南京理工大学通信原理实验报告(部分)
- 格式:pdf
- 大小:1.20 MB
- 文档页数:10
南理工通信原理实验报告实验名称:基于南理工通信原理的调制解调实验实验目的:1.掌握调幅、调频和解调的基本原理;2.学会使用实验设备进行调制解调信号的生成和分析;3.了解调制解调过程中信号的频谱特性。
实验仪器:1.示波器:用于观察信号的波形;2.功率放大器:用于放大调制后的信号;3.函数信号发生器:用于产生调制信号;4.频谱仪:用于分析调制信号的频谱特性。
实验原理:1.调幅(AM)原理:调幅是指将模拟信号的幅度变化嵌入到载波信号中的一种调制方式。
其基本原理是先将模拟信号经过调制器调制成带有载波的信号,然后再经过功率放大器放大。
解调时,使用一个包络检波器将调制后的信号分离出来。
2.调频(FM)原理:调频是指将模拟信号的频率变化嵌入到载波信号中的一种调制方式。
其基本原理是先将模拟信号经过调制器调制成带有载波的信号,然后再经过功率放大器放大。
解调时,使用频率判决器将调制后的信号分离出来。
实验步骤:1.将函数信号发生器的输出连接到调制器的输入端,将调制器的输出连接到功率放大器的输入端,将功率放大器的输出连接到示波器的通道1输入端。
2.打开示波器、功率放大器和函数信号发生器,设置函数信号发生器的输出频率和幅度。
3.分别进行调幅和调频实验:3.1调幅实验:-设置函数信号发生器的输出为正弦波信号;-调制器选择幅度调制(AM)模式,设置载波频率和幅度;-功率放大器放大调制后的信号;-示波器观察调制后的信号波形。
3.2调频实验:-设置函数信号发生器的输出为正弦波信号;-调制器选择频率调制(FM)模式,设置载波频率和幅度;-功率放大器放大调制后的信号;-示波器观察调制后的信号波形。
4.使用频谱仪分析调幅和调频信号的频谱特性:-将频谱仪的输入连接到函数信号发生器的输出端,观察输出信号的频谱。
实验结果与分析:1.调幅实验结果:根据实验步骤进行操作后,示波器显示出调幅后的波形。
通过对波形进行观察和分析,可以发现调幅后的信号幅度随着载波的幅度变化而变化。
本次实验旨在通过实际操作加深对信号处理基本理论的理解,掌握信号频谱分析的方法,学习不同窗函数对信号频谱的影响,以及采样定理在信号处理中的应用。
通过实验,培养学生动手能力、分析问题和解决问题的能力。
二、实验原理1. 信号频谱分析:利用傅里叶变换将信号从时域转换为频域,分析信号的频率成分和能量分布。
2. 窗函数:在信号截取过程中,窗函数用于减少截取信号边缘的泄漏效应,提高频谱分析的准确性。
3. 采样定理:奈奎斯特采样定理指出,为了无失真地恢复原信号,采样频率应大于信号最高频率的两倍。
三、实验设备与软件1. 实验设备:示波器、信号发生器、计算机等。
2. 实验软件:MATLAB、Simulink等。
四、实验内容1. 信号频谱分析:(1)定义一个离散信号x[n],计算其频谱X[k]。
(2)分别采用矩形窗、汉宁窗、汉明窗对信号进行截取,计算截取信号的频谱。
(3)比较不同窗函数对信号频谱的影响。
2. 采样定理验证:(1)根据奈奎斯特采样定理,确定信号的最大采样间隔和最小采样点数。
(2)通过改变采样点数,观察频谱变化,验证采样定理。
3. 周期性信号的DFT分析:(1)计算信号x[n]的周期T。
(2)通过补零和截取信号,分析周期性信号的DFT。
1. 在MATLAB中定义离散信号x[n],并计算其频谱X[k]。
2. 分别采用矩形窗、汉宁窗、汉明窗对信号进行截取,计算截取信号的频谱。
3. 比较不同窗函数对信号频谱的影响。
4. 根据奈奎斯特采样定理,确定信号的最大采样间隔和最小采样点数。
5. 改变采样点数,观察频谱变化,验证采样定理。
6. 计算信号x[n]的周期T,通过补零和截取信号,分析周期性信号的DFT。
六、实验结果与分析1. 信号频谱分析:通过实验,发现不同窗函数对信号频谱的影响不同。
矩形窗频谱泄漏严重,汉宁窗和汉明窗能较好地抑制泄漏。
2. 采样定理验证:实验结果表明,当采样点数小于最小采样点数时,频谱发生严重混叠;当采样点数等于最小采样点数时,频谱能够无失真地恢复原信号。
一、实训背景随着信息技术的飞速发展,通信技术在现代社会中扮演着越来越重要的角色。
为了更好地掌握通信原理,提高自身实践能力,我们通信工程专业的学生于近期进行了通信原理课程实训。
本次实训旨在通过实际操作,加深对通信原理的理解,培养动手能力和团队协作精神。
二、实训目的1. 理解通信原理的基本概念、原理和关键技术;2. 掌握通信系统的基本组成、工作原理和性能分析;3. 提高动手能力,学会使用通信实验设备;4. 培养团队协作精神,提高沟通与表达能力。
三、实训内容本次实训主要包括以下内容:1. 通信系统基本组成与原理:学习通信系统的基本组成,如发射端、传输信道、接收端等,以及它们之间的相互作用和影响。
2. 模拟通信与数字通信:了解模拟通信和数字通信的基本原理、特点和应用场景,掌握调制解调技术。
3. 信号传输与信道编码:学习信号传输过程中的噪声抑制和信道编码技术,提高通信系统的抗干扰能力。
4. 同步与定时技术:掌握同步与定时技术在通信系统中的应用,如位同步、帧同步等。
5. 通信实验:利用实验设备进行通信实验,如调制解调实验、信道编码实验、同步实验等。
四、实训过程1. 实训准备:在实训前,我们认真阅读了相关教材和实验指导书,了解了实验目的、原理和步骤。
2. 实验操作:在实验过程中,我们按照实验指导书的要求,逐步完成各项实验任务。
在实验过程中,遇到问题时,及时向指导老师请教,确保实验顺利进行。
3. 实验记录:在实验过程中,我们详细记录了实验现象、数据和分析结果,为后续总结和撰写实训报告提供依据。
4. 实验总结:实验结束后,我们对实验结果进行分析,总结实验过程中的经验和教训,撰写实训报告。
五、实训结果与分析1. 实验结果:通过本次实训,我们掌握了通信原理的基本概念、原理和关键技术,提高了动手能力和团队协作精神。
2. 实验分析:在实验过程中,我们发现了以下问题:(1)部分实验设备操作不熟练,影响了实验进度;(2)对某些通信原理的理解不够深入,导致实验结果不理想;(3)团队协作不够默契,影响了实验效率。
目录实验一抽样定理实验 (3)实验七HDB3码型变换实验 (14)实验十一 BPSK调制与解调实验 (21)实验十九滤波法及数字锁相环法位同步提取实验 (29)实验一抽样定理实验一、实验目的1.了解抽样定理在通信系统中的重要性。
2.掌握自然抽样与平顶抽样的实现方法。
3.理解低通采样定理的原理。
4.理解实际的采样系统。
5.理解低通滤波器的幅频特性和对抽样信号恢复的影响。
6.理解带通采样定理的原理。
二、实验器材1.主控&信号源、3号模块。
各一块2.双踪示波器一台3.连接线若干三、实验原理1.实验原理框图2.实验框图说明抽样信号由抽样电路产生。
将输入的被抽样信号与抽样脉冲相乘就可以得到自然抽样信号,自然抽样信号经过保持电路得到平顶抽样信号。
平定抽样和自然抽样信号是通过S1切换输出的。
抽样信号的恢复是将抽样信号经过低通滤波器,即可得到恢复的信号。
这里滤波器可以选用抗混叠滤波器(8阶3.4khz的巴特沃斯低通滤波器)或fpga数字滤波器(有FIR、IIR 两种)。
反sinc滤波器不是用来恢复抽样信号的,而是用来应对孔径失真现象。
要注意,这里的数字滤波器是借用的信源编译码部分的端口。
在做本实验室与信源编译码的内容没有联系。
四、实验结果与波形观测实验项目一抽样信号观测及抽样定理验证概述:通过不同频率的抽样时钟,从时域与频域两方面观测自然抽样和平顶抽样的输出波形,以及信号恢复的混叠情况,从而了解不同抽样方式的输出差异和联系,验证抽样定理。
注:通过观测频谱可以看到当抽样脉冲小于2倍被抽样信号频率时,信号会产生混叠。
2. 开电,设置主控菜单,选择【主菜单】→【通信原理】→【抽样定理】。
调节主控模块的W1使A-out输出峰峰值为3V。
3. 此时实验系统初始状态为:被抽样信号MUSIC为幅度4V、频率3K+1K正弦合成波。
抽样脉冲A-OUT为幅度3V、频率9khz、占空比20%的方波。
4. 波形观测(1)主控MUSIC波形(2)自然抽样输出(3)平顶抽样输出(4)LPF-OUT(此时采样频率为7.9khz)思考:理论上当采样频率低于2倍的信号最高频率时恢复的波形会失真。
通信原理实验报告引言:通信原理是现代通信技术的基础,通过实验可以更深入地理解通信原理的各个方面。
本次实验主要涉及到调制解调和频谱分析。
调制解调是将原始信号转换成适合传输的信号形式,频谱分析则是对信号的频域特性进行研究。
通过这些实验,我们可以进一步了解调制解调原理、频谱分析技术以及其在通信领域中的应用。
实验一:调制解调实验调制解调是将信息信号转换为适合传输的信号形式的过程。
在实验中,我们使用了模拟调制技术。
首先,我们通过声卡输入一个带通信号,并将其调制成调幅信号。
接着,通过示波器观察和记录调制信号的波形,并利用解调器将其还原为原始信号。
实验二:频谱分析实验频谱分析是对信号在频域上的特性进行研究。
在实验中,我们使用了频谱分析仪来观察信号的频谱分布情况。
首先,我们输入一个具有特定频率和幅度的正弦信号,并使用频谱分析仪来观察其频谱。
然后,我们改变信号的频率和幅度,继续观察和记录频谱的变化情况。
实验三:应用实验在实际通信中,调制解调和频谱分析技术有着广泛的应用。
通过实验三,我们可以了解到这些技术在通信领域中的具体应用。
例如,我们可以模拟调制解调技术在调制解调器中的应用,观察和分析不同调制方式下的信号特性。
同样,我们可以使用频谱分析仪来研究和理解不同信号在传输过程中的频谱分布。
这些实验将帮助我们更好地理解通信系统中的调制解调和频谱分析技术,从而为实际应用提供支持。
结论:通过本次实验,我们对通信原理中的调制解调和频谱分析技术有了更深入的了解。
调制解调是将信息信号转换为适合传输的信号形式,而频谱分析则是对信号的频域特性进行研究。
这些技术在通信领域中有着广泛的应用,对于实际通信系统的设计和优化非常重要。
通过实验的学习和实践,我们能够更好地掌握调制解调和频谱分析的原理和应用,从而提高我们在通信领域中的能力和技术水平。
总结:通过本次实验,我们对通信原理中的调制解调和频谱分析技术进行了学习和实践。
通过实验的过程,我们深入了解了这些技术的原理和应用,并通过观察和记录不同信号的波形和频谱特征,加深了我们对通信原理的理解。
南京理工大学通信实习报告南京理工大学通信实习报告「篇一」金工实习是一门实践基础课,它对于培养我们的动手能力有很大的意义。
而且可以使我们了解传统的机械制造工艺和现代机械制造技术。
作为非机械专业的一名学生,但是汽车和机械其实是一路子,学好理论知识固然重要,但动手能力也是至关重要,我们大学生平时自己动手的机会少,动手的能力差,很难适应以后社会对全面人才的需求。
而金工实习课程为我们这些理工科的学生带来了实际锻炼的机会,让我们走出课堂,在各种各样的工件和机器的车间里,自己动手,亲身体验,这些对我们的帮助是巨大的。
在实习期间,我先后参加了车工,焊接,钳工,从中我学到了很多宝贵的东西,它让我学到了书本上学不到的东西,增强自己的动手能力。
第一次金工实习,对我们来说感觉很新鲜,上午上完一二节的英语课,我们便兴致勃勃地向实习基地出发,到了金工车间,老师给我们讲解金工实习的意义,课程安排,以及实习过程中的安全问题。
首先接触的工种是车工。
车工是在车床上利用工件的旋转和刀具的移动来加工各种回转体的表面,接下来,老师要求我们做自动走刀车外圆,每次车的直径为20mm,那么刀具只能前进10mm,并要熟练掌握操作顺序:先将托盘对准工件调零,退刀调节刀具要前进10mm,开车,待走刀前进到3/4时,改为手动走刀到精确位置,退刀停车。
经过几次的训练,我们已经熟悉了本项操作。
虽然看起来很简单的东西但做了才知道,其中的微小差距就造成了整个零件的好坏,1mm平时觉得很小,无所谓但是在车床上加工零件才知道,1mm是多么大的错误而不是误差。
车工之后是焊工,无数次看到建筑工地里闪烁的电火花,我知道那就是焊接,本想着操作起来很容易,然而事实却并非那样,比我想象的要难的多了。
焊接所产生的气味和刺眼的光对人体都是有害的,我们带好防护罩开始了我焊工的操作,从老师那里学到了焊条的角度一般在七十到八十之间,运条的速度,要求当然是匀速,然而在实际操作中,我们往往是不快则慢,很难保持匀速。
《通信原理实验报告》内容:实验一、五、六、七实验一数字基带信号与AMI/HDB3编译码一、实验目的1、掌握单极性码、双击行码、归零码、非归零码等基带信号波形特点。
2、掌握AMI、HDB3码的编码规则。
3、掌握从HDB3码信号中提取位同步信号的方法。
4、掌握集中插入帧同步码同步时分复用信号的帧结构特点。
二、实验内容及步骤1、用开关K1产生代码X1110010,K2,K3产生任意信息代码,观察NRZ码的特点为不归零型且为原码的表示形式。
2、将K1,K2,K3置于011100100000110000100000态,观察对应的AMI码和HDB3码为:HDB3:0-11-1001-100-101-11001-1000-10AMI :01-1100-1000001-100001000003、当K4先置左方AMI端,CH2依次接AMI/HDB3模拟的DET,BPF,BS—R和NRZ,观察它们的信号波形分别为:BPF为方波,占空比为50%,BS—R为三角波,NRZ为不归零波形。
DET是占空比等于0.5的单极性归零信号。
三、实验思考题1、集中插入帧同步码同步时分复用信号的帧结构有何特点?答:集中插入法是将标志码组开始位置的群同步码插入于一个码组的前面。
接收端一旦检测到这个特定的群同步码组就马上知道了这组信息码元的“头”。
所以这种方法适用于要求快速建立同步的地方,或间断传输信息并且每次传输时间很短的场合。
检测到此特定码组时可以利用锁相环保持一定的时间的同步。
为了长时间地保持同步,则需要周期性的将这个特定的码组插入于每组信息码元之前。
2、根据实验观察和纪录回答:(1)不归零码和归零码的特点是什么?(2)与信源代码中的“1”码相对应的AMI 码及HDB3 码是否一定相同?答:1)不归零码特点:脉冲宽度τ等于码元宽度Ts归零码特点:τ<Ts2)与信源代码中的“1”码对应的AMI 码及HDB3 码不一定相同。
因信源代码中的“1”码对应的AMI 码“1”、“-1”相间出现,而HDB3 码中的“1”,“-1”不但与信源代码中的“1”码有关,而且还与信源代码中的“0”码有关。
第1篇一、实验目的1. 理解通信系统的基本原理和组成。
2. 掌握通信系统中的调制、解调、编码、解码等基本技术。
3. 熟悉实验仪器的使用方法,提高动手能力。
4. 通过实验,验证通信原理理论知识。
二、实验原理通信原理实验主要涉及以下内容:1. 调制与解调:调制是将信息信号转换为适合传输的信号,解调是将接收到的信号还原为原始信息信号。
2. 编码与解码:编码是将信息信号转换为数字信号,解码是将数字信号还原为原始信息信号。
3. 信号传输:信号在传输过程中可能受到噪声干扰,需要采取抗干扰措施。
三、实验仪器与设备1. 实验箱:包括信号发生器、调制解调器、编码解码器等。
2. 信号源:提供调制、解调所需的信号。
3. 传输线路:模拟信号传输过程中的衰减、反射、干扰等现象。
四、实验内容与步骤1. 调制实验(1)设置调制器参数,如调制方式、调制频率等。
(2)将信号源信号输入调制器,观察调制后的信号波形。
(3)调整解调器参数,如解调方式、解调频率等。
(4)将调制信号输入解调器,观察解调后的信号波形。
2. 解调实验(1)设置解调器参数,如解调方式、解调频率等。
(2)将调制信号输入解调器,观察解调后的信号波形。
(3)调整调制器参数,如调制方式、调制频率等。
(4)将解调信号输入调制器,观察调制后的信号波形。
3. 编码与解码实验(1)设置编码器参数,如编码方式、编码长度等。
(2)将信息信号输入编码器,观察编码后的数字信号。
(3)设置解码器参数,如解码方式、解码长度等。
(4)将编码信号输入解码器,观察解码后的信息信号。
4. 信号传输实验(1)设置传输线路参数,如衰减、反射等。
(2)将信号源信号输入传输线路,观察传输过程中的信号变化。
(3)调整传输线路参数,如衰减、反射等。
(4)观察传输线路参数调整对信号传输的影响。
五、实验结果与分析1. 调制实验:调制后的信号波形与原信号波形基本一致,说明调制和解调过程正常。
2. 解调实验:解调后的信号波形与原信号波形基本一致,说明解调过程正常。
通信原理实验报告实验名称:FSK调制实验姓名:学号:班级:时间:南京理工大学紫金学院电光系实验一 FSK 调制实验1、 实验目的2、 了解FSK 调制的基本工作原理;3、 掌握FSK 正交调制的基本工作原理与实现过程;4、 预备知识5、 数字信号的传输工作方式与基本工作过程;6、 F SK 的基本工作原理;7、 正交调制与基带信号的表示方式; 8、 软件无线电的基本概念;9、 实验仪器10、通信网络工程“通信信道平台”实验箱 一台; 11、20MHz 示波器一台;12、 实验原理在二进制频移键控中,幅度恒定不变的载波信号的频率随着输入码流的变化而切换(称为高音和低音,代表二进制的1和0)。
通常,FSK 信号的表达式为:bc bbFSK T t t f f T E S ≤≤∆+=0)22cos(2ππ(二进制1)bc bbFSK T t t f f T E S ≤≤∆-=0)22cos(2ππ(二进制0)其中2πΔf 代表信号载波的恒定偏移。
产生FSK 信号最简单的方法是根据输入的数据比特是0还是1,在两个独立的振荡器中切换。
采用这种方法产生的波形在切换的时刻相位是不连续的,因此这种FSK 信号称为不连续FSK 信号。
不连续的FSK 信号表达式为:bH bbFSK T t t f T E S ≤≤+=0)2cos(21θπ(二进制1)bL bbFSK T t t f T E S ≤≤+=0)2cos(22θπ(二进制0)其实现如图3.1-1所示:输入数据振荡器f H振荡器f L放大输出图3.1-1 非连续相位FSK 的调制框图由于相位的不连续会造频谱扩展,这种FSK 的调制方式在传统的通信设备中采用较多。
随着数字处理技术的不发展,越来越多地采用连继相位FSK 调制技术。
目前较常用产生FSK 信号的方法是,首先产生FSK 基带信号,利用基带信号对单一载波振荡器进行频率调制。
因此,FSK 可表示如下:])(22cos[2)](2cos[2)(⎰∞-+=+=tf C bbC bbFSK dn n m kt f T E t t f T E t S ππθπ应当注意,尽管调制波形m (t )在比特转换时不连续,但相位函数θ(t )是与m (t )的积分成比例的,因而是连续的,其相应波形如图3.1-2所示:图3.1-2连续相位FSK 的调制信号由于FSK 信号的复包络是调制信号m (t )的非线性函数,确定一个FSK 信号的频谱通常是相当困难的,经常采用实时平均测量的方法。
通信原理实验报告导言:通信技术是现代社会不可或缺的基础设施之一,而通信原理实验则是了解和掌握通信技术运作的重要途径。
本次实验旨在通过实际操作,深入理解通信原理中的信号调制与解调技术,并通过实验数据分析和结果验证,加深对通信原理的认识和理解。
一、实验目的本次实验的主要目的是:1. 通过实验了解信号调制与解调的基本原理;2. 掌握调幅调制、调频调制和调相调制等常用调制方法;3. 学习使用示波器、频谱分析仪等仪器设备进行实验测量;4. 分析实验数据并验证实验结果,加深对通信原理的理解。
二、实验内容1. 调幅调制实验(略去实验步骤的细节描述)公式进行调幅调制。
通过示波器观察和分析输出信号的波形和频谱特征,以及调制指数与调制效果的关系。
实验结果表明,调制指数较小时,输出信号仅表现为振幅调制,频谱中存在两个较为明显的侧带;当调制指数过大时,信号的谐波成分也逐渐增多,频谱主瓣也随之变宽。
2. 调频调制实验(略去实验步骤的细节描述)本实验通过输入不同频率和振幅的载波信号及基带信号,按照公式进行调频调制。
通过示波器观察和分析输出信号的波形和频谱特征,以及调制指数与频偏的关系。
实验结果表明,调频调制后的信号可以在频谱中观察到频偏,即不同频率的侧瓣。
并且,调制指数越大,频偏也越大。
频谱主瓣的宽度同样受到调制指数的影响。
3. 调相调制实验(略去实验步骤的细节描述)公式进行调相调制。
通过示波器观察和分析输出信号的波形和频谱特征。
实验结果表明,调相调制后的信号波形在相位方面发生了变化,频谱上存在相移的成分,通过设置不同的初始相位,可以得到不同的调相角度。
同时,调相角度也影响着频谱主瓣的位置和宽度,这与调制信号的频率和调制相位角度的关系密切相关。
结论:通过本次通信原理实验,我们深入了解了信号调制与解调技术,并通过实验数据与结果分析,实现了对调幅调制、调频调制和调相调制等方法的掌握与验证。
同时,通过实际操作使用示波器、频谱分析仪等仪器设备,加深了对通信原理的理解和实践能力。
通信原理实验报告(2)广西科技大学通信原理实验报告学院:班级:姓名:班别: 学号:指导老师:实验一数字基带信号一、实验目的1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。
2、掌握AMI、HDB3码的编码规则。
3、掌握集中插入帧同步码时分复用信号的帧结构特点。
二、实验内容 1、用示波器观察单极性非归零码(NRZ)、传号交替反转码(AMI)、三阶高密度双极性码(HDB3)、整流后的AMI 码及整流后的HDB3 码。
2、用示波器观察从HDB3 码中和从AMI 码中提取位同步信号的电路中有关波形。
3、用示波器观察HDB3、AMI 译码输出波形。
三、基本原理本实验使用数字信源模块和HDB3 编译码模块。
1、数字信源此NRZ信号为集中扩入帧同步码时分复用信号,试验中数据码用红色发光二极管指示。
其原理方框图如图1-1所示。
本单元产生NRZ信号,信号码速率约为17.5KB,帧结构如图1-2所示。
帧长为24位,其中首位为无定义位,第2位到第8位是帧同步码(7位巴克码1110010),另外16位为2路数据信号,每路8位。
本模块有以下测试点及输入输出点:+5V +5V电源输入点(2个)CLK 晶振信号测试点BS-OUT 信源位同步信号输出点/测试点(2个)FS 信源帧同步信号输出点/测试点NRZ-OUT(AK) NRZ信号(绝对码)输出点/测试点(4个)图 1-1 数字信源方框图图 1-2 帧结构FS信号、NRZ-OUT信号之间的相位关系如图1-3所示,图中NRZ-OUT的无定义位为0,帧同步码为1110010,数据1为11110000,数据2为00001111,FS信号的低电平,高电平分别为4位和8位数字信号时间,其上升沿比NRZ-OUT码第一位起始时间超前一个码元。
图1-3 FS、NRZ-OUT波形2. HDB3 编译码原理框图如图1-4 所示。
本单元有以下信号测试点:●-12V -12V电源输入点●+5V +5V电源输入点●NRZ 译码器输出信号●BS-R 锁相环输出的位同步信号●(AMI)HDB3 编码器输出信号●BPF 带通滤波器输出信号●(AMI-D)HDB3-D (AMI)HDB3 整流输出信号图1-4 HDB3编译方框图本模块上的开关K4 用于选择码型,K4 位于左边(A 端)选择AMI 码,位于右边(H 端)选择HDB3码。
通信原理实验报告(优秀范文5篇)第一篇:通信原理实验报告通信原理实验报告1、实验名称:2、实验目的:3、实验步骤:(详细记录你的实验过程)例如:(1)安装MATLAB6.5软件;(2)学习简单编程,画图plot(x,y)函数等(3)进行抽样定理验证:首先确定余弦波形,设置其幅度?、频率?和相位?等参数,然后画出该波形;进一步,设置采样频率?。
画出抽样后序列;再改变余弦波形的参数和抽样频率的值,改为。
,当抽样频率?>=余弦波形频率2倍时,怎么样?否则的话,怎么样。
具体程序及图形见附录1(或者直接放在这里,写如下。
)(4)通过DSP软件验证抽样定理该软件主要有什么功能,首先点“抽样”,选取各种参数:a, 矩形波,具体参数,出现图形B,余弦波,具体参数,出现图形然后点击“示例”中的。
具体参数,图形。
4、思考题5、实验心得6、附录1有附录1的话有这项,否则无。
第二篇:通信原理实验报告1,必做题目1.1 无线信道特性分析 1.1.1 实验目的1)了解无线信道各种衰落特性;2)掌握各种描述无线信道特性参数的物理意义;3)利用MATLAB中的仿真工具模拟无线信道的衰落特性。
1.1.2 实验内容1)基于simulink搭建一个QPSK发送链路,QPSK调制信号经过了瑞利衰落信道,观察信号经过衰落前后的星座图,观察信道特性。
仿真参数:信源比特速率为500kbps,多径相对时延为[0 4e-06 8e-06 1.2e-05]秒,相对平均功率为[0-3-6-9]dB,最大多普勒频移为200Hz。
例如信道设置如下图所示:移动通信系统1.1.3 实验作业1)根据信道参数,计算信道相干带宽和相干时间。
fm=200;t=[0 4e-06 8e-06 1.2e-05];p=[10^0 10^-0.3 10^-0.6 10^-0.9];t2=t.^2;E1=sum(p.*t2)/sum(p);E2=sum(p.*t)/sum(p);rms=sq rt(E1-E2.^2);B=1/(2*pi*rms)T=1/fm2)设置较长的仿真时间(例如10秒),运行链路,在运行过程中,观察并分析瑞利信道输出的信道特征图(观察Impulse Response(IR)、Frequency Response(FR)、IR Waterfall、Doppler Spectrum、Scattering Function)。
第1篇一、实验背景通信技术是信息时代的重要技术之一,它涉及信号的传输、处理和接收等多个环节。
随着科技的不断发展,通信技术日新月异,通信系统的性能和可靠性要求越来越高。
为了满足这些要求,通信原理的研究显得尤为重要。
通信原理实验是通信专业学生的重要实践环节,通过实验,学生可以加深对通信基本概念、原理和方法的理解,提高实际操作能力。
同时,实验还能培养学生严谨的科研态度和团队合作精神。
二、实验目的本实验报告旨在通过以下实验项目,实现以下目的:1. 熟悉通信系统的基本组成和各部分功能。
2. 掌握通信系统中的基本信号处理方法,如调制、解调、滤波等。
3. 理解通信系统的性能指标,如信噪比、误码率等。
4. 掌握通信系统的仿真和实验方法,提高实际操作能力。
5. 培养学生的创新意识和团队合作精神。
三、实验意义1. 提高学生的专业素养:通过实验,学生可以深入了解通信原理,为今后从事通信相关工作奠定坚实基础。
2. 培养学生的实践能力:实验过程中,学生需要动手操作,这有助于提高学生的动手能力和实际操作能力。
3. 培养学生的创新意识:实验过程中,学生需要不断尝试和探索,这有助于培养学生的创新意识和解决问题的能力。
4. 培养学生的团队合作精神:实验通常需要多人合作完成,这有助于培养学生的团队合作精神和沟通能力。
5. 推动通信技术的发展:通过实验,学生可以了解通信领域的最新技术和发展趋势,为我国通信技术的发展贡献力量。
总之,本实验报告旨在通过通信原理实验,使学生全面掌握通信系统的基本原理、方法和性能指标,提高学生的实际操作能力和创新能力,为我国通信事业的发展培养一批高素质人才。
第2篇一、实验目的1. 理解并掌握通信系统的基本组成和基本工作原理;2. 熟悉通信系统中的各种调制和解调技术;3. 学会使用MATLAB等工具进行通信系统仿真;4. 提高动手能力、分析问题和解决问题的能力。
二、实验意义1. 通信原理实验是通信专业学生的重要实践环节,有助于加深对理论知识的理解;2. 通过实验,学生可以熟悉通信系统设计的基本流程,为后续课程学习和工程实践打下基础;3. 实验过程中,学生需要运用所学知识解决实际问题,提高自己的综合素质。
通信原理实验报告(8份)姓名:学号:通信原理实验报告姓名:姓名:学号:实验一HDB3码型变换实验一、实验目的了解几种常用的数字基带信号的特征和作用。
掌握HDB3码的编译规则。
了解滤波法位同步在的码变换过程中的作用。
二、实验器材主控&信号源、2号、8号、13号模块双踪示波器连接线三、实验原理1、HDB3编译码实验原理框图各一块一台若干姓名:学号:HDB3编译码实验原理框图2、实验框图说明我们知道AMI编码规则是遇到0输出0,遇到1则交替输出+1和-1。
而HDB3编码由于需要插入破坏位B,因此,在编码时需要缓存3bit的数据。
当没有连续4个连0时与AMI编码规则相同。
当4个连0时最后一个0变为传号A,其极性与前一个A的极性相反。
若该传号与前一个1的极性不同,则还要将这4个连0的第一个0变为B,B的极性与A相同。
实验框图中编码过程是将信号源经程序处理后,得到HDB3-A1和HDB3-B1两路信号,再通过电平转换电路进行变换,从而得到HDB3编码波形。
同样AMI译码只需将所有的±1变为1,0变为0即可。
而HDB3译码只需找到传号A,将传号和传号前3个数都清0即可。
传号A的识别方法是:该符号的极性与前一极性相同,该符号即为传号。
实验框图中译码过程是将HDB3码信号送入到电平逆变换电路,再通过译码处理,得到原始码元。
四、实验步骤姓名:学号:实验项目一HDB3编译码(256KHz归零码实验)概述:本项目通过选择不同的数字信源,分别观测编码输入及时钟,译码输出及时钟,观察编译码延时以及验证HDB3编译码规则。
1、关电,按表格所示进行连线。
2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【HDB3编译码】→【256K归零码实验】。
将模块13的开关S3分频设置拨为0011,即提取512K同步时钟。
姓名:学号:3、此时系统初始状态为:编码输入信号为256K的PN序列。
4、实验操作及波形观测。
通信原理实验报告本实验旨在通过实际操作和实验数据的分析,加深对通信原理的理解,并掌握通信原理实验中所使用的基本仪器设备和实验方法。
具体目的如下:理解调制与解调的基本原理和方法;掌握调幅(AM)和调频(FM)的调制与解调实验;研究利用示波器、信号源等仪器设备进行实验操作;分析实验数据,掌握数据处理方法和结果的分析。
这些实验目的的达成将有助于提高我们对通信原理的理论知识的掌握程度,加深对通信原理的应用场景的认识,为今后的研究和研究打下坚实基础。
本实验涉及的通信原理相关知识包括信号传输、调制与解调、信道编码等。
信号传输是指将信息从发送方传输到接收方的过程。
在通信中,常用的信号传输方法包括模拟传输和数字传输。
模拟传输是指将连续的模拟信号通过信道传输,如模拟电话通信;数字传输是指将离散的数字信号通过信道传输,如数字电视。
调制与解调是实现模拟信号和数字信号之间的转换。
调制是将模拟信号转换为数字信号的过程,常见的调制方式有频移键控(FSK)、相位移键控(PSK)和振幅移键控(ASK)等。
解调是将数字信号转换为模拟信号的过程,常见的解调方式包括相干解调和非相干解调。
信道编码是为了提高信号传输的可靠性而对信号进行编码的过程。
通过添加冗余信息,可以实现对传输中的错误进行检测和纠正。
常见的信道编码技术包括奇偶校验、海明码和卷积码等。
在本实验中,我们将研究和实践以上通信原理相关知识,以加深对通信原理的理解和掌握。
实验步骤本实验的目的是介绍通信原理相关实验的具体步骤和操作过程,以及所需的仪器设备和实验材料。
准备工作确保所有实验仪器和设备的正常工作状态。
检查实验材料的数量和质量,确保其符合实验要求。
实验仪器和设备根据实验要求准备相应的通信原理实验仪器和设备,如计算机、信号发生器、示波器等。
实验材料根据实验要求准备相应的实验材料,如电磁波发射器、接收器、天线等。
实验步骤按照实验要求连接实验仪器和设备,并确保其工作正常。
设置信号发生器的参数,确保产生适当的信号波形和频率。
通信原理实验报告1. 实验简介该实验旨在探究通信原理中的基础概念和技术,通过实际操作和数据收集,加深对通信原理的理解和应用。
2. 实验目的通过实验,达到以下目的:- 理解调制、解调、信道传输等基本通信原理- 学习并应用相关通信原理工具和设备- 分析实验结果,总结出相关规律和结论- 提高实验操作能力和数据处理能力3. 实验过程3.1 实验设备和器材预备准备以下设备和器材:- 调制解调器- 信号发生器- 示波器- 噪声源- 电缆和连接线3.2 实验步骤步骤1:使用信号发生器产生载波信号,并将其连接到调制解调器的输入端口。
步骤2:将待发送的消息信号连接到调制解调器的输入端口。
步骤3:通过示波器观察并记录调制解调器输出的调制信号。
步骤4:使用示波器观察并记录解调器输出的解调信号。
步骤5:将噪声源连接到调制解调器的输入端口,并观察解调器输出的抗噪性能。
步骤6:根据实验结果进行数据分析和总结。
4. 实验结果与讨论4.1 调制信号观察与记录通过示波器观察到的调制信号波形如下图所示:(可以插入图片)4.2 解调信号观察与记录通过示波器观察到的解调信号波形如下图所示:(可以插入图片)4.3 抗噪性能观察与分析连接噪声源后,示波器观察到的解调信号波形相对于无噪声的情况产生了一定程度的畸变。
通过分析解调信号的信噪比和误码率等指标,可以进一步评估抗噪性能,并提出改进建议。
5. 结论通过本次实验,我们深入探讨了通信原理相关的调制、解调和信道传输等基本概念。
通过观察实验结果和数据分析,得出以下结论:- 调制技术可以将消息信号转换为适合传输的载波信号,进而实现有效的数据传输。
- 解调技术可以将接收到的调制信号还原为原始的消息信号。
- 通信系统在存在噪声的情况下,解调信号的质量和抗噪能力会受到一定影响。
6. 改进建议根据实验结果和结论,我们提出以下改进建议:- 进一步优化调制和解调算法,提高传输效率和抗噪性能。
- 使用更先进的设备和器材,提升实验数据的准确性和稳定性。
南京理工大学通信系统实验报告实验名称:通信系统实验学院:电子工程与光电技术学院专业:通信工程班级:学号姓名:指导老师:程风雷目录实验(一)无线多点组网 (3)一、实验目的 (3)二、实验设备 (3)三、实验原理 (3)1、通信网络拓扑结构 (3)2、路由技术 (3)3、广播和组播 (4)4、Ad hoc网络 (4)5、蓝牙技术 (5)四、实验内容 (6)1、组网过程 (6)2、进行数据传输 (8)五、实验思考 (9)实验(二)PPPOE拨号上网综合实验 (11)一、相关背景 (11)1、宽带接入的概念 (11)2、MA5300说明 (11)3、实验室环境介绍 (12)二、实验目的 (12)三、操作步骤 (12)四、实验总结 (13)实验一无线多点组网一、实验目的1、理解点对多点的网络、Ad hoc 网络多跳转接的拓扑结构;2、组网过程、简单的路由协议以及广播和组播的概念。
二、实验仪器PC 机若干、工作站、主机、文件服务器、路由器三、实验原理1、通信网络拓扑结构现代通信网络可以大体归纳为几种网络拓扑结构,每种结构都有自己的优点和缺点,选择时要根据具体情况。
图1.1 网络结构OSI 从低到高的七层分别是物理层、数据链路层、网络层、传输层、会话层、表示层和应用层。
一个网络设备就是一个节点。
网络层定义的网络设备(或节点)有两类:1)主机:包括PC 机、工作站、主机、文件服务器等等。
2)路由器:它在主机和其它路由器之间转发数据包,使得主机不必和通信所用的链路直接相连。
实现存储转发功能、执行路由协议。
2、路由技术数据包能够通过多条路径从源设备到达目的设备,选择什么路径最合适,就是路由技术所要研究的问题。
路由器之间通过路由协议交换信息,以报告它们各自所连接的网络和设备,更新路由表。
传输的可靠性要求、数据包的传输费用和时延。
根据不同要求,提出多种路由选择算法。
网型网 星型网 复合型网 环型网 总线型网图1.2 路由选择流程3、广播和组播将数据包的设备地址设置为一个特殊的广播地址。
通信原理综合实验实验报告作者:学号:学院:电子工程与光电技术学院专业:电子信息工程班级:电信二班指导老师:年月日实验七HDB3码型变换实验一、实验目的1、了解几种常用的数字基带信号的特征和作用。
2、掌握HDB3 码的编译规则。
3、了解滤波法位同步在的码型变换过程中的作用。
二、实验项目一HDB3 编译码(256KHz 归零码实验)1、用示波器分别观测编码输入的数据TH3和编码输出的数据TH1(HDB3输出),观察记录波形,有数字示波器的可以观测编码输出信号频谱,验证HDB3编码规则。
图7.1 HDB3输出波形(左)输出信号频谱(右)(1)编码数据分析输入信息码:1 1 0 1 0 1 1 0 1 1 1 0HDB3码理论编码序列:+1 -1 0 +1 0 -1 +1 0 -1 +1 -1 0或:实验HDB3编码输出:通过对比可知,实验编码输出的HDB3码的后半部分(下划线部分)与理论值吻合,验证了其编码规则。
之所以不是全部匹配,是系统延时的缘故。
(2)输出信号频谱分析从谱分量(图7.1右)来看,输出信号频谱不包含离散谱分量,表明编码输出波形具有双极性的特点。
这与HDB3码有+1、-1交替码型的特点相一致。
图7.2 TH3与TP2波形(左)TH3与TP3波形(右)2、保持示波器测量编码输入数据TH3的通道不变,另一通道测量中间测试点TP2 (HDB3-A1),观察基带码元的变换波形。
观察结果:(图7.2左)中间测试点TP2的波形为单极性归零波形。
3、保持示波器测量编码输入数据TH3的通道不变,另一通道测量中间测试点TP3 (HDB3-B1),观察基带码元的变换波形。
观察结果:(图7.2右)中间测试点TP3的波形为单极性归零波形。
图7.3 TP2信号与TP3信号相减(左)TP2信号频谱(中)TP3信号频谱(右)4、用示波器分别观测模块8的TP2(HDB3-A1)和TP3(HDB3-B1),可从频域角度观察信号所含256KHz频谱分量情况;或用示波器减法功能观察HDB3-A1与HDB3-B1相减后的波形情况,,并与HDB3编码输出波形相比较。
观察结果:(图7.3)TP2信号与TP3信号相减得到信号波形为双极性归零波形。
TP2和TP3均为单极性归零波形,因此的信号频谱结构相同,均含有直流离散分量和定时离散分量(奇数倍的f B)。
5、用示波器对比观测编码输入的数据和译码输出的数据,观察记录HDB3译码波形与输入信号波形。
观察结果:由图7.4(左)可以看出,译码波形与输入波形相一致,延时约为10个码元宽度。
图7.4 HDB3编译码波形(左)TP4与TP8经电平变换后波形(右)6、用示波器分别观测TP4(HDB3-A2)和TP8(HDB3-B2),从时域或频域角度了解HDB3码经电平变换后的波形情况。
观察结果:TP4与TP8均为单极性归零波形,二者同一时刻对应的电平相反。
图7.5 TH7频谱(左)TH6频谱(中)编译码时钟(右)7、用示波器分别观测模块8的TH7(HDB3输入)和TH6(单极性码),从频域角度观测双极性码和单极性码的256KHz频谱分量情况。
观察结果:HDB3码输入信号频谱不含离散分量。
TH6处单极性码的频谱含有离散分量(奇数倍的f B)。
8、用示波器分别观测编码输入的时钟和译码输出的时钟,观察比较恢复出的位时钟波形与原始位时钟信号的波形。
观察结果:(图7.5右)编译码时钟存在一定的延时,这与5的结论相一致,正是由于位时钟的延迟导致了译码数据较编码数据有延迟。
思考:此处输入信号采用的单极性码,可较好的恢复出位时钟信号,如果输入信号采用的是双极性码,是否能观察到恢复的位时钟信号,为什么?答:不能。
因为双极性码的功率谱不含位定时分量(f=f B),无法提取位定时分量。
三、实验项目二HDB3 编译码(256KHz 非归零码实验)1、用示波器分别观测编码输入的数据TH3和编码输出的数据TH1(HDB3输出),观察记录波形,有数字示波器的可以观测编码输出信号频谱,验证HDB3编码规则。
图7.6 HDB3输出波形(左)输出信号频谱(右)(1)编码数据分析输入信息码:1 0 0 0 0 1 0 1 1 0 0 0 0 1 1 0 0 1 0 1 1 1 1HDB3码理论编码序列:+1 0 0 0 +1 -1 0 +1 -1 0 0 0 -1 +1 -1 0 0 +1 0 -1 +1 -1 +1或:实验HDB3编码输出:通过对比可知,实验编码输出的HDB3码的后半部分(下划线部分)与理论值吻合,验证了其编码规则。
之所以不是全部匹配,是系统延时的缘故。
(2)输出信号频谱分析从谱分量(图7.6右)来看,输出信号频谱不包含离散谱分量,表明编码输出波形具有双极性的特点。
这与HDB3码有+1、-1交替码型的特点相一致。
图7.7 TH3与TP2波形(左)TH3与TP3波形(右)2、保持示波器测量编码输入数据TH3的通道不变,另一通道测量中间测试点TP2 (HDB3-A1),观察基带码元的变换波形。
观察结果:(图7.7左)中间测试点TP2的波形为单极性非归零波形。
3、保持示波器测量编码输入数据TH3的通道不变,另一通道测量中间测试点TP3 (HDB3-B1),观察基带码元的变换波形。
观察结果:(图7.7右)中间测试点TP3的波形为单极性非归零波形。
图7.8 TP2信号与TP3信号相减(左)TP2信号频谱(中)TP3信号频谱(右)4、用示波器分别观测模块8的TP2(HDB3-A1)和TP3(HDB3-B1),可从频域角度观察信号所含256KHz频谱分量情况;或用示波器减法功能观察HDB3-A1与HDB3-B1相减后的波形情况,,并与HDB3编码输出波形相比较。
观察结果:(图7.8)TP2信号与TP3信号相减得到信号波形为双极性非归零波形。
TP2和TP3均为单极性非归零波形,因此的信号频谱结构相同,均只含有直流离散分量(f=f B)。
5、用示波器对比观测编码输入的数据和译码输出的数据,观察记录HDB3译码波形与输入信号波形。
观察结果:由图7.9(左)可以看出,译码波形与输入波形相一致,延时约为9个码元宽度。
图7.9 HDB3编译码波形(左)TP4与TP8经电平变换后波形(右)6、用示波器分别观测TP4(HDB3-A2)和TP8(HDB3-B2),从时域或频域角度了解HDB3码经电平变换后的波形情况。
观察结果:TP4与TP8均为单极性非归零波形,二者同一时刻对应的电平相反。
图7.10 TH7频谱(左)TH6频谱(中)编译码时钟(右)7、用示波器分别观测模块8的TH7(HDB3输入)和TH6(单极性码),从频域角度观测双极性码和单极性码的256KHz频谱分量情况。
观察结果:HDB3码波形为双极性非归零码,其频谱不含离散分量。
TH6处单极性码的频谱含有离散分量(奇数倍的f B)。
8、用示波器分别观测编码输入的时钟和译码输出的时钟,观察比较恢复出的位时钟波形与原始位时钟信号的波形。
观察结果:(图7.10右)编译码时钟存在一定的延时,图中不能够清楚观察到。
可能是由于位定时信号延时为码元宽度的整数倍。
四、实验项目三HDB3 码对连0信号的编码直流分量以及时钟信号提取观测1、观察含有长连0信号的HDB3编码波形。
用示波器观测模块8的TH3(编码输入-数据)和TH1(HDB3输出),观察信号中出现长连0时的波形变化情况。
图7.11含有长连0信号的HDB3编码波形观察结果:输入的编码信号出现长连0时,HDB3码连0个数不超过三个。
思考:HDB3编码与AMI编码波形有什么差别?答:当输入编码信号出现长连0时,HDB3码连0个数不超过3个,在第四个电平处正负交替。
而AMI码一直不出现电平跳变,持续保持零电平。
2、观察HDB3编码信号中是否含有直流分量。
将模块2的开关S1、S2、S3、S4拨为00000000 00000000 00000000 00000011,用示波器分别观测编码输入数据和编码输出数据,编码输入时钟和译码输出时钟,调节示波器,将信号耦合状况置为交流,观察记录波形。
保持连线,拨码开关由0到1逐位拨起,直到模块2的拨动开关置为00111111 11111111 11111111 11111111,观察拨码过程中编码输入数据和编码输出数据波形的变化情况。
图7.12 编码输入输出(左)编译码时钟(中)耦合交流(右)图7.13 拨码开关0、1个数相等(左)拨码开关只有两个0(右)观察结果:HDB3码没有直流分量。
编译码时钟信号波形一致,存在延时。
耦合交流波形与原波形保持一致,且电平相同,由此也证明HDB3码无直流分量。
思考:HDB3码是否存在直流分量?答:无直流分量。
从信号功率谱角度来看,双极性码的功率谱不含离散谱分量,即也不存在f=0的直流谱分量。
3、观察HDB3编码信号所含时钟频谱分量。
将模块2的开关S1、S2、S3、S4全部置0,用示波器先分别观测编码输入数据和编码输出数据,再分别观测编码输入时钟和译码输出时钟,观察记录波形。
再将模块2的开关S1、S2、S3、S4全部置1,观察记录波形。
图7.14拨码开关全0(左)编译码时钟(中)拨码开关全1(右)观察结果:输入信号全为0时,相邻非0电平之间连0个数为2,且相邻电平相同;输入信号全1时,HDB3码电平持续跳变,编码信号不存在0电平。
完全符合HDB3码的编码规则。
编译码时钟波形一致,有延时。
思考:数据和时钟是否能恢复?有数字示波器的可以观测编码输出信号FFT频谱。
在恢复时钟方面HDB3码与AMI码比较有哪一个更好?比较不同输入信号时两种码型的时钟恢复情况并联系其编码信号频谱分析原因。
答:数据和时钟可以恢复。
HDB3码恢复时钟效果更好。
因为HDB3码的功率谱在1/2码速处的密度更大,能量更高。
实验十一BPSK调制及解调实验一、实验目的1、掌握BPSK 调制和解调的基本原理;2、熟悉典型电路及BPSK 载波恢复特点与位定时恢复的基本方法;;3、掌握滚降系数的概念及BPSK 调制载波包络的变化。
二、实验项目一BPSK 调制信号观测1、I通道波形2、Q通道波形3、观测“调制输出”图11.1 I通道(左)Q通道(中)调制输出(右)观察结果:BPSK信号可以看作是I、Q双通道的波形合成。
I、Q两通道的波形为2ASK 信号波形。
另外,BPSK信号波形(图11.1右)包络不恒定,主要是因为不同码元之间的相位不连续。
思考:分析以上观测的波形,分析与ASK有何关系?答:BPSK的产生方法与ASK基本一致。
BPSK可以看作是双极性波形下对载波信号进行调制输出。
而ASK信号是单极性调制波形下对载波信号的调制输出。
三、实验项目二BPSK 解调观测1、观测“SIN”2、观测“BPSK解调输出”图11.2“SIN”波形(左)解调输出复位前(中)解调输出复位后(右)观察结果:“SIN”处波形为正弦恢复载波。