第1课时 旋转的概念与性质(教案)
- 格式:doc
- 大小:86.50 KB
- 文档页数:5
初中数学下册旋转教案一、教学目标1. 知识与技能目标:让学生掌握旋转的定义、性质和变换规律,能够运用旋转知识解决实际问题。
2. 过程与方法目标:通过观察、操作、交流、归纳等过程,培养学生的探究能力、动手能力、观察能力以及与他人合作交流的能力。
3. 情感态度与价值观目标:让学生感受数学与生活的紧密联系,培养学习数学的兴趣,激发学生热爱生活的情感。
二、教学内容1. 旋转的定义:在平面内,将一个图形绕着某一点转动一个角度的图形变换叫做旋转。
2. 旋转的性质:(1)旋转不改变图形的大小和形状,只改变图形的位置。
(2)旋转中心确定的旋转方向和旋转角度相同时,图形的变换效果相同。
(3)旋转前后,对应点与旋转中心连线的夹角等于旋转角度。
(4)旋转前后,对应线段的长度、对应角的大小保持不变。
3. 旋转的应用:解决实际问题,如设计图案、制作模型等。
三、教学过程1. 导入新课教师通过展示生活中常见的旋转现象,如风扇、车轮等,引导学生关注旋转现象,激发学生的学习兴趣。
提问:同学们,你们在生活中见到过哪些旋转现象?它们有什么特点?2. 探究旋转的性质(1)教师引导学生观察两个相同的图形,一个静止,一个绕某一点旋转,让学生观察旋转前后的变化。
提问:同学们,你们观察到旋转前后的图形有什么变化?有什么不变的地方?(2)学生动手操作,尝试画出两个相同图形旋转后的位置关系。
教师巡回指导,纠正学生的操作错误。
(3)教师引导学生归纳旋转的性质,学生汇报,教师点评并总结。
3. 应用旋转知识解决实际问题教师提出实际问题,如设计一个对称的图案,让学生运用旋转知识解决问题。
学生独立思考,动手操作,教师巡回指导。
最后,学生展示自己的设计成果,大家共同评价。
4. 课堂小结教师引导学生回顾本节课所学内容,提问:同学们,你们掌握了旋转的哪些知识?你们觉得旋转在实际生活中有哪些应用?四、课后作业1. 完成课后练习题,巩固所学知识。
2. 观察生活中的旋转现象,拍摄照片或绘制图案,下节课分享。
《旋转》數學教案設計《旋转》数学教案设计一、教学目标:1. 知识与技能:理解和掌握旋转的基本概念,能够正确识别和描述物体的旋转运动。
2. 过程与方法:通过观察、操作、讨论等活动,培养学生观察、分析问题的能力,以及抽象思维和空间想象能力。
3. 情感态度价值观:激发学生对数学的兴趣,培养学生的探索精神和团队合作意识。
二、教学重点和难点:重点:理解旋转的概念,掌握旋转的特点和性质。
难点:理解和掌握旋转中心、旋转方向和旋转角度这三个要素。
三、教学过程:1. 引入新课:教师可以通过实物展示(如风车、陀螺等)或者动画视频引入旋转这一主题,让学生直观感受并理解旋转现象。
2. 探索新知:(1) 旋转定义:引导学生通过观察和思考,归纳出旋转的定义——在平面内,一个图形绕着某一点转动一定的角度,这种图形的位置变化叫做旋转。
(2) 旋转要素:讲解旋转的三个要素——旋转中心、旋转方向和旋转角度,并通过实例进行解释说明。
(3) 旋转特点:引导学生通过实际操作,发现并总结旋转的特点,例如旋转后图形的形状和大小不变,只是位置发生了改变。
3. 巩固练习:设计一些简单的题目,让学生运用所学知识解决问题,进一步理解和掌握旋转的相关知识。
4. 小结与拓展:引导学生回顾本节课的学习内容,对旋转的定义、要素和特点进行总结。
然后,可以提出一些开放性的问题,比如“生活中有哪些旋转的现象?”、“你能设计一个利用旋转的装置吗?”等,引导学生进行更深入的思考和探究。
四、教学评价:通过对学生的课堂参与度、作业完成情况、小测验成绩等方面的综合评价,了解学生对旋转的理解和掌握程度,以便及时调整教学策略,提高教学效果。
五、教学反思:在教学过程中,要注重引导学生自主学习和探究,激发他们的学习兴趣和积极性。
同时,也要关注学生的个体差异,提供适当的帮助和支持,以满足他们不同的学习需求。
第二十三章旋转23.1图形的旋转第1课时旋转的概念与性质【知识与技能】通过观察具体实例理解旋转,探索它的基本性质.【过程与方法】在发现、探索的过程中完成对旋转这个图形变化从直观到抽象、从感性理解到理性理解的转变,发展学生直观想象水平,分析、归纳,抽象概括的思维水平.【情感态度】学生在实验探究、知识应用等数学活动中,能体验数学的具体、生动、灵活,增强数学应用意识,调动学生学习数学的主动性.【教学重点】归纳图形的旋转特征.【教学难点】旋转概念的形成过程及性质的探究过程.一、情境导入,初步理解问题 1 以前我们学过图形的平移、轴对称等变换,它们有哪些特征呢?想想看,并与同伴交流.问题2 请观察以下列图形的变化(教师展示实物或图片或用课件展示):(1)时钟针面上时针的转动(顺时针方向旋转和逆时针方向转动);(2)风车的转动;(3)电扇上扇叶的转动;(4)小朋友荡秋千;(5)汽车雨刷的转动;以上图形的转动有什么共同特点呢?你还能举出这样类似的生活中的情境吗?【教学说明】问题1的回顾,可让学生感受到现实生活中存有着平移,轴对称变换,结合问题2,可进一步感受生活中存有着旋转变换,增强探究欲望,进而导入新课.对于问题2,应鼓励学生通过观察、思考、讨论,用自己的语言来描绘这个现象的共同特征,初步感受到旋转的基本性质是绕某一固定点转动一定的角度.二、思考探究,获取新知探究1 如图,用一根细线一端拴住小球,另一端固定在支架上(教师事先准备好实物),当小球绕点O由A摆动至B,由B摆动至A的过程中,试问:小球绕着哪个点转动?它们转动方向如何?转动的角度是哪个角?探究2 如图,用一根较长细线系住木棒AB的两端,再将细线固定于支架上的点O(教师事先准备好实物),再将木棒提取使之自然摆动至A′B′位置.试问:在转动过程中,木棒AB绕着哪一点在转动?木棒AB的长度发生了变化吗?A和A′到点O的距离发生了变化吗?B和B′点呢?由此你能发现哪些重要结论?【教学说明】1.在演示探究2中,应将细线缠绕在支架上点O处,使之不能滑动.2.引导学生认真观察,独立思考过程中,教师可适时予以点拨,从而引出旋转的相关定义,并初步感受旋转的性质,最后师生共同总结.旋转:把一个平面图形绕着平面内某一个点(如点O)旋转一个角度,就叫做图形的旋转.点O称为旋转中心,转动的角度称为旋转角.(注意突出旋转的三个要素:旋转中心、旋转角和旋转方向)对应点:假设图形上的点P经过旋转变为P′,则这两个点叫做这个旋转的对应点.对应线段:假设图形上的线段AB经过旋转变为线段A′B′,则这两条线段称为对应线段,同样地,假设图形上的一个角∠A经过旋转后变为∠A′,则∠A和∠A′称为对应角.对应点和旋转中心之间的夹角称为旋转角.【教学说明】给出相关概念过程中,教师可结合图形让学生明确旋转中的对应点、对应角、对应线段、旋转中心等,即时巩固旋转及其相关概念,同时简要说出一些简单的旋转性质,为后面探索旋转的性质作铺垫.探究3 如图,在硬纸片上,挖一个三角形ABC,再挖一个小洞O作为旋转中心,硬纸板下面再放一张白纸,先在纸上描出这个挖掉的三角形(△ABC),然后围绕旋转中心O转动硬纸板,再描出这个挖掉的三角形(△DEF),移开硬纸板.试问:在旋转的过程中,线段OA与线段OD的大小关系如何?∠AOD与∠BOE及∠COF有什么关系?旋转前后三角形的形状和大小发生了改变吗?【归纳结论】旋转的性质:1.对应点到旋转中心的距离相等;2.对应点与旋转中心所连线段的夹角等于旋转角.3.旋转前后图形的形状、大小完全相同,即它们是全等的.三、使用新知,深化理解1.将图形绕点O旋转,且图形上点P、Q旋转后的对应点分别为P′、Q′,若∠POP′=80°,则∠QOQ′=____,若OQ=2.5cm,则OQ′=____。
《旋转》数学教案标题:《旋转》数学教案一、教学目标:1. 知识与技能:(1)理解旋转的概念,能够识别和描述图形的旋转现象。
(2)掌握旋转的性质,能通过操作活动探究并发现旋转的特点。
2. 过程与方法:(1)通过观察、比较、分析、归纳等活动,培养学生对旋转的理解能力。
(2)通过实际操作,让学生体验旋转的过程,提高学生的空间观念和动手能力。
3. 情感态度与价值观:(1)激发学生对几何学的兴趣,培养他们的探索精神和创新意识。
(2)培养学生的合作意识和团队协作能力。
二、教学重难点:重点:理解旋转的概念,掌握旋转的性质。
难点:通过实际操作,体验旋转的过程,提高学生的空间观念。
三、教学过程:1. 导入新课:教师可以展示一些生活中的旋转实例,如风扇的转动、摩天轮的转动等,引导学生观察这些现象,并提出问题:“这些物体的变化有什么共同之处?”引发学生思考,导入新课。
2. 讲授新课:(1)定义旋转:教师讲解旋转的定义,即在平面内,将一个图形绕着某个固定点按某个方向转动一定的角度,这样的运动称为旋转。
这个固定的点叫做旋转中心,转动的角度叫做旋转角。
(2)理解旋转的性质:教师可以通过演示或动画展示旋转的过程,让学生观察旋转前后图形的位置关系和形状大小是否改变,从而理解旋转的性质。
3. 实践操作:(1)设计实验:教师可以设计一些简单的实验,让学生亲自操作,如用纸片做一个简单的图形,然后围绕一点进行旋转,观察旋转前后的变化。
(2)小组讨论:让学生分组讨论自己在操作过程中观察到的现象,分享自己的理解和发现。
4. 总结回顾:教师引导学生总结本节课的学习内容,强调旋转的概念和性质,同时鼓励学生提出自己的疑问和困惑。
四、作业布置:设计一些相关的练习题,让学生巩固和应用所学知识,例如:找出生活中的一些旋转现象,并尝试描述它们的旋转特点。
五、教学反思:在教学过程中,要注重引导学生主动参与,通过观察、实践、讨论等方式,使他们真正理解和掌握旋转的概念和性质。
旋转的概念与性质教学设计一、教学目标1.知识与技能:●学生能够理解旋转的基本概念,包括旋转中心、旋转方向和旋转角度。
●学生能够掌握旋转的性质,如对应点到旋转中心的距离相等、对应点与旋转中心所连线段的夹角等于旋转角等。
1.过程与方法:●学生能够通过观察、实验和推理,探索旋转的性质。
●学生能够运用旋转的知识解决简单的实际问题。
2.情感态度与价值观:●激发学生对旋转现象的兴趣和好奇心,培养他们的探究精神。
●培养学生运用数学知识解决实际问题的意识和能力。
二、教学重点与难点1.教学重点:●旋转的基本概念和性质。
●旋转的应用。
3.教学难点:●理解旋转的性质,并能够灵活运用。
三、教学准备1.教具:旋转模型、多媒体课件等。
2.学具:学生自备笔记本、铅笔等。
四、教学过程1.导入新课●通过展示一些旋转现象的图片或视频,如钟表指针的转动、风车的转动等,引发学生的兴趣。
●提问学生是否见过这些现象,并让他们尝试描述这些现象的共同特点。
4.探究旋转的基本概念●通过多媒体课件展示旋转的动画,引导学生观察并总结旋转的定义。
●强调旋转中心、旋转方向和旋转角度的概念,并举例说明。
5.探究旋转的性质●引导学生通过观察和实验,探究旋转的性质。
●展示旋转模型,让学生观察对应点到旋转中心的距离是否相等,对应点与旋转中心所连线段的夹角是否等于旋转角。
●让学生分组讨论,并尝试用自己的话解释旋转的性质。
6.应用拓展●给出一些简单的实际问题,让学生尝试运用旋转的知识解决。
●鼓励学生分享自己的解题思路和方法,并进行评价和指导。
7.课堂小结●总结旋转的基本概念和性质,强调它们在日常生活和实际问题中的应用。
●鼓励学生继续观察和探索身边的旋转现象,培养他们的探究精神和实践能力。
五、作业布置1.完成相关练习题,巩固旋转的基本概念和性质。
2.收集身边的旋转现象,并尝试用数学语言描述它们的旋转过程。
六、教学评价1.观察学生在课堂上的表现和参与度,评价他们对旋转概念和性质的理解程度。
2024旋转北师大版数学初三上册教案一、教学目标1.知识与技能了解旋转的概念,掌握旋转的性质和定理。
能够运用旋转的性质解决实际问题。
2.过程与方法培养学生的观察能力、分析能力和解决问题的能力。
培养学生运用数学知识解决实际问题的意识。
3.情感态度与价值观增强学生对数学学习的兴趣,培养学生合作、探究的精神。
二、教学重点与难点1.重点:旋转的概念、性质和定理。
2.难点:运用旋转的性质解决实际问题。
三、教学过程第一课时:旋转的概念与性质1.导入新课通过生活中的实例,引导学生感受旋转现象,激发学生对旋转的兴趣。
2.学习旋转的概念结合实例,讲解旋转的定义,让学生理解旋转的基本要素。
3.学习旋转的性质通过观察图形的旋转,引导学生发现旋转的性质,如:旋转中心、旋转方向、旋转角度等。
4.练习让学生自主完成课本P15页习题,巩固旋转的概念和性质。
5.小结第二课时:旋转的定理与运用1.复习旋转的概念和性质通过提问方式,检查学生对旋转概念和性质的理解。
2.学习旋转的定理结合图形,讲解旋转的定理,如:旋转对称定理、旋转不变定理等。
3.运用旋转定理解决问题出示实际问题,让学生运用旋转的定理进行解答。
4.练习让学生自主完成课本P17页习题,巩固旋转的定理。
5.小结第三课时:旋转的实际应用1.复习旋转的概念、性质和定理通过提问方式,检查学生对旋转知识的掌握。
2.探究旋转的实际应用出示生活中的旋转现象,让学生思考如何运用旋转知识解决问题。
3.解决实际问题让学生分组讨论,运用旋转知识解决实际问题。
4.分享与交流每组选取一名代表,分享本组解决问题的过程和结果。
5.小结第四课时:课堂小结与测试1.复习本节课所学内容通过提问方式,检查学生对旋转知识的掌握。
2.课堂小结3.测试出具测试题,检查学生对旋转知识的掌握程度。
四、教学反思本节课通过生活中的实例引入旋转的概念,让学生感受数学与生活的联系。
在讲解旋转性质和定理时,注重引导学生观察、发现,培养学生的观察能力和分析能力。
《旋转》數學教案設計一千五百字标题:《旋转》数学教案设计一、教学目标:1. 知识与技能:学生能够理解和掌握旋转的基本概念,理解旋转的性质,并能熟练运用到实际问题中。
2. 过程与方法:通过观察、操作和探究,让学生体验旋转的过程,培养学生的空间想象能力和抽象思维能力。
3. 情感态度价值观:培养学生对数学的兴趣和热爱,提高学生的创新意识和实践能力,养成良好的学习习惯。
二、教学内容:1. 旋转的概念2. 旋转的性质3. 旋转的应用三、教学过程:(一) 导入新课教师展示一些生活中常见的旋转现象,如风扇的转动,摩天轮的转动等,引导学生观察并思考这些现象有什么共同点。
然后引出今天的学习主题——旋转。
(二) 新课讲解1. 旋转的概念教师解释旋转的概念,即在平面内,将一个图形绕着某个固定点转动一定的角度,这样的运动叫做旋转。
并举例说明。
2. 旋转的性质(1) 旋转不改变图形的形状和大小。
(2) 图形上的每一点都围绕旋转中心转过了相同的角度。
(3) 绕不同的点旋转,得到的图形是不同的。
3. 旋转的应用教师给出几个实例,让学生应用旋转的知识来解决实际问题,如制作风车,设计图案等。
(三) 巩固练习教师设计一些习题,让学生进行练习,以巩固所学知识。
习题可以包括判断是否为旋转、找出旋转中心和旋转角度、画出旋转后的图形等。
(四) 总结反馈教师和学生一起回顾本节课的内容,总结旋转的概念和性质,强调旋转在生活中的广泛应用。
同时,教师收集学生的反馈,了解学生对本节课的理解程度,以便调整后续的教学计划。
四、教学评估:1. 课堂表现:观察学生在课堂上的参与度和反应,评价学生对旋转的理解程度。
2. 作业完成情况:检查学生的作业,看他们是否能够正确运用旋转的知识解决问题。
3. 测试成绩:通过定期的测试,了解学生对旋转知识的掌握程度。
五、教学反思:通过对教学过程的反思,发现教学中存在的问题,及时调整教学策略,提高教学质量。
例如,如果发现学生在旋转的实际应用方面存在问题,可以在以后的教学中增加更多的实例,让学生有更多的机会进行实践。
人教版九年级数学《旋转》全章导学案第1课时旋转的概念及性质知识点1:旋转的有关概念【例1】如图1-23-29-1,△AOB旋转到△A′OB′的位置. 若∠AOA′=90°,则旋转中心是点O,旋转角是∠AOA′或∠BOB′,点A的对应点是点A′,线段AB的对应线段是A′B′,∠B的对应角是∠B′,∠BOB′=90°.图1-23-29-1,1. 如图1-23-29-2,△ABC绕点C顺时针旋转90°后得到△A′B′C′,则:(1)线段AB的对应线段是A′B′,线段AC的对应线段是A′C,线段BC的对应线段是B′C;(2)∠A的对应角是∠A′,∠B的对应角是∠B′.图1-23-29-2知识点2:运用旋转的基本性质求角度和边长【例2】如图1-23-29-3,△OAB绕点O逆时针旋转90°到△OCD的位置,已知∠AOB =40°,则∠AOD的度数为50°.图1-23-29-3,2. 如图1-23-29-4,Rt△ABC中,∠C=90°,AC=8,BC=6,△ABC绕着点B 逆时针旋转90°到△A′BC′的位置,则AA′的长为( A )图1-23-29-4A. 10 2B. 10C. 20D. 52知识点3:旋转基本性质的简单运用【例3】如图1-23-29-5,△ABC旋转后与△AED重合,且△ABE为等边三角形,那么:(1)旋转中心是点A;(2)旋转方向是顺时针;(3)旋转角是∠BAE或∠CAD;(4)AC的对应线段是AD,BC的对应线段是ED,∠ABC的对应角是∠AED;(5)连接CD,试判断△ACD的形状.图1-23-29-5解:(5)△ACD是等边三角形.,3. 如图1-23-29-6,四边形ABCD是正方形,△ADE旋转后能与△ABF重合.(1)旋转中心是哪一点?(2)旋转了多少度?(3)如果连接EF,那么△AEF是怎样的三角形?图1-23-29-6解:(1)点A.(2)90°.(3)等腰直角三角形.A组4. 下列现象属于旋转的是( C )A. 摩托车在急刹车时向前滑动B. 飞机起飞后冲向空中的过程C. 幸运大转盘转动的过程D. 笔直的铁轨上飞驰而过的火车,5. 如图1-23-29-7,将正方形ABCD中的阴影三角形绕点A顺时针旋转90°后,得到的图形为( A )图1-23-29-76. 如图1-23-29-8,将△ABC绕点O旋转得到△A′B′C′,且∠AOB=30°,∠AOB′=20°,则:图1-23-29-8(1)点B的对应点是点B′;(2)线段OB的对应线段是线段OB′;(3)∠AOB的对应角是∠A′OB′;(4)△ABC旋转的度数是50°.7. 如图1-23-29-9,△ABC绕旋转中心O逆时针旋转60°后到△A′B′C′的位置,则OA=OA′,OB=OB′,AB=A′B′,BC=B′C′,CA=C′A′,∠CAB=∠C′A′B′,∠ABC=∠A′B′C′,∠BCA=∠B′C′A′,∠AOA′=∠COC′或∠BOB′=60°.图1-23-29-9B组8. 如图1-23-29-10,把△AOB绕点O顺时针旋转得到△COD,则旋转角是( A )图1-23-29-10A . ∠AOCB . ∠AODC . ∠AOBD . ∠BOC,9. 如图1-23-29-11,将Rt △ABC 绕直角顶点顺时针旋转90°,得到△A ′B ′C ,连接AA ′,∠1=26°,则∠B 的度数是 71° .图1-23-29-11C 组10. 如图1-23-29-12,△COD 是△AOB 绕点O 顺时针旋转40°后得到的图形.若点C 恰好落在AB 上,且∠AOD 的度数为90°,求∠B 的度数.图1-23-29-12解:由题意,得△AOB ≌△COD , ∴OA =OC ,∠AOB =∠COD.∴∠A =∠OCA ,∠AOC =∠BOD =40°.∴∠OCA =180°-40°2=70°.∵∠AOD =90°, ∴∠BOC =10°.∵∠OCA =∠B +∠BOC , ∴∠B =70°-10°=60°.,11. 如图1-23-29-13,以点A 为中心,把△ABC 逆时针旋转120°,得到△AB ′C ′(点B ,C 的对应点分别为点B ′,C ′),连接BB ′.若AC ′∥BB ′,求∠CAB ′的度数.图1-23-29-13解:∵∠BAB′=∠CAC′=120°,AB =AB′,∴∠AB′B =12×(180°-120°)=30°.∵AC′∥BB′,∴∠C′AB′=∠AB′B =30°.∴∠CAB′=∠CAC′-∠C′AB′=120°-30°=90°.第2课时 旋转的性质应用知识点1:求旋转角的度数【例1】如图1-23-30-1,△ABC 绕点B 逆时针方向旋转到△EBD 的位置.若∠A =15°,∠C =10°,点E ,B ,C 在一条直线上,则旋转角是 25 度,∠ABD = 130 度.图1-23-30-1,1. 如图1-23-30-2,Rt △AOB 绕点O 逆时针旋转到△COD 的位置.若∠BOC =127°,求旋转角的度数.图1-23-30-2解:旋转角的度数为37°.知识点2:旋转基本性质的简单应用【例2】如图1-23-30-3,在Rt △ABC 中,∠ACB =90°. 如果△ABC 经过旋转得到了△EBD ,那么:(1)旋转中心是 点B ; (2)旋转方向是 顺时针 ;(3)旋转角是 ∠CBD 或∠ABE ; (4)如果AC =5 cm ,∠ABC =30°, 那么BE = 10 cm ,DB = 5 3 cm ,ED = 5 cm .图1-23-30-3,2. 如图1-23-30-4,△ABE和△ACD都是等边三角形,△AEC逆时针旋转一定角度后能与△ABD重合,EC与BD相交于点F.(1)旋转中心是点A,旋转角至少是60度;(2)求∠DFC的度数.图1-23-30-4解:(2)易证得△ABD≌AEC.∴∠ADB=∠ACE.∴∠FDC+∠FCD=∠FDC+∠ACD+∠FCA=∠ACD+∠FDC+∠ADB=∠ACD+∠ADC=120°.∴∠DFC=180°-120°=60°.知识点3:旋转基本性质的综合应用【例3】如图1-23-30-5,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=25°.(1)△ACA′是等腰直角三角形;(2)求∠BAA′的度数.图1-23-30-5解:(2)∵AC=A′C,∴∠CAA′=∠CA′A=45°.∴∠CA′B′=∠CA′A-∠1=20°.∴∠BAC=20°,∠CB′A′=70°.∴∠CAA′=∠CB′A′-∠1=45°.∴∠BAA′=∠BAC+∠CAA′=20°+45°=65°.,3. 如图1-23-30-6,在Rt△OAB中,∠OAB=90°,OA=AB=6,将△OAB绕点O沿逆时针方向旋转90°得到△OA1B1.(1)线段OA1的长是6,∠AOB1的度数是135°;(2)连接AA1,求证:四边形OAA1B1是平行四边形.图1-23-30-6(2)证明:∵∠AOA1=∠OA1B1=90°,∴OA∥A1B1.又∵OA=AB=A1B1,∴四边形OAA1B1是平行四边形.A 组4. 如图1-23-30-7,将一个含30°角的直角三角板ABC 绕点A 旋转到△AB ′C ′位置,使得点B ,A ,C ′在同一条直线上,则三角板ABC 旋转的角度是( D )图1-23-30-7A . 60°B . 90°C . 120°D . 150° ,5. 如图1-23-30-8,将△ABC 绕着点C 顺时针旋转50°后得到△A′B′C. 若∠A =40°,∠B′=110°,则∠BCA′的度数是( B )图1-23-30-8A . 90°B . 80°C . 50°D . 30° B 组6. 如图1-23-30-9,把Rt △ABC 绕点A 逆时针旋转40°,得到Rt △AB ′C ′,点C ′恰好落在边AB 上,连接BB ′,求∠BB ′C ′的度数.图1-23-30-9解:∵Rt △ABC 绕点A 逆时针旋转40°得到Rt △AB′C′, ∴AB =AB′,∠BAB′=40°.在△ABB′中,∠ABB′=12×(180°-∠BAB′)=12×(180°-40°)=70°.∵∠AC′B′=∠C =90°, ∴B′C′⊥AB. ∴∠BB′C′=90°-∠ABB′=90°-70°=20°.,7. 如图1-23-30-10,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A 按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,求CD的长.图1-23-30-10解:由旋转的性质,得AD=AB.∵∠B=60°,∴△ABD是等边三角形.∴BD=AB.∵AB=2,BC=3.6,∴CD=BC-BD=3.6-2=1.6.C组8. 如图1-23-30-11,在等边三角形ABC中,D是边AC上一点,连接BD,将△BCD 绕点B逆时针旋转60°,得到△BAE,连接ED.若BC=10,BD=9,求△ADE的周长.图1-23-30-11解:∵将△BCD绕点B逆时针旋转60°,得到△BAE,∴BD=BE,CD=AE,∠DBE=60°.∴△BDE是等边三角形.∴DE=BD=BE=9.∵△ABC是等边三角形,∴BC=AC=10.∴△ADE的周长为AE+AD+DE=CD+AD+DE=AC+BD=10+9=19,即△ADE的周长为19. ,9. 如图1-23-30-12,已知P是正方形ABCD内一点,P A=1,PB=2,PC=3,以点B为旋转中心,将△ABP按顺时针方向旋转,使点A与点C重合,这时P点旋转到G点.(1)求出PG的长度;(2)请你猜想△PGC的形状,并说明理由.图1-23-30-12解:(1)∵∠ABP=∠CBG,∴∠PBG=∠ABC=90°.又∵BP=BG,∴△PBG是等腰直角三角形.∴PG=2PB=2 2.(2)△PGC是直角三角形.理由如下:∵PG=22,GC=PA=1,PC=3,且(22)2+12=32,∴△PGC是直角三角形.第3课时图形的旋转作图知识点1:以图形上的某一点为旋转中心作图【例1】已知如图1-23-31-1,△ABC是等腰直角三角形,∠C为直角. 画出以点A 为旋转中心,逆时针旋转45°后的图形.图1-23-31-1答图23-31-1解:如答图23-31-1,△AB′C′即为所求.,1. 如图1-23-31-2,等边三角形ABC中有一点P,在图中画出△APC绕点A顺时针旋转60°后的△AP1B.图1-23-31-2答图23-31-4解:如答图23-31-4,△AP1B即为所求.知识点2:以图形外的某一点为旋转中心作图【例2】如图1-23-31-3,以点O为中心,把线段AB逆时针旋转90°.图1-23-31-3答图23-31-2解:如答图23-31-2,A′B′即为所求. ,2. 如图1-23-31-4,画出将△ABC绕点O顺时针方向旋转90°后的对应三角形.图1-23-31-4答图23-31-5解:如答图23-31-5,△A′B′C′即为所求.知识点3:网格中的旋转作图【例3】在如图1-23-31-5所示的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC的三个顶点都在格点上. 画出△ABC绕点O顺时针旋转90°后的△A1B1C1.图1-23-31-5答图23-31-3解:如答图23-31-3,△A1B1C1即为所求.3. 如图1-23-31-6,△ABC的顶点坐标分别为A(4,6),B(5,2),C(2,1),如果将△ABC 绕点C按逆时针方向旋转90°得到△A′B′C.(1)画出△A′B′C;(2)写出点A′和B′的坐标.图1-23-31-6答图23-31-6解:(1)如答图23-31-6,△A′B′C即为所求.(2)点A′的坐标为(-3,3),点B′的坐标为(1,4).4. 如图1-23-31-7,画出△ABC绕点A按逆时针方向旋转90°后的△AB′C′.图1-23-31-7答图23-31-7解:如答图23-31-7,△AB′C′即为所求.,5. 如图1-23-31-8,在6×6的方形网格中,有一个Rt△ABC,∠ACB=90°,A,B,C三点都在格点上. 绕点C将△ABC顺时针旋转90°得到△A′B′C,在图中作出△A′B′C.图1-23-31-8答图23-31-8解:如答图23-31-8,△A′B′C即为所求.B组6. 如图1-23-31-9,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出△ABC绕O点逆时针旋转90°得到的△A1B1C1;(2)写出A1,B1,C1的坐标.图1-23-31-9答图23-31-96. 解:(1)如答图23-31-9,△A1B1C1即为所求.(2)A1(-1,1),B1(-2,4),C1(-4,3).,7. 如图1-23-31-10,已知A(-3,-3),B(-2,-1),C(-1,-2)是直角坐标平面上的三点. 画出△ABC绕原点O顺时针旋转90°后的图形,并写出各顶点旋转后的坐标.图1-23-31-10解:图略,旋转后点A,B,C的对应点的坐标分别为(-3,3),(-1,2),(-2,1).C组8. 如图1-23-31-11,在Rt△ABC中,∠ABC=90°,BC=1,AC= 5.(1)以点B为旋转中心,将△ABC沿逆时针方向旋转90°得到△A′BC′,请画出变换后的图形;(2)求点A和点A′之间的距离.图1-23-31-11答图23-31-10解:(1)如答图23-31-10,△A′BC′即为所求. (2)∵∠ABC =90°,BC =1,AC =5,∴AB =(5)2-12=2.∵△ABC 沿逆时针方向旋转90°得到△A′BC′, ∴BA =BA′,∠ABA′=90°. ∴△ABA ′为等腰直角三角形. ∴AA ′=2AB =2 2.9. 如图1-23-31-12,已知四边形ABCD 四个顶点的坐标分别是A (-2,1),B (0,-1),C (3,2),D (0,3),(1)将四边形ABCD 绕原点O 顺时针旋转90°得四边形A 1B 1C 1D 1,画出四边形A 1B 1C 1D 1,并写出A 1,B 1,C 1,D 1的坐标;(2)直接写出四边形ABCD 与四边形A 1B 1C 1D 1重叠部分的面积.图1-23-31-12答图23-31-11解:(1)如答图23-31-11,四边形A 1B 1C 1D 1即为所求,其中,A 1的坐标为(1,2),B 1的坐标为(-1,0),C 1的坐标为(2,-3),D 1的坐标为(3,0).(2)四边形ABCD 与四边形A 1B 1C 1D 1重叠部分的面积为3×3-2×12×2×2-2×12×1×1=4.第4课时中心对称知识点1:中心对称的有关概念【例1】如图1-23-32-1,如果△ABC与△A′B′C′关于点O成中心对称,那么:(1)△ABC绕点O旋转180°后能与△A′B′C′重合;(2)线段AA′,BB′,CC′都经过点O;(3)OA=OA′,OB′=OB,AC=A′C′.图1-23-32-1,1. 下列图形中,△A′B′C′与△ABC成中心对称的是( A )知识点2:中心对称的性质【例2】已知△ABC和△DEF关于点O对称,相应的对称点如图1-23-32-2,则下列结论正确的是( D )图1-23-32-2A. AO=BOB. 点A关于点O的对称点是点DC. BO=EOD. 点D 在BO的延长线上,2. 如图1-23-32-3,△ABC与△A′B′C′是成中心对称的两个图形,则下列说法不正确的是( D )图1-23-32-3A. AB=A′B′,BC=B′C′B. AB∥A′B′,BC∥B′C′C. S△ABC=S△A′B′C′D. △ABC≌△A′OC′知识点3:中心对称的作图【例3】如图1-23-32-4,将△ABC绕着点B旋转180°得到△A2B2C2,画出图形△A2B2C2.图1-23-32-4略.,3. 如图1-23-32-5,已知△ABC和点O,画出△DEF,使△DEF和△ABC关于点O 成中心对称.图1-23-32-5解:如答图23-32-1,△DEF即为所求.答图23-32-1A组4. 如图1-23-32-6,已知△ABC与△A′B′C′关于点O成中心对称,则下列判断不正确的是( B )图1-23-32-6A. ∠ABC=∠A′B′C′B. ∠BOC=∠B′A′C′C. AB=A′B′D. OA=OA′ ,5. 如图1-23-32-7所示四组图形中,左边的图形与右边的图形成中心对称的有( C )图1-23-32-7A. 1组B. 2组C. 3组D. 4组B组6. 如图1-23-32-8,已知△ABC与△DEF关于某点对称,则对称中心是( D )A. 点CB. 点DC. 线段BC的中点D. 线段FC的中点图1-23-32-8,7. 如图1-23-32-9,△ABC和△DEF关于点O成中心对称.(1)作出它们的对称中心O;(2)若AB=6,AC=5,BC=4,求△DEF的周长.图1-23-32-9答图23-32-2解:(1)如答图23-32-2,点O 即为所求. (2)∵△ABC 和△DEF 关于点O 成中心对称, ∴△ABC ≌△DEF.∴AB =DE =6,AC =DF =5,BC =EF =4.∴△DEF 的周长为15. C 组8. 如图1-23-32-10,△ABO 与△CDO 关于点O 中心对称,点E ,F 在线段AC 上,且AF =CE ,求证:DF =BE .图1-23-32-10证明:∵△ABO 与△CDO 关于点O 中心对称, ∴BO =DO ,AO =CO. ∵AF =CE ,∴AO -AF =CO -CE. ∴FO =EO.在△FOD 和△EOB 中,⎪⎩⎪⎨⎧=∠=∠=,,,DO BO EOB FOD EO FO∴△FOD ≌△EOB(SAS).∴DF =BE . ,9. 如图1-23-32-11,将一张直角三角形纸片ABC 沿中位线DE 剪开后在平面上将△BDE 绕着CB 的中点D 逆时针旋转180°,点E 到了点E ′位置,判断四边形ACE ′E 的形状并证明.图1-23-32-11解:四边形ACE′E 的形状是平行四边形. 证明如下:∵DE 是△ABC 的中线,∴DE ∥AC ,DE =12AC.∵将△BDE绕着CB的中点D逆时针旋转180°,点E到了点E′位置,∴DE=DE′.∴EE′=2DE=AC.∴四边形ACE′E的形状是平行四边形.第5课时中心对称图形知识点1:中心对称图形【例1】下面四个手机应用图标中,属于中心对称图形的是( B ),1. 下列图案都是由字母“m”经过变形、组合而成的,其中不是中心对称图形的是( B )知识点2:中心对称与中心对称图形【例2】下列说法错误的是( B )A. 成中心对称的两个图形全等B. 成中心对称的两个图形中,对称点的连线被对称轴平分C. 中心对称图形的对称中心是对称点连线的中心D. 中心对称图形绕对称中心旋转180°后,都能与自身重合,2. 如图1-23-33-1,已知△ABC与△CDA关于点O对称,过点O作EF分别交AD,BC于点E,F. 下列结论:①点E和F,点B和D是关于中心O的对称点;②线段BD必经过点O;③四边形ABCD是中心对称图形;④四边形DEOC与四边形BFOA的面积必相等;⑤△AOE与△COF成中心对称.其中正确的有( D )图1-23-33-1A. 1个B. 2个C. 3个D. 5个知识点3:中心对称图形与轴对称图形【例3】下列图形中,既是轴对称图形又是中心对称图形的是( D ),3. 下列图形中既是中心对称图形又是轴对称图形的是( C )A组4. 下列四个图形是中心对称图形的是( C ),5. 在下列这些汽车标识中,是中心对称图形的是( C )B组6. 北京教育资源丰富,高校林立,下面四个高校校徽主题图案中,既不是中心对称图形,也不是轴对称图形的是( D ),7. “瓦当”是中国古建筑中覆盖檐头筒瓦前端的遮挡,主要有防水、排水、保护木制飞檐和美化屋面轮廓的作用. 瓦当上的图案设计优美,字体行云流水,极富变化,是中国特有的文化艺术遗产. 下列“瓦当”图案中既是轴对称图形又是中心对称图形的是( B )C组8. 如图1-23-33-2是4×4的正方形网格,请在其中选取一个白色的单位正方形并涂黑,使图中黑色部分是一个中心对称图形.图1-23-33-2解:如答图23-33-1.答图23-33-1,9. 如图1-23-33-3①所示的四张牌,若只将其中一张牌旋转180°后得到图1-23-33-3②,则旋转的牌是方块5.图1-23-33-3第6课时关于原点对称的点的坐标知识点1:求关于原点对称的点的坐标【例1】在平面直角坐标系中,点P(1,2)关于原点的对称点P′的坐标是( D )A. (1,2)B. (-1,2)C. (1,-2)D. (-1,-2),1. 已知点A(m,1)与点B(5,n)关于原点对称,则m和n的值为( D )A. m=5,n=-1B. m=-5,n=1C. m=-1,n=-5D. m=-5,n=-1知识点2:求图形中关于原点成中心对称的点的坐标【例2】如图1-23-34-1,▱ABCD的对角线的交点是原点,AD∥BC,D(3,2),C(1.5,-2),则A点的坐标为(-1.5,2),B点的坐标为(-3,-2).图1-23-34-1,2. 如图1-23-34-2,在平面直角坐标系中,▱MNEF的两条对角线ME,NF交于原点O,点F的坐标是(4,2),则点N的坐标为( A )图1-23-34-2A. (-4,-2)B. (-4,2)C. (-2,4)D. (2,4)知识点3:平面直角坐标系中的中心对称【例3】如图1-23-34-3,在边长为1的正方形网格中,△ABC的顶点均在格点上. 画出△ABC关于原点成中心对称的△A′B′C′,并直接写出△A′B′C′各顶点的坐标.图1-23-34-3解:图略.A′(4,0),B′(3,3),C′(1,3).,3. 如图1-23-34-4,△ABC在平面直角坐标系内,顶点坐标分别为A(-1,5),B(-4,2),C(-2,2).(1)画出△ABC关于原点O对称的△A1B1C1;(2)线段BB1的长度为45.图1-23-34-4解:(1)图略.A 组4. 点P (2,-1)关于原点对称的点P ′的坐标是( A ) A. (-2,1) B. (-2,-1) C. (-1,2) D. (1,-2) ,5. 已知点A (a ,-1)与B (2,b )是关于原点O 的对称点,则( B ) A. a =-2,b =-1 B. a =-2,b =1 C. a =2,b =-1 D. a =2,b =16. 若点P 1(m ,-1)关于原点的对称点是P 2(2,n ),则m +n 的值是( B ) A. 1 B. -1 C. 3 D. -3 ,7. 若点P (x ,-3)与点Q (4,y )关于原点对称,则xy 的值是( B ) A. 12 B. -12 C. 64 D. -64 B 组8. 若点A (a -2,3)和点B (-1,2b +2)关于原点对称,求a ,b 的值. 解:∵点A (a -2,3)和点B (-1,2b +2)关于原点对称, ∴a -2=-(-1),3=-(2b +2).解得a =3,b =-52. ,9. 已知点A (1-2x ,y -4)与点B (2y +1,x -1)关于原点对称,求y x . 解:由题意,得⎩⎨⎧--=-+-=-).1(4),12(21x y y x解得⎩⎨⎧==.2,3y x∴y x =23=8.10. 如图1-23-34-5,已知△ABC 中,A (-3,3),B (-4,1),C (-2,2). (1)画出△ABC 关于坐标原点对称的△A 1B 1C 1; (2)写出△A 1B 1C 1各顶点的坐标.图1-23-34-5解:(1)图略. (2)A 1(3,-3), B 1(4,-1),C 1(2,-2).,11. 如图1-23-34-6,在平面直角坐标系网格中,△ABC 的顶点都在格点上,点C 坐标(0,-1).(1)作出△ABC 关于原点对称的△A 1B 1C 1; (2)写出点A 1的坐标.图1-23-34-6解:(1)图略.(2)点A 1的坐标为(1,-2).C 组12. 设点A 与点B 关于x 轴对称,点A 与点C 关于y 轴对称,则点B 与点C( C ) A . 关于x 轴对称 B . 关于y 轴对称 C . 关于原点对称D . 既关于x 轴对称,又关于y 轴对称,13. 已知点P(a +1,2a -3)关于原点的对称点在第二象限,则a 的取值范围是( B )A . a <-1B . -1<a <32C. -32<a<1 D. a>32第7课时课题学习图案设计知识点1:图案的形成【例1】下列图案可以由一个“基本图案”连续旋转45°得到的是( B ),1. 图1-23-35-1所示的左侧3个图形中,能通过旋转得到右侧图形的有( B )图1-23-35-1A. ①②B. ①③C. ②③D. ①②③知识点2:图案的简单设计【例2】在如图1-23-35-2所示的方格纸中,选择标有序号1,2,3,4中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,涂黑的小正方形的序号是4.图1-23-35-2,2. 要在一块长方形的空地上修建一个既是轴对称图形又是中心对称图形的花坛,下列图案不符合设计要求的是( D )知识点3:图案的综合设计【例3】如图1-23-35-3,网格中每个小正方形的边长为1,请你认真观察图1-23-35-3①中的三个网格中阴影部分构成的图案,解答下列问题:图1-23-35-3(1)这三个图案都具有以下特征:都是中心对称图形,都不是轴对称图形;(2)请在图1-23-35-3②中设计出一个面积为4,且具备上述特征的图案,要求所画图案不能与图1-23-35-3①中所给出的图案相同.解:(2)略.,3. 李兵同学家买了新房,准备装修地面,为节约开支,购买了两种质量相同、颜色不同的残缺地砖,现已加工成如图1-23-35-4①的等腰直角三角形形状,李兵同学设计出如图1-23-35-4②所示的四种图案:图1-23-35-4(1)请问你喜欢哪种图案?并简述该图案的形成过程;(2)请你利用平移、旋转、轴对称等知识再设计一幅与上述不同的图案.解:(1)答图23-35-1最后一个图案的形成过程是:以同行或同列的两个小正方形组成的长方形为“基本图案”,绕大正方形的中心旋转180°得到.(2)如答图23-35-1. (答案不唯一)A组4. 在下面的四个设计图案中,可以看作是中心对称图形的是( C ),5. 三菱标志是一种常见的商标,如图1-23-35-5,你认为它是怎样设计的?( D )图1-23-35-5A. 用一个菱形平移得到的B. 用一个菱形经过两次旋转,每次旋转60°得到的C. 用一个菱形经过两次旋转,每次旋转90°得到的D. 用一个菱形经过两次旋转,每次旋转120°得到的B组6. 在俄罗斯方块的游戏中,已拼好的图案如图1-23-35-6,现又出现一小方格体正向下运动,为了使所有图案消失,你必须进行以下哪项操作,才能拼成一个完整图案,使其自动消失?( A )图1-23-35-6A. 顺时针旋转90°,向右平移B. 逆时针旋转90°,向右平移C. 顺时针旋转90°,向下平移D. 逆时针旋转90°,向下平移,7. 下列四个图形中,若以其中一部分作为基本图案,无论用旋转还是平移都不能得到的图形是( C )8. 如图1-23-35-7,香港特别行政区区徽由五个相同的花瓣组成,它是以一个花瓣为“基本图案”通过连续四次旋转所组成,这四次旋转中,旋转角度最小是72度.,9. 下列四个图案中,既可用旋转来分析整个图案的形成过程,又可用平移来分析整个图案的形成过程的是( C )C组10. 如图1-23-35-8,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形). 若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有4种,请画出来.图1-23-35-8答图23-35-2,11. 在如图1-23-35-9的4×4的方格内选5个小正方形,让它们组成一个轴对称图形,请在图中画出你的4种方案. (每个4×4的方格内限画一种)要求:(1)5个小正方形必须相连(有公共边或公共顶点视为相连);(2)将选中的小正方形方格用黑色签字笔涂成阴影图形. (若两个方案的图形经过翻折、平移、旋转后能够重合,均视为一种方案)图1-23-35-9略.第8课时旋转单元复习课知识点1:旋转的相关概念及性质【例1】如图1-23-36-1,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′.若∠AOB=15°,则∠AOB′的度数是( B )图1-23-36-1A. 25°B. 30°C. 35°D. 40°,1. 如图1-23-36-2,将△ABC绕点A顺时针旋转90°得到△AED,若点B,D,E 在同一条直线上,∠BAC=20°,则∠ADB的度数为( C )图1-23-36-2A. 55°B. 60°C. 65°D. 70°知识点2:中心对称与中心对称图形【例2】如图1-23-36-3,△ABC绕点O旋转180°后得到△A1B1C1,下列说法:①∠BAC=∠B1A1C1;②AC=A1C1;③OA=OA1;④△ABC与△A1B1C1的面积相等.其中正确的有( D )图1-23-36-3A. 1个B. 2个C. 3个D. 4个2. 如图1-23-36-4,下列图案均是名车的标志,在这些图案中,是中心对称图形的有( C )图1-23-36-4A. 1个B. 2个C. 3个D. 4个知识点3:坐标与旋转变换【例3】如图1-23-36-5,若将△ABC绕点O逆时针旋转90°.(1)画出旋转后的图形△A1B1C1;(2)点B1的坐标为(-2,4).图1-23-36-5解:(1)略.3. △ABC在平面直角坐标系中的位置如图1-23-36-6,其中每个小正方形的边长为1个单位长度.(1)画出△ABC关于原点O的中心对称图形△A1B1C1;(2)△A1B1C1中顶点A1的坐标为(1,-2),若P(a,b)为△ABC边上一点,则按照(1)中作图,点P对应的点P1的坐标为(-a,-b).图1-23-36-6解:(1)略.A组4. 下列现象:①时针的转动;②摩天轮的转动;③地下水位逐年下降;④传送带上的机器人. 其中,属于旋转的是( A )A. ①②B. ②③C. ①④D. ③④,5. 在平面直角坐标系中,点A(5,6)关于原点对称的点的坐标是( C )A. (-5,6)B. (5,-6)C. (-5,-6)D. (-6,-5)6. 如图1-23-36-7,点A,B,C,D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转角为90°.图1-23-36-77. 下列图标中,既是轴对称图形,又是中心对称图形的是( D )B组8. 如图1-23-36-8,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,则∠OFA的度数是( B )图1-23-36-8A. 20°B. 25°C. 30°D. 35°,9. 如图1-23-36-9,在等边三角形ABC中,AB=6,点D是BC的中点,将△ABD 绕点A逆时针旋转后得到△ACE,那么线段DE的长为( C )图1-23-36-9 A . 2 3B . 6C . 3 3D . 4 2C 组10. 如图1-23-36-10,Rt △ABC 中,∠C =90°,把Rt △ABC 绕着点B 逆时针旋转,得到Rt △DBE ,点E 在AB 上.(1)若∠BDA =70°,求∠BAC 的度数;(2)若BC =8,AC =6,求△ABD 中AD 边上的高的长.图1-23-36-10解:(1)由旋转性质知BD =BA ,∠CBA =∠EBD.∵∠BDA =70°,∴∠BAD =70°.∴∠ABD =∠ABC =40°.∵∠C =90°,∴∠BAC =50°.答图23-36-1(2)∵BC =8,AC =6,∠C =90°,∴AB =10.由旋转性质知△ABC ≌△DBE ,则BE =BC =8,DE =AC =6,∴AE =2.在Rt △ADE 中, AD =DE 2+AE 2=62+22=210.作BF ⊥AD 于点F ,如答图23-36-1.∵BA =BD ,∴AF =12AD =10,则BF = BA 2-AF 2=102-(10)2=310.,11. 如图1-23-36-11,正方形ABCD 的边长为3,E ,F 分别是AB ,BC 边上的点,且∠EDF =45°. 将△DAE 绕点D 逆时针旋转90°,得到△DCM .(1)求证:EF =FM ;(2)当AE =1时,求EF 的长.图1-23-36-11(1)证明:∵∠EDF =45°,∴∠ADE +∠FDC =45°.由旋转的性质可知,∠CDM =∠ADE ,DE =DM ,F ,C ,M三点共线,∴∠FDM =45°.∴∠FDM =∠EDF.在△EDF 和△MDF 中,⎪⎩⎪⎨⎧=∠=∠=,,,DF DF MDF EDF DM DE∴△EDF ≌△MDF(SAS ).∴EF =FM.(2)解:设EF =MF =x.∵AE =CM =1,BC =3,∴BM =BC +CM =3+1=4.∴BF =BM -MF =BM -EF =4-x.∵EB =AB -AE =3-1=2,在Rt △EBF 中,由勾股定理,得EB 2+BF 2=EF 2,即22+(4-x )2=x 2. 解得x =2.5,则 EF =2.5.。
3.2图形的旋转第1课时旋转的定义和性质1.掌握旋转的概念,了解旋转中心,旋转角,旋转方向,对应点的概念及其应用;2.掌握旋转的性质,应用概念及性质解决一些实际问题.(重点,难点)一、情境导入飞行中的飞机的螺旋桨、高速运转中的电风扇等均属于旋转现象.你还能举出类似现象吗?二、合作探究探究点一:旋转的定义【类型一】旋转的认识如图,将左边叶片图案旋转180°后,得到的图形是()解析:将叶片图案旋转任何角度和A、B中的图案均不重合;不旋转或旋转360°后和C中的图案重合,不合要求;顺时针或逆时针旋转180°后只和D中的图案重合,故选D.【类型二】旋转图形的识别下列图形:线段、等边三角形、正方形、等腰梯形、正五边形、圆,其中是旋转对称图形的有哪些?解析:由旋转对称图形的定义逐一判断求解.解:线段、等边三角形、正方形、正五边形、圆都是旋转对称图形.方法总结:判断一个图形是否是旋转对称图形,其关键是要看这个图形能否找到一个旋转中心,且图形能绕着这个旋转中心旋转一定角度与自身重合.【类型三】旋转角的判断如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转的角度为()A.30°B.45°C.90°D.135°解析:对应点与旋转中心的连线的夹角,就是旋转角,∠BOD,∠AOC都是旋转角.由图可知,OB、OD是对应边,∠BOD是旋转角,所以,旋转角∠BOD=90°.故选C.探究点二:旋转的性质【类型一】旋转性质的理解如图,四边形ABCD是边长为4的正方形且DE=1,△ABF是△ADE旋转后的图形.(1)旋转中心是哪一点?(2)旋转了多少度?。
第二十三章旋转
23.1图形的旋转
第1课时旋转的概念与性质
【知识与技能】
通过观察具体实例认识旋转,探索它的基本性质.
【过程与方法】
在发现、探索的过程中完成对旋转这一图形变化从直观到抽象、从感性认识到理性认识的转变,发展学生直观想象能力,分析、归纳,抽象概括的思维能力.
【情感态度】
学生在实验探究、知识应用等数学活动中,能体验数学的具体、生动、灵活,增强数学应用意识,调动学生学习数学的主动性.
【教学重点】
归纳图形的旋转特征.
【教学难点】
旋转概念的形成过程及性质的探究过程.
一、情境导入,初步认识
问题 1 以前我们学过图形的平移、轴对称等变换,它们有哪些特征呢?想想看,并与同伴交流.
问题2 请观察下列图形的变化(教师展示实物或图片或用课件展示):
(1)时钟针面上时针的转动(顺时针方向旋转和逆时针方向转动);
(2)风车的转动;
(3)电扇上扇叶的转动;
(4)小朋友荡秋千;
(5)汽车雨刷的转动;
以上图形的转动有什么共同特点呢?你还能举出这样类似的生活中的情境吗?
【教学说明】问题1的回顾,可让学生感受到现实生活中存在着平移,轴对称变换,结合问题2,可进一步感受生活中存在着旋转变换,增强探究欲望,进而导入新课.对于问题2,应鼓励学生通过观察、思考、讨论,用自己的语言来描述这个现象的共同特征,初步感受到旋转的基本性质是绕某一固定点转动一定的角度.
二、思考探究,获取新知
探究1 如图,用一根细线一端拴住小球,另一端固定在支架上(教师事先准备好实物),当小球绕点O由A摆动至B,由B摆动至A的过程中,试问:小球绕着哪个点转动?它们转动方向如何?转动的角度是哪个角?
探究2 如图,用一根较长细线系住木棒AB的两端,再将细线固定于支架上的点O(教师事先准备好实物),再将木棒提取使之自然摆动至A′B′位置.试问:在转动过程中,木棒AB绕着哪一点在转动?木棒AB的长度发生了变化吗?A和A′到点O的距离发生了变化吗?B和B′点呢?由此你能发现哪些重要结论?
【教学说明】
1.在演示探究2中,应将细线缠绕在支架上点O处,使之不能滑动.
2.引导学生认真观察,独立思考过程中,教师可适时予以点拨,从而引出旋转的相关定义,并初步感受旋转的性质,最后师生共同总结.
旋转:把一个平面图形绕着平面内某一个点(如点O)旋转一个角度,就叫做图形的旋转.点O称为旋转中心,转动的角度称为旋转角.(注意突出旋转的三个要素:旋转中心、旋转角和旋转方向)
对应点:如果图形上的点P经过旋转变为P′,则这两个点叫做这个旋转的对应点.
对应线段:如果图形上的线段AB经过旋转变为线段A′B′,则这两条线段称为对应线段,同样地,如果图形上的一个角∠A经过旋转后变为∠A′,则∠A和∠A′称为对应角.
对应点和旋转中心之间的夹角称为旋转角.
【教学说明】给出相关概念过程中,教师可结合图形让学生明确旋转中的对应点、对应角、对应线段、旋转中心等,及时巩固旋转及其相关概念,同时简要说出一些简单的旋转性质,为后面探索旋转的性质作铺垫.
探究3 如图,在硬纸片上,挖一个三角形ABC,再挖一个小洞O作为旋转中心,硬纸板下面再放一张白纸,先在纸上描出这个挖掉的三角形(△ABC),然后围绕旋转中心O转动硬纸板,再描出这个挖掉的三角形(△DEF),移开硬纸板.
试问:在旋转的过程中,线段OA与线段OD的大小关系如何?∠AOD与∠BOE及∠COF有什么关系?旋转前后三角形的形状和大小发生了改变吗?
【归纳结论】
旋转的性质:
1.对应点到旋转中心的距离相等;
2.对应点与旋转中心所连线段的夹角等于旋转角.
3.旋转前后图形的形状、大小完全相同,即它们是全等的.
三、运用新知,深化理解
1.将图形绕点O旋转,且图形上点P、Q旋转后的对应点分别为P′、Q′,若∠POP′=80°,则∠QOQ′=____,若OQ=
2.5cm,则OQ′=____。
2.从3点到5点,钟表上时针转过的角度为____。
3.如图,将四边形AOBC绕点O按逆时针方向旋转45°至DOEF位置,在这个旋转过程中:
(1)旋转中心是什么?
(2)经过旋转,点A、B、C分别移动到什么位置?
(3)AO与DO,BO与EO的大小关系如何?
(4)若∠C=30°,则图中哪个角的度数也是30°?
(5)∠AOD与∠BOE的度数分别是多少?你能说明理由吗?
4.如图,E是正方形ABCD中CD边上任意一点,以A为中心,把△ADE 顺时针旋转90°,画出旋转后的图形.
【教学说明】让学生通过随堂演练,加深对知识的理解,教学时,应给予充裕时间让学生自主探究,独立思考,最后师生共同给出答案,让学生自己查漏补缺,完善认知.
【答案】
1.80°;
2.5cm
2.60°
3.(1)旋转中心是点O;
(2)点A、B、C经过旋转后移至D、E、F位置;
(3)OA=OD,OB=OE;
(4)∠F=30°;
(5)∠AOD=∠BOE=45°,因为它们都等于旋转角.
4.因为点A为旋转中心,所以它的对应点是它本身.正方形ABCD中,
AB=AD,∠DAB=90°,故旋转后点D与点B重合;又旋转后的图形与△ADE 全等,故∠ABE′=∠ADE,BE′=DE,即点E的对应点在CB的延长线上,且BE′=DE,则△ABE′为旋转后的图形,图略.
四、师生互动,课堂小结
通过这节课的学习,你有哪些收获和体会?
【教学说明】教师提出问题,让学生自主小结,并交流学习心得体会,加深对本节知识的理解,并反思学习过程中的方法,领会本节的数学思想.
1.布置作业:从教材“习题23.1”中选取.
2.完成练习册中本课时练习的“课时作业”部分.
1.积极创设情境,激发学生学习的好奇心和求知欲.以“丰富的生活中的旋转”作为情境引入,这一活动的设计,极大地吸引了学生的注意力,引发了学生的好奇心和求知欲,接着,让学生说出它们的共同点,再让学生举一些旋转的例子,激发学生主动参与探索新知的兴趣.
2.此外,本节课需要注意的地方:(1)教师在提问时需给学生充分思考的时间,帮助学生养成良好的思考、分析习惯.(2)如何将“创设情境”有机地与教学结合起来,更有效地为教学服务.问题情境的创设不能流于形式,而应更多的考虑学生的年龄特征、兴趣爱好,多从学生的角度来设计、创造.。