模拟式传感器信号的检测讲解
- 格式:ppt
- 大小:1.94 MB
- 文档页数:86
《认识传感器》讲义一、什么是传感器在我们的日常生活和各种科技应用中,传感器扮演着极其重要的角色。
但到底什么是传感器呢?简单来说,传感器就是一种能够感知和检测环境中各种物理量、化学量或生物量,并将其转化为可测量和可处理的电信号的装置。
它就像是我们人体的感觉器官,比如眼睛能感知光线、耳朵能感知声音。
但传感器比我们的感觉器官更加精确和灵敏,能够检测到人类无法直接感知的微小变化。
传感器的应用范围非常广泛,从智能手机、汽车、医疗设备到工业自动化、航空航天等领域,几乎无处不在。
二、传感器的工作原理传感器的工作原理基于物理、化学或生物的各种效应和规律。
不同类型的传感器有着不同的工作原理,但总体来说,都包括以下几个主要步骤:首先是感知环节,传感器通过特定的结构或材料与被测量的对象相互作用。
例如,温度传感器中的热敏电阻会随着温度的变化而改变电阻值;压力传感器中的弹性元件会在压力作用下发生形变。
然后是转换环节,将感知到的物理量或化学量转换为电信号。
这通常通过一些电学元件或电路来实现,比如将电阻的变化转换为电压的变化。
最后是输出环节,将转换后的电信号进行处理和放大,以便后续的测量、控制或传输。
三、传感器的分类传感器的种类繁多,为了便于理解和应用,我们可以按照不同的标准对其进行分类。
按照被测量的物理量分类,可以分为温度传感器、压力传感器、湿度传感器、位移传感器、速度传感器、加速度传感器、光照传感器、声音传感器等等。
按照工作原理分类,有电阻式传感器、电容式传感器、电感式传感器、压电式传感器、光电式传感器、磁电式传感器等等。
按照输出信号的类型分类,可分为模拟式传感器和数字式传感器。
模拟式传感器输出连续变化的电信号,而数字式传感器则输出离散的数字信号。
四、常见传感器的介绍1、温度传感器温度传感器是最常见的传感器之一,用于测量物体或环境的温度。
常见的温度传感器有热电偶、热电阻(如铂电阻、热敏电阻)和半导体温度传感器等。
热电偶是利用两种不同金属的热电效应来测量温度的,其优点是测量范围广、响应速度快。
传感器原理及检测技术传感器是一种能够将物理量或化学量转换成可测量信号的设备。
它在现代科技中发挥着重要作用,广泛应用于工业、农业、医疗等领域。
本文将介绍传感器的原理、种类以及常见的检测技术。
一、传感器的原理传感器的原理基于物理量与电信号之间的相互转换。
一般来说,传感器由灵敏元件、信号处理电路和输出装置组成。
灵敏元件是传感器的核心。
它能够将物理变量转换成电信号。
常见的灵敏元件有电阻、电容、电势、磁阻、磁感应等,它们的变化都可以通过电路检测到。
信号处理电路用于对传感器输出的信号进行放大、滤波等处理,以确保信号的准确性和稳定性。
它可以是模拟电路或数字电路,根据具体应用需求选择。
输出装置将经过信号处理的电信号转换成可供外部系统读取或显示的形式,如数字显示器、计算机接口等。
二、传感器的种类传感器按照测量物理量的不同可以分为多种类型,包括温度传感器、压力传感器、湿度传感器、光传感器等。
以下是其中几种常见传感器的简要介绍:1. 温度传感器:用于测量物体的温度,常见的有热电偶、热电阻等。
2. 压力传感器:用于测量气体或液体的压力,广泛应用于工业自动化、航空航天等领域。
3. 湿度传感器:用于测量空气中的湿度,常见的有电容式湿度传感器、电阻式湿度传感器等。
4. 光传感器:用于测量环境光强度或接收光信号,包括光电二极管、光敏电阻和光电导。
三、传感器的检测技术传感器的检测技术包括校准、线性化和误差补偿等。
这些技术能够提高传感器的精确度和可靠性。
1. 校准:通过与标准样品进行比较,调整传感器的输出,使之达到准确的测量结果。
2. 线性化:对于非线性传感器,通过数学模型进行线性化处理,使输出信号与被测量的物理量成线性关系。
3. 误差补偿:传感器在工作过程中可能会出现一些误差,例如零点漂移、温度影响等。
合理的误差补偿技术能够提高传感器的精度和稳定性。
四、传感器的应用传感器在各个领域都有广泛的应用。
以下是几个示例:1. 工业领域:传感器在工业自动化、机器人控制、生产线监测等方面发挥重要作用,能够实现实时监测和控制。
数字式传感器与模拟式传感器的区别数字式传感器的性能区别于模拟式汽车衡,主要有以下几点:(1)解决模拟式传感器信号弱的问题模拟式传感器的输出信号最大一般在几十毫伏,最低时只有百万分之几毫伏。
在电缆传输这些弱信号过程中,很容易受到干扰,从而造成系统工作不稳定或计量性能降低。
而数字式传感器的输出信号均在3~4V左右,其抗干扰能力远大于模拟信号的百万倍。
(2)解决射频干扰问题模拟式称重传感器的低电压信号极易受到电子干扰及其它天线电信号的干扰,而数字式称重传感器在设计时已考虑到这些抗干扰能力,它们可以在高干扰区域,并保证计量性能。
(3)解决防潮、防腐问题数字式传感器采用100%不锈钢焊接壳体。
密封、防水、防潮湿、防腐蚀,适用于各种恶劣工作环境,计量性能不受任何影响,防护等级达到IP68。
(4)解决防雷击问题数字式传感器具有防雷击和大电流放电能力,在室外安装使用时,这一点尤其重要。
METTLER-TOLEDO数字式汽车衡系统通过美国权威机构Lightning Technologies,INC的雷击测试。
(5)解决偏载/温度影响问题数字式称重传感器能自动补偿和调整因偏载和温度变化而产生影响。
(6)解决时间效应—蠕变问题当负荷时间加在-称重传感器上时,其输出常有较大变化,数字式称重传感器通过内部微处理器里的软件,自动补偿了蠕变。
(7)数字式汽车衡称重精度、稳定性和可靠性更高,减少模拟式汽车衡经常引起的误差由于经校正后的称重数据是以数字形式存储在每个传感器内部的,因此就减少了模拟信号引起的积累误差。
这些误差通常都是由于模拟信号在传输过程中由接头、接线排(端子)、电位器、开关及长电缆等因素造成的。
数字式称重传感器的补偿/修正参数存储在传感器内部的永久性存储器中,因此,省掉了开关/电位器等元器件。
(8)具有自诊断功能数字式传感器具有自诊断功能。
它不断对内部工作状况进行检测,当检测到出现故障时,会发出错误代码,这就大大降低了漏检故障的可能性,这也是模拟式称重传感器无法做到的。
习 题 四4-1、模拟式传感器信号处理过程包括哪些环节?对转换后的电信号进行测量,并进行放大、运算、转换、记录、指示、显示等处理4-2、试简述光电式转速传感器的测量原理光电式转速传感器是一种角位移传感器,由装在被测轴(或与被测轴相连接的输入轴)上的带缝隙圆盘、光源、光电器件和指示缝隙盘组成,如图所示。
光源发生的光通过缝隙圆盘和指示缝隙照射到光电器件上。
当缝隙圆盘随被测轴转动时,由于圆盘上的缝隙间距与指示缝隙的间距相同,因此圆盘每转一周,光电器件输出与圆盘缝隙数相等的电脉冲,根据测量单位时间内的脉冲数N,则可测出转速。
4-3、试简述加速度传感器的测量原理。
工作原理都是利用惯性质量受加速度所产生的惯性力而造成的各种物理效应,进一步转化成电量,间接度量被测加速度。
最常用的有应变式、压电式、电磁感应式等。
4-4、描述传感器静态特性的主要技术指标是什么?传感器变换的被测量的数值处在稳定状态时,传感器的输入/输出关系称为传感器的静态特性。
描述传感器静态特性的主要技术指标是:线性度、灵敏度、迟滞、重复性、分辨率和零漂4-5、检测系统由哪几部分组成?说明各部分的作用?敏感元件 是一种能够将被测量转换成易于测量的物理量的预变换装置传感元件 是将敏感元件输出的非电物理量转换成电信号(如电阻、电感、电容等)形式。
基本转换电路将电信号量转换成便于测量的电量,如电压、电流、频率等。
4-6、热电偶回路中的热电势的组成。
两种不同材料组成的热电偶,其接点温度为T1和T2,两者之间的热电势E(1,2)等于热电偶在连接点温度为T1和T3的电势与T3和T2的电势之和。
即E(1,2)=E(1,3)+E(3,2)4-7、热电偶冷端的温度补偿方法?热电偶参比端(冷端)处理。
实际使用中给出的分度表里,热电势和温度的对应值是以冷端为零度时来制定的。
但在实际中冷端往往不为零度,这就要对冷端进行处理。
1冰点法精度最高,将冰水混合物放在保温瓶中,再把细玻璃试管插入冰水化合物中,在试管底部注入适量油类或水银。
传感器中的信号检测和处理方法信号检测和处理是传感器技术中至关重要的一环。
传感器通过感知和测量物理量或环境信息,将其转化为电信号进行传输和处理。
本文将介绍一些常见的传感器中的信号检测和处理方法。
一、信号检测方法1. 阈值检测法阈值检测法是一种最简单的信号检测方法。
传感器输出的信号与预设的阈值进行比较,如果超过阈值,则认为信号存在,否则认为信号不存在。
该方法适用于检测信号的存在与否,但无法提供信号的具体数值信息。
2. 滤波检测法滤波检测法通过滤波器对信号进行处理,滤除噪声和干扰,提取出感兴趣的信号成分。
常用的滤波器包括低通滤波器、高通滤波器和带通滤波器等。
滤波检测法可以提高信号的质量和可靠性。
3. 相关检测法相关检测法通过与模板信号进行相关运算,判断信号与模板之间的相似度。
利用相关性的测量指标,可以实现对信号的匹配和识别。
这种方法在模式识别和信号匹配方面被广泛应用。
二、信号处理方法1. 数字信号处理数字信号处理采用数字技术对信号进行处理和运算。
它可以对信号进行采样、量化和编码,然后通过数字滤波、谱分析等算法实现信号的处理和分析。
数字信号处理具有高精度、高灵活性和抗干扰能力强的优点。
2. 模数转换模数转换是将模拟信号转换为数字信号的过程。
传感器通常输出的是模拟信号,通过模数转换,可以将其转换为数字信号进行处理。
模数转换可以采用脉冲编码调制、脉冲宽度调制等方法。
3. 压缩与编码在一些特殊应用中,为了减小数据的存储和传输量,可以对信号进行压缩与编码处理。
压缩与编码技术可以将冗余信息删除或者利用编码算法将信号进行压缩表示,从而减小信号的存储空间和传输带宽。
三、信号检测和处理系统的设计为了实现对传感器输出信号的检测和处理,需要设计相应的信号检测和处理系统。
一个完整的信号检测和处理系统通常包括信号传感、信号调理、信号处理和显示输出等模块。
1. 信号传感信号传感模块负责将被测量的物理量或环境信息转换为模拟信号。
传感器的选择和布置对信号检测的准确性和可靠性有很大影响,需要根据具体应用的需求进行选择。
一、实训目的通过本次实训,使学员掌握模拟式光电传感器的工作原理、性能特点、应用领域以及实际操作技能。
了解模拟式光电传感器在工业自动化控制、智能机器人、安全防护等领域的应用,提高学员的实际操作能力和综合素质。
二、实训内容1. 模拟式光电传感器的基本原理及工作原理(1)基本原理:模拟式光电传感器是一种利用光电效应将光信号转换为电信号的传感器。
当光线照射到光电元件上时,光电元件会产生电流,电流的大小与光强成正比。
(2)工作原理:模拟式光电传感器主要由光电元件、信号处理电路、输出电路等组成。
当光线照射到光电元件上时,光电元件产生电流,电流经过信号处理电路处理后,输出与光强成比例的电压或电流信号。
2. 模拟式光电传感器的性能特点(1)响应速度快:模拟式光电传感器响应速度快,能够在短时间内完成光信号到电信号的转换。
(2)抗干扰能力强:模拟式光电传感器具有良好的抗干扰能力,能够适应复杂的工作环境。
(3)线性度好:模拟式光电传感器的输出信号与输入光强之间具有良好的线性关系。
(4)易于集成:模拟式光电传感器体积小、重量轻,便于与其他电子元件集成。
3. 模拟式光电传感器的应用领域(1)工业自动化控制:在工业生产过程中,模拟式光电传感器可用于检测物体的位置、尺寸、颜色等参数,实现自动控制。
(2)智能机器人:在智能机器人领域,模拟式光电传感器可用于环境感知、路径规划、物体识别等功能。
(3)安全防护:在安全防护领域,模拟式光电传感器可用于红外探测、烟雾检测、火焰检测等,提高安全性能。
4. 实训操作(1)实训器材:模拟式光电传感器、信号处理电路、输出电路、实验平台等。
(2)实训步骤:①连接模拟式光电传感器与信号处理电路,确保连接正确。
②调整模拟式光电传感器的光轴,使其对准光源。
③开启实验平台,观察模拟式光电传感器的输出信号。
④调整光源的强度,观察模拟式光电传感器的输出信号变化。
⑤分析模拟式光电传感器的输出信号与光强之间的关系。
一、实训背景随着科技的不断发展,传感器在各个领域得到了广泛应用。
传感器信号检测技术是传感器技术的重要组成部分,它通过对传感器输出的信号进行检测、处理和分析,为用户提供可靠的测量数据。
为了提高自身对传感器信号检测技术的理解和应用能力,我们进行了本次实训。
二、实训目的1. 理解传感器信号检测的基本原理和流程;2. 掌握常用传感器信号检测方法;3. 熟悉传感器信号检测仪器的使用;4. 提高实际操作能力和故障排除能力。
三、实训内容1. 传感器信号检测原理传感器信号检测主要包括以下几个步骤:(1)信号采集:将传感器输出的微弱信号转换为电信号;(2)信号放大:提高信号幅度,使其达到后续处理所需的水平;(3)信号滤波:去除信号中的噪声,提高信号质量;(4)信号处理:对信号进行数学运算,提取有用信息;(5)信号显示:将处理后的信号以图表或数值形式显示出来。
2. 常用传感器信号检测方法(1)模拟信号检测:将传感器输出的模拟信号通过放大、滤波等处理,再进行显示或记录;(2)数字信号检测:将传感器输出的模拟信号转换为数字信号,再进行检测和处理;(3)频谱分析:通过对信号进行频谱分析,提取信号中的频率成分;(4)时域分析:通过对信号进行时域分析,提取信号中的时间信息。
3. 传感器信号检测仪器(1)示波器:用于观察和分析信号的波形;(2)信号发生器:用于产生各种信号,为传感器信号检测提供参考;(3)频谱分析仪:用于分析信号的频谱成分;(4)数据采集器:用于采集传感器信号,并将信号转换为数字信号。
四、实训过程1. 实验准备(1)熟悉实训仪器和设备的使用方法;(2)了解实训内容,明确实验目的和步骤;(3)准备实验数据,包括传感器参数、信号波形等。
2. 实验步骤(1)搭建实验电路,连接传感器和检测仪器;(2)设置传感器参数,如灵敏度、量程等;(3)采集传感器信号,并进行放大、滤波等处理;(4)观察信号波形,分析信号特征;(5)记录实验数据,进行数据处理和分析。
传感器与检测技术知识总结1:传感器是能感受规定的被检测量并按照一定规律转换成可输出信号的器件或装置。
一、传感器的组成2:传感器一般由敏感元件,转换元件及基本转换电路三部分组成。
①敏感元件是直接感受被测物理量,并以确定关系输出另一物理量的元件(如弹性敏感元件将力,力矩转换为位移或应变输出)。
②转换元件是将敏感元件输出的非电量转换成电路参数(电阻,电感,电容)及电流或电压等电信号。
③基本转换电路是将该电信号转换成便于传输,处理的电量。
二、传感器的分类1、按被测量对象分类(1)内部信息传感器主要检测系统内部的位置,速度,力,力矩,温度以及异常变化。
(2)外部信息传感器主要检测系统的外部环境状态,它有相对应的接触式(触觉传感器、滑动觉传感器、压觉传感器)和非接触式(视觉传感器、超声测距、激光测距)。
2、传感器按工作机理(1)物性型传感器是利用某种性质随被测参数的变化而变化的原理制成的(主要有:光电式传感器、压电式传感器)。
(2)结构型传感器是利用物理学中场的定律和运动定律等构成的(主要有①电感式传感器;②电容式传感器;③光栅式传感器)。
3、按被测物理量分类如位移传感器用于测量位移,温度传感器用于测量温度。
4、按工作原理分类主要是有利于传感器的设计和应用。
5、按传感器能量源分类(1)无源型:不需外加电源。
而是将被测量的相关能量转换成电量输出(主要有:压电式、磁电感应式、热电式、光电式)又称能量转化型;(2)有原型:需要外加电源才能输出电量,又称能量控制型(主要有:电阻式、电容式、电感式、霍尔式)。
6、按输出信号的性质分类(1)开关型(二值型):是“1”和“0”或开(ON)和关(OFF);(2)模拟型:输出是与输入物理量变换相对应的连续变化的电量,其输入/输出可线性,也可非线性;(3)数字型:①计数型:又称脉冲数字型,它可以是任何一种脉冲发生器所发出的脉冲数与输入量成正比;②代码型(又称编码型):输出的信号是数字代码,各码道的状态随输入量变化。
检测电磁式传感器的方法
检测电磁式传感器可以采用以下方法:
1. 多米诺测试法:通过推动多米诺骨牌,利用电磁式传感器检测到骨牌的运动,从而可以判断传感器是否正常工作。
2. 磁场检测法:利用磁场探测仪或磁力计测量电磁式传感器的磁场强度,以确定传感器工作的正常与否。
3. 电流检测法:通过连接电磁式传感器的线圈,测量传感器输出的电流大小,以验证传感器是否正确工作。
4. 频率检测法:根据电磁式传感器的工作原理,向传感器施加特定频率的电信号,观察传感器是否能正确响应并输出相应的信号。
5. 模拟信号检测法:利用示波器或万用表等测量仪器,直接连接到电磁式传感器的电路,检测传感器输出的模拟信号是否符合预期。
6. 数字信号检测法:通过连接电磁式传感器的数字接口,使用适当的测试设备或软件,检测传感器输出的数字信号的准确性和稳定性。
在进行电磁式传感器的测试时,需要仔细阅读传感器的操作手册或者技术规格,以了解传感器的工作原理和相关参数,确保测试的准确性和可靠性。
模拟量传感器原理
模拟量传感器是将物理量转化为与之相关的模拟电信号的装置。
它通过感知、测量物理量并将其转换成模拟电压或电流信号来反映物理量的变化情况。
模拟量传感器的原理可以归纳为以下几个步骤:
1. 传感器感知物理量:模拟量传感器能够感知各种不同的物理量,例如温度、压力、湿度等。
感知过程通常基于传感器内部的敏感元件,如热敏电阻、应变计等。
传感器的设计取决于要测量的物理量类型。
2. 转换电信号:传感器内部的感知元件将物理量转化为对应的电信号。
这通常通过改变元件的电阻、电容或电感等参数来实现。
例如,热敏电阻的电阻值随着温度的变化而变化。
3. 信号调理:转换后的电信号通常需要进行进一步的调理和处理,以满足特定的应用要求。
调理电路可以包括滤波、放大、线性化等功能。
这些操作可以提高传感器的性能、减小测量误差,并适应不同的输入信号范围。
4. 输出模拟信号:经过信号调理后,转换得到的模拟电信号经过放大和线性化后,成为与物理量相关的模拟量。
输出信号可能是线性变化的电压或电流信号,其数值与被测量的物理量成正比。
5. 数据处理:模拟量传感器生成的模拟信号通常需要进一步的数据处理和解码,以便准确地获取被测量物理量的数值。
这可
以通过使用数据采集卡、微控制器或其他数值处理设备来实现。
总的来说,模拟量传感器的原理是将物理量转换为对应的模拟电信号,并经过信号调理和数据处理,最终得到可以反映被测量物理量变化的模拟量输出信号。
这种传感器常用于工业自动化、环境监测和仪器仪表等领域。
模拟式传感器测量位移的原理由于电容式、电感式传感器在原理上有相像之处,以电感式传感器为例来介绍模拟式传感器测量位移的原理。
电感式传感器是基于电磁感应原理,将被测非电量转换为电感量变化的一种结构型传感器。
按其转换方式的不同,可分为自感型和互感型两种,自感型电感传感器又分为可变磁阻式和涡流式。
互感型又称为差动变压器式。
1、可变磁阻式电感传感器典型的可变磁阻式电感传感器的结构如图1所示,主要由线圈、铁心和活动衔铁所组成。
在铁心和活动衔铁之间保持肯定的空气隙,被测位移构件与活动衔铁相连,当被测构件产生位移时,活动衔铁随着移动,空气隙发生变化,引起磁阻变化,从而使线圈的电感值发生变化图1可变磁阻式电感传感器当线圈通以激磁电流时,其自感L与磁路的总磁阻有关,即(1)式中W——线圈匝数;——总磁阻。
假如空气隙较小,而且不考虑磁路的损失,则总磁阻为(2)式中L--铁心导磁长度(m);--铁心导磁率(H/m);A--铁心导磁截面积(m2);--空气磁导率(H/m),--空气隙导磁截面积()。
由于铁心的磁阻与空气隙的磁阻相比是很小的,计算时铁心的磁阻可以忽视不计,故(3)将式(3)代入式(1),得(4)式(4)表明,自感L与空气隙的大小成反比,与空气隙导磁截面积成正比。
当固定不变,转变时,L与成非线性关系,此时传感器的灵敏度(5)由式(5)得知,传感器的灵敏度与空气隙的平方成反比,愈小,灵敏度愈高。
由于S不是常数,故会消失非线性误差,同变极距型电容式传感器类似。
为了减小非线性误差,通常规定传感器应在较小间隙的变化范围内工作。
在实际应用中,可取。
这种传感器适用于较小位移的测量,一般为0.001~1mm。
此外,这类传感器还常采纳差动式接法。
图2为差动型磁阻式传感器,它由两个相同的线圈、铁心及活动衔铁组成。
当活动衔铁接于中间位置(位移为零)时,两线圈的自感L相等,输出为零。
当衔铁有位移时,两个线圈的间隙为,这表明一个线圈自感增加,而另一个线圈自感减小,将两个线圈接入电桥的相邻臂时,其输出的灵敏度可提高一倍,并改善了线性特性,消退了外界干扰。
机电一体化系统检测信号的采集与处理检测系统的组成首先跟传感器输出的信号形式和仪器的功能有关,并由此打算检测系统的类型。
(一)开关信号检测系统传感器的输出信号为开关信号,如光电开关和电触点开关的通断信号等。
这类信号的测量电路实质为功率放大电路。
(二)模拟信号检测系统模拟式传感器是目前应用最多的传感器,如电阻式、电感式、电容式、压电式、磁电式及热电式等传感器均输出模拟信号,其输出是与被测物理量相对应的连续变化的电信号。
(三)数字信号检测系统1.肯定码检测电路2.增量码检测电路图4.45 增量码数字信号检测系统常用的细分与辨向电路:(1)多路信号采集细分与辨向(2)电阻链移相细分与辨向可见,输入的正、余弦信号经电阻链运算电路进行线性叠加后,得到一相位移为φ的输出信号(3)锁相倍频细分与辨向(4)脉冲填充细分与辨向二、模拟量的转换输入1.模拟量的转换输入方式图4.48 模拟量的转换方式 2.模拟多路开关模拟多路开关又称为多路转换开关,简称多路开关,其作用是分别或依次把各路检测信号与A/D转换器接通,以节约A/D转换器件。
下图表示一个8通道的模拟开关的结构图,由模拟开关S0~S7及开关掌握与驱动电路组成。
8个模拟开关的接通与断开,通过用二进制代码寻址来指定,从而选择特定的通道。
例如当开关地址为000时,S0开关接通,S1~S7均断开,当开关地址为111时,S7开关接通,其它7个开关断开。
图4.49 8通道的模拟开关结构图 3. 信号采样与保持所谓采样,就是把时间连续的信号变成一串不连续的脉冲时间序列的过程。
信号采样是通过采样开关来实现的。
采样开关又称采样器,实质上它是一个模拟开关,每隔时间间隔T闭合一次,每次闭合持续时间τ,其中,T称为采样周期,其倒数fs=1/T称为采样频率,τ称为采样时间或采样宽度,采样后的脉冲序列称为采样信号。
采样信号是一个离散的模拟信号,它在时间轴上是离散的,但在函数轴上仍是连续的,因而还需要用A/D转换器将其转换成数字量。