n a 满足1212121212121n n a n a a n ---++⋅⋅⋅+=++++.(1)求数列{}n a 的通项公式;(2)设数列{}n a 的前n 项和为n S ,求n S 26.已知数列{}n a 的前n 项和n S 满足11(0n n a a a S a--=>且1)a ≠.数列{}n b 满足lg n n n b a a =.(1)当10a =时,求数列{}n b 的前n 项和n T ; (2)若对一切n *∈N 都有1n n b b +<,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】 由题意可得221114n na a +-=,运用等差数列的通项公式可得2143n n a =-,求得14n b =,然后利用裂项相消求和法可求得结果【详解】解:由11a =,1111114n n n n a a a a ++⎛⎫⎛⎫+-= ⎪⎪⎝⎭⎝⎭,得221114n na a +-=, 所以数列21n a ⎧⎫⎨⎬⎩⎭是以4为公差,以1为首项的等差数列,所以2114(1)43nn n a =+-=-,因为0n a >,所以n a =,所以1111n n nb a a +=+=所以14n b ==,所以201220T b b b =++⋅⋅⋅+111339(91)244=++⋅⋅⋅+=⨯-=,故选:B 【点睛】关键点点睛:此题考查由数列的递推式求数列的前n 项和,解题的关键是由已知条件得221114n n a a +-=,从而数列21n a ⎧⎫⎨⎬⎩⎭是以4为公差,以1为首项的等差数列,进而可求n a =,14n b ==,然后利用裂项相消法可求得结果,考查计算能力和转化思想,属于中档题2.D解析:D 【分析】由n a 与n S 的关系可求得12n n a ,进而可判断出数列{}2n a 也为等比数列,确定该数列的首项和公比,利用等比数列的求和公式可求得所化简所求代数式.【详解】已知等比数列{}n a 的n 项和2n n S a =-. 当1n =时,112a S a ==-;当2n ≥时,()()111222nn n n n n a S S a a ---=-=---=.由于数列{}n a 为等比数列,则12a a =-满足12n na ,所以,022a -=,解得1a =,()12n n a n N -*∴=∈,则()221124n n na --==,2121444n n n n a a +-∴==,且211a =,所以,数列{}2n a 为等比数列,且首项为1,公比为4, 因此,222121441143n n na a a --+++==-. 故选:D. 【点睛】方法点睛:求数列通项公式常用的七种方法:(1)公式法:根据等差数列或等比数列的通项公式()11n a a n d +-=或11n n a a q -=进行求解;(2)前n 项和法:根据11,1,2n nn S n a S S n -=⎧=⎨-≥⎩进行求解;(3)n S 与n a 的关系式法:由n S 与n a 的关系式,类比出1n S -与1n a -的关系式,然后两式作差,最后检验出1a 是否满足用上面的方法求出的通项;(4)累加法:当数列{}n a 中有()1n n a a f n --=,即第n 项与第1n -项的差是个有规律的数列,就可以利用这种方法;(5)累乘法:当数列{}n a 中有()1nn a f n a -=,即第n 项与第1n -项的商是个有规律的数列,就可以利用这种方法;(6)构造法:①一次函数法:在数列{}n a 中,1n n a ka b -=+(k 、b 均为常数,且1k ≠,0k ≠).一般化方法:设()1n n a m k a m -+=+,得到()1b k m =-,1bm k =-,可得出数列1n b a k ⎧⎫+⎨⎬-⎩⎭是以k 的等比数列,可求出n a ;②取倒数法:这种方法适用于()112,n n n ka a n n N ma p*--=≥∈+(k 、m 、p 为常数,0m ≠),两边取倒数后,得到一个新的特殊(等差或等比)数列或类似于1n n a ka b-=+的式子;⑦1nn n a ba c +=+(b 、c 为常数且不为零,n *∈N )型的数列求通项n a ,方法是在等式的两边同时除以1n c +,得到一个1n n a ka b +=+型的数列,再利用⑥中的方法求解即可.3.C解析:C 【分析】结合等差数列的求和公式及等差数列的性质可得101010110,0a a <>,从而可求出公差的符号,进而可确定单调性,进而可确定和最小问题. 【详解】因为202020210,0S S <>,即()()12021202012020210,02022a a a a ++<>,所以12020120210,0a a a a +<+>.因为10101011120201011120210,20,a a a a a a a +=+<=+> 所以101010110,0a a <>,所以101110100d a a =->,所以数列{}n a 是单调递增数列, 前1010项和最小,所以C 错误. 故选:C . 【点睛】 关键点睛:本题的关键是由等差数列的求和公式对已知条件进行变形,整理出12020120210,0a a a a +<+>,再结合等差数列的性质求出101010110,0a a <>,确定公差后即可确定单调性及最值问题.4.B解析:B 【分析】根据11a >,667711,01a a a a -><-,分0q < ,1q ≥,01q <<讨论确定q 的范围,然后再逐项判断. 【详解】若0q <,因为11a >,所以670,0a a <>,则670a a ⋅<与671a a ⋅>矛盾,若1q ≥,因为11a >,所以671,1a a >>,则67101a a ->-,与67101a a -<-矛盾, 所以01q <<,故B 正确;因为67101a a -<-,则6710a a >>>,所以()26870,1a a a =∈,故A 错误; 因为0n a >,01q <<,所以111n n a q a S q q=---单调递增,故C 错误; 因为7n ≥时,()0,1n a ∈,16n ≤≤时,1n a >,所以n T 的最大值为6T ,故D 错误; 故选:B 【点睛】关键点点睛:本题的关键是通过穷举法确定01q <<.5.B解析:B 【分析】由111n n n n a a a a ++-=+,且113a =,可得:111n n n a a a ++=-,可得其周期性,进而得出结论. 【详解】因为111n n n n a a a a ++-=+,且113a =, 所以111nn na a a ++=-, 21132113a +∴==-,33a =-,412a =-,513a =,⋯⋯, 4n n a a +∴=.123411···2(3)()132a a a a ∴=⨯⨯--⋅⨯=.则{}n a 的前2021项之积50511133=⨯=.故选:B 【点睛】方法点睛:已知递推关系式求通项:(1)用代数的变形技巧整理变形,然后采用累加法、累乘法、迭代法、构造法或转化为基本数列(等差数列或等比数列)等方法求得通项公式.(2)通过具体的前几项找到其规律,如周期性等求解.6.A解析:A 【分析】由题1n n b b +>在n *∈N 恒成立,即16212nn λ⎛⎫-<+ ⎪⎝⎭,讨论n 为奇数和偶数时,再利用数列单调性即可求出. 【详解】数列{}n b 是单调递减数列,1n n b b +∴>在n *∈N 恒成立,即()122112+1222nn n n λλ-⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭恒成立,即16212nn λ⎛⎫-<+ ⎪⎝⎭, 当n 为奇数时,则()6212nn λ>-+⋅恒成立,()212n n -+⋅单调递减,1n ∴=时,()212n n -+⋅取得最大值为6-,66λ∴>-,解得1λ>-;当n 为偶数时,则()6212nn λ<+⋅恒成立,()212n n +⋅单调递增,2n ∴=时,()212n n +⋅取得最小值为20,620λ∴<,解得103λ<, 综上,1013λ-<<. 故选:A. 【点睛】关键点睛:本题考查已知数列单调性求参数,解题的关键由数列单调性得出16212nn λ⎛⎫-<+ ⎪⎝⎭恒成立,需要讨论n 为奇数和偶数时的情况,这也是容易出错的地方. 7.A解析:A 【分析】根据等比数列的求和公式及通项公式,可分析出答案. 【详解】等比数列{}n a 的前n 项和为n S ,当1q ≠时,202112021(1)01a q S q-=>-,因为20211q-与1q -同号,所以10a >,所以2131(1)0a a a q +=+>,当1q =时,2021120210S a =>,所以10a >,所以1311120a a a a a +=+=>, 综上,当20210S >时,130a a +>, 故选:A 【点睛】易错点点睛:利用等比数列求和公式时,一定要分析公比是否为1,否则容易引起错误,本题需要讨论两种情况.8.A解析:A 【分析】在{}n a 为等差数列中,当(m n p q m +=+,n ,p ,)q N +∈时,m n p q a a a a +=+.所以结合此性质可得:2202171521a a Sb b T +=+,再根据题意得到答案.【详解】解:在{}n a 为等差数列中,当(m n p q m +=+,n ,p ,)q N +∈时,m n p q a a a a +=+.所以1212202171521121121()2121()2a a a a Sb b T b b ⨯+⨯+==+⨯+⨯, 又因为723n n S n T n +=+, 所以22071514924a ab b +=+. 故选:A . 【点睛】本题主要考查等差数列的下标和性质,属于中档题.9.A解析:A 【分析】设只能堆放n 层,由已知得从最上层往下,每层铅笔数组成以首项为1、公差为1的等差数列,且余下的铅笔数小于1n +,根据等差数列的前n 项和公式可求得选项. 【详解】设只能堆放n 层,则从最上层往下,每层铅笔数组成以首项为1、公差为1的等差数列,且余下的铅笔数小于1n +, 于是()11002n n +≤,且()110012n n n +-<+,解得13n =,剩余的根数为131410092⨯-=. 故选:A. 【点睛】 本题考查数列的实际应用,关键在于将生活中的数据,转化为数列中的基本量,属于中档题.10.C解析:C 【解析】分类讨论:当1n =时,11213a S ==+=,当2n ≥时,221(2)2(1)141n n n a S S n n n n n -⎡⎤=-=+--+-=-⎣⎦, 且当1n =时:1414113n a -=⨯-== 据此可得,数列的通项公式为:41n a n =-. 本题选择C 选项.11.A解析:A 【分析】设等比数列{}n a 的公比为q ,可知10q -<<或01q <<,计算出111lim 1n n a S q a →∞==-,可得出q 关于1a 的表达式,结合q 的范围,可解出1a 的取值范围. 【详解】设等比数列{}n a 的公比为q ,由于11lim n n S a →∞=,则10q -<<或01q <<, ()111n n a q S q-=-,则()11111lim lim11n n n n a q a S qq a →∞→∞-===--,得211q a =-. ①若10q -<<,则21110a -<-<,即2112a <<,11a >,解得1a <<; ②当01q <<,则21011a <-<,得2101a <<,11a >,则2101a <<不成立.综上所述,1a的取值范围是(. 故选A.【点睛】本题考查利用极限求等比数列首项的取值范围,解题的关键就是得出公比与首项的关系,结合公比的取值范围得出关于首项的不等式,考查运算求解能力,属于中等题.12.C解析:C 【分析】利用等差数列性质,若++m n p q =,则++m n p q a a a a =及等差中项公式可求. 【详解】因为 12336a a a ++=,由等差中项公式,得2336a =, 同理11121384a a a ++=,得12384a =,2123+3=81036+42a a ∴=.212+=40a a ∴ 21529+=40a a a a ∴+=故选:C . 【点睛】本题考查等差数列性质与等差中项公式.(1)如果{}n a 为等差数列,若++m n p q =,则++m n p q a a a a = ()*m n p q N ∈,,,. (2){}n a 为等差数列,则有11n n n a a a =2-++.二、填空题13.【分析】记设根据即可求出从而得到再根据题意可得分参利用基本不等式即可求出实数k 的取值范围【详解】记设当时;当时当时也满足上式所以即显然当时当时因此的最大值若存在必为正值当时因为当且仅当时取等号所以的解析:⎛-∞ ⎝⎭ 【分析】记12n n n b a -=,设21212317222222n n n S a a a a n n -=+++⋅⋅⋅+=-, 根据1112n n n S n b S S n -=⎧=⎨-≥⎩即可求出n b ,从而得到n a ,再根据题意可得()m 2ax 2n k a λλ-+>,分参利用基本不等式即可求出实数k 的取值范围.【详解】记12n n n b a -=,设21212317222222n n n S a a a a n n -=+++⋅⋅⋅+=-, 当1n =时,117322b =-=-;当2n ≥时,()()21217171142222n n n b S n S n n n n -⎡⎤-----=-⎢⎥⎣⎦=-=. 当1n =时,13b =-也满足上式,所以()*4n b n n N =-∈,即142n n n a --=. 显然当3n ≤时,0n a <,40a =,当5n ≥时,0n a >,因此n a 的最大值若存在,必为正值.当5n ≥时,()1324n n a n a n +-=-,因为()151024n n a na n +--=≤-,当且仅当5n =时取等号. 所以n a 的最大值为116.故()m 2ax 1126n k a λλ>=-+,变形得,3116k λλ<+,而31162λλ+≥=,当且仅当4λ=时取等号,所以2k <.故答案为:⎛-∞ ⎝⎭. 【点睛】本题主要考查n S 与n a 的关系1112n nn S n a S S n -=⎧=⎨-≥⎩应用,不等式恒成立问题的解法应用,以及基本不等式的应用,意在考查学生的转化能力和数学运算能力,属于中档题.解题关键是记12n n n b a -=,设21212317222222n n n S a a a a n n -=+++⋅⋅⋅+=-,利用通项n b 与前n 项和n S 的关系1112n nn Sn b S S n -=⎧=⎨-≥⎩求出通项n b ,再利用数列的单调性进而求出数列中的最大值,由基本不等式解出.14.【分析】首先判断出数列与项的特征从而判断出两个数列公共项所构成新数列的首项以及公差利用等差数列的求和公式求得结果【详解】因为数列是以2为首项以2为公差的等差数列数列是以1首项以3为公差的等差数列所以 解析:23n n +【分析】首先判断出数列{2}n 与{}32n -项的特征,从而判断出两个数列公共项所构成新数列的首项以及公差,利用等差数列的求和公式求得结果. 【详解】因为数列{2}n 是以2为首项,以2为公差的等差数列, 数列{}32n -是以1首项,以3为公差的等差数列,所以这两个数列的公共项所构成的新数列{}n a 是以4为首项,以6为公差的等差数列,所以{}n a 的前n 项和2(1)4632n n n S n n n -=⋅+⋅=+, 故答案为:23n n +. 【点睛】关键点点睛:该题考查的是有关数列的问题,涉及到的知识点有两个等差数列的公共项构成新数列的特征,等差数列求和公式,属于中档题.15.【分析】由累加法求出数列的通项公式进而可得到的解析式再根据基本不等式可求得最小值【详解】解:即:…将这个式子累加可得:…即当时又又也适合上式由对勾函数的性质可知:当且仅当时取得最小值即时取得最小值又 解析:225【分析】由累加法求出数列{}n a 的通项公式,进而可得到na n的解析式,再根据基本不等式可求得na n最小值. 【详解】解:1n n a a n +=+,1n n a a n +∴-=,即:211a a -=,322a a -=,433a a -=,...,11(2,)n n a a n n n z ---≥∈=, 将这1n -个式子累加可得:1123n a a -=+++ (1)+12n n n --=, 即当2n ≥时,1(1)2n n n a a -=+, 又112a =,()2(1)2412=222n n n n n a n n z --+∴=+≥∈,,又112a =也适合上式,()2(1)2412=22n n n n n a n z --+∴=+∈224121=222n a n n n n n n -+∴=+-, 由对勾函数的性质可知:当且仅当12=2n n时取得最小值,即n =又n z ∈且45<<,44121942422a =+-=,551212252525a =+-= , 92225>, n a n ∴的最小值为:225. 故答案为:225. 【点睛】易错点点睛:运用累加法求数列通项时,注意验证首项是否满足,若不满足,则需要写成分段的形式.16.1010【分析】由与关系当时将代入条件等式得到数列为等差数列求出进而求出即可求出结论【详解】∵∴∴∴令则∴数列是以为首项公差的等差数列∴即∴∴由解得即正整数的最小值为故答案为:【点睛】方法点睛:本题解析:1010 【分析】由n S 与n a 关系,当2n ≥时,将1n n n a S S -=-代入条件等式,得到数列21{}nn S +为等差数列,求出n S ,进而求出12m S S S ,即可求出结论.【详解】∵1122n n n n n S S S S na --+-=, ∴()11122n n n n n n S S S S n S S ---+-=-, ∴()()1122121n n n n S S n S n S --=+--, ∴121212n n n n S S -+--=, 令21n nn b S +=,则()122n n b b n --=≥, ∴数列{}n b 是以111331b S a ===为首项,公差2d =的等差数列, ∴21n b n =-,即2121n n n S +=-,∴2121n n S n +=-, ∴12521321321m m S S S m m +=⨯⨯⨯=+-, 由212021m +≥,解得1010m ≥, 即正整数m 的最小值为1010. 故答案为: 1010. 【点睛】方法点睛:本题考查等差数列的通项公式,考查递推关系式,求通项公式的主要方法有: 观察法:若已知数列前若干项,通过观察分析,找出规律;公式法:已知数列是等差数列或等比数列,或者给出前n 项和与通项公式的关系; 累加法:形如()1n n a a f n +=+的递推数列; 累乘法:形如()1n n a a f n +=⋅的递推数列.17.15【分析】根据等差数列的前项和与等差数列的性质求解【详解】因为所以又所以故解得故答案为:15【点睛】本题考查等差数列的前项和等差数列的性质利用等差数列的性质求解可以减少计算量解析:15 【分析】根据等差数列的前n 项和与等差数列的性质求解, 【详解】因为32318S a ==,所以26a =,又2311390n n n n n n a a S S a a ----=++-==, 所以130n a -=.故()()12127022n n n n a a n a a S -++===,解得15n =. 故答案为:15. 【点睛】本题考查等差数列的前n 项和,等差数列的性质,利用等差数列的性质求解可以减少计算量.18.【分析】由等比数列的通项公式求得进而得到数列表示首项为公比为的等比数列结合等比数列的求和公式即可求解【详解】由题意等比数列中可得解得又由且即数列表示首项为公比为的等比数列所以故答案为:【点睛】本题主解析:321134n⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦【分析】由等比数列的通项公式,求得12q =,进而得到数列{}1n n a a +表示首项为8,公比为14的等比数列,结合等比数列的求和公式,即可求解. 【详解】由题意,等比数列{}n a 中,14a =,412a =,可得34218a q a ==,解得12q =, 又由2111114n n n n n n a a a q a a a ++--===,且21218a a a q ==, 即数列{}1n n a a +表示首项为8,公比为14的等比数列,所以1223118[1()]3214113414n n n n a a a a a a +⨯-⎡⎤⎛⎫++⋅⋅⋅+==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-. 故答案为:321134n⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.【点睛】本题主要考查了等比数列的定义及通项公式,以及等比数列的前n 项和公式的应用,其中解答中熟记等比数列的通项公式,以及等比数列的求和公式的应用,着重考查推理与运算能力,属于中档试题.19.②④⑤【分析】利用所给递推公式求出的通项公式由证明数列不是等比数列根据的单调性求出范围证明②正确根据复合函数的增减性判断规则说明③错误举出例子证明④正确利用裂项相消法求和证明⑤正确【详解】且数列是以解析:②④⑤ 【分析】利用所给递推公式求出{}n a 的通项公式,由3212b b b b ≠证明数列{}n a e 不是等比数列,根据1111(1)1n n a n a n +++=+++的单调性求出范围证明②正确,根据复合函数的增减性判断规则说明③错误,举出例子证明④正确,利用裂项相消法求和证明⑤正确. 【详解】()*1111n n a a n N +-=∈且111a ,∴数列1{}n a 是以1为首项,1为公差的等差数列,则()*1nn n N a =∈, ()*1n a n N n∴=∈. ①设1n n na b e e ==,则1132123,,b e b e b e ===,因为11326212,b b e e b b --==,所以3212b b b b ≠,因此数列{}na e 不是等比数列;②1111(1)1n n a n a n +++=+++,因为1(1)1y n n =+++在[1,)+∞上单调递增,所以115(1)2122n n ++≥+=+,②正确; ③因为若数列{}n a 是单调递减的数列,所以若函数()f x 在R 上单调递减,则数列(){}nf a 是单调递增数列;④234111,,234a a a ===即可构成三角形的三边,所以④正确; ⑤因为1111(1)1n n n n a n a n +==-++,所以1223111112111231n n n a a a a a a n n n +++⋅⋅⋅+=--=++-+++,⑤正确. 故答案为:②④⑤ 【点睛】本题考查由递推公式求数列的通项公式,用定义证明等比数列,复合函数的单调性,裂项相消法求和,属于中档题.20.【分析】利用等比数列通项公式可整理已知等式得到令可得到由函数的单调性可求得的取值范围【详解】由得:令则在上单调递减;在上单调递减;综上所述:的取值范围为故答案为:【点睛】本题考查函数值域的求解问题涉解析:[)2,2,3⎛⎤-∞-+∞ ⎥⎝⎦【分析】利用等比数列通项公式可整理已知等式得到211211q q a q q⎛⎫+- ⎪⎝⎭=-++,令1t q q =+可得到1111a t t =-+++,由函数的单调性可求得1a 的取值范围. 【详解】由443210q a a a ++++=得:43211110q a q a q a q ++++=,224213211211111q q q q q a q q q q q q q ⎛⎫+-+ ⎪+⎝⎭∴=-=-=-++++++. 令(][)1,22,t q q=+∈-∞-+∞,则()()2211211211111t t t a t t t t +-+--=-=-=-+++++, 111t t -+++在(],2-∞-上单调递减,12112a ∴≥+-=;111t t -+++在[)2,+∞上单调递减,1122133a ∴≤-++=-;综上所述:1a 的取值范围为[)2,2,3⎛⎤-∞-+∞ ⎥⎝⎦.故答案为:[)2,2,3⎛⎤-∞-+∞ ⎥⎝⎦.【点睛】本题考查函数值域的求解问题,涉及到等比数列通项公式的应用;关键是能够将1a 表示为关于q 的函数,利用分离常数法可确定函数的单调性,进而利用函数单调性求得函数的最值,从而得到所求的取值范围.三、解答题21.(1)(i )8;(ii )()()()(),4323,422,4121,4n a n k n a n k a a n k n a n k ⎧=-⎪+-=-⎪=⎨-=-⎪⎪--=⎩;(2)证明见解析. 【分析】(1)(i )推导出当n 为正偶数时,24n n a a n ++=,可得出+4248n n a a n ++=+,两式作差可得出结论成立;(ii )推导出当n 为正奇数时,4n n a a +=,求出2a 、3a 、4a ,对任意的k *∈N ,分43n k =-,42n k =-,41n k =-,4n k =四种情况讨论,结合等差数列的通项公式以及周期数列的定义可求得数列{}n a 的通项公式;(2)计算出4342414n n n n a a a a ---+++,可求得2482n S n n =+,利用放缩法得出4111142121n S n n ⎛⎫<- ⎪-+⎝⎭,结合裂项相消法可证得所证不等式成立. 【详解】(1)(i )当n 为正偶数时,121n n a a n ++=-,2121n n a a n ++-=+, 两式相加得24n n a a n ++=,① 可得+4248n n a a n ++=+,② ②-①得48n n a a +-=;(ii )当n 为正奇数时,121n n a a n +-=-,2121n n a a n +++=+, 两式作差得22n n a a ++=,所以,422n n a a +++=, 上述两个等式作差得4n n a a +=, 又211a a -=,则2111a a a =+=+,323a a +=,则3232a a a =-=-, 435a a -=,则4357a a a =+=-.对任意的k *∈N ,当43n k =-,则1n a a a ==; 当42n k =-时,()()()422811818722723n k a a a k a k a k a n a n -==+-=++-=+-=++-=+-;当41n k =-时,32n a a a ==-;当4n k =时,()()44817818121n k a a a k a k k a n a ==+-=-+-=--=--.综上所述,()()()(),4323,422,4121,4n a n k n a n k a a n k n a n k ⎧=-⎪+-=-⎪=⎨-=-⎪⎪--=⎩; (2)()434241424232241166n n n n a a a a a n a a n a n ---+++=+-+-+-+⨯--=-,()2410166822n n n S n n +-∴==+,()()2241111114212124241n S n n n n n ⎛⎫∴=<=- ⎪-++-⎝⎭, 所以,48411111111111111433521214214n S S S n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫++⋅⋅⋅+<-+-++-=-< ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. 【点睛】方法点睛:证明数列不等式常用放缩法,常用的放缩公式如下:(1)()()21111211n n n n n n<=-≥--; (2)()()()211111211211n n n n n n ⎛⎫<=-≥ ⎪-+-+⎝⎭; (3)()()2221144112141212121214n n n n n n n ⎛⎫<===- ⎪--+-+⎝⎭-; (4()22n =<=≥.22.(1)32nn a ⎛⎫= ⎪⎝⎭,31n b n =+;(2)3136λ<.【分析】(1)利用1(2)n n n a S S n -=-≥求得数列{}n a 是等比数列,(10a ≠),得通项公式n a ,从而也得到n b ;(2)作差1n n c c +-,由10n n c c +->恒成立转化为13221815nn λ⎛⎫⎪⎝⎭<+对*n N ∀∈恒成立,引入()13221815nf n n ⎛⎫⎪⎝⎭=+,*n N ∈,从作商法求得{()}f n 的最小值即可得λ的范围.【详解】解:(1)当1n =时,1133S a =-,∴132a =, 当2n ≥时,()113333n n n n S S a a ---=---, 即133n n n a a a -=-,∴132n n a a -=,又10a ≠, 所以数列{}n a 为等比数列.∴1333222n nn a -⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭, 332233log 13log 1312nn n b a n ⎛⎫=+=+=+ ⎪⎝⎭.(2)()23312nn c n λ⎛⎫=-+ ⎪⎝⎭,因为数列{}n c 为递增数列, ∴()()()122133133431181502222n n nn n c c n n n λλλ++⎛⎫⎛⎫⎛⎫-=-+-++=-+> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭对*n N ∀∈恒成立,即13221815nn λ⎛⎫⎪⎝⎭<+对*n N ∀∈恒成立设()13221815nf n n ⎛⎫⎪⎝⎭=+,*n N ∈,()min f n λ<,()()()1133181511815222183318331322n n n f n n f n n n +⎛⎫+ ⎪++⎝⎭=⋅=++⎛⎫ ⎪⎝⎭,若()()11f n f n +>,则1821n >, ∴当n 2≥时,()()1f n f n +>; 当1n =时,()()21f f <.∴()()min 32136f n f ==, 即λ的取值范围为3136λ<. 【点睛】关键点点睛:本题考查求等比数列的通项公式,考查数列的单调性,不等式恒成立问题.数列的单调性与最值的求法一般有作差法或作商法.作差法是最基本的方法,而当n a 为幂的形式(或乘积形式)也可用作商法确定单调性,得最值.23.(1)=n a 2)3. 【分析】(1)根据题意,利用1(2)n n n a S S n -=-≥,化简整理,即可求得n a ,检验11a S =满足此式,即可求得数列{}n a 的通项公式;(2)由(1)可得2n S n =,代入即可求得n b 表达式,利用裂项相消法求和,即可求得nT 的表达式,根据n T 的单调性,可得123n T T ≥=,代入所求,利用一元二次不等式的解法,即可求得答案. 【详解】(1)∵221n n n a S a -=,∴当2n ≥时,2112()()1-----=n n n n n S S S S S ,整理得,2211(2)n n S S n --=≥,又211S =,∴数列{}2n S 为首项和公差都是1的等差数列.∴2n S n =,又0n S >,∴=n S ,∴2n ≥时,1-=-=n n n a S S 又111a S ==适合此式,∴数列{}n a 的通项公式为n a (2)∵42222114141(21)(21)2121n n b S n n n n n ====----+-+∴11111111335212121n T n n n =-+-++-=--++, ∴随着n 逐渐增大,n T 逐渐增大, ∴123n T T ≥=,依题意有,221(3)36>-m m ,即2340m m --<, 解得14-<<m ,故所求最大正整数m 的值为3 【点睛】解题的关键是熟练应用1(2)n n n a S S n -=-≥,根据不同条件,选择替换n a 或n S 进行求解,易错点为:需检验11a S =是否满足题意,若1a 不满足题意,需写成分段函数形式,考查分析理解,计算求值的能力,属中档题. 24.选择见解析;1(21)22n n A n +=-+.【分析】根据条件设{}n a 的公差为2d ,{}n b 的公差为d ,若选择条件①根据535S =,列式求d ,再代入数列{}n b 的基本量的计算,求数列{}n a 和{}n b 的通项公式,若选择条件②根据条件,解出数列{}n b 的基本量1b 和d ,以及求出数列{}n a 和{}n b 的通项公式,若选择条件③根据条件35S T =,以及13a =,23T =,组成方程组,求1b 和d ,这三个条件都根据基本量表示数列{}n a 和{}n b 的通项公式,并得到(21)2nn c n =+,利用错位相减法求和.【详解】不妨设{}n a 的公差为2d ,{}n b 的公差为d , 方案1:选条件①由题意得,123b d +=,54352352d ⨯⨯+⨯=, 解之得,11b =,1d =,则12(1)21,n n a a n n b n =+-=+=,则(21)2nn c n =+,123325272(21)2n n A n =⨯+⨯+⨯+⋯++,① 23412325272(21)2n n A n +=⨯+⨯+⨯+⋯++,②两式相减,整理得:1(21)22n n A n +=-+.方案2:选条件②由题意得123b d +=,()114(62)b b d d d +=+, 解得11b =,1d =或13b =,3d =-(舍去),则12(1)21n a a n n =+-=+,n b n =,则(21)2nn c n =+,123325272(21)2n n A n =⨯+⨯+⨯+⋯++,① 23412325272(21)2n n A n +=⨯+⨯+⨯+⋯++,②两式相减,整理得:1(21)22n n A n +=-+.方案3:选条件③由题意得,2335a b =,即()()113252a d b d +=+, 化简得,1549b d +=,212123T b b b d =+=+=, 联立方程组得,11b =,1d =, 则{}n a 的公差为2,{}n b 的公差为1,12(1)21n a a n n =+-=+,n b n =,则(21)2n n c n =+,123325272(21)2n n A n =⨯+⨯+⨯+⋯++,① 23412325272(21)2n n A n +=⨯+⨯+⨯+⋯++,②两式相减,整理得:1(21)22n n A n +=-+.【点睛】本题考查数列基本量计算,错位相减法求和,是一道结构不良题型,属于基础题型. 方法点睛:一般数列求和包含1.公式法,利用等差和等比数列的前n 项和公式求解;2.错位相减法求和,适用于等差数列乘以等比数列的数列求和;3.裂项相消法求和,适用于能变形为()()1n a f n f n =+-, 4.分组转化法求和,适用于n n n c a b =+;5.倒序相加法求和.25.(1)7,121,2n n n a n n =⎧=⎨++≥⎩;(2)217,1322,22n n n S n n n +=⎧⎪=⎨+++≥⎪⎩. 【分析】(1)根据11,1,2n nn S n a S S n -=⎧=⎨-≥⎩可求得结果;(2)当1n =时,117S a ==,当2n ≥时,分组后利用等差等比数列的求和公式可求得结果. 【详解】 (1)1212121212121n na n a a n ---++⋅⋅⋅+=++++①, 当2n ≥时,得()112121112212121n n a n a a n ------++⋅⋅⋅+=+++②. ①-②得121n na n -=+,∴()212nn a n n =++≥, 又11112721a a -=⇒=+不满足上式, 综上得7,121,2n nn a n n =⎧=⎨++≥⎩. (2)当1n =时,117S a ==, 当2n ≥时,23722123121nn S n =++++++++++()()()()212121271122n n n n ---+=+++--213222n n n +++=+,综上得,217,1322,22n n n S n n n +=⎧⎪=⎨+++≥⎪⎩. 【点睛】易错点点睛:第一问利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求通项公式时,容易忽视1n =的情况造成错误;第二问求和是也容易忽视1n =的情况.26.(1)1(91)101081n n n T +-⋅+=;(2)10,(1,)2⎛⎫⋃+∞ ⎪⎝⎭.【分析】(1)由1n =得出1a a =,再令2n ≥,由11n n a a S a --=,得出11n n a S a a-=-,可推出 1111n n a S a a ---=-,两式相减得出1n n a a a -=,利用等比数列的通项公式得出数列{}n a 的通项公式,可求出数列{}n b 的通项公式,然后利用错位相减法求出数列{}n b 的前n 项和n T ;(2)由1n n b b +<得出()1lg 1lg n n na a n a a +<+,分两种情况1a >和01a <<讨论.①当1a >时,利用参变量分离法得出1na n >+,可得出1a >; ②当01a <<时,利用参变量分离法得出1n a n <+,可得出102a <<.综合①②得出实数a 的取值范围. 【详解】当1n =时,11a S =,1111a a a a--=,解得1a a =. 当2n ≥时,∵11n n a a S a--=, ∴11n n a S a a -=-,可得1111n n a S a a---=-, 上述两式相减得()111n n n n a S S a a a----=-, 即11n n n a a a a a --=-,所以1n n a a a -=. 所以数列{}n a 是首项为a ,公比为a 的等比数列, ∴1nn na a a a ,从而lg lg nn n n b a a na a ==.(1)当10a =时,10nn b n =⋅,∴2121021010nn n T b b n b n n =+++=+⋅++⋅, 则2311010210(1)1010nn n T n n n +=+⋅++-⋅+⋅,∴()23111010191010101010109n n n n nT n n n ++--=++++-⋅=-⋅,所以()1121010110(91)10109981n n n n n n T ++-⋅-⋅+=-=. (2)由1n n b b +<,可得1lg (1)lg n n na a n a a +<+.①当1a >时,由lg 0a >,可得1na n >+,()*11n n n <∈+N , ∴1a >,∴1na n >+,对一切*n ∈N 都成立,此时的解为1a >; ②当01a <<时,由lg 0a <,可得(1)n n a >+,∴1na n <+,()*1N 12n n n ≥∈+,01a <<, ∴01na n <<+,对一切*n ∈N 都成立, ∴102a <<. 由①,②可知,对一切*n ∈N 都有1n n b b +<的a 的取值范围是10,(1,)2⎛⎫⋃+∞ ⎪⎝⎭. 【点睛】本题考查利用前n 项和求通项,考查错位相减法求和以及数列不等式恒成立与参数问题,解题时要熟悉一些常见的求通项和数列求和方法,以及在数列不等式恒成立问题中,灵活利用参变量分离法简化计算,考查分类讨论数学思想,属于难题.。
一、选择题1.从5名志愿者中选出4人分别到A 、B 、C 、D 四个部门工作,其中甲、乙两名志愿者不能到A 、B 二个部门工作,其他三人能到四个部门工作,则选派方案共有( ) A .120种B .24种C .18种D .36种2.关于6212x x ⎛⎫- ⎪⎝⎭的展开式,下列说法中正确的是( ) A .展开式中二项式系数之和为32B .展开式中各项系数之和为1C .展开式中二项式系数最大的项为第3项D .展开式中系数最大的项为第4项3.712x x ⎛⎫- ⎪⎝⎭的展开式中5x 的系数为( ) A .448B .448-C .672D .672-4.回文联是我国对联中的一种.用回文形式写成的对联,既可顺读,也可倒读.不仅意思不变,而且颇具趣味.相传,清代北京城里有一家饭馆叫“天然居”,曾有一副有名的回文联:“客上天然居,居然天上客;人过大佛寺,寺佛大过人.”在数学中也有这样一类顺读与倒读都是同一个数的自然数,称之为“回文数”.如44,585,2662等;那么用数字1,2,3,4,5,6可以组成4位“回文数”的个数为( ) A .30B .36C .360D .12965.根据中央对“精准扶贫”的要求,某市决定从3名男性党员、2名女性党员中选派2名去甲村调研,则既有男性又有女性的不同选法共有( ) A .7种B .6种C .5种D .4种6.某煤气站对外输送煤气时,用1至5号五个阀门控制,且必须遵守以下操作规则: ①若开启3号,则必须同时开启4号并且关闭2号; ②若开启2号或4号,则关闭1号; ③禁止同时关闭5号和1号. 则阀门的不同开闭方式种数为( ) A .7B .8C .11D .147.若m 是小于10的正整数,则()()()151620m m m ---等于( )A .515m P -B .1520mm P --C .520m P - D .620m P -8.已知*n N ∈,设215nx x ⎛⎫- ⎪⎝⎭的展开式的各项系数之和为M ,二项式系数之和为N ,若992M N -=,则展开式中x 的系数为( )A .-250B .250C .-500D .5009.若0,0a b >>,二项式6()ax b +的展开式中3x 项的系数为20,则定积分22abxdx xdx +⎰⎰的最小值为( )A .0B .1C .2D .310.从5种主料中选2种,8种辅料中选3种来烹饪一道菜,烹饪方式有5种,那么最多可以烹饪出不同的菜的种数为 A .18B .200C .2800D .3360011.如图,用6种不同的颜色把图中A,B,C,D 四块区域涂色分开,若相邻区域不能涂同一种颜色,则不同涂法的种数为( )A .400B .460C .480D .49612.将编号为1,2,3,4,5,6,7的小球放入编号为1,2,3,4,5,6,7的七个盒子中,每盒放一球,若有且只有三个盒子的编号与放入的小球的编号相同,则不同的放法种数为( ) A .315B .640C .840D .5040二、填空题13.()3621()x x x-+的展开式中的常数项为_____.(用数字作答)14.有2个不同的红球和3个不同的黄球,将这5个球放入4个不同的盒子中,要求每个盒子至少放一个球,且同色球不能放在同一个盒子中,则不同的放置方法有________种.(用数字作答)15.已知33210n n A A =,那么n =__________.16.若251(3)(2)x a x x--的展开式中3x 的系数为80,则a =_______.17.把4件不同的产品摆成一排.若其中的产品A 与产品B 都摆在产品C 的左侧,则不同的摆法有____种.(用数字作答)18.25(32)x x ++的展开式中3x 的项的系数是________.19.如图所示,在杨辉三角中,斜线AB 上方箭头所示的数组成一个锯齿形的数列:1,2,3,3,6,4,10,…,记这个数列的前n 项和为S (n ),则S (16)的值为_____.20.()()611ax x -+的展开式中,3x 项的系数为10-,则实数a =___________.三、解答题21.已知nx x ⎛+ ⎝的展开式中只有第五项的二项式系数最大.(1)求该展开式中有理项的项数; (2)求该展开式中系数最大的项. 22.设()22201221nn n x x a a x a x a x ++=+++⋅⋅⋅.(1)求0a 的值;(2)求1232n a a a a +++⋯+的值; (3)求13521n a a a a -+++⋯+的值.23.从1到7的7个数字中取两个偶数和三个奇数组成没有重复数字的五位数.试问: (1)五位数中,两个偶数排在一起的有几个?(2)两个偶数不相邻且三个奇数也不相邻的五位数有几个?(所有结果均用数值表示) 24.已知i ,m ,n 是正整数,且1i m n <≤<. (1)证明:i i i im n n A m A <;(2)证明:(1)(1)m nn m +<+.25.已知n的二项展开式的各二项式系数的和与各项系数的和均为256. (1)求展开式中有理项的个数; (2)求展开式中系数最大的项.26.为弘扬我国古代的“六艺”文化,某夏令营主办单位计划利用暑期开设“礼”、“乐”、“射”、“御”、“书”、“数”六门体验课程.(1)若体验课连续开设六周,每周一门,求其中“射”不排在第一周,“数”不排在最后一周的所有可能排法种数;(2)甲、乙、丙、丁、戊五名教师在教这六门课程,每名教师至少任教一门课程,求其中甲不任教“数”的课程安排方案种数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据题意,分两种情况讨论:①、甲、乙中只有1人被选中,②、甲、乙两人都被选中,根据分类计数原理可得 【详解】解:根据题意,分两种情况讨论:①、甲、乙中只有1人被选中,需要从甲、乙中选出1人,到C ,D 中的一个部门,其他三人到剩余的部门,有113223··24C C A =种选派方案. ②、甲、乙两人都被选中,安排到C ,D 部门,从其他三人中选出2人,到剩余的部门,有2223·12A A =种选派方案, 综上可得,共有24+12=36中不同的选派方案, 故选D . 【点睛】本题考查排列、组合的应用,涉及分类加法原理的应用,属于中档题.2.B解析:B 【分析】直接利用二项式展开式的应用求出结果. 【详解】 解:关于621(2)x x-的展开式,根据二项式的展开式的应用:61621(2)()r rr r T C x x -+=-, 对于选项A :展开式中二项式系数之和6264=,故错误.对于选项B :利用赋值法的应用,当1x =时,各项的系数的和为6(21)1-=,故正确.对于选项C :展开式中二项式系数最大的项为第4项3620C =,故错误. 对于选项D :展开式中系数最大的项为第2项,系数为2462240C ⨯=.故错误.故选:B . 【点睛】本题考查的知识要点:二项展开式的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题.3.B解析:B 【分析】求出展开式的通项公式,利用x 的次数为5进行求解即可. 【详解】展开式的通项公式77727171(2)(1)2rr rr r r r rx T C x C x ---+⎛⎫=-=- ⎪⎝⎭, 由725r -=得1r =,所以展开式中5x 的系数为1717(1)2764448C --⋅=-⨯=-,故选:B . 【点睛】该题考查的是有关二项式定理的问题,涉及到的知识点有求二项展开式指定项的系数,属于简单题目.4.B解析:B【分析】依据回文数对称的特征,可知有两种情况:1、在6个数字中任取1个组成16C 个回文数;2、在6个数字中任取2个26C 种取法,又由两个数可互换位置22A 种,即2262C A 个回文数;结合两种情况即可求出组成4位“回文数”的个数 【详解】由题意知:组成4位“回文数”∴当由一个数组成回文数,在6个数字中任取1个:16C 种 当有两组相同的数,在6个数字中任取2个:26C 种又∵在6个数字中任取2个时,前两位互换位置又可以组成另一个数 ∴2个数组成回文数的个数:22A 种故,在6个数字中任取2个组成回文数的个数:2262C A综上,有数字1,2,3,4,5,6可以组成4位“回文数”的个数为:2262C A +16C =36 故选:B 【点睛】本题考查了排列组合,根据回文数的特征—对称性,先由分类计数得到取数的方法数,再由分步计数得到各类取数中组成回文数的个数,最后加总即为所有组成4位“回文数”的个数5.B解析:B 【分析】根据题意可得选出的2人必为一男—女,分别求出选出1名男性党员和1名女性党员的选法数目,由分步乘法计数原理计算可得答案. 【详解】根据题意,选出的2人中既有男性又有女性,必为一男一女,在3名男性党员中任选1人,有3种选法,在2名女性党员中任选1人,有2种选法,则既有男性又有女性的不同选法有3×2=6种, 故选:B 【点睛】本题主要考查排列组合的应用,涉及分步乘法计数原理的应用,属于基础题.6.A解析:A 【分析】分两类解决,第一类:若开启3号,然后对2号和4号开启其中一个即可判断出1号和5号情况,第二类:若关闭3号,关闭2号关闭4号,对1号进行讨论,即可判断5号,由此可计算出结果. 【详解】解:依题意,第一类:若开启3号,则开启4号并且关闭2号,此时关闭1号,开启5号, 此时有1种方法; 第二类:若关闭3号,①开启2号关闭4号或关闭2号开启4号或开启2号开启4号时,则关闭1号,开启5号,此时有种3方法;②关闭2号关闭4号,则开启1号关闭5号或开启1号开启5号或关闭1号,开启5号, 此时有种3方法;综上所述,共有1337++=种方式. 故选:A. 【点睛】本题考查分类加法计数原理,属于中档题.7.D解析:D 【分析】利用排列数的定义可得出正确选项. 【详解】()()()()()()()()()()1231415162020!1516201231414!m m m m m m m m m m ⋅⋅--------==⋅⋅--()()20!206!m m -=--⎡⎤⎣⎦,由排列数的定义可得()()()620151620m m m m P ----=. 故选D. 【点睛】本题考查排列数的表示,解题的关键就是依据排列数的定义将代数式表示为阶乘的形式,考查分析问题和解决问题的能力,属于中等题.8.A解析:A 【分析】分别计算各项系数之和为M ,二项式系数之和为N ,代入等式得到n ,再计算x 的系数. 【详解】215nx x ⎛⎫- ⎪⎝⎭的展开式取1x =得到4n M = 二项式系数之和为2n N = 429925n n M N n -=-=⇒=5251031551(5)()5(1)r r r r r r r r T C x C x x---+=-=- 取3r = 值为-250故答案选A【点睛】本题考查了二项式定理,计算出n 的值是解题的关键.9.C解析:C 【分析】由二项式定理展开项可得1ab =,再22022abxdx xdx a b +=+⎰⎰利用基本不等式可得结果.【详解】二项式()6ax+b 的展开式的通项为6616r r r rr T C a b x --+= 当63,3r r -==时,二次项系数为3336201C a b ab =∴=而定积分2202222abxdx xdx a b ab +=+≥=⎰⎰当且仅当a b =时取等号 故选C 【点睛】本题考查了二项式定理,定积分和基本不等式综合,熟悉每一个知识点是解题的关键,属于中档题.10.C解析:C 【分析】根据组合定义以及分布计数原理列式求解. 【详解】从5种主料中选2种,有2510C =种方法, 从8种辅料中选3种,有3856C =种方法,根据分布计数原理得烹饪出不同的菜的种数为10565=2800⨯⨯,选C. 【点睛】求解排列、组合问题常用的解题方法:分布计数原理与分类计数原理,具体问题可使用对应方法:如 (1)元素相邻的排列问题——“捆邦法”;(2)元素相间的排列问题——“插空法”;(3)元素有顺序限制的排列问题——“除序法”;(4)带有“含”与“不含”“至多”“至少”的排列组合问题——间接法.11.C解析:C 【解析】分析:本题是一个分类计数问题,只用三种颜色涂色时,有31116321C C C C 种方法,用四种颜色涂色时,有41126322C C C A 种方法,根据分类计数原理得到结果.详解:只用三种颜色涂色时,有31116321120C C C C =种方法, 用四种颜色涂色时,有41126432360C C C A =种方法,根据分类计数原理得不同涂法的种数为120+360=480. 故答案为C.点睛:(1)本题主要考查计数原理,考查排列组合的综合应用,意在考查学生对这些知识的掌握水平和分析推理能力.(2)排列组合常用的方法有一般问题直接法、相邻问题捆绑法、不相邻问题插空法、特殊对象优先法、等概率问题缩倍法、至少问题间接法、复杂问题分类法、小数问题列举法.12.A解析:A 【分析】分两步进行,第一步先选三个盒子的编号与放入的小球的编号相同,第二步再将剩下的4个小球放入与小球编号不同的盒子中,然后利用分布计数原理求解. 【详解】有三个盒子的编号与放入的小球的编号相同有3735C =种放法,剩下的4个小球放入与小球编号不同的盒子有11339C C ⋅=种放法,所以有且只有三个盒子的编号与放入的小球的编号相同,则不同的放法种数为359315⨯=种, 故选:A 【点睛】本题主要考查组合应用题以及分布计数原理,属于中档题.二、填空题13.180【分析】根据二项式定理结合展开式通项即可确定的指数形式将多项式展开即可确定常数项【详解】的展开式中的通项公式而分别令解得或∴的展开式中的常数项故答案为:180【点睛】本题考查了二项式定理通项展解析:180 【分析】根据二项式定理,结合展开式通项即可确定x 的指数形式.将多项式展开,即可确定常数项. 【详解】62x ⎫⎪⎭的展开式中的通项公式 363216622kkkk k k k T C C x x --+⎛⎫==⋅⋅ ⎪⎝⎭,而()666332221)x x x x x =-⎫⎫⎫-⎪⎪⎪⎭⎭⎭ 分别令3332k -=-,3302k -=, 解得4k =,或2k =.∴()6321x x ⎫-⎪⎭的展开式中的常数项44226622180C C -=.故答案为:180. 【点睛】本题考查了二项式定理通项展开式的应用,多项式的乘法展开式,常数项的求法,属于中档题.14.【分析】由题意可得一个盒子里有2个球一定为1红1黄其余盒子每个盒子放一个根据分步计数原理可得【详解】解:这5个球放入4个不同的盒子中要求每个盒子至少放一个球且同色球不能放在同一个盒子中则一个盒子里有 解析:144【分析】由题意可得一个盒子里有2个球,一定为1红1黄,其余盒子每个盒子放一个,根据分步计数原理可得. 【详解】解:这5个球放入4个不同的盒子中,要求每个盒子至少放一个球, 且同色球不能放在同一个盒子中,则一个盒子里有2个球,一定为1红1黄,其余盒子每个盒子放一个,故有11134233144C C C A =种,故答案为:144. 【点睛】本题考查了分步计数原理,运用组合数的运算,理解题目意思是关键..15.8【详解】分析:利用排列数公式展开解方程即可详解:解得即答案为8点睛:本题考查排列数公式的应用属基础题解析:8 【详解】分析:利用排列数公式展开,解方程即可. 详解:33210n n A A = ,()()()()221221012,n n n n n n ∴--=--()()22152,n n -=-解得8n =. 即答案为8.点睛:本题考查排列数公式的应用,属基础题.16.【解析】分析:中的系数与的积加上中的系数与的系数的积就是展开式的系数详解:展开式通项为令则令则∴解得故答案为-2点睛:二项式的展开式的通项为由此通项公式可求展开式中的特定项如果是两个(或多个)式子相 解析:2-【解析】分析:31(2)x x -中3x 的系数与a -的积,加上31(2)x x-中x 的系数与23x 的系数的积就是展开式3x 的系数.详解:51(2)x x-展开式通项为55521551(2)()2r rr r r r r T C x C x x---+=-=, 令523-=r ,则1r =,令521r -=,则2r,∴41325523280a C C -⨯+⨯=,解得2a =-,故答案为-2.点睛:二项式()n a b +的展开式的通项为1C r n r rr n T a b -+=,由此通项公式可求展开式中的特定项.如果是两个(或多个)式子相乘,可在第个式子中取一项相乘,只要未知数的次数满足要求,这时要注意不能遗漏.17.8【解析】当在最右边位置时由种排法符合条件;当在从右数第二个位置时由种排法符合条件把件不同的产品摆成一排若其中的产品与产品都摆在产品的左侧则不同的摆法有种故答案为解析:8 【解析】当C 在最右边位置时,由336A = 种排法符合条件;当C 在从右数第二个位置时,由222A =种排法符合条件,把4件不同的产品摆成一排.若其中的产品A 与产品B 都摆在产品C 的左侧,则不同的摆法有6+2=8种,故答案为8.18.1560【分析】把转化为再利用二项式的展开式的通项公式可求出答案【详解】由题意因为的展开式的通项公式为的展开式的通项公式为所以的展开式中的项的系数是故答案为:1560【点睛】关键点点睛:本题考查二项解析:1560 【分析】把25(32)x x ++转化为()()5512x x ++,再利用二项式的展开式的通项公式,可求出答案.【详解】由题意,()()2555(32)12x x x x =++++,因为()51x +的展开式的通项公式为15r rr T C x +=,()52x +的展开式的通项公式为5152k k k k T C x -+=,所以25(32)x x ++的展开式中3x 的项的系数是305214123032555555552222C C C C C C C C +++320800*********=+++=.故答案为:1560. 【点睛】关键点点睛:本题考查二项式定理的应用,考查三项展开式的系数问题.解决本题的关键是把25(32)x x ++转化为()()5512x x ++,进而分别求出()51x +、()52x +的展开式的通项公式,令3r k +=,可求出25(32)x x ++的展开式中3x 的项的系数.考查学生的逻辑推理能力,计算求解能力,属于中档题.19.164【分析】根据图形可知从第三行起每一行取第二和第三个数字再根据组合数的性质即可计算求出【详解】由图可知这十六个数的和为故答案为:164【点睛】本题主要考查组合数的性质的应用解题关键是凑出的形式反解析:164 【分析】根据图形可知,从第三行起每一行取第二和第三个数字,再根据组合数的性质,即可计算求出. 【详解】由图可知,这十六个数的和为2112121222334499C C C C C C C C ++++++++()()1112223493493C C C C C C =++++++++()()21113222334933491C C C C C C C C =+++++++++-2310101451201164C C =+-=+-=.故答案为:164. 【点睛】本题主要考查组合数的性质的应用,解题关键是凑出1m m n n C C -+的形式,反复利用组合数性质求和,属于基础题.20.【分析】由分别写出和的展开式通项分别令的指数为求出对应的参数值代入通项可得出关于的等式进而可求得实数的值【详解】的展开式通项为所以的展开式通项为令可得由题意可得解得故答案为:【点睛】方法点睛:对于求 解析:2【分析】由()()()()6661111ax x x ax x -+=+-+,分别写出()61x +和()61ax x +的展开式通项,分别令x 的指数为3,求出对应的参数值,代入通项可得出关于a 的等式,进而可求得实数a 的值. 【详解】()()()()6661111ax x x ax x -+=+-+,()61x +的展开式通项为16kkk T C x +=⋅,所以,()61ax x +的展开式通项为1166r r r r r A axC x aC x ++=⋅=⋅,令313k r =⎧⎨+=⎩,可得32k r =⎧⎨=⎩,由题意可得3266201510C aC a -=-=-,解得2a =. 故答案为:2. 【点睛】方法点睛:对于求多个二项式的和或积的展开式中某项的系数问题,要注意排列、组合知识的运用,还要注意有关指数的运算性质.对于三项式问题,一般是通过合并其中的两项或进行因式分解,转化成二项式定理的形式去求解.三、解答题21.(1)5;(2)121792x和11792x - 【分析】(1)先求出8n =,再写出二项式展开式的通项382182k kkk T C x-+=⨯⨯,令382kZ -∈即可求解;(2)设第1k +项系数最大,则118811882222k k k k k k k k C C C C --++⎧⨯≥⨯⎨⨯≥⨯⎩,即可解得k 的值,进而可得展开式中系数最大的项. 【详解】(1)由题意可得:152n+=,得8n =,8x ⎛+ ⎝的展开式通项为138********k k k k k k kk T C x x C x ---+=⨯⨯=⨯⨯,()08k ≤≤,要求展开式中有理项,只需令382kZ -∈, 所以0,2,4,6,8k = 所以有理项有5项,(2)设第1k +项系数最大,则118811882222k k k k kk k k C C C C --++⎧⨯≥⨯⎨⨯≥⨯⎩ , 即()()()()()()118!8!22!8!1!81!8!8!22!8!1!81!k k k k k k k k k k k k -+⎧⨯≥⨯⎪---+⎪⎨⎪⨯≥⨯⎪-+--⎩,即2191281k k k k ⎧≥⎪⎪-⎨⎪≥⎪-+⎩,解得:56k ≤≤,因为k Z ∈, 所以5k =或6k =所以1155226821792T C x x =⨯⨯=,166127821792T C x x -=⨯⨯=所以展开式中系数最大的项为121792x 和11792x -.【点睛】解二项式的题关键是求二项式展开式的通项,求有理项需要让x 的指数位置是整数,求展开式中系数最大的项需要满足第1k +项的系数大于等于第k 项的系数,第1k +项的系数大于等于第2k +项的系数,属于中档题22.(1)1;(2)231n-;(3)2312n -.【分析】(1)赋值0x =即可得解;(2)赋值1x =,结合(1)即可得解; (3)赋值1x =-,结合(2)即可得解. 【详解】(1)0x =代入()22201221nn n x x a a x a x a x ++=+++⋅⋅⋅可得:01a =; (2)1x =代入()22201221nn n x x a a x a x a x ++=+++⋅⋅⋅可得:032122=3n n a a a a a ++++⋯+,所以: 13222=31n n a a a a +++⋯-+;(3)1x =-代入()22201221nn n x x a a x a x a x ++=+++⋅⋅⋅可得:01232=1n a a a a a -+-+⋯+,又032122=3n n a a a a a ++++⋯+,、两式相减可得:5221312()31n na a a a -+++⋯=-+,所以221351312n n a a a a -+=+⋯-++. 【点睛】本题考查了二项展开式中项的系数和项的系数和,主要方法是赋值法,属于基础题. 23.(1)576;(2)144 【分析】(1)先从3个偶数抽取2个偶数和从4个奇数中抽取3个奇数,利用捆绑法把两个偶数捆绑在一起,再和另外三个奇数进行全排列;(2)利用插空法,先排两个偶数,再从两个偶数形成的3个间隔中,插入三个奇数,即可得出结果. 【详解】解:可知从1到7的7个数字中,有3个偶数,4个奇数, (1)五位数中,偶数排在一起的有:23413442576C C A A =个,(2)两个偶数不相邻且三个奇数也不相邻的五位数有:23233423144C C A A =个. 【点睛】本题考查数字的排列问题,涉及排列和组合的实际应用以及排列数和组合数的运算公式,考查利用捆绑法解决相邻问题,利用插空法解决不相邻问题,考查运算能力.24.(1)证明过程见解析;(2)证明过程见解析. 【分析】(1)根据排列数的公式,结合不等式的性质进行证明即可;(2)根据二项式定理,结合(1)中的结论、排列数、组合数的公式进行证明即可. 【详解】(1)由排列数的公式得:(1)(2)(1)121i m i A m m m m i m m m m i m mmm m m m m m---+---+==⋅⋅, (1)(2)(1)121i n i A n n n n i n n n n i n nnn n n n n n---+---+==⋅⋅, 当1i m n <≤<,1,2,31k i =-时,()()()=0m k n k n m k m n k k m n m k n km n mn mn m n ---------=<⇒<, 由不等式的性质可知:121m m m m i m m m m ---+⋅⋅<121n n n n i n n n n---+⋅⋅, 即i m i A m <i i i m ni i n i n A nm A A <⇒; (2)由二项式定理可知:0(1),(1)mnmi i ni imn i i n n Cm m C ==+=⋅+=⋅∑∑,因为,!!i iiim n mn A A C C i i ==,由(1)知:i i i i m n n A m A <, 所以有i i i im n n C m C <,又因为000011111,,0i in m n m n m C n C m C n C nm m C ====>(1)i m n <≤<,所以(1)(1)n mii ii n m nm i i m C n Cm n ==⋅>⋅⇒+>+∑∑.【点睛】本题考查了排列数、组全数公式的应用,考查了二项式定理,考查了不等式的性质,考查推理论证能力和数学运算能力. 25.(1)3;(2)70x 或1220412x - 【分析】(1)根据二项式系数和的性质,以及二项式系数和为256,可得2256n =,解出8n =,再由通项公式163418k kk k Ta C x-+=,0,1,2,,8k =,分析即得;(2)根据各项系数的和均为256,可得()81256a +=,解出3a =-或1a =,再由通项公式分情况进行计算即得. 先通过二项展开式的各二项式系数的和与各项系数的和均为256求出n . 【详解】(1)n的二项展开式的各二项式系数的和为2n,各项系数的和为()1n a +,由已知得2256n =,故8.n =此时n展开式的通项为:163418k k k k T a C x -+=,0,1,2,,8k =,当0,4,8k =时,该项为有理项,故有理项的个数为3. (2)由()81256a +=,得3a =-或 1.a = 当1a =时,展开式通项为163418k kk TC x-+=,0,1,2,,8k =,故二项式系数最大时系数最大,即第5项系数最大,即系数最大的项为45870T C x x ==;当3a =-时,163418(3)k kk k TC x-+=-,0,1,2,,8k =,展开式系数最大的项是奇数项,其中41T x =,523252T x =,55670T x =,12720412T x-=,296561T x -=,故展开式中系数最大的项为第7项,即系数最大的项为12720412T x-=.综上,展开式中系数最大的项为70x 或1220412x -. 【点睛】本题考查二项式系数的性质,以及通项公式的应用,要注意二项式系数与各项的系数的区别,考查分析计算能力,属于中档题. 26.(1)504种;(2)1440种. 【分析】(1)由题意,分“射”排在最后一周,剩下的课程没有限制和“射”不排在最后一周从中间四周选一周,再选一门课程排在最后一周,其他没有限制,然后与加法计数原理求解. (2)由题意,分甲只任教1科和甲任教2科,然后与加法计数原理求解. 【详解】(1)当“射”排在最后一周时,5554321120A =⨯⨯⨯⨯=, 当“射”不排在最后一周时,114444444321384C C A =⨯⨯⨯⨯⨯=,120384504+=,所以“射”不排在第一周,“数”不排在最后一周的排法有504种.(2)当甲只任教1科时,11121454325433554341200C C C C C A A =⨯⨯⨯⨯=, 当甲任教2科时,245454432124021C A ⨯=⨯⨯⨯⨯=⨯, 12002401440+=,所以甲不任教“数”的课程安排方案有1440种. 【点睛】本题主要考查排列组合的应用以及分步,分类计数原理的应用,属于中档题.。
一、选择题1.若1nx x ⎛⎫- ⎪⎝⎭的展开式中只有第7项的二项式系数最大,则展开式中含2x 项的系数是 A .462- B .462 C .792D .792-2.有5名同学从左到右站成一排照相,其中中间位置只能排甲或乙,最右边不能排甲,则不同的排法共有( ) A .42种B .48种C .60种D .72种3.()7322121x x ⎛⎫+- ⎪⎝⎭展开式中常数项是( ) A .15B .-15C .7D .-74.在某次体检中,学号为i (1,2,3,4i =)的四位同学的体重()f i 是集合{45,48,52,57,60}kg kg kg kg kg 中的元素,并满足(1)(2)(3)(4)f f f f ≤≤≤,则这四位同学的体重所有可能的情况有( ) A .55种B .60种C .65种D .70种5.动点M 位于数轴上的原点处,M 每一次可以沿数轴向左或者向右跳动,每次可跳动1个单位或者2个单位的距离,且每次至少跳动1个单位的距离.经过3次跳动后,M 在数轴上可能位置的个数为( ) A .7B .9C .11D .136.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,由四个全等的直角三角形和一个正方形构成.现有五种不同的颜色可供涂色,要求相邻的区域不能用同一种颜色,则不同的涂色方案有( )A .180B .192C .420D .4807.()52112x x ⎛⎫-- ⎪⎝⎭展开式的常数项为() A .112B .48C .-112D .-488.已知*n N ∈,设215nx x ⎛⎫- ⎪⎝⎭的展开式的各项系数之和为M ,二项式系数之和为N ,若992M N -=,则展开式中x 的系数为( )A .-250B .250C .-500D .5009.在二项式n 的展开式中,当且仅当第5项的二项式系数最大,则系数最小的项是 A .第6项B .第5项C .第4项D .第3项10.在二项式3nx ⎫⎪⎭的展开式中,各项系数之和为A ,二项式系数之和为B ,若72A B +=,则n =( )A .3B .4C .5D .611.若2132020x x C C -+=,则x 的值为( )A .4B .4或5C .6D .4或612.疫情期间,上海某医院安排5名专家到3个不同的区级医院支援,每名专家只去一个区级医院,每个区级医院至少安排一名专家,则不同的安排方法共有( ) A .60种B .90种C .150种D .240种二、填空题13.同宿舍的6个同学站成一排照相,其中甲只能站两端,乙和丙必须相邻,一共有_____种不同排法(用数字作答)14.在上海高考改革方案中,要求每位高中生必须在物理、化学、生物、政治、历史、地理6门学科(3门理科,3门文科)中选择3门学科参加等级考试,小李同学受理想中的大学专业所限,决定至少选择一门理科学科,那么小李同学的选科方案有________种. 15.用1、2、3、4、5、6六个数字组成的没有重复数字的六位数,要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数的个数是____________. 16.若()()7280128112x x a a x a x a x +-=++++,则127a a a +++的值为__.17.62x ⎛ ⎝的展开式中3x 的系数为__________.(用数字作答)18.25(32)x x ++的展开式中3x 的项的系数是________.19.用0,1,2,3,4,5这六个数字组成没有重复数字的三位数,且是偶数,则这样的三位数有______个. 20.若()202022020012202032x a a x a x a x +=++++,则1352019a a a a ++++被12整除的余数为______.三、解答题21.三个女生和五个男生排成一排.(1)如果女生必须全排在一起,有多少种不同的排法; (2)如果女生必须全分开,有多少种不同的排法.22.已知2nx⎛⎝展开式前三项的二项式系数和为22.(1)求展开式中的常数项;(2)求展开式中二项式系数最大的项.23.已知在2nx ⎫⎪⎭的展开式中,第6项的系数与第4项的系数之比是6: 1. (1)求展开式中11x 的系数; (2)求展开式中系数绝对值最大的项;(3)求2319819n nn n n n C C C -++++的值.24.已知4530n n A C =,设()nf x x ⎛= ⎝. (Ⅰ)求n 的值;(Ⅱ)求()f x 的展开式中的常数项.25.(1)求(-x +12x)6的展开式的各项系数之和及展开式的常数项. (2)4位男同学与3位女同学任意排成一排照相. ①求3位女同学站在一起的概率; ②求4位男同学互不相邻的概率.26.已知n的展开式中的二项式系数之和比各项系数之和大255(1)求展开式所有的有理项; (2)求展开式中系数最大的项.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】∵1nx x ⎛⎫- ⎪⎝⎭的展开式中只有第7项的二项式系数最大,∴n 为偶数,展开式共有13项,则12n =.121x x ⎛⎫- ⎪⎝⎭的展开式的通项公式为()1212211C r r r r T x -+=-,令1222r -=,得5r =. ∴展开式中含2x 项的系数是()12551C 792-=-,故选D . 【名师点睛】求二项展开式有关问题的常见类型及解题策略:(1)求展开式中的特定项,可依据条件写出第1r +项,再由特定项的特点求出r 值即可;(2)已知展开式的某项,求特定项的系数,可由某项得出参数项,再由通项写出第1r +项,由特定项得出r 值,最后求出其参数.2.A解析:A 【分析】根据题意,分2种情况讨论:①甲在最中间,将剩余的4人全排列,②乙在中间,分析可得此时的排法数目,由加法原理计算可得答案. 【详解】根据题意,中间只能排甲或乙,分2种情况讨论:①甲在中间将剩余的4人全排列,有4424A =种情况,②乙在中间,甲不能在最右端,有3种情况,将剩余的3人全排列,安排在剩下的三个位置,此时有33318A ⨯=种情况,则一共有241842+=种排法。
2010级高二数学选修4-1单元测试题(一)班级______________姓名______________一、填空题1.如图,在梯形ABCD 中,AB ∥CD,AB=4,CD=2.E,F 分别为AD,BC 上的点,且EF=3,EF ∥AB,则梯形ABFE 与梯形 EFCD 的面积比为 .2.如图,在△ABC 中,60A ∠=,70ACB ∠=,CF 是 △ABC 的边AB 上的高,FP BC ⊥于点P ,FQ AC ⊥ 于点Q ,则CQP ∠的大小为 .3.ABC ∆中,045A ∠=,030B ∠=,CD AB ⊥于D ,DE AC ⊥于E ,DF BC ⊥于F ,则CEF ∠= .4.如图,AB 是半圆O 的直径,C 是半圆O 上异于A ,B 的点,CD AB ⊥,垂足为D , 已知2AD =,CB =,则CD = .5.如图所示,圆O 上一点C 在直径AB 上的射影为D ,CD=4,BD=8,则圆O 的半径 等于__________.BCD O AP6.如图,AB 是圆O 的直径,CD 是圆O 的弦,AB 与CD 交于E 点,且1:3:=EB AE 、1:1:=ED CE ,38=CD , 则直径AB 的长为____________.7.从不在⊙O 上的一点A 作直线,交⊙O 于B ,C 且64AB AC ⋅=,10OA =, 则⊙O 的半径等于 .8.如图,PA 切O 于点A ,割线PBC 经过圆心O , OB=PB=1, OA 绕点O 逆时针旋转60°到OD , 则PD 的长为 .9.如图,已知:ABC △内接于O ,点D 在OC 的 延长线上,AD 是O 的切线,若30B ∠=︒,1AC =, 则AD 的长为 .10.如图所示,圆O 的直径6AB =,C 为圆周上一点, 3BC =,过C 作圆的切线l ,过A 作l 的垂线AD , 垂足为D ,则DAC ∠= .11.如图,四边形ABCD 是圆O 的内接四边形, 延长AB 和DC 相交于点,若1,3PB PD ==,则BC AD的值为 .AAlPPAAPD EACB12.,,,D EF AD C O EF O AB 于于切圆的直径是圆⊥2,6,AD AB ==则AC 长为____ ___.13.如图:EB 、EC 是⊙O 的两条切线,B 、C 是切点, A 、D 是⊙O 上两点,如果∠E =460,∠DCF =320, 则∠A 的度数是 .14.如图,在⊙O 中,AB 为直径,AD 为弦,过B 点的切线与AD 的延长线交于点C ,且AD=DC , 则sin ∠ACO=_________.15.如图AB 是⊙O 的直径,P 为AB 延长线上一点, PC 切⊙O 于点C ,PC=4,PB=2。
一、选择题1.在各项为正的递增等比数列{}n a 中,12664a a a =,13521a a a ++=,则n a =( ) A .12n +B .12n -C .132n -⨯D .123n -⨯2.已知数列{}n a 满足21n n n a a a ++=+,*,n N ∈.若564316a a +=,则129a a a ++⋅⋅⋅+=( )A .16B .28C .32D .483.在数列{}n a 中,11a =,且11nn na a na +=+,则其通项公式为n a =( ) A .211n n -+B .212n n -+C .221n n -+D .222n n -+4.已知数列{}n a 的前n 项和为n S ,且11a =,1n n a S +=,若(0,2020)n a ∈,则称项n a 为“和谐项”,则数列{}n a 的所有“和谐项”的平方和为( ) A .1111433⨯- B .1211433⨯- C .1012433⨯+D .1112433⨯+5.已知单调递增数列{}n a 的前n 项和n S 满足()()*21n n n S a a n =+∈N ,且0n S >,记数列{}2nn a ⋅的前n 项和为n T ,则使得2020n T >成立的n 的最小值为( )A .7B .8C .10D .116.已知数列{}n a 的前n 项和为n S 且满足11130(2),3n n n a S S n a -+=≥=,下列命题中错误的是( )A .1n S ⎧⎫⎨⎬⎩⎭是等差数列 B .13n S n =C .13(1)n a n n =--D .{}3n S 是等比数列7.已知数列{}n a 满足:11a =,*1()2nn n a a n N a +=∈+.则 10a =( ) A .11021B .11022 C .11023D .110248.定义:在数列{}n a 中,若满足211n n n na a d a a +++-=( *,n N d ∈为常数),称{}n a 为“等差比数列”,已知在“等差比数列”{}n a 中,1231,3a a a ===,则20202018a a 等于( ) A .4×20162-1B .4×20172-1C .4×20182-1D .4×201829.已知等差数列{}n a 的前n 项和为n S ,若633S S =,则129SS =( ) A .43B .53C .2D .310.已知数列{}n a 的前n 项和22n S n n =+,那么它的通项公式是( )A .21n a n =-B .21n a n =+C .41n a n =-D .41n a n =+11.设y =f (x )是一次函数,若f (0)=1,且(1),(4),(13)f f f 成等比数列,则(2)(4)(2)f f f n +++等于( )A .n (2n +3)B .n (n +4)C .2n (2n +3)D .2n (n +4)12.设等差数列{}n a 的前n 项和为n S ,若130S >,140S <,则n S 取最大值时n 的值为( ) A .6B .7C .8D .13二、填空题13.已知正项数列{}n a 中,21129n n a a +=+,若对于一切的*n N ∈都有1n n a a +>成立,则1a 的取值范围是________.14.天干地支纪看法源于中国,中国自古便有十天干与十二地支.十天干:甲、乙、丙、丁、戊、已、庚、辛、壬、癸.十二地支:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”,…,以此类推,排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”,“乙亥”,之后地支回到“子”重新开始,即“丙子”,…,以此类推,已知2020年为庚子年,那么到建国100年时,即2049年以天干地支纪年法为__________. 15.已知{}{},n n a b 均为等差数列,其前n 项和分别为,n n S T ,且233n n S n T n -=+,则55a b =________.16.在数列{}n a 中,若121,(1)2nn n a a a +=+-=,记n S 是数列{}n a 的前n 项和,则100S =__________.17.数列{}n a 的前n 项和()*23n n S a n =-∈N,则4a=__________.18.设数列{}n a 满足15a =,且对任意正整数n ,总有()()13344n n n a a a +++=+成立,则数列{}n a 的前2020项和为______.19.已知数列{}n a 的前n 项和为11,1,2n n n S a S a +==,则n S =__________.20.已知等比数列{}n a 的前n 项和为n S ,若37S =,663S =,则789a a a ++=________.三、解答题21.已知{}n a 是首项为19,公差为2-的等差数列. (1)求数列{}n a 的通项公式n a ;(2)设{}n n b a -是首项为1,公比为3的等比数列,求数列{}n b 的通项公式及其前n 项和n T .22.已知数列{}n a 的前n 项和为n S ,且n a 是n S 与2的等差中项,数列{}n b ,11b =,点()1,n n P b b +直线20x y -+=上.(1)求1a 值;(2)求数列{}{},n n a b 的通项公式; (3)设n n n c a b =,求数列{}n c 的前n 项和n T .23.已知数列{a n }的前n 项和S n =3n +1-t ,求证:数列{a n }是等比数列的充要条件为t =3. 24.已知递增等比数列{}n a 满足:1418a a +=,2332a a ⋅=,数列{}n b 的前n 项和为n S ,且212n S n =32n +,记()()111221n n n n n n a c a b a b +++++-=-⋅-.(1)求数列{}n a 和{}n b 的通项公式; (2)求数列{}n c 的前n 项和n T .25.在数列{}n a 中,已知11a =,121n n a a n +=++. (1)求数列{}n a 的通项公式; (2)设141n n b a =-,求数列{}n b 的前20项和20T .26.已知正项等比数列{}n a 满足2139nn a +=⋅,3log n n b a =,且n b ,n c ,4n +成等差数列.(1)求数列{}n c 的通项公式;(2)求数列()1n n c n b ⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭的前100项和100T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】设其公比为q ,由等比数列通项公式得34a =,进而得2333221a a a q q++=,解得2q =±或12q =±,再根据数列单调性即可得2q ,进而得12n na【详解】{}n a 为等比数列,设其公比为q ,()3362312611364a a a a q a q a ∴====,则34a =,13521a a a ∴++=,2333221a a a q q∴++=, 即2244421q q++=, 解得2q =±或12q =±, 又{}n a 各项为正且递增,2q ∴=,3313422n n n n a a q ---∴==⨯=.故选:B . 【点睛】本题解题的关键是先根据题意得34a =,进而将13521a a a ++=转化为2333221a a a q q++=求q ,考查运算求解能力,是中档题. 2.C解析:C 【分析】由21n n n a a a ++=+,分别求出3456789,,,,,,a a a a a a a 关于12,a a 的表达式, 再利用564316a a +=,即可求解 【详解】由21n n n a a a ++=+可得,321a a a =+,432212a a a a a =+=+5432132a a a a a =+=+,6542153a a a a a =+=+,7652185a a a a a =+=+,87621138a a a a a =+=+,987212113a a a a a =+=+, ∴129212154342(2717)a a a a a a a ++⋅⋅⋅+=+=⨯+,564316a a +=,21214(32)3(53)16a a a a ∴+++=,即21271716a a +=, ∴129212154342(2717)32a a a a a a a ++⋅⋅⋅+=+=⨯+=故选:C 【点睛】关键点睛,利用递推式21n n n a a a ++=+,求得129212154342(2717)a a a a a a a ++⋅⋅⋅+=+=⨯+,再利用564316a a +=,求得21271716a a +=,进而求解,主要考查学生的数学运算能力,属于中档题3.D解析:D 【分析】先由11n n n a a na +=+得出111n n n a a +-=,再由累加法计算出2122n n n a -+=,进而求出n a .【详解】 解:11nn na a na +=+, ()11n n n a na a ++=∴,化简得:11n n n n a a a a n ++=+, 两边同时除以1n n a a +并整理得:111n nn a a +-=, 即21111a a -=,32112a a -=,43113a a -=,…,1111(2,)n n n n n z a a --=-≥∈, 将上述1n -个式子相加得:213243111111+a a a a a a --+-+ (1)11123n n a a -+-=+++…1n +-, 即111(1)2n n n a a --=, 2111(1)(1)2=1(2,)222n n n n n n n n n z a a ---+∴=++=≥∈, 又111a =也满足上式, 212()2n n n n z a -+∴=∈,22()2n a n z n n ∴=∈-+.故选:D. 【点睛】 易错点点睛:利用累加法求数列通项时,如果出现1n -,要注意检验首项是否符合.4.D解析:D 【分析】 当2n ≥时,1nn a S -=,又由1n n a S +=,两式相减,得到12n n a a +=,求得22,2n n a n -=≥,得到数列{}n a 的所有“和谐项”为101,1,2,4,8,,2,结合等比数列的求和公式,即可求解. 【详解】由11a =,1n n a S +=,可得1211a S a ===, 当2n ≥时,1nn a S -=,又由1n n a S +=,两式相减,可得11n n n n n a a S S a +--=-=,即12n n a a +=,即12n na a +=, 则数列{}n a 从第二项起是公比为2的等比数列,即22,2n n a n -=≥,又由(0,2020)n a ∈,即222020n -<,可得13,n n N +<∈,所以“和谐项”共有12项,则数列{}n a 的所有“和谐项”为101,1,2,4,8,,2,可得数列{}n a 的所有“和谐项”的平方和为111110(11244)11416413431-+++++=+=⨯+-.故选:D. 【点睛】与数列的新定义有关的问题的求解策略:通过给出一个新的数列的定义,或约定一种新的运算,或给出几个新模型来创设新问题的情景,要求在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实心信息的迁移,达到灵活解题的目的;遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、运算、验证,使得问题得以解决.5.B解析:B 【分析】由数列n a 与n S 的关系转化条件可得11n n a a -=+,结合等差数列的性质可得n a n =,再由错位相减法可得()1122n n T n +=-⋅+,即可得解.【详解】由题意,()()*21n n n S a a n N=+∈,当2n ≥时,()11121n n n S a a ---=+,所以()()11122211n n n n n n n a S S a a a a ---=-=+-+, 整理得()()1110n n n n a a a a --+--=,因为数列{}n a 单调递增且0n S >,所以110,10n n n n a a a a --+≠--=,即11n n a a -=+, 当1n =时,()11121S a a =+,所以11a =, 所以数列{}n a 是以1为首项,公差为1的等差数列, 所以n a n =,所以1231222322n n T n =⋅+⋅+⋅+⋅⋅⋅+⋅,()23412122232122n n n T n n +=⋅+⋅+⋅+⋅⋅⋅+-⋅+⋅,所以()()234111212222222212212n nn n n n T n n n +++--=++++⋅⋅⋅+-⋅=-⋅=-⋅--,所以()1122n n T n +=-⋅+,所以876221538T =⨯+=,987223586T =⨯+=,所以2020n T >成立的n 的最小值为8. 故选:B. 【点睛】关键点点睛:解决本题的关键是数列n a 与n S 关系的应用及错位相减法的应用.6.C解析:C 【分析】由1(2)n n n a S S n -=-≥代入得出{}n S 的递推关系,得证1n S ⎧⎫⎨⎬⎩⎭是等差数列,可判断A ,求出n S 后,可判断B ,由1a 的值可判断C ,求出3n S 后可判断D . 【详解】2n ≥时,因为130n n n a S S -+=,所以1130n n n n S S S S ---+=,所以1113n n S S --=, 所以1n S ⎧⎫⎨⎬⎩⎭是等差数列,A 正确; 1113S a ==,113S =,公差3d =,所以133(1)3n n n S =+-=,所以13n S n =,B 正确;113a =不适合13(1)n a n n =--,C 错误;1313n n S +=,数列113n +⎧⎫⎨⎬⎩⎭是等比数列,D 正确. 故选:C . 【点睛】易错点睛:本题考查由数列的前n 项和求数列的通项公式,考查等差数列与等比数列的判断,在公式1n n n a S S -=-中2n ≥,不包含1a ,因此由n S 求出的n a 不包含1a ,需要特别求解检验,否则易出错.7.C解析:C 【分析】根据数列的递推关系,利用取倒数法进行转化得1121n na a +=+ ,构造11n a ⎧⎫+⎨⎬⎩⎭为等比数列,求解出通项,进而求出10a . 【详解】 因为12n n n a a a +=+,所以两边取倒数得12121n n n n a a a a ++==+,则111121n n a a +⎛⎫+=+ ⎪⎝⎭, 所以数列11n a ⎧⎫+⎨⎬⎩⎭为等比数列,则11111122n nn a a -⎛⎫+=+⋅= ⎪⎝⎭,所以121n n a =-,故101011211023a ==-. 故选:C 【点睛】方法点睛:对于形如()11n n a pa q p +=+≠型,通常可构造等比数列{}n a x +(其中1qx p =-)来进行求解. 8.C解析:C 【分析】根据“等差比”数列的定义,得到数列1n n a a +⎧⎫⎨⎬⎩⎭的通项公式,再利用202020202019201820192019a a a a a a =⨯求解. 【详解】由题意可得:323a a =,211a a = ,32211a a a a -=,根据“等差比数列”的定义可知数列1n n a a +⎧⎫⎨⎬⎩⎭是首先为1,公差为2的等差数列, 则()111221n na n n a +=+-⨯=-, 所以20202019220191220181a a =⨯-=⨯+,20192018220181aa =⨯-, 所以()()2202020202019201820192019220181220181420181a a a a a a =⨯=⨯+⨯-=⨯-. 故选:C 【点睛】本题考查数列新定义,等差数列,重点考查理解题意,转化思想,计算能力,属于中档题型.9.B解析:B 【分析】由已知条件利用等差数列前n 项和公式推导出a 1=2d ,由此能求出129S S 的值【详解】∵等差数列{a n }的前n 项和为S n ,63S S =3, ∴1165623232a d a d⨯+=⨯+3,整理,得a 1=2d , ∴112191112111212665298936392a dS a d S a d a d ⨯++===⨯++. 故选:B . 【点睛】本题考查等差数列的前n 项和比值的求法,是基础题,解题时要注意等差数列的前n 项和公式的合理运用.10.C解析:C 【解析】分类讨论:当1n =时,11213a S ==+=,当2n ≥时,221(2)2(1)141n n n a S S n n n n n -⎡⎤=-=+--+-=-⎣⎦, 且当1n =时:1414113n a -=⨯-==据此可得,数列的通项公式为:41n a n =-. 本题选择C 选项.11.A解析:A 【分析】由已知可以假设一次函数为1y kx =+,在根据(1),(4),(13)f f f 成等比数列,得出3k =,利用等差数列的求和公式求解即可. 【详解】由已知,假设()f x kx b =+,(0)k ≠(0)10f k b ==⨯+,1b ∴=.(1),(4),(13)f f f 成等比数列,且41,(13(1)1,(4)1)13k f f k f k =+=+=+.1k ∴+,41k +,131k +成等比数列,即2(41)(1)(131)k k k +=++,22161813141k k k k ++=++,从而解得0k =(舍去),2k =,(2)(4)(2)f f f n +++(221)(421)(221)n =⨯++⨯++⋯+⨯+ (242)2n n =++⋯+⨯+(1)42n n n +=⨯+2(1)n n n =++ ()22332n n n n ==++.故选:A . 【点睛】本题考查了等比数列、等差数列和函数的综合应用,考查了学生的计算能力,解题时要认真审题,仔细解答,避免错误,属于中档题.12.B解析:B 【解析】分析:首先利用求和公式,根据题中条件130S >,140S <,确定出780,0a a ><,从而根据对于首项大于零,公差小于零时,其前n 项和最大时对应的条件就是10n n a a +≥⎧⎨≤⎩,从而求得结果.详解:根据130S >,140S <,可以确定11371147820,0a a a a a a a +=>+=+<,所以可以得到780,0a a ><,所以则n S 取最大值时n 的值为7,故选B.点睛:该题考查的是有关等差数列的前n 项和最大值的问题,在求解的过程中,需要明确其前n 项和取最大值的条件10n n a a +≥⎧⎨≤⎩,之后就是应用题的条件,确定其相关项的符号,从而求得结果.二、填空题13.【分析】根据列出关于的不等式求解出的取值范围从而的取值范围可确定出【详解】因为所以解得满足所以即故答案为:【点睛】关键点点睛:解答本题的关键是通过之间的不等关系求解出的取值范围由此可确定出的取值范围 解析:()3,6【分析】根据1n n a a +>列出关于n a 的不等式,求解出n a 的取值范围,从而1a 的取值范围可确定出. 【详解】 因为21129n n n a a a +=+<,所以29180n n a a -+<,解得36n a <<,满足0n a >, 所以136a <<,即()13,6a ∈, 故答案为:()3,6. 【点睛】关键点点睛:解答本题的关键是通过1,n n a a +之间的不等关系求解出n a 的取值范围,由此可确定出1a 的取值范围.14.已巳【分析】本题由题意可得数列天干是10个为一个循环的循环数列地支是以12个一个循环的循环数列以2020年的天干和地支分别为首项即可求解【详解】由题意可知数列天干是10个为一个循环的循环数列地支是以解析:已巳 【分析】本题由题意可得数列天干是10个为一个循环的循环数列,地支是以12个一个循环的循环数列,以2020年的天干和地支分别为首项,即可求解. 【详解】由题意可知数列天干是10个为一个循环的循环数列,地支是以12个一个循环的循环数列,从2020年到2049年一共有30年,且2020年为庚子年, 则30103÷=,2049年的天干为已,30122÷=余6,2049年的地支为巳, 故2049年为已巳年, 故答案为:已巳. 【点睛】关键点点睛:本题主要考查了循环数列的实际应用,能否根据题意得出天干是10个为一个循环的循环数列以及地支是以12个一个循环的循环数列是解决本题的关键,着重考查了分析问题和解答问题的能力,是中档题.15.【分析】根据等差数列的前n 项和公式有结合已知条件令即可得进而求【详解】∵均为等差数列令公差分别为则有∴令则有∴故答案为:【点睛】思路点睛:利用等差数列的前n 项和公式结合等差数列通项公式的特点合理假设解析:54【分析】根据等差数列的前n 项和公式有11(1)2n n n S na d -=+,12(1)2n n n T nb d -=+,结合已知条件,令122,1d d ==即可得11,a b ,进而求55a b .【详解】∵{}{},n n a b 均为等差数列,令公差分别为12,d d ,则有11(1)2n n n S na d -=+,12(1)2n n n T nb d -=+, ∴11121222323n n S nd a d n T nd b d n +--==+-+,令122,1d d ==,则有111,22a b =-=, ∴5115124544a a db b d +==+, 故答案为:54【点睛】思路点睛:利用等差数列的前n 项和公式,结合等差数列通项公式的特点合理假设即可得到数列的基本量11(1)2n n n S na d -=+,12(1)2n n n T nb d -=+,则有11121222n n S nd a d T nd b d +-=+-.结合已知233n n S n T n -=+,假设122,1d d ==,即可求11,a b . 16.【分析】当为奇数时可得数列的奇数项为公差为2的等差数列当为偶数时可得偶数项的特征将所求问题转化为奇数项和偶数项求和即可【详解】∵∴当为奇数时即数列的奇数项为公差为2的等差数列当为偶数时∴∴故答案为: 解析:2550【分析】当n 为奇数时,可得数列{}n a 的奇数项为公差为2的等差数列,当n 为偶数时,可得偶数项的特征,将所求问题转化为奇数项和偶数项求和即可. 【详解】∵121,(1)2nn n a a a +=+-=,∴当n 为奇数时,22n n a a +-=,即数列{}n a 的奇数项为公差为2的等差数列, 当n 为偶数时,22n n a a ++=, ∴135995049501225002a a a a ⨯++++=⨯+⨯=, ()()()()24681012485022550a a a a a a a a ++++++++=⨯=,∴1002500502550S =+=, 故答案为:2550. 【点睛】 关键点点睛:(1)得到数列{}n a 的奇数项为公差是2的等差数列; (2)得到数列{}n a 的偶数项满足22n n a a ++=.17.24【分析】根据可得两式作差可证明为等比数列并求解出通项公式从而可求【详解】因为所以所以所以所以且所以所以为首项为公比为的等比数列所以所以故答案为:【点睛】思路点睛:已知之间的线性关系求解通项公式的解析:24 【分析】根据23n n S a =-可得1123n n S a ++=-,两式作差可证明{}n a 为等比数列并求解出通项公式,从而4a 可求. 【详解】因为23n n S a =-,所以1123n n S a ++=-,所以1122n n n n a S a S ++--=, 所以1122n n n a a a ++=-,所以12n n a a +=,且11123S a a ==-,所以130a =≠, 所以{}n a 为首项为3,公比为2的等比数列,所以132n n a -=⋅,所以4143224a -=⋅=,故答案为:24. 【点睛】思路点睛:已知,n n S a 之间的线性关系,求解{}n a 通项公式的思路: (1)根据已知条件再写一个关于+1+1,n n S a 或()11,2n n S a n --≥的等式;(2)将新式子与原式作差,利用11n n n a S S ++=-或()12n n n a S S n -=-≥求解出{}n a 的一个递推公式;(3)证明{}n a 为等比数列,并求解出通项公式.18.【分析】由递推关系可求出的值由可知数列是以4为周期的数列进而可得【详解】由可得因为所以同理可得所以数列是以4为周期的数列且所以故答案为:【点睛】本题考查数列求和考查周期数列的性质考查学生的计算求解能解析:25253-【分析】由递推关系,可求出2345,,,a a a a 的值,由15a a =,可知数列{}n a 是以4为周期的数列,进而可得()20201234505S a a a a =+++. 【详解】由()()13344n n n a a a +++=+,可得1445333n n n n n a a a a a ++-=-=++, 因为15a =,所以255053a -==+,同理可得353a =-,45a =-,55a =,所以数列{}n a 是以4为周期的数列,且123453a a a a +++=-, 所以20205252550533S =-⨯=-. 故答案为:25253-. 【点睛】本题考查数列求和,考查周期数列的性质,考查学生的计算求解能力,属于中档题.19.【分析】由与的关系得出进而得出数列为等比数列由等比数列的通项公式即可得出【详解】即数列是以1为首项为公比的等比数列故答案为:【点睛】本题主要考查了等比数列前项和与通项的关系属于中档题解析:132n -⎛⎫⎪⎝⎭【分析】由n S 与n a 的关系得出12()n n n S S S +=-,进而得出数列{}n S 为等比数列,由等比数列的通项公式即可得出n S . 【详解】1122()n n n n S a S S ++==-132n n S S +∴=即数列{}n S 是以1为首项,32为公比的等比数列 132n n S -⎛⎫∴ ⎪⎝⎭=故答案为:132n -⎛⎫ ⎪⎝⎭【点睛】本题主要考查了等比数列前n 项和与通项的关系,属于中档题.20.【分析】可得出并计算出利用等比数列片断和的性质得出成等比数列可得出的值【详解】且成等比数列即因此故答案为:【点睛】本题考查利用等比数列片断和性质求值考查计算能力属于中等题 解析:448【分析】可得出78996a a a S S ++=-,并计算出6356S S -=,利用等比数列片断和的性质得出3S 、63S S -、96S S -成等比数列,可得出789a a a ++的值.【详解】6363756S S -=-=,且78996a a a S S ++=-,3S 、63S S -、96S S -成等比数列,即()()263396S S S S S -=-,因此,()2263789963564487S S a a a S S S -++=-===. 故答案为:448. 【点睛】本题考查利用等比数列片断和性质求值,考查计算能力,属于中等题.三、解答题21.(1)212n a n =-;(2)12123n n b n -=-+;231202n n T n n -=-++. 【分析】(1)利用等差数列的通项公式即可求解;(2)由(1)得12123n n b n -=-+,利用分组求和即可求解.【详解】(1)因为{}n a 是首项119a =,公差2d =-的等差数列, 所以192(1)n a n =--212n =-,(2)由题知{}n n b a -是首项为1,公比为3的等比数列,则13n n n b a --=,所以13n n n b a -=+12123n n -=-+,所以12n n T b b b =+++()()()()0121233333n n a a a a =++++++++ ()()21121333n n a a a -=+++++++()()()211319212402313120132222n n n n n n n n n ⨯-+----=+=+=-+-.22.(1)12a =;(2)2nn a =,21n b n =-;(3)1(23)26n nT n +=-⋅+.【分析】(1)由题意得出22n n a S =+,令1n =可求得1a 的值;(2)当2n ≥时,由22n n a S =+可得出1122n n a S --=+,两式作差可得出12nn a a -=,可得出数列{}n a 是等比数列,确定该数列的首项和公比,可求得数列{}n a 的通项公式,由题意可推导出数列{}n b 为等差数列,确定该数列的首项和公差,可求得数列{}n b 的通项公式;(3)求得12n n c n +=⋅,然后利用错位相减法可求得n T . 【详解】(1)由22n n a S =+得:1122a S =+ 即1122a a =+解得12a = (2)由22n n S a =-1122(2)n n S a n --=-≥①-②1122n n n n n a S S a a --=-=-12(2)nn a n a -=≥ 所以数列{}n a 是以2为首项,以2为公比的等比数列,则2nn a =又由数列{}bn 中,12b =,点()1,n n P b b +在直线20x y -+=上 得1:20n n b b +-+=且11b = 所以:12(1)21n b n n =+-=- (2)(21)2nn n n c a b n ==-数列{}n C 的前n 项和23412325272(21)2nTn n =⨯+⨯+⨯+⨯+⋯+-⋅23451212325272(21)2n n T n +=⨯+⨯+⨯+⨯+⋯+-⋅()23411222222222(21)2n n n T n +∴-=⨯+⨯+⨯+⨯+⋯+⋅--⋅可得:1(23)26n n T n +=-⋅+【点睛】解答特殊数列(等差数列与等比数列)的问题时,根据已知条件构造关于基本量的方程,解方程求出基本量,再根据定义确定数列的通项公式,当数列表示为等差和等比数列之积时,利用错位相减法求其前n 项和. 23.证明见解析.【分析】由定义法分别结合n a 和n S 的关系分别证明充分性和必要性成立即可. 【详解】当n =1时,S 1=32-t =9-t , 当n ≥2时,由S n =3n +1-t 得S n -1=3n -t , 两式相减得a n =3n +1-3n =2·3n (n ≥2), (1)充分性已知t =3,此时S 1=32-t =9-3=6,令n =1,得a 1=2·31=6=S 1,所以a n =2·3n (n ∈N *) 所以13n na a +=,所以数列{a n }是等比数列. (2)必要性因为数列{a n }是等比数列,所以a 1=2·31=6, 又因为S 1=9-t ,所以9-t =6,所以t =3, 综上所述:数列{a n }是等比数列的充要条件为t =3. 【点睛】关键点睛:本题考查等比数列的判断和证明,解题的关键是利用n a 和n S 的关系得出()232n n a n =⋅≥,再根据充分必要的定义证明.24.(1)2nn a =;1n b n =+;(2)21123+---n n .【分析】(1)根据1418a a +=, 2314a a a a =⋅⋅,利用等比数列通项公式的基本运算求解n a ,根据212n S n =32n +,利用数列通项与前n 项和的关系11,1,2n nn S n b S S n -=⎧=⎨-≥⎩求解n b .(2)由(1)得到n c ()()12112223n n n n ++=--+-+,再利用裂项相消法求解.【详解】 (1)2314a a a a =⋅⋅,14,a a ∴是方程218320x x -+=的两根,又41a a >,所以12a =,416a =3418a q a ∴==, 2q ∴=112n n n a a q -∴=⋅=当2n ≥时,()()22111112223213n n n b S S n n n n n -⎡⎤=-=+--+-=+⎢⎥⎣⎦, 又1n =时,112b S ==符合, 所以1n b n =+ (2)()()111221n n n n n n a c a b a b +++++-=-⋅-()()112212223n n n n n +++-=⎡⎤⎡⎤-+-+⎣⎦⎣⎦ ()()12112223n n n n ++=--+-+,所以()()233412111111232424252223n n n T n n ++=-+-++------+-+()22112323+=---+n n 21123n n +=---【点睛】 方法点睛:求数列的前n 项和的方法: (1)公式法:①等差数列的前n 项和公式,()()11122n n n a a n n S na d +-==+②等比数列的前n 项和公式()11,11,11nn na q S a q q q =⎧⎪=-⎨≠⎪-⎩;(2)分组转化法:把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(3)裂项相消法:把数列的通项拆成两项之差求和,正负相消剩下首尾若干项.(4)倒序相加法:把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广.(5)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列对应项之积构成的,则这个数列的前n 项和用错位相减法求解.(6)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解. 25.(1)()2*n a n n =∈N ;(2)202041=T. 【分析】(1)由累加法结合等差数列的前n 项和公式即可得解; (2)转化条件为11122121n b n n ⎛⎫=- ⎪-+⎝⎭,利用裂项相消法运算即可得解. 【详解】(1)因为121n n a a n +=++,所以121n n a a n +-=+, 所以213a a -=,325a a -=,⋅⋅⋅,()1212n n a a n n --=-≥, 以上各式相加可得()()211321352112n n n a a n n -+--=++⋅⋅⋅+-==-,又11a =,所以()22n a n n =≥,显然11a =符合上式, 所以()2*n a nn =∈N ;(2)由(1)知2n a n =,所以()()21111141212122121n b n n n n n ⎛⎫===- ⎪--+-+⎝⎭.所以12111111123352121n n T b b b n n ⎛⎫=++⋅⋅⋅+=⨯-+-+⋅⋅⋅+- ⎪-+⎝⎭11122121nn n ⎛⎫=⨯-= ⎪++⎝⎭, 所以202020220141T ==⨯+.【点睛】关键点点睛:解决本题的关键是要注意裂项相消法的适用条件及用法. 26.(1)2n c n =+;(2)50101. 【分析】(1)先由题设求得数列{}n a 的公比q ,进而求得n a 与n b ,再由n b ,n c ,4n +成等差数列求得n c ;(2)先由(1)求得()1n n c n b +,再利用裂项相消法求得其前100项和.【详解】解:(1)设公比为()0q q >,∵2139nn a +=⋅,∴2251339939a q a ⨯===⨯,解得:3q =, ∴31333933n n n n a a q--=⋅=⨯⨯=, ∵3log n n n b a ==,且n b ,n c ,4n +成等差数列,∴422n n b n c n ++==+; (2)由(1)可得:()111112(1)21n n c n b n n n n ⎛⎫==- ⎪+++⎝⎭,∴10011111111501122231001012101101T ⎛⎫⎛⎫=-+-+⋅⋅⋅+-=-= ⎪ ⎪⎝⎭⎝⎭. 【点睛】 结论点睛:裂项相消法求数列和的常见类型: (1)等差型111111n n n n a a d a a ++⎛⎫=- ⎪⎝⎭,其中{}n a 是公差为()0d d ≠的等差数列; (2=(3)指数型()11nn n a a a a +-=-;(4)对数型11log log log n aa n a n na a a a ++=-.。
鲁科版选修4第一章单元测试题(本卷考试时间90分钟,满分120分)1.下列措施不能达到节能减排目的的是( )A.利用太阳能制氢燃料B.用家用汽车代替公交车C.利用潮汐能发电D.用节能灯代替白炽灯2.下列说法正确的是( )A.物质发生化学变化都伴随着能量变化B.任何反应中的能量变化都表现为热量变化C.伴有能量变化的物质变化都是化学变化D.即使没有物质的变化,也可能有能量的变化3.下列各变化中属于原电池反应的是( )A.在空气中银质奖牌表面变暗B.镀锌铁表面有划损时,也能阻止铁被氧化C.红热的铁丝与冷水接触,表面形成蓝黑色保护层D.浓硝酸比稀硝酸更容易氧化金属铜4. 已知在1×105Pa,298K条件下,2mol氢气燃烧生成水蒸气放出484kJ热量,下列热化学方程式正确的是( ) A.H2O(g) === H2(g)+1/2 O2(g) △H=+242kJ•mol-1B.2H2(g)+O2(g) === 2H2O(l) △H=-484kJ•mol-1C.2H2(g)+ O2(g) === 2H2O(g) △H=+242kJ•mol-1D.2H2(g)+O2(g) === 2H2O(g) △H=+484kJ•mol-15.如图装置中,溶液体积均为200 ml ,开始时,电解质溶液的浓度均为0.1 mol·L-1 ,工作一时间后,测得导线上通过了0.02 mol 电子,若不考虑溶液体积的变化,下列叙述中正确的是()A.(1)、(2)两装置均为电解池B.(1)、(2)溶液的PH均减小C.(1)中阳极电极反应式为:4OH--4e-===2H2O+O2↑D.(1)中阴极上析出0.32 g Cu6.关于铅蓄电池Pb+PbO2+2H2SO4放电充电PbSO4+2H2O的说法正确的是A.在放电时,正极发生的反应是Pb(s) +SO42—(aq)= PbSO4(s) +2e—B.在放电时,该电池的负极材料是铅板C.在充电时,电池中硫酸的浓度不断变小D.在充电时,阳极发生的反应是PbSO4(s)+2e—= Pb(s)+ SO42—(aq)Zn CuC C(1)CuSO4溶(2)稀硫酸溶7.分析右面的能量变化示意图,确定下列选项中正确的是 ( ) A. 2 A (g )+ B(g) 2 C (g );△H <0 B. 2 A (g )+ B(g) 2 C (g ); △H >02 C ;△H <0 C. 2A+B 2 A +B ;△H <0D.2C8.氢气、一氧化碳、辛烷、甲烷的热化学方程式分别为:H 2(g)+1/2O 2(g)=H 2O(l) △H =-285.8kJ/mol CO(g)+1/2O 2(g)=CO 2(g) △H =-283.0kJ/mol C 8H 18(l)+25/2O 2(g)=8CO 2(g)+9H 2O(l) △H =-5518kJ/mol CH 4(g)+2O 2(g)=CO 2(g)+2H 2O(l) △H =-89.3kJ/mol相同质量的氢气、一氧化碳、辛烷、甲烷完全燃烧时,放出热量最少的是 ( ) A . H 2(g) B . CO(g) C . C 8H 18(l) D . CH 4(g)9.高铁电池是一种新型可充电电池,与普通高能电池相比,该电池能长时间保持稳定的放电电压。
高二数学(文科)选修4-4单元测试题(二)班级______________姓名______________1.在直角坐标系xOy 中,曲线C 的参数方程为⎩⎨⎧+==ααsin 1cos y x (α为参数),以O 为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为 .2.在平面直角坐标系中,已知直线l 与曲线C 的参数方程分别为l :1,1x s y s=+⎧⎨=-⎩(s 为参数)和C :22,x t y t =+⎧⎨=⎩(t 为参数),若l 与C 相交于A 、B 两点,则AB = .3.在直角坐标系xoy 中, 以坐标原点为极点, x 轴正半轴为极轴建立极坐标系,则直线2()1x t t y t=-+⎧⎨=-⎩为参数截圆22cos 30ρρθ+-=的弦长等于__________.4.化参数方程⎪⎩⎪⎨⎧==ty tx 22sin cos ,0(∈t ,]2π为普通方程为 .5.直线2()1x tt y t=-+⎧⎨=-⎩为参数被圆35cos 15sin x y θθ=+⎧⎨=-+⎩ ()θθπ∈为参数,[0,2)所截得的 弦长为 .6.已知直线l :40x y -+=与圆C :12cos 12sin x y θθ=+⎧⎨=+⎩(θ为参数),则C 上各点到l 的距离的最小值为___________.7.已知直线112:2x tl y kt=-⎧⎨=+⎩(t 为参数),2,:12.x s l y s =⎧⎨=-⎩(s 为参数),若1l //2l ,则k = ;若12l l ⊥,则k = .8.直线3470x y +-=截曲线cos ,1sin x y αα=⎧⎨=+⎩(α为参数)的弦长为___________.9.已知两曲线参数方程分别为()πθθθ<≤⎩⎨⎧==0sin cos 5y x 和 ⎪⎩⎪⎨⎧==ty tx 245(t R ∈),它们的交点坐标为 .10.已知直线314x aty t=+⎧⎨=-+⎩(t 为参数),则该直线恒过定点__________.11.两直线2)4sin(=+πθρ与1)4sin(=-πθρ的位置关系是 .12. 球坐标(2,,)63ππ对应的点的直角坐标是 ___,对应点的柱坐标是 _ __.13.自极点O 向直线l 作垂线,垂足为(2,)3H π,则直线l 的极坐标方程是 .14.极坐标方程 24sin 3θ= 化为直角坐标方程是 ;它表示的图形是 .15.在极坐标系中,曲线4sin ρθ=-和cos 1ρθ=相交于点,A B 两点,则线段AB 的长度 为 .16.在直角坐标系中圆C 的参数方程为⎩⎨⎧+==θθsin 22cos 2y x (θ为参数),则圆C 的普通方程为 __ __,以原点O 为极点,以x 轴正半轴为极轴建立极坐标系,则 圆C 的圆心极坐标为 __ _.17.参数方程⎩⎨⎧-==αα2cos 2cos 2y x (α是参数)表示的曲线的普通方程是_________________.18.参数方程sin cos sin 2x y θθθ=-⎧⎨=⎩(θ为参数)化为普通方程是 .19.若直线340x y m ++=与圆⎩⎨⎧+-=+=θθsin 2cos 1y x (θ为参数)相切,则实数m 的值是 .20.已知曲线sin (11cos 222y x θθθ=⎧⎪⎨=-⎪⎩为参数)与直线x a =有两个不同的公共点,则实数a 的取值范围是_________________.21.已知圆C 的参数方程为cos 1sin x y θθ=+⎧⎨=⎩(θ为参数), 则点()4,4P 与圆C 上的点的最远距离是 .22.在直角坐标系中,曲线1C 的参数方程为],0[sin ,cos πθθθ∈⎩⎨⎧==y x ,以x 轴的正半轴为极轴建立极坐标系,曲线2C 在极坐标系中的方程为θθρcos sin -=b.若曲线1C 与2C 有两个不同的交点,则实数b 的取值范围是 .23.已知圆锥曲线2cos x y θθ=⎧⎪⎨=⎪⎩(θ是参数)和定点A(0),F 1、F 2是圆锥曲线的左、右焦点,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则直线AF 2的极坐标方程为__________________________.24.若直线⎩⎨⎧+=-=,32,21t y t x (t 为参数)与直线14=+ky x 垂直,则常数k =__ __.25.已知椭圆:C cos ,()2sin x y θθθ=⎧∈⎨=⎩R 经过点1(,)2m ,则m =______,离心率e =______.26. (2012深圳二模文)在极坐标系中,直线:cos l t ρθ=(常数0)t >)与曲线:2sin C ρθ=相切,则t = .27. (2012深圳二模理)在极坐标系中,已知直线l :(sin cos )a ρθθ-=把曲线C :2cos ρθ= 所围成的区域分成面积相等的两部分,则常数a 的值是 .28. (2012广州二模文、理)在极坐标系中,若等边三角形ABC (顶点A ,B ,C 按 顺时针方向排列)的顶点A ,B 的极坐标分别为(2,6π),(2,76π),则顶点C 的极 坐标为 .参考答案1.θρsin 2=2 3.44.1=+y x (10≤≤x )56.2 7.4;1- 8.1659.(1,510.(3,1)- 11.垂直12.1(2;(1,3π13.cos()23πρθ-=14.x y 3±=(或223x y =) ; 两条直线(或两条相交直线) 15.3216.22(2)4x y +-=; )2,2(π17.322+-=x y (2||≤x )18.21,x y x ⎡=-∈⎣19.10或0 20.01a <≤ 21.622.1b ≤<23.sin cos ρθθ=24.-625.415±,226.1 27.1-28.2)3π;或))(232,32(Z k k ∈+ππ。
一、选择题1.如图所示,在直三棱柱111ABC A B C -中,AC BC ⊥,且3BC =,4AC =,13CC =,点P 在棱1AA 上,且三棱锥A PBC -的体积为4,则直线1BC 与平面PBC 所成角的正弦值等于( )A .10 B .6 C .10 D .15 2.如图,已知正四面体1234A A A A ,点5A ,6A ,7A ,8A ,9A ,10A 分别是所在棱中点,点P 满足4414243A P xA A yA A zA A =++且1x y z ++=,记44min ||||A Q A P =,则当1i ≤,10j ≤且i j ≠时,数量积4i j A Q A A ⋅的不同取值的个数是( )A .3B .5C .9D .213.已知在平行六面体中,3,4,5,120,60,60ABCD A B C D AB AD AA BAD BAA DAA '''''''-===∠=︒∠=︒∠=︒,则AC '的长为( )A .52B .9C 85D 734.如图,三棱柱111ABC A B C -中,底面边长和侧棱长都相等,1160BAA CAA ∠=∠=︒,则异面直线1AB 与1BC 所成角的余弦值为( )A .306B .6C .3 D .6 5.已知向量{},,a b c 是空间的一组基底,则下列可以构成基底的一组向量是( ) A .a b +,a ,a b - B .a b +,b ,a b - C .a b +,c ,a b -D .a b +,2a b -,a b -6.如图,已知棱长为2的正方体1111ABCD A B C D -中,点G 是1B C 的中点,点,H E 分别为1,GD C D 的中点,GD ⊥平面,HE α⊂平面α,平面11AC D 与平面α相交于一条线段,则该线段的长度是( )A .144B .114C .142D .1127.如图,在正方体1111ABCD A B C D -中,M ,N ,P 分别为棱AD ,1CC ,11A D 的中点,则1B P 与MN 所成角的余弦值为( )A .3010B .15-C .7010D .158.如图,在三棱柱111ABC A B C -中,1AA ⊥底面ABC ,13AA =,2AB AC BC ===,则1AA 与平面11AB C 所成角的大小为A .30B .45︒C .60︒D .90︒9.以下四个命题中,正确的是( ) A .若1123OP OA OB =+,则P 、A 、B 三点共线 B .若{,,}a b c 为空间的一个基底,则{,,}a b b c c a +++构成空间的另一个基底 C .()a b c a b c ⋅=⋅⋅D .ABC 为直角三角形的充要条件是·0AB AC = 10.给出下列命题:①若空间向量,a b 满足a b =,则a b =; ②空间任意两个单位向量必相等;③对于非零向量c ,由a c b c ⋅=⋅,则a b =; ④在向量的数量积运算中()()a b c a b c ⋅⋅=⋅⋅. 其中假.命题的个数是( ) A .1 B .2C .3D .411.在棱长为1的正方体1111ABCD A B C D -中,M ,N ,H 分别在棱1BB ,BC ,BA上,且满足134BM BB =,12BN BC =,12BH BA =,O 是平面1B HN ,平面ACM 与平面11B BDD 的一个公共点,设BO xBH yBN zBM =++,则3x y z ++=( )A .105B .125C .145 D .16512.如图,已知空间四边形OABC ,其对角线为,OB AC ,,M N 分别是对边,OB AC 的中点,点G 在线段MN 上,2MG GN =,现用基向量,,OA OB OC 表示向量OG ,设OG xOA yOB zOC =++,则,,x y z 的值分别是( )A .111333x y z ===,, B .111336x y z ===,, C .111363x y z ===,, D .111633x y z ===,, 13.正四面体ABCD 的棱长为2,E 、F 分别为BC 、AD 的中点,则AE AF ⋅的值为( ) A .-2B .4C .2D .1二、填空题14.如图,在棱长为2的正方体1111ABCD A B C D -中,E 为BC 的中点,点P 在底面ABCD 上移动,且满足11B P D E ⊥,则线段1B P 的长度的最大值为______15.在一直角坐标系中,已知()1,6A -,()3,8B -,现沿x 轴将坐标平面折成60︒的二面角,则折叠后A ,B 两点间的距离为__________.16.若向量()1,,1a λ=,()2,1,2b =-,且a 与b 夹角的余弦值为13,则λ=__________. 17.如图所示,在正方体1111ABCD A B C D -中,M 为棱1CC 的中点,则异面线1BD 与AM 所成角的余弦值为________.18.一个结晶体的形状为平行六面体,以同一个顶点为端点的三条棱长均为6,且它们彼此的夹角均为60︒,则以这个顶点为端点的晶体的对角线长为_________.19.已知向量()()2,1,3,1,2,1a b =-=-,若()a ab λ⊥-,则实数λ的值为______. 20.如图,在平行六面体1111ABCD A B C D -中,1AB =,2AD =,13AA =,90BAD ∠=︒,1160BAA DAA ∠=∠=︒,则1AC =___________.21.正四面体ABCD 的棱长为2,半径为2的球O 过点D ,MN 为球O 的一条直径,则AM AN ⋅的最小值是__________.22.已知直三棱柱111ABC A B C -中,AB AC ⊥,1AB AC AA ==,点E 、F 分别为1AA 、11A C 的中点,则直线BE 和CF 所成角的余弦值为___________.23.设向量(2,23,2),(4,21,32)a m n b m n =-+=+-,且//a b ,则a b ⋅的值为__________.24.已知向量()2,1,3a =-,31,,2b k ⎛⎫=-- ⎪⎝⎭,若向量a 、b 的夹角为钝角,则实数k 的取值范围是__________.25.如图,在ABC ∆和AEF ∆中,B 是EF 的中点,2AB =,4EF =,3CA CB ==,若7AB AE AC AF ⋅+⋅=,则EF 与BC 的夹角的余弦值等于__________.26.在平行六面体1111ABCD A B C D -中,已知1160BAD A AB A AD ∠=∠=∠=︒,14,3,5AD AB AA ===,1AC =__.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】利用锥体的体积公式可求得2PA =,然后以点C 为坐标原点,CB 、CA 、1CC 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法可求得直线1BC 与平面PBC 所成角的正弦值. 【详解】由已知得1AA ⊥底面ABC ,且AC BC ⊥,所以111344332A PBC P ABC ABC V V S PA PA --==⨯⨯=⨯⨯⨯⨯=△,解得2PA =. 如图所示,以点C 为坐标原点,CB 、CA 、1CC 所在直线分别为x 、y 、z 轴建立空间直角坐标系,则()0,0,0C 、()0,4,2P 、()3,0,0B 、()10,0,3C , 则()3,0,0CB =,()0,4,2CP =,()13,0,3BC =-. 设平面BCP 的法向量为(),,n x y z =,则由00n CB n CP ⎧⋅=⎨⋅=⎩可得30420x y z =⎧⎨+=⎩,即020x y z =⎧⎨+=⎩,得0x =,令1y =,得2z =-,所以()0,1,2n =-为平面BCP 的一个法向量. 设直线1BC 与平面PBC 所成的角为θ, 则(111sin cos ,5n BC n BC n BC θ⋅=<>===⋅-. 故选:C. 【点睛】方法点睛:求直线与平面所成角的方法:(1)定义法,①作,在直线上选取恰当的点向平面引垂线,确定垂足的位置是关键; ②证,证明所作的角为直线与平面所成的角,证明的主要依据是直线与平面所成角的概念;③求,利用解三角形的知识求角; (2)向量法,sin cos ,AB n AB n AB nθ⋅=<>=⋅(其中AB 为平面α的斜线,n 为平面α的法向量,θ为斜线AB 与平面α所成的角).2.B解析:B 【分析】由条件可知点P 在平面123A A A 上,并且由几何意义可知4A Q ⊥平面123A A A ,利用数量积的几何意义求4i j A Q A A ⋅的不同取值的个数. 【详解】条件“4414243A P xA A yA A zA A =++且1x y z ++=”,说明点P 在平面123A A A 上,而44min ||A Q A P =说明Q 为平面123A A A 的中心,此时4A Q ⊥平面123A A A ,由向量数量积的几何意义,i j A A 在4A Q 的投影有5种情况:0、41||2A Q ±、4||A Q ±,∴数量积4i j A Q A A ⋅的不同取值的个数是5,故选:B . 【点睛】本题考查空间向量共面定理的应用,数量积的几何意义,重点考查转化思想,数形结合思想,属于中档题型.3.D解析:D 【分析】直接利用AC AB BC CC AB AD AA '''=++=++,然后利用平面向量的数量积进行计算. 【详解】如图,可得AC AB BC CC AB AD AA '''=++=++,故22||()AC AB AD AA ''=++222=|||||2()+|AB AD AA AB AD AB AA AD AA '''++⋅+⋅+⋅222111345234-+35+45222⎡⎤⎛⎫=+++⨯⨯⨯⨯⨯⨯ ⎪⎢⎥⎝⎭⎣⎦=73.∴=73AC '故选:D. 【点睛】本题考查了几何体的对角线长的求解,根据已知条件,构造向量,将几何体的对角线长的求解转化为向量模的运算,是解答本题的关键,属于中档题.4.D解析:D 【分析】根据三棱柱的边长和角度关系,设棱长为1,分别求得AB AC ⋅、1AB AA ⋅、1AC AA ⋅的数量积,并用1,,AA AC AB 表示出1AB 和1BC ,结合空间向量数量积的定义求得11AB BC ⋅,再求得1AB 和1BC ,即可由向量的夹角公式求得异面直线1AB 与1BC 所成角的余弦值. 【详解】三棱柱111ABC A B C -中,底面边长和侧棱长都相等,1160BAA CAA ∠=∠=︒,设棱长为1,则111cos602AB AC ⋅=⨯⨯︒=,1111cos602AB AA ⋅=⨯⨯︒=,1111cos602AC AA ⋅=⨯⨯︒=. 11AB AB AA =+,11BC AA AC AB =+-,所以()()1111AB BC AB AA AA AC AB ⋅=+⋅+-221111AB AA AB AC AB AA AA AC AA AB =⋅+⋅-++⋅-⋅11111112222=+-++-= 而()222111123AB AB AA AB AB AA AA =+=+⋅+=,()2111BC AA AC AB =+-==,所以111111cos 62AB BC AB BC AB BC ⋅<⋅>===⋅, 故选: D. 【点睛】本题考查了空间向量的线性运算,空间向量数量积的定义与运算,异面直线夹角的向量求法,属于中档题.5. C解析:C 【分析】空间的一组基底,必须是不共面的三个向量,利用向量共面的充要条件可证明A 、B 、D 三个选项中的向量均为共面向量,利用反证法可证明C 中的向量不共面 【详解】 解:()()2a b a b a ++-=,∴a ,a b +,a b -共面,不能构成基底,排除A ; ()()2a b a b b +--=,∴b ,a b +,a b -共面,不能构成基底,排除B ;()()31222a b a b a b -=-++,∴a b +,a b -,2a b -共面,不能构成基底,排除D ; 若c 、a b +,a b -共面,则()()()()c a b m a b m a m b λλλ=++-=++-,则a 、b 、c 为共面向量,此与{},,a b c 为空间的一组基底矛盾,故c 、a b +,a b -可构成空间向量的一组基底. 故选:C . 【点睛】本题主要考查了空间向量基本定理,向量共面的充要条件等基础知识,判断向量是否共面是解决本题的关键,属于中档题.6.C解析:C 【分析】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,由题意得到E 是两个平面的一个交点,分析另一个交点的位置,可能在11A C 或1A D 上,设其交点坐标用向量计算可得答案. 【详解】如图,以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,()0,0,0D ,()12,0,2A ,()()1,2,10,1,1G E ,,()1,2,1DG =,因为HE ⊂平面α,所以E ∈平面α,因为E ∈1C D ,所以E ∈平面11AC D , 所以E 是两个平面的一个交点,如果另一个交点在11A C 上,设为M 且设(),2,2M a a -,02a ≤≤所以(),1,1EM a a =-,因为EM ⊂平面α,DG ⊥平面α,所以0EM DG ⋅=, 即2210a a +-+=,解得3a =不合题意,所以另一个交点在1A D 上,不妨设为F , 所以平面11AC D ⋂平面EF α=,即求EF 的长度,且(),0,F b b ,02b ≤≤, 因为EF ⊂平面α,DG ⊥平面α,所以0EF DG ⋅=,(),1,1EF b b =--, 即210b b -+-=,解得32b =,所以33,0,22F ⎛⎫⎪⎝⎭, 所以2231141222EF ⎛⎫⎛⎫=++=⎪ ⎪⎝⎭⎝⎭. 故选:C.【点睛】本题考查了用向量解决线面垂直、线线垂直的问题,关键点是建立空间直角坐标系和分析两个平面的交线的位置,考查了学生的空间想象力、推理能力和计算能力.7.A解析:A 【分析】如图以A 为原点,分别以1,,AB AD AA 所在的直线为,,x y z 轴建立空间直角坐标系,求出1B P 和MN 的坐标,设1B P 与MN 所成的角为θ,利用11cos B P MN B P MNθ=⋅⋅即可求解.【详解】如图以A 为原点,分别以1,,AB AD AA 所在的直线为,,x y z 轴建立空间直角坐标系,设正方体的棱长为2,则()0,1,0M ,()2,2,1N ,()12,0,2B ,()0,1,2P , 所以()12,1,0B P =-,()2,1,1MN =, 设1B P 与MN 所成的角为θ, 所以1122130cos 56B P MN B P MNθ=⋅-⨯+==⨯⋅, 1B P 与MN 30,故选:A 【点睛】 方法点睛:求空间角的常用方法:(1)定义法,由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量夹角(直线方向向量与直线方向向量、直线方向向量与平面法向量,平面法向量与平面法向量)余弦值,即可求出结果.8.A解析:A 【分析】建立空间坐标系,计算1AA 坐标,计算平面11AB C 的法向量,运用空间向量数量积公式,计算夹角即可. 【详解】取AB 的中点D ,连接CD ,以AD 为x 轴,以CD 为y 轴,以1BB 为z 轴,建立空间直角坐标系,可得()1,0,0A ,()11,0,3A ,故()()()11,0,31,0,00,0,3AA =-=,而 ()()111,0,3,3,3B C -,设平面11AB C 的法向量为()=,,m a b c ,根据110,0m AB m AC ⋅=⋅=,解得()3,3,2m =-,111 1,?2|?|m AA cos m AA m AA ==.故1AA 与平面11AB C 所成角的大小为030,故选A . 【点睛】考查了空间向量数量积坐标运算,关键构造空间直角坐标系,难度偏难.9.B解析:B 【分析】对于A ,P ,A , B 三点共线时,(1)OP OA OB λμλμ=++=,故A 不正确;对于B , ,,a b b c c a +++不共线,所以 {,,}a b b c c a +++构成空间的另一个基底,故B 正确;对于C ,设,a b θ<>=,则|()||||||||cos |a b c a b c θ=,故C 不正确;对于D ,·0AB AC =时,A ∠为直角,反之也可以是B ,C ∠为直角,故D 不正确. 【详解】对于A ,P ,A , B 三点共线时,(1)OP OA OB λμλμ=++=,1123OP OA OB =+,P ∴,A ,B 三点共线不成立,故A 不正确;对于B ,若{,,}a b c 为空间的一个基底,则,,a b c 不共线,∴,,a b b c c a +++不共线,∴{,,}a b b c c a +++构成空间的另一个基底,故B 正确;对于C ,设,a b θ<>=,则|()||||||||cos |a b c a b c θ=,故C 不正确;对于D ,·0AB AC =时,A ∠为直角,故ABC ∆为直角三角形,反之也可以是B ,C∠为直角,故D 不正确. 故选:B 【点睛】本题主要考查命题真假的判断,考查向量共线的条件,考查向量的数量积的计算,考查充要条件的判定,意在考查学生对这些知识的理解掌握水平.10.D解析:D 【分析】结合向量的性质,对四个命题逐个分析,可选出答案. 【详解】对于①,空间向量,a b 的方向不一定相同,即a b =不一定成立,故①错误; 对于②,单位向量的方向不一定相同,故②错误;对于③,取()0,0,0a =,()1,0,0b =,()0,1,0c =,满足0a c b c ⋅=⋅=,且0c ≠,但是a b ≠,故③错误;对于④,因为a b ⋅和b c ⋅都是常数,所以()a b c ⋅⋅和()a b c ⋅⋅表示两个向量,若a 和c 方向不同,则()a b c ⋅⋅和()a b c ⋅⋅不相等,故④错误. 故选:D. 【点睛】本题考查向量的概念与性质,考查向量的数量积,考查学生的推理论证能力,属于基础题.11.C解析:C 【分析】根据条件确定O 点位置,再根据向量表示确定,,x y z 的值,即得结果. 【详解】如图,Q 为AC 与BD 交点,P 为BQ 中点,O 为MQ 与1B P 的交点.过P 作PT 平行MQ 交1BB 于T .如图,则T 为BM 中点,所以1111131334224242MT BM BB MB MB ==⨯=⨯⨯=. 所以123B O OP =, 因此1323421411()555352555BO BB BP BM BH BN BM BH BN =+=⋅+⋅+=++, 因为BO xBH yBN zBM =++,所以411,,555z x y ===,1435x y z ∴++=. 故选:C 【点睛】本题考查平面向量基底表示,考查综合分析求解能力,属中档题.12.D解析:D 【分析】根据向量的加减法运算和数乘运算原则可表示出OG ,进而得到结果. 【详解】()1212121223232323OG OM MG OA MN OA MA AN OA OA AN=+=+=++=+⨯+()525221636332OA AB BN OA AB BC =++=++⨯()()521111633633OA OB OA OC OB OA OB OC =+-+-=++ 16x ∴=,13y =,13z =故选:D 【点睛】本题考查用基底表示向量,关键是能够熟练掌握向量的加减法运算和数乘运算原则.13.D解析:D 【解析】 【分析】如图所示,1()2AE AB AC =+,12AF AD =.代入AE AF ⋅,利用数量积运算性质即可得出. 【详解】 解:如图所示,1()2AE AB AC =+,12AF AD =.∴111()()224AE AF AB AC AD AB AD AC AD =+=+ 221(2cos602cos60)4=︒+︒ 1=.故选:D .【点睛】本题考查了向量数量积的运算性质、平行四边形法则,考查了推理能力与计算能力,属于中档题.二、填空题14.3【分析】以为原点以分别为轴轴轴正方向建立空间直角坐标系设根据则可得从而点在底面内的轨迹为一条线段从而可得答案【详解】以为原点以分别为轴轴轴正方向建立空间直角坐标系则设则由则即则当时设所以点在底面内解析:3 【分析】以D 为原点,以,,DA DC DD '分别为x 轴,y 轴,z 轴正方向建立空间直角坐标系,设(),,0P x y ,根据11B P D E ⊥,则110PB ED ⋅=,可得220x y +-=,从而点P 在底面ABCD 内的轨迹为一条线段AF ,从而可得答案. 【详解】以D 为原点,以,,DA DC DD '分别为x 轴,y 轴,z 轴正方向建立空间直角坐标系,则()()()112,2,2,1,2,0,0,0,2B E D ,设(),,0P x y ,则02,02x y ≤≤≤≤()12,2,2PB x y =--,()11,2,2ED =--由11B P D E ⊥,则110PB ED ⋅=,即()22240x y -+⨯-+=,则220x y +-= 当0x =时,1y =,设()0,1,0F所以点P 在底面ABCD 内的轨迹为一条线段AF , 所以()()2221224548B P x y y y =-+-+=-+,则01y ≤≤又二次函数2548t y y =-+的对称轴为25,当01y ≤≤时,当1y =时,1B P 有最大值3. 故答案为:3【点睛】关键点睛:本题考查根据垂直关系得出动点的轨迹从而求线段的长度的最值,解答的关键是建立坐标系,利用向量根据11B P D E ⊥,则110PB ED ⋅=,可得220x y +-=,从而点P 在底面ABCD 内的轨迹为一条线段AF ,可得01y ≤≤,从而可出答案,属于中档题.15.【分析】通过用向量的数量积转化求解距离即可【详解】解:在直角坐标系中已知现沿轴将坐标平面折成的二面角后在平面上的射影为作轴交轴于点所以所以所以故答案为:【点睛】此题考查与二面角有关的立体几何综合题考 解析:17【分析】通过用向量的数量积转化求解距离即可 【详解】解:在直角坐标系中,已知()1,6A -,()3,8B -,现沿x 轴将坐标平面折成60︒的二面角后,()1,6A -在平面xOy 上的射影为C ,作BD x ⊥轴,交x 轴于点D , 所以AB AC CD DB =++,所以2222222AB AC CD DB AC CD CD DB AC DB =+++⋅+⋅+⋅2221648268682=++-⨯⨯⨯=, 所以217AB =, 故答案为:17【点睛】此题考查与二面角有关的立体几何综合题,考查了数形结合的思想,属于中档题.16.【分析】根据条件可求出再根据夹角的余弦为即可求出解出即可【详解】解:又夹角的余弦值为解得故答案为:【点睛】本题考查空间向量数量积的坐标运算根据向量坐标求向量长度的方法向量数量积的计算公式解析:74【分析】根据条件可求出2||2,||3a b λ=+=,224a b λλ=-+=-,再根据,a b 夹角的余弦为13224λλ+-,解出λ即可. 【详解】解:2||2,||3a b λ=+=, 224a b λλ=-+=-,又,a b 夹角的余弦值为13, ∴2||||cos ,24a b a b a b λλ=<>=+=-,解得74λ=. 故答案为:74. 【点睛】本题考查空间向量数量积的坐标运算,根据向量坐标求向量长度的方法,向量数量积的计算公式.17.【分析】建立空间直角坐标系以的方向为x 轴y 轴z 轴的正方向不妨设正方体的棱长为1则异面线与AM 所成角的余弦值转化为求向量的夹角的余弦值利用向量夹角公式即得【详解】分别以的方向为x 轴y 轴z 轴的正方向建立 解析:3 【分析】建立空间直角坐标系,以1,,DA DC DD 的方向为x 轴,y 轴,z 轴的正方向,不妨设正方体的棱长为1,则异面线1BD 与AM 所成角的余弦值,转化为求向量1,BD AM 的夹角的余弦值,利用向量夹角公式即得. 【详解】分别以1,,DA DC DD 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,不妨设正方体的棱长为1,则11(1,0,0),(1,1,0),(0,1,),(0,0,1)2A B M D ,可得11(1,1,1),(1,1,)2BD AM =--=-,则11111132cos ,9||||13114BD AMBD AM BD AM -+⋅<>===⋅++,即异面直线1BD 与AM 所成角的余弦值为39. 故答案为:3【点睛】本题考查利用空间向量求异面直线的夹角,运用了向量夹角公式.18.【分析】设根据平行四边形法则对角线再结合条件利用向量的模即可求出对角线长【详解】解:设因为所以所以对角线故答案为:【点睛】本题考查的知识点是点线面间的距离计算考查空间两点之间的距离运算根据已知条件构 解析:66【分析】设AB a =,AD b =,1AA c =,根据平行四边形法则,对角线1AC a b c =++,再结合条件,利用向量的模即可求出对角线长. 【详解】解:设AB a =,AD b =,1AA c =, 因为11AC AB AD AA a b c =++=++, 所以()222221222363636666cos60216AC a b ca b c a b a c b c =++=+++++=+++⨯⨯⨯︒=,所以对角线166AC =. 故答案为:66.【点睛】本题考查的知识点是点、线、面间的距离计算,考查空间两点之间的距离运算,根据已知条件,构造向量,将空间两点之间的距离转化为向量模的运算,是解答本题的关键.19.2【分析】由题意知向量所以由空间向量的坐标运算即可求解【详解】由题意知向量所以又由解得【点睛】本题主要考查了空间向量的坐标运算及空间向量的数量积的运算其中解答中熟记空间向量的数量积的运算公式准确运算解析:2 【分析】由题意知,向量()a a b λ⊥-,所以()0a a b λ⋅-=,由空间向量的坐标运算,即可求解. 【详解】由题意知,向量()a ab λ⊥-,所以()0a a b λ⋅-=, 又由()()()()222222132112311470a a b a a b λλλλ⎛⎡⎤⋅-=-⋅=-++--⨯-+⨯+⨯=-=⎪⎣⎦⎝⎭,解得2λ=. 【点睛】本题主要考查了空间向量的坐标运算,及空间向量的数量积的运算,其中解答中熟记空间向量的数量积的运算公式,准确运算是解答的关键,着重考查了运算与求解能力,属于基础题.20.【解析】【分析】首先画出图形然后结合=两边平方同时结合数量积的运算法则进行计算即可【详解】平行六面体如图所示:∵∠BAA1=∠DAA1=60°∴A1在平面ABCD 上的射影必落在直线AC 上∴平面ACC 解析:23【解析】 【分析】首先,画出图形,然后,结合11AC AC CC =+=1AB AD AA ++,两边平方,同时结合数量积的运算法则进行计算即可. 【详解】平行六面体1111ABCD A B C D -,如图所示:∵∠BAA 1=∠DAA 1=60°∴A 1在平面ABCD 上的射影必落在直线AC 上, ∴平面ACC 1A 1⊥平面ABCD , ∵AB=1,AD=2,AA 1=3, ∵11AC AC CC =+ =1AB AD AA ++∴|1AC |2=(1AB AD AA ++)2 =|AB |2+|AD |2+|1AA |2+2AB AD ⋅+21AB AA ⋅+21AD AA ⋅ =1+9+4+0+2×1×3×12+2×2×3×12=23, ∴|1AC 23 ∴AC 123 23 【点睛】本题重点考查了向量的坐标分解,向量的加法运算法则与运算律、数量积的运算等知识,属于中档题.21.【解析】很明显当四点共面时数量积能取得最值由题意可知:则是以点D 为顶点的直角三角形且:当向量反向时取得最小值:解析:442-【解析】很明显当,,,O D M N四点共面时数量积能取得最值,由题意可知:OD OM ON==,则MDN△是以点D为顶点的直角三角形,且:()()()2420,AM AN AD DM AD DNAD AD DM DN DM DNAD DO⋅=+⋅+=+⋅++⋅=+⋅+当向量,AD DO反向时,AM AN⋅取得最小值:4222442-⨯⨯=-.22.【分析】作出图形设然后以点为坐标原点所在直线分别为轴建立空间直角坐标系利用空间向量法可求得直线和所成角的余弦值【详解】设由于平面以点为坐标原点所在直线分别为轴建立空间直角坐标系如下图所示:则因此直线解析:25【分析】作出图形,设12AB AC AA===,然后以点A为坐标原点,AB、AC、1AA所在直线分别为x、y、z轴建立空间直角坐标系,利用空间向量法可求得直线BE和CF所成角的余弦值.【详解】设12AB AC AA===,由于1AA⊥平面ABC,AB AC⊥,以点A为坐标原点,AB、AC、1AA所在直线分别为x、y、z轴建立空间直角坐标系,如下图所示:则()2,0,0B、()0,2,0C、()0,0,1E、()0,1,2F,()2,0,1BE=-,()0,1,2CF=-,2cos,555BE CFBE CFBE CF⋅<>===⨯⋅.因此,直线BE 和CF 所成角的余弦值为25. 故答案为:25. 【点睛】方法点睛:求空间角的常用方法: (1)定义法:由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应的三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量的夹角(两直线的方向向量、直线的方向向量与平面的法向量、两平面的法向量)的余弦值,即可求得结果.23.168【分析】根据向量设列出方程组求得得到再利用向量的数量积的运算公式即可求解【详解】由题意向量设又因为所以即解得所以所以故答案为:【点睛】本题主要考查了向量的共线的坐标运算以及向量的数量积的运算其 解析:168【分析】根据向量//a b ,设λa b ,列出方程组,求得12λ=,得到(2,4,8),(4,8,16)a b ==,再利用向量的数量积的运算公式,即可求解.【详解】由题意,向量//a b ,设λa b ,又因为(2,23,2),(4,21,32)a m n b m n =-+=+-,所以(2,23,2)(4,21,32)m n m n λ-+=+-,即2423(21)2(32)m m n n λλλ=⨯⎧⎪-=+⎨⎪+=-⎩,解得17,,622m n λ===, 所以(2,4,8),(4,8,16)a b ==,所以2448816168a b ⋅=⨯+⨯+⨯=.故答案为:168.【点睛】本题主要考查了向量的共线的坐标运算,以及向量的数量积的运算,其中解答中熟记向量的共线条件,熟练应用向量的数量积的运算公式求解是解答的关键,着重考查了推理与运算能力,属于基础题.24.【分析】根据向量夹角为钝角可知且解不等式可求得结果【详解】由题意可知:且解得:且即本题正确结果:【点睛】本题考查向量夹角的相关问题的求解易错点是忽略夹角为的情况造成出现增根 解析:1311,,222⎛⎫⎛⎫-+∞ ⎪ ⎪⎝⎭⎝⎭【分析】根据向量夹角为钝角,可知cos ,0a b <><且cos ,1a b <>≠-,解不等式可求得结果.【详解】由题意可知:132cos ,014k a b a b a b --⋅<>==<⋅且13cos ,1k a b --<>=≠- 解得:132k >-且12k ≠,即1311,,222k ⎛⎫⎛⎫∈-+∞ ⎪ ⎪⎝⎭⎝⎭本题正确结果:1311,,222⎛⎫⎛⎫-+∞ ⎪ ⎪⎝⎭⎝⎭ 【点睛】本题考查向量夹角的相关问题的求解,易错点是忽略夹角为π的情况,造成出现增根. 25.【分析】由题意可得由此求得由以及两个向量的加减法的法则及其几何意义可求得由数量积的定义即可得到结果【详解】由题意可得∴由可得∴即∴故答案为【点睛】本题主要考查两个向量的加减法的法则以及其几何意义两个解析:16【分析】由题意可得22 9()BC AC AB ==-,由此求得2AC AB ⋅=,由 7AB AE AC AF ⋅+⋅=以及两个向量的加减法的法则及其几何意义可求得 2EF BC ⋅=,由数量积的定义即可得到结果.【详解】由题意可得()229BC AC AB==- 222AC AB AC AB =+-⋅ 942AC AB =+-⋅, ∴2AC AB ⋅=.由7AB AE AC AF ⋅+⋅=,可得 ()()AB AB BE AC AB BF ⋅++⋅+ 2AB AB BE AC AB AC BF =+⋅+⋅+⋅()42AB BF AC BF =+⋅-++⋅()1662BF AC AB EF BC =+⋅-=+⋅. ∴2EF BC ⋅=,即43cos ,2EF BC ⨯⨯=,∴1cos ,6EF BC =,故答案为16. 【点睛】本题主要考查两个向量的加减法的法则,以及其几何意义,两个向量的数量积的定义、以及运算性质,属于中档题.26.【分析】先由空间向量的基本定理将向量用一组基底表示再利用向量数量积的性质计算即可【详解】∵六面体ABCD ﹣A1B1C1D1是平行六面体∵=++∴=(++)2=+++2+2+2又∵∠BAD=∠A1AB【分析】先由空间向量的基本定理,将向量1AC 用一组基底1AA AD AB ,,表示,再利用向量数量积的性质22a a =,计算1AC 即可【详解】∵六面体ABCD ﹣A 1B 1C 1D 1是平行六面体,∵1AC =1AA +AD +AB ∴21AC =(1AA +AD +AB )2=21AA +2AB +2AD +21AA AD ⋅+21AA AB ⋅+2AB AD ⋅ 又∵∠BAD=∠A 1AB=∠A 1AD=60°,AD=4,AB=3,AA 1=5, ∴21AC =16+9+25+2×5×4×cos60°+2×5×3×cos60°+2×3×4×cos60°=97 ∴197AC =【点睛】本题考察了空间向量的基本定理,向量数量积运算的意义即运算性质,解题时要特别注意空间向量与平面向量的异同。