第十一章稳恒电流的场(一)作业答案
- 格式:doc
- 大小:491.50 KB
- 文档页数:7
第十一章 稳恒电流的磁场(一)一、利用毕奥—萨法尔定律计算磁感应强度毕奥—萨法尔定律:304r rl Id B d⨯=πμ1.有限长载流直导线的磁场)cos (cos 4210ααπμ-=a I B ,无限长载流直导线a IB πμ20=半无限长载流直导线a IB πμ40=,直导线延长线上0=B2. 圆环电流的磁场232220)(2x R IR B +=μ,圆环中心R I B 20μ=,圆弧中心πθμ220•=R I B 电荷转动形成的电流:πωωπ22q q T q I ===【 】基础训练1、载流的圆形线圈(半径a 1 )与正方形线圈(边长a 通有相同电流I .如图若两个线圈的中心O 1 、O 2处的磁感强度大小相同,则半径a 1与边长a 2之比a 1∶a 2为 (A) 1∶1 (B) π2∶1 (C) π2∶4 (D) π2∶8()82,,22135cos 45cos 244,221200020102121ππμπμμ===-⨯⨯⨯==a a B B a Ia IB a IB o o o o 得由【 】基础训练3、有一无限长通电流的扁平铜片,宽度为a ,厚度不计,电流I 在铜片上均匀分布,在铜片外与铜片共面,离铜片右边缘为b 处的P 点的磁感强度B的大小为(A))(20b a I+πμ. (B)b ba aI+πln20μ.(C) bb a b I +πln 20μ. (D) )2(0b a I +πμ.解法:b b a a I r dr a I r rdIdB dr aIdI a b b+======⎰⎰⎰+ln222dI B B B ,B d B ,2P ,)(dr r P 0000πμπμπμπμ的大小为:,的方向也垂直纸面向内据方向垂直纸面向内;根处产生的它在,电流为导线相当于一根无限长的直的电流元处选取一个宽度为点为在距离【 】自测提高2、通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为 (A) B P > B Q > B O . (B) B Q > B P > B O . B Q > B O > B P . (D) B O > B Q > B P . 解法:根据直线电流的磁场公式)cos (cos 4210θθπμ-=aIB 和圆弧电流产生磁场公式πθμ220⋅=a I B 可得 aI B P πμ20=、)221(2)221(4200+=+⨯=a I a I B Q πμπμ )21(2442000ππμμπμ+=+⨯=a I a I a I B O 【 】自测提高7、边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度ω 绕AC 轴旋转时,在中心O 点产生的磁感强度大小为B 1;此正方形同样以角速度ω 绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感应强度的大小为B 2,则B 1与B 2间的关系为 (A) B 1 = B 2. (B) B 1 = 2B 2. (C) B 1 = 21B 2. (D) B 1 = B 2 /4. 解法:设正方形边长为a ,)22(a b b OC AO ===式中, ω 相同,所以每个点电荷随着正方形旋转时形成的等效电流相同, 为 πω2q I =当正方形绕AC 轴旋转时,一个点电荷在O 点产生的磁感应强度的大小为bIB 20μ=,实际AC 旋转产生电流,在O 点产生的总磁感小为b IbIB B 001222μμ=⨯==O 点产生的磁感应强度的大小为bIb IB B 0022244μμ=⨯== 故有122B B =基础训练12、一长直载流导线,沿空间直角坐标Oy 轴放置,电流沿y 正向.在原点O 处取一电流元l Id ,则该电流元在(a ,0,0)点处的磁感强度的大小为 ,方向为 。
第十一章 稳恒电流和稳恒磁场一 选择题1. 边长为l 的正方形线圈中通有电流I ,此线圈在A 点(如图)产生的磁感应强度B 的大小为( )A. l I μπ420B. lIμπ20 C .lIμπ20 D. 0 解:设线圈四个端点为ABCD ,则AB 、AD 线段在A 点产生的磁感应强度为零,BC 、CD 在A 点产生的磁感应强度由)cos (cos π4210θθμ-=dIB ,可得 lIl IB BC π82)2πcos 4π(cosπ400μμ=-=,方向垂直纸面向里lI l I B CD π82)2πcos 4π(cos π400μμ=-=,方向垂直纸面向里合磁感应强度 lIB B B CD BC π420μ=+=所以选(A )2. 如图所示,有两根载有相同电流的无限长直导线,分别通过x 1=1、x 2=3的点,且平行于y 轴,则磁感应强度B 等于零的地方是:( )A. x =2的直线上B. 在x >2的区域C. 在x <1的区域D. 不在x 、y 平面上 解:本题选(A )3. 图中,六根无限长导线互相绝缘,通过电流均为I ,区域Ⅰ、Ⅱ、Ⅲ、Ⅳ均为相等的正方形,哪一个区域指向纸内的磁通量最大?( )A. Ⅰ区域B. Ⅱ区域 C .Ⅲ区域D .Ⅳ区域E .最大不止一个解:本题选(B )选择题2图Ⅰ Ⅱ Ⅲ Ⅳ 选择题3图选择题1图4. 如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,则由安培环路定理可知:( )A. ∮L B ·d l =0,且环路上任意一点B =0B. ∮L B ·d l =0,且环路上任意一点B ≠0C. ∮L B ·d l ≠0,且环路上任意一点B ≠0D. ∮L B ·d l ≠0,且环路上任意一点B =常量解:本题选(B )5. 无限长直圆柱体,半径为R ,沿轴向均匀流有电流,设圆柱体内(r <R )的磁感应强度为B i ,圆柱体外(r >R )的磁感应强度为B e ,则有:( )A. B t 、B e 均与r 成正比B. B i 、B e 均与r 成反比C. B i 与r 成反比,B e 与r 成正比D. B i 与r 成正比,B e 与r 成反比解:导体横截面上的电流密度2πR IJ =,以圆柱体轴线为圆心,半径为r的同心圆作为安培环路,当r <R ,20ππ2r J r B i ⋅=⋅μ,20π2R IrB i μ=r <R ,I r B e ⋅=⋅0π2μ, rIB e π20μ=所以选(D )6. 有三个质量相同的质点a 、b 、c ,带有等量的正电荷,它们从相同的高度自由下落,在下落过程中带电质点b 、c 分别进入如图所示的匀强电场与匀强磁场中,设它们落到同一水平面的动能分别为E a 、E b 、E c ,则( )A. E a <E b =E cB. E a =E b =E cC. E b >E a =E cD. E b >E c >E a解:由于洛伦兹力不做功,当它们落到同一水平面上时,对a 、c 只有重力做功, 则E a =E c ,在此过程中,对b 不仅有重力做功,电场力也要做正功,所以E b >E a =E c所以选(C )7. 图为四个带电粒子在O 点沿相同方向垂直于磁力线射入均匀磁场后的偏转轨迹的照片,磁场方向垂直纸面向外,四个粒子的质量相等,电量大小也相等,则其中动能最大的带负电的粒子的轨迹是:( )A. OaB. ObC. Oc D . Od解:根据B F ⨯=v q ,从图示位置出发,带负选择题7图c dba B O• B× × × × × × Ea bc 选择题6图 选择题4图电粒子要向下偏转,所以只有Oc 、Od 满足条件,又带电粒子偏转半径Bqm R v=,22k 22qB m E R =∴,质量相同、带电量也相等的粒子,动能大的偏转半径大,所以选Oc 轨迹所以选(C )8. 如图,一矩形样品,放在一均匀磁场中,当样品中的电流I 沿X 轴正向流过时,实验测得样品A 、A '两侧的电势差V A -V A '>0,设此样品的载流子带负电荷,则磁场方向为:( )A . 沿X 轴正方向B .沿X 轴负方向C .沿Z 轴正方向D .沿Z 轴负方向 解:本题选(C )9. 长直电流I 2与圆形电流I 1共面,并与其一直径相重合如图(但两者间绝缘),设长直电流不动,则圆形电流将:( )A. 绕I 2旋转B. 向左运动C. 向右运动D. 向上运动E. 不动 解:圆形电流左半圆和右半圆受到长直电流安培力的方向均向右,所以圆形电流将向右运动所以选(C )二 填空题1. 成直角的无限长直导线,流有电流I =10A ,在直角决定的平面内,距两段导线的距离都是a =20cm 处的磁感应强度B = 。
高考物理新电磁学知识点之稳恒电流全集汇编附答案一、选择题1.在输液时,药液有时会从针口流出体外,为了及时发现,某同学设计了一种报警装置,电路如图所示,M是贴在针口处的传感器,接触到药液时其电阻MR会发生变化,导致S 两端电压U增大,从而使装置发出警报,E为内阻不计的电源,此过程中()A.此过程中流过电源的电流变小B.此过程中流过传感器M的电流变小C.MR变大,且R越大,U增大越明显D.MR变小,且R越大,U增大越明显2.物理学中常用两个物理量的比值定义一个新的物理量,如速度是用位移与时间的比值来定义的,即xvt=.下面四个物理量的表达式不属于...比值定义的是A.电流qIt=B.电势PEqϕ=C.电容QCU=D.电阻lRSρ=3.如图所示,图线a是某一电源的U-I曲线,图线b是一定值电阻的U-I曲线.若将该电源与该定值电阻连成闭合电路(已知该电源的内阻r=2.0Ω),则说法错误的是()A.该定值电阻为6ΩB.该电源的电动势为20VC.将2只这种电阻串联作为外电阻,电源输出功率最大D.将3只这种电阻并联作为外电阻,电源输出功率最大4.如图所示,直线A为电源的路端电压与总电流关系的伏安图线,直线B为电阻R两端电压与通过该电阻流关系的伏安图线,用该电源和该电阻组成闭合电路,电源的输出功率和效率分别是()A.2W,66.7%B.2W,33.3%C.4W,33.3%D.4W,66.7%5.如图为某扫地机器人,已知其工作的额定电压为15V,额定功率为30W,充电额定电压为24V,额定电流为0.5A,电池容量为2000mAh,则下列说法中错误的是()A.电池容量是指电池储存电能的大小B.机器人充满电后连续工作时间约为1hC.机器人正常工作时的电流为2AD.机器人充满电大约需要4h图像中,直线I为某一电源的路端电压与电流的关系图像,直线II 6.在如图所示的U I为某一电阻R的伏安特性曲线。
用该电源与电阻R组成闭合电路。
高中物理稳恒电流题20套(带答案)及解析一、稳恒电流专项训练1.材料的电阻率ρ随温度变化的规律为ρ=ρ0(1+αt ),其中α称为电阻温度系数,ρ0是材料在t =0℃时的电阻率.在一定的温度范围内α是与温度无关的常量.金属的电阻一般随温度的增加而增加,具有正温度系数;而某些非金属如碳等则相反,具有负温度系数.利用具有正负温度系数的两种材料的互补特性,可制成阻值在一定温度范围内不随温度变化的电阻.已知:在0℃时,铜的电阻率为1.7×10-8Ω·m ,碳的电阻率为3.5×10-5Ω·m ;在0℃附近,铜的电阻温度系数为3.9×10-3℃-1,碳的电阻温度系数为-5.0×10-4℃-1.将横截面积相同的碳棒与铜棒串接成长1.0m 的导体,要求其电阻在0℃附近不随温度变化,求所需碳棒的长度(忽略碳棒和铜棒的尺寸随温度的变化). 【答案】3.8×10-3m 【解析】 【分析】 【详解】设所需碳棒的长度为L 1,电阻率为1ρ,电阻恒温系数为1α;铜棒的长度为2L ,电阻率为2ρ,电阻恒温系数为2α.根据题意有1101)l t ρρα=+(①2202)l t ρρα=+(②式中1020ρρ、分别为碳和铜在0℃时的电阻率. 设碳棒的电阻为1R ,铜棒的电阻为2R ,有111L R S ρ=③,222LR Sρ=④ 式中S 为碳棒与铜棒的横截面积.碳棒和铜棒连接成的导体的总电阻和总长度分别为12R R R =+⑤,012L L L =+⑥式中0 1.0m L = 联立以上各式得:10112022121020L L L L R t S S Sραραρρ+=++⑦ 要使电阻R 不随温度t 变化,⑦式中t 的系数必须为零.即101120220L L ραρα+=⑧ 联立⑥⑧得:20210202101L L ραραρα=-⑨代入数据解得:313810m L -=⨯.⑩ 【点睛】考点:考查了电阻定律的综合应用本题分析过程非常复杂,难度较大,关键是对题中的信息能够吃投,比如哦要使电阻R 不随温度t 变化,需要满足的条件2.对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质.(1)一段横截面积为S 、长为l 的直导线,单位体积内有n 个自由电子,电子电荷量为e .该导线通有电流时,假设自由电子定向移动的速率均为v . (a )求导线中的电流I ;(b )将该导线放在匀强磁场中,电流方向垂直于磁感应强度B ,导线所受安培力大小为F安,导线内自由电子所受洛伦兹力大小的总和为F ,推导F 安=F .(2)正方体密闭容器中有大量运动粒子,每个粒子质量为m ,单位体积内粒子数量n 为恒量.为简化问题,我们假定:粒子大小可以忽略;其速率均为v ,且与器壁各面碰撞的机会均等;与器壁碰撞前后瞬间,粒子速度方向都与器壁垂直,且速率不变.利用所学力学知识,导出器壁单位面积所受粒子压力F 与m 、n 和v 的关系.(注意:解题过程中需要用到、但题目没有给出的物理量,要在解题时做必要的说明) 【答案】(1)I nvSe =证明见答案 (2)213F P nm S υ== 【解析】 (1)(a )电流QI t=,又因为[()]Q ne v St =,代入则I nvSe = (b )F 安=BIL ,I nvSe =,代入则:F 安=BnvSeL ;因为总的自由电子个数N=nSL ,每个自由电子受到洛伦兹力大小f=Bve ,所以F=Nf =BnvSeL=F 安,即F 安=F .(2)气体压强公式的推导:设分子质量为m ,平均速率为v ,单位体积的分子数为n ;建立图示柱体模型,设柱体底面积为S ,长为l ,则l t υ= 柱体体积V Sl = 柱体内分子总数N nV =总因分子向各个方向运动的几率相等,所以在t 时间内与柱体底面碰撞的分子总数为’16N N 总总=设碰前速度方向垂直柱体底面且碰撞是弹性的,则分子碰撞器壁前后,总动量的变化量为2p m N υ∆=,总依据动量定理有Ft p =∆ 又压力Ft p =∆由以上各式得单位面积上的压力2013F F nm S υ== 【点评】本题的第1题中两问都曾出现在课本中,例如分别出现在人教版选修3-1.P42,选修3-1P .42,这两个在上新课时如果老师注意到,并带着学生思考推导,那么这题得分是很容易的.第2问需要利用动量守恒知识,并结合热力学统计知识,通过建立模型,然后进行推导,这对学生能力要求较高,为了处理相应问题,通过建模来处理问题.在整个推导过程并不复杂,但对分析容易对结果造成影响的错误是误认为所有分析都朝同一方向运动,而不是热力学统计结果分子向各个运动方向运动概率大致相等,即要取总分子个数的16. 【考点定位】电流微观表达式、洛伦兹力推导以及压强的微观推导.3.在“探究导体电阻与其影响因素的定量关系”试验中,为了探究3根材料未知,横截面积均为S =0.20mm 2的金属丝a 、b 、c 的电阻率,采用如图所示的实验电路.M 为金属丝c 的左端点,O 为金属丝a 的右端点,P 是金属丝上可移动的接触点.在实验过程中,电流表读数始终为I =1.25A ,电压表读数U 随OP 间距离x 的变化如下表:x /mm600 700 800 900 1000 120014001600180020002100220023002400U/V3.954.505.105.906.506.656.826.937.027.157.858.509.059.75⑴绘出电压表读数U 随OP 间距离x 变化的图线; ⑵求出金属丝的电阻率ρ,并进行比较.【答案】(1)如图所示; (2)电阻率的允许范围:a ρ:60.9610m -⨯Ω⋅~61.1010m -⨯Ω⋅b ρ:68.510m -⨯Ω⋅~71.1010m -⨯Ω⋅c ρ:60.9610m -⨯Ω⋅~61.1010m -⨯Ω⋅通过计算可知,金属丝a 与c 电阻率相同,远大于金属丝b 的电阻率. 【解析】(1)以OP 间距离x 为横轴,以电压表读数U 为纵轴,描点、连线绘出电压表读数U 随OP 间距离x 变化的图线. (2)根据电阻定律l R S ρ=可得S U S R l I lρ=⋅=⋅. 663(6.5 3.9)0.2010 1.04101.25(1000600)10a m m ρ----⨯⨯=Ω⋅=⨯Ω⋅⨯-⨯ 673(7.1 6.5)0.20109.6101.25(20001000)10b m m ρ----⨯⨯=Ω⋅=⨯Ω⋅⨯-⨯ 663(9.77.1)0.2010 1.04101.25(24002000)10c m m ρ----⨯⨯=Ω⋅=⨯Ω⋅⨯-⨯ 通过计算可知,金属丝a 与c 电阻率相同,远大于金属丝b 的电阻率.4.在如图所示的电路中,电源内电阻r=1Ω,当开关S 闭合后电路正常工作,电压表的读数U=8.5V ,电流表的读数I=0.5A .求: ①电阻R ; ②电源电动势E ; ③电源的输出功率P .【答案】(1)17R =Ω;(2)9E V =;(3) 4.25P w = 【解析】 【分析】 【详解】(1)由部分电路的欧姆定律,可得电阻为:5UR I==Ω (2)根据闭合电路欧姆定律得电源电动势为E =U +Ir =12V (3)电源的输出功率为P =UI =20W 【点睛】部分电路欧姆定律U =IR 和闭合电路欧姆定律E =U +Ir 是电路的重点,也是考试的热点,要熟练掌握.5.(18分) 如图所示,金属导轨MNC 和PQD ,MN 与PQ 平行且间距为L ,所在平面与水平面夹角为α,N 、Q 连线与MN 垂直,M 、P 间接有阻值为R 的电阻;光滑直导轨NC 和QD 在同一水平面内,与NQ 的夹角都为锐角θ。
济南大学大学物理大作业答案完整版第1章 质点运动学§1.3 用直角坐标表示位移、速度和加速度一.选择题和填空题1. (B)2. (B)3. 8 m10 m4. ()[]t t A t ωβωωωββsin 2cos e 22 +--()ωπ/1221+n (n = 0, 1, 2,…) 5. h 1v /(h 1-h 2)二.计算题1解: (1) 5.0/-==∆∆t x v m/s(2) v = d x /d t = 9t - 6t 2 v (2) =-6 m/s (3) S = |x (1.5)-x (1)| + |x (2)-x (1.5)| = 2.25 m2解: =a d v /d t 4=t ,d v 4=t d t⎰⎰=vv 00d 4d tt tv=2t 2v=dx/dt=2t 2t t x txx d 2d 020⎰⎰=x 2=t 3 /3+x 0 (SI)§1.5 圆周运动的角量描述 角量与线量的关系一.选择题和填空题 1. (D) 2. (C)3. 16R t 24rad /s 24. -c(b -ct )2/R二.计算题1. 解: ct b t S +==d /d v c t a t ==d /d v ()R ct b a n /2+=根据题意: a t = a n 即 ()R ct b c /2+=解得 cbc R t -=§1.6 不同参考系中的速度和加速度变换定理简介一.选择题和填空题1. (C)2. (B)3. (A)4.0321=++v v v二.计算题1.解:选取如图所示的坐标系,以V表示质点的对地速度,其x 、y 方向投影为:u gy u V x x +=+=αcos 2v ,αsin 2gy V y y ==v当y =h 时,V的大小为: ()2cos 222222αgh u gh uy x ++=+=V V V V 的方向与x 轴夹角为γ,ugh gh xy +==--ααγcos 2sin 2tg tg 11V V第2章 牛顿定律§2.3 牛顿运动定律的应用一.选择题和填空题 1. (C) 2. (C) 3. (E)4. l/cos 2θ5. θcos /mgθθcos sin gl二.计算题1. 解:质量为M 的物块作圆周运动的向心力,由它与平台间的摩擦力f和质量为m 的物块对它的拉力F的合力提供.当M 物块有离心趋势时,f 和F 的方向相同,而当M 物块有向心运动趋势时,二者的方向相反.因M 物块相对于转台静止,故有F + f max =M r max ω2 2分 F - f max =M r min ω2 2分m 物块是静止的,因而F = m g 1分 又 f max =μs M g 1分 故2.372max =+=ωμM Mgmg r s mm 2分 4.122min=-=ωμM Mg mg r s mm 2分γ v2. 解:球A 只受法向力N 和重力g m,根据牛顿第二定律法向: R m mg N /cos 2v =-θ ① 1分 切向: t ma mg =θsin ② 1分由①式可得 )/c o s (2R g m N v +=θ 1分 根据牛顿第三定律,球对槽压力大小同上,方向沿半径向外. 1分 由②式得 θsin g a t = 1分三.理论推导与证明题 证:小球受力如图,根据牛顿第二定律tm ma F k mg d d vv ==--t mF k mg d /)(d =--v v初始条件: t = 0, v = 0.⎰⎰=-tt F)/m k mg 00d (d v -v v∴ k F mg mkt /)e1)((/---=v第3章 功和能§3.3 动能定理一.选择题和填空题 1. (B) 2. (C)3. 1.28×104 J4. 18 J 6 m/s二.计算题1. 解:用动能定理,对物体⎰⎰+==-402402d 610d 021x x x F m )(v 3分3210x x +==168解出 v =13 m/s 2分§3.4(1)势能一.选择题和填空题1.(C)2. 20kx2021kx -2021kx3. R GmM 32RG m M 3-4. 保守力的功与路径无关W = -ΔE P二.计算题1. 解:(1) 外力做的功=31 J 1分(2) 设弹力为F ′= 5.34 m/s 1分(3) 此力为保守力,因为其功的值仅与弹簧的始末态有关. 2分§3.4(2)机械能守恒定律一.选择题和填空题1. (C)2.)(mr k )2(r k -二.计算题1. (1)建立如图坐标.某一时刻桌面上全链条长为y ,则摩擦力大小为g lymf μ= 1分 摩擦力的功 ⎰⎰--==00d d a l a l f y gy lmy f W μ 2分=022a l y l mg -μ =2)(2a l lmg--μ 2分 (2)以链条为对象,应用质点的动能定理 ∑W =222121v v m m-其中 ∑W = W P +W f ,v 0 = 0 1分W P =⎰la x P d =la l mg x x l mg la 2)(d 22-=⎰ 2分al -a⎰⎰⋅+==21d )4.388.52(d 2x x xx x xF W ⎰⎰⋅=-==1212d d 21'2x x x x Wx F x F m v 3分3分由上问知 la l mg W f 2)(2--=μ所以222221)(22)(v m a l l mg l a l mg =---μ 得 []21222)()(a l a l lg ---=μv 2分 2. 解:把卸料车视为质点.设弹簧被压缩的最大长度为l ,劲度系数为k .在卸料车由最高点下滑到弹簧压缩最大这一过程中,应用功能原理有h G kl h G 12121sin 2.0-=-α ① 2分对卸料车卸料后回升过程应用功能原理,可得:22221sin 2.0kl h G h G -=-α ② 2分由式①和②联立解得: 372.030sin 2.030sin 21=-︒+︒=G G 1分第4章 冲量和动量§4.2 质点系的动量定理一.选择题和填空题 1. (D) 2. (C)3. 18 N ²s二.计算题1. 解:设在某极短的时间t ∆内落在传送带B 上矿砂的质量为m ,即m=q mt ∆,这时矿砂动量的增量为(参看附图)图1分12v v vm m m -=∆)( 1212221s m kg 98.375cos 2)(-⋅⋅∆=︒-+=∆t q m m m v v v v v 2分设传送带作用在矿砂上的力为F,根据动量定理)(v m t F ∆=∆ 于是 N 2.213.98/)(==∆∆=m q t m F v2分 方向: ︒==︒∆2975θ,sin sin )(θm m 2v v 2分由牛顿第三定律,矿砂作用在传送带B 上的(撞击)力与F大小相等方向相反,即等于2.21 N ,偏离竖直方向1︒,指向前下方. 1分§4.3 质点系动量守恒定律一.选择题和填空题 1. (C)2. 4.33 m/s ;与A 原先运动方向成 -30° 3.二.计算题1. 解:这个问题有两个物理过程:第一过程为木块M 沿光滑的固定斜面下滑,到达B 点时速度的大小为θsin gl 21=v 1分方向:沿斜面向下第二个过程:子弹与木块作完全非弹性碰撞.在斜面方向上,内力的分量远远大于外力,动量近似守恒,以斜面向上为正,则有V v v )(cos M m M m +=-1θ 3分Mm gl M m +-=θθsin cos 2v V 1分2. 解:(1) 因穿透时间极短,故可认为物体未离开平衡位置.因此,作用于子弹、物体系统上的外力均在竖直方向,故系统在水平方向动量守恒.令子弹穿出时物体的水平速度为v '有 m v 0 = m v +M v 'v ' = m (v 0 - v )/M =3.13 m/s 2分 T =Mg+M v 2/l =26.5 N 2分(2) s N 7.40⋅-=-=∆v v m m t f (设0v方向为正方向) 2分负号表示冲量方向与0v方向相反. 2分第5章 刚体力学基础 动量矩§5.2 力矩 刚体绕定轴转动微分方程量一.选择题和填空题 1. (C) 2. (B) 3.(B)4. 6.54 rad / s 24.8 s5. 62.51.67s6. 0.25 kg ²m 2二.计算题1. 解:(1) ∵ mg -T =ma 1分TR =J β 2分 a =R β 1分 ∴ β = mgR / (mR 2+J )()R M m mgMR mR mgR +=+=222122 =81.7 rad/s 2 1分 方向垂直纸面向外. 1分211m m t F +∆22211m t F m m t F ∆∆++(2) ∵βθωω2202-=当ω=0 时, rad 612.0220==βωθ物体上升的高度h = R θ = 6.12³10-2 m 2分(3)==βθω210.0 rad/s方向垂直纸面向外. 2分2. 解:(1) 0=ω 0+β tβ=-ω 0 / t =-0.50 rad ²s -2 2分 (2) M r =ml 2β / 12=-0.25 N ²m 2分 (3) θ10=ω 0t +21β t 2=75 rad 1分§5.3 绕定轴转动刚体的动能 动能定理一.选择题和填空题 1. (D) 2. (A) 3.(D)4. 6π rad/s 237 J5. 角动量gl mM 334二.计算题1.解:选泥团和杆为系统,在打击过程中,系统所受外力对O 轴的合力矩为零,对定轴O 的角动量守恒,设刚打击后两者一起摆起的角速度为ω,则有 1分ωJ lm lm +=v v 110 ① 2分其中 2/l ⋅=ωv ② 1分在泥团、杆上摆过程中,选杆、泥团、地球为系统,有机械能守恒.当杆摆到最大角度θ 时有()()222121cos 121ωθJ m l g m M +=-+v ③ 3分联立解以上三式可得()()⎥⎦⎤⎢⎣⎡++-=-gl M m m M m 4331cos 221v θ 3分2.解:(1) 将转台、砝码、人看作一个系统,过程中人作的功W 等于系统动能之增量: W =∆E k =212210222204)21(214)21(21n ml J n ml J π+-π+2 4分 这里的J 0是没有砝码时系统的转动惯量.(2) 过程中无外力矩作用,系统的动量矩守恒:2π(J 0+2121ml ) n 1 = 2π (J 0+2221ml ) n 2 ∴ ()()1222212102n n n l n l m J --= 4分(3) 将J 0代入W 式,得 ()2221212l l n mn W -π= 2分a§5.4 动量矩和动量矩守恒定律一.选择题和填空题 1. (C) 2. (B) 3.(C) 4.(D)5. 031ω6. ()212m R J m r J ++ω 7. ()l m M /3460+v二.计算题1. 解:将杆与两小球视为一刚体,水平飞来小球与刚体视为一系统.由角动量守恒得 1分ωJ l m lm +-=3223200v v (逆时针为正向) ① 2分 又 22)3(2)32(l m l m J += ② 1分将②代入①得 l230v =ω 1分2. 解:(1) 设当人以速率v 沿相对圆盘转动相反的方向走动时,圆盘对地的绕轴角速度为ω,则人对与地固联的转轴的角速度为R R v v221-=-='ωωω ① 2分 人与盘视为系统,所受对转轴合外力矩为零,系统的角动量守恒. 1分设盘的质量为M ,则人的质量为M / 10,有:ωωω'⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+22022211021211021R M MR R M MR ② 2分 将①式代入②式得:R2120v+=ωω ③ 1分(2) 欲使盘对地静止,则式③必为零.即ω0 +2v / (21R )=0 2分 得: v =-21R ω0 / 2 1分式中负号表示人的走动方向与上一问中人走动的方向相反,即与盘的初始转动方向一致.1分3. 解:(1) 角动量守恒:ω⎪⎭⎫ ⎝⎛'+='2231l m ml l m v 2分∴l m m m ⎪⎭⎫ ⎝⎛'+'=31vω=15.4 rad ²s -1 2分(2) -M r =(231ml +2l m ')β 2分0-ω 2=2βθ 2分∴ rM l m m 23122ωθ⎪⎭⎫ ⎝⎛'+==15.4 rad 2分答案 第六章 振动§6.1-1简谐振动 振幅 周期和频率 相位1-2.BB3. 1.2 s 1分; -20.9 cm/s 2分.4. 0.05 m 2分; -0.205π(或-36.9°)2分.5. )212cos(π-πT t A 2分; )312cos(π+πT t A 2分.二计算题1. 解: (1) v m = ωA ∴ω = v m / A =1.5 s -1∴ T = 2π/ω = 4.19 s 3分(2) a m = ω2A = v m ω = 4.5³10-2m/s 2 2分(3) π=21φ x = 0.02)215.1cos(π+t (SI) 3分 2. 解:(1) 1s 10/-==m k ω 1分, 63.0/2=π=ωT s 1分(2) A = 15 cm ,在 t = 0时,x 0 = 7.5 cm ,v 0 < 0 由 2020)/(ωv +=x A 得 3.12020-=--=x A ωv m/s 2分π=-=-31)/(tg 001x ωφv 或 4π/3 2分;∵ x 0 > 0 ,∴ π=31φ(3) )3110cos(10152π+⨯=-t x (SI) 2分§6.1-2简谐运动的能量1-3:DBD4. b ,f 2分; a ,e 2分.5. 9.90³102 J 3分§9-3旋转矢量1-6:BBBBCA7. π 1分; - π /2 2分; π/3. 2分.8. 10 cm 1分; (π/6) rad/s 1分; π/3 1分. 二.计算题1. 解:旋转矢量如图所示. 图3分由振动方程可得 π21=ω,π=∆31φ 1分667.0/=∆=∆ωφt s 1分2. 解:(1) 设振动方程为 )cos(φω+=t A x-由曲线可知 A = 10 cm , t = 0,φcos 1050=-=x ,0sin 100<-=φωv 解上面两式,可得 φ = 2π/3 2分由图可知质点由位移为 x 0 = -5 cm 和v 0 < 0的状态到x = 0和 v > 0的状态所需时间t = 2 s ,代入振动方程得 )3/22c o s (100π+=ω(SI) 则有2/33/22π=π+ω,∴ ω = 5 π/12 2分 故所求振动方程为:)3/212/5cos(1.0π+π=t x (SI) 1分 3. 解:依题意画出旋转矢量图3分。
一、利用毕奥—萨法尔定律计算磁感应强度毕奥—萨法尔定律:304r rl Id B d⨯=πμ1.有限长载流直导线的磁场)cos (cos 4210ααπμ-=a I B ,无限长载流直导线a IB πμ20=半无限长载流直导线a IB πμ40=,直导线延长线上0=B2. 圆环电流的磁场232220)(2x R IR B +=μ,圆环中心R I B 20μ=,圆弧中心πθμ220∙=R I B电荷转动形成的电流:πωωπ22q q T q I === 【 】基础训练1、载流的圆形线圈(半径a 1 )与正方形线圈(边长a 通有相同电流I .如图若两个线圈的中心O 1 、O 2处的磁感强度大小相同,则半径a 1与边长a 2之比a 1∶a 2为 (A) 1∶1 (B) π2∶1 (C) π2∶4 (D) π2∶8【 】基础训练3、有一无限长通电流的扁平铜片,宽度为a ,厚度不计,电流I 在铜片上均匀分布,在铜片外与铜片共面,离铜片右边缘为b 处的P 点的磁感强度B的大小为(A))(20b a I+πμ. (B)b b a aI +πln20μ.(C) b b a b I +πln 20μ. (D) )2(0b a I+πμ. 解法:【 】自测提高2、通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为 (A) B P > B Q > B O . (B) B Q > B P > B O . B Q > B O > B P . (D) B O > B Q > B P . 解法:根据直线电流的磁场公式和圆弧电流产生磁场公式可得【 】自测提高7、边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度ω 绕AC 轴旋转时,在中心O 点产生的磁感强度大小为B 1;此正方形同样以角速度ω 绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感应强度的大小为B 2,则B 1与B 2间的关系为 (A) B 1 = B 2. (B) B 1 = 2B 2. (C) B 1 = 21B 2. (D) B 1 = B 2 /4. 解法:设正方形边长为a ω 相同,所以每个点电荷随着正方形旋转时形成的等效电流相同, 为当正方形绕AC 轴旋转时,一个点电荷在O 旋转产生电流,在O 点产生的总磁感小为O 点产生的磁感应强度的大小为基础训练12、一长直载流导线,沿空间直角坐标Oy 轴放置,电流沿y 正向.在原点O 处取一电流元l Id ,则该电流元在(a ,0,0)点处的磁感强度的大小为 ,方向为 。
(物理) 高考物理稳恒电流专题训练答案含解析一、稳恒电流专项训练1. 4~1.0T 范围内,磁敏电阻的阻值随磁感应强度线性变化(或均匀变化)(4)磁场反向,磁敏电阻的阻值不变.【解析】(1)当B =0.6T 时,磁敏电阻阻值约为6×150Ω=900Ω,当B =1.0T 时,磁敏电阻阻值约为11×150Ω=1650Ω.由于滑动变阻器全电阻20Ω比磁敏电阻的阻值小得多,故滑动变阻器选择分压式接法;由于xV A xR R R R >,所以电流表应内接.电路图如图所示.(2)方法一:根据表中数据可以求得磁敏电阻的阻值分别为:130.4515000.3010R -=Ω=Ω⨯,230.911516.70.6010R -=Ω=Ω⨯,331.5015001.0010R -=Ω=Ω⨯, 431.791491.71.2010R -=Ω=Ω⨯,532.7115051.8010R -=Ω=Ω⨯, 故电阻的测量值为1234515035R R R R R R ++++=Ω=Ω(1500-1503Ω都算正确.) 由于0150010150R R ==,从图1中可以读出B =0.9T 方法二:作出表中的数据作出U -I 图象,图象的斜率即为电阻(略).(3)在0~0.2T 范围,图线为曲线,故磁敏电阻的阻值随磁感应强度非线性变化(或非均匀变化);在0.4~1.0T 范围内,图线为直线,故磁敏电阻的阻值随磁感应强度线性变化(或均匀变化);(4)从图3中可以看出,当加磁感应强度大小相等、方向相反的磁场时,磁敏电阻的阻值相等,故磁敏电阻的阻值与磁场方向无关.本题以最新的科技成果为背景,考查了电学实验的设计能力和实验数据的处理能力.从新材料、新情景中舍弃无关因素,会看到这是一个考查伏安法测电阻的电路设计问题,及如何根据测得的U 、I 值求电阻.第(3)、(4)问则考查考生思维的灵敏度和创新能力.总之本题是一道以能力立意为主,充分体现新课程标准的三维目标,考查学生的创新能力、获取新知识的能力、建模能力的一道好题.2.超导现象是20世纪人类重大发现之一,日前我国己研制出世界传输电流最大的高温超导电缆并成功示范运行.(l)超导体在温度特别低时电阻可以降到几乎为零,这种性质可以通过实验研究.将一个闭合超导金属圈环水平放置在匀强磁场中,磁感线垂直于圈环平面向上,逐渐降低温度使环发生由正常态到超导态的转变后突然撤去磁场,若此后环中的电流不随时间变化.则表明其电阻为零.请指出自上往下看环中电流方向,并说明理由.(2)为探究该圆环在超导状态的电阻率上限ρ,研究人员测得撤去磁场后环中电流为I,并经一年以上的时间t未检测出电流变化.实际上仪器只能检测出大于△I的电流变化,其中△I<<I,当电流的变化小于△I时,仪器检测不出电流的变化,研究人员便认为电流没有变化.设环的横截面积为S,环中定向移动电子的平均速率为v,电子质量为m、电荷量为e.试用上述给出的各物理量,推导出ρ的表达式.(3)若仍使用上述测量仪器,实验持续时间依旧为t.为使实验获得的该圆环在超导状态的电阻率上限ρ的准确程度更高,请提出你的建议,并简要说明实现方法.【答案】(1)见解析(2)(3)见解析【解析】(1)逆时针方向。
一、利用毕奥—萨法尔定律计算磁感应强度毕奥—萨法尔定律:304r rl Id B d⨯=πμ1.有限长载流直导线的磁场)cos (cos 4210ααπμ-=a I B ,无限长载流直导线a IB πμ20=半无限长载流直导线aIB πμ40=,直导线延长线上0=B2. 圆环电流的磁场232220)(2x R IR B +=μ,圆环中心R I B 20μ=,圆弧中心πθμ220∙=R I B电荷转动形成的电流:πωωπ22q q T q I === 【 】基础训练1、载流的圆形线圈(半径a 1 )与正方形线圈(边长a 通有相同电流I .如图若两个线圈的中心O 1 、O 2处的磁感强度大小相同,则半径a 1与边长a 2之比a 1∶a 2为 (A) 1∶1 (B) π2∶1 (C) π2∶4 (D) π2∶8【 】基础训练3、有一无限长通电流的扁平铜片,宽度为a ,厚度不计,电流I 在铜片上均匀分布,在铜片外与铜片共面,离铜片右边缘为b 处的P 点的磁感强度B的大小为(A))(20b a I+πμ. (B)b ba aI+πln20μ.(C) b b a b I +πln 20μ. (D) )2(0b a I +πμ. 解法:【 】自测提高2、通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为 (A) B P > B Q > B O . (B) B Q > B P > B O . B Q > B O > B P . (D) B O > B Q > B P . 解法:根据直线电流的磁场公式和圆弧电流产生磁场公式可得【 】自测提高7、边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度ω 绕AC 轴旋转时,在中心O 点产生的磁感强度大小为B 1;此正方形同样以角速度ω 绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感应强度的大小为B 2,则B 1与B 2间的关系为 (A) B 1 = B 2. (B) B 1 = 2B 2. (C) B 1 = 21B 2. (D) B 1 = B 2 /4. 解法:设正方形边长为a ω 相同,所以每个点电荷随着正方形旋转时形成的等效电流相同, 为当正方形绕AC 轴旋转时,一个点电荷在O 旋转产生电流,在O 点产生的总磁感小为O 点产生的磁感应强度的大小为基础训练12、一长直载流导线,沿空间直角坐标Oy 轴放置,电流沿y 正向.在原点O 处取一电流元l Id ,则该电流元在(a ,0,0)点处的磁感强度的大小为 ,方向为 。
高考物理稳恒电流试题(有答案和解析)一、稳恒电流专项训练1.如图10所示,P 、Q 为水平面内平行放置的光滑金属长直导轨,相距为L 1 ,处在竖直向下、磁感应强度大小为B 1的匀强磁场中.一导体杆ef 垂直于P 、Q 放在导轨上,在外力作用下向左做匀速直线运动.质量为m 、每边电阻均为r 、边长为L 2的正方形金属框abcd 置于倾斜角θ=30°的光滑绝缘斜面上(ad ∥MN ,bc ∥FG ,ab ∥MG, dc ∥FN),两顶点a 、d 通过细软导线与导轨P 、Q 相连,磁感应强度大小为B 2的匀强磁场垂直斜面向下,金属框恰好处于静止状态.不计其余电阻和细导线对a 、d 点的作用力. (1)通过ad 边的电流I ad 是多大? (2)导体杆ef 的运动速度v 是多大?【答案】(1)238mg B L (2)1238mgrB B dL【解析】试题分析:(1)设通过正方形金属框的总电流为I ,ab 边的电流为I ab ,dc 边的电流为I dc , 有I ab =34I ① I dc =14I ② 金属框受重力和安培力,处于静止状态,有mg =B 2I ab L 2+B 2I dc L 2 ③由①~③,解得I ab =2234mgB L ④ (2)由(1)可得I =22mgB L ⑤设导体杆切割磁感线产生的电动势为E ,有E =B 1L 1v ⑥设ad 、dc 、cb 三边电阻串联后与ab 边电阻并联的总电阻为R ,则R =34r ⑦ 根据闭合电路欧姆定律,有I =E R⑧ 由⑤~⑧,解得v =121234mgrB B L L ⑨ 考点:受力分析,安培力,感应电动势,欧姆定律等.2.要描绘某电学元件(最大电流不超过6mA,最大电压不超过7V)的伏安特性曲线,设计电路如图,图中定值电阻R为1KΩ,用于限流;电流表量程为10mA,内阻约为5Ω;电压表(未画出)量程为10V,内阻约为10KΩ;电源电动势E为12V,内阻不计。
高考物理电磁学知识点之稳恒电流全集汇编含答案一、选择题1.如图所示的电路中,电阻12R =Ω、23R =Ω、36R =Ω,给电路通以恒定电流,电阻R 1消耗的功率为P ,则R 2和R 3消耗的总功率为( )A .PB .52PC .92PD .12P 2.一块手机电池的背面印有如图所示的一些符号,另外在手机使用说明书上还写有“通话时间3 h ,待机时间100 h”,则该手机通话和待机时消耗的功率分别约为( )A .1.8 W ,5.4×10-2WB .3.6 W ,0.108 WC .0.6 W ,1.8×10-2WD .6.48×103 W ,1.94×102W3.如图所示的电路中,E 为电源,其内阻为r ,L 为小灯泡(其灯丝电阻可视为不变),R 1、R 2为定值电阻,R 3为光敏电阻,其阻值大小随所受照射光强度的增大而减小,V 为理想电压表.若将照射R 3的光的强度减弱,则( )A .电压表的示数变大B .小灯泡消耗的功率变小C .通过R 2的电流变小D .电源内阻消耗的电压变大4.物理学中常用两个物理量的比值定义一个新的物理量,如速度是用位移与时间的比值来定义的,即x v t=.下面四个物理量的表达式不属于...比值定义的是 A .电流q I t = B .电势P E qϕ=C .电容Q C U =D .电阻l R Sρ= 5.如图所示电路中,A 、B 两灯均正常发光,R 为一滑动变阻器,若将滑动片P 向下滑动,则( )A .A 灯变亮B .B 灯变亮C .总电流变小D .R 1上消耗功率变大6.电动机是把电能转化成机械能的一种设备,在工农业、交通运输、国防及家电、医疗领域广泛应用。
图示表格是某品牌电动机铭牌的部分参数,据此信息,下列说法中正确的是( )A .该电动机的发热功率为1100WB .该电动机转化为机械能的功率为1100WC .该电动机的线圈电阻R 为8.8ΩD .该电动机正常工作时每分钟对外做的功为46.610J ⨯7.电线是家庭装修中不可或缺的基础建材,电线的质量直接关系到用电安全。
高中物理稳恒电流题20套(带答案)含解析一、稳恒电流专项训练1.材料的电阻随磁场的增强而增大的现象称为磁阻效应,利用这种效应可以测量磁感应强度.如图所示为某磁敏电阻在室温下的电阻—磁感应强度特性曲线,其中R B、R0分别表示有、无磁场时磁敏电阻的阻值.为了测量磁感应强度B,需先测量磁敏电阻处于磁场中的电阻值R B.请按要求完成下列实验.(1)设计一个可以测量磁场中该磁敏电阻阻值的电路,并在图中的虚线框内画出实验电路原理图(磁敏电阻及所处磁场已给出,待测磁场磁感应强度大小约为0.6~1.0 T,不考虑磁场对电路其他部分的影响).要求误差较小.提供的器材如下:A.磁敏电阻,无磁场时阻值R0=150 ΩB.滑动变阻器R,总电阻约为20 ΩC.电流表A,量程2.5 mA,内阻约30 ΩD.电压表V,量程3 V,内阻约3 kΩE.直流电源E,电动势3 V,内阻不计F.开关S,导线若干(2)正确接线后,将磁敏电阻置入待测磁场中,测量数据如下表:123456U(V)0.000.450.91 1.50 1.79 2.71I(mA)0.000.300.60 1.00 1.20 1.80根据上表可求出磁敏电阻的测量值R B=______Ω.结合题图可知待测磁场的磁感应强度B=______T.(3)试结合题图简要回答,磁感应强度B在0~0.2 T和0.4~1.0 T范围内磁敏电阻阻值的变化规律有何不同?________________________________________________________________________.(4)某同学在查阅相关资料时看到了图所示的磁敏电阻在一定温度下的电阻—磁感应强度特性曲线(关于纵轴对称),由图线可以得到什么结论?___________________________________________________________________________.【答案】(1)见解析图(2)1500;0.90(3)在0~0.2T 范围内,磁敏电阻的阻值随磁感应强度非线性变化(或不均匀变化);在2.环保汽车将为2008年奥运会场馆服务.某辆以蓄电池为驱动能源的环保汽车,总质量3310kg m =⨯.当它在水平路面上以v =36km/h 的速度匀速行驶时,驱动电机的输入电流I =50A ,电压U =300V .在此行驶状态下 (1)求驱动电机的输入功率P 电;(2)若驱动电机能够将输入功率的90%转化为用于牵引汽车前进的机械功率P 机,求汽车所受阻力与车重的比值(g 取10m/s 2);(3)设想改用太阳能电池给该车供电,其他条件不变,求所需的太阳能电池板的最小面积.结合计算结果,简述你对该设想的思考.已知太阳辐射的总功率260410W P =⨯,太阳到地球的距离,太阳光传播到达地面的过程中大约有30%的能量损耗,该车所用太阳能电池的能量转化效率约为15%.【答案】(1)31.510W P =⨯电(2)/0.045f mg = (3)2101m S = 【解析】试题分析:⑴31.510W P IU 电==⨯⑵0.9P P Fv fv 电机===0.9/f P v =电/0.045f mg =⑶当太阳光垂直电磁板入射式,所需板面积最小,设其为S ,距太阳中心为r 的球面面积204πS r =若没有能量的损耗,太阳能电池板接受到的太阳能功率为P ',则00P S P S '= 设太阳能电池板实际接收到的太阳能功率为P , 所以()130%P P =-'由于15%P P =电,所以电池板的最小面积()00130%P SP S =- 220004π101?m 0.70.150.7r P PS S P P ===⨯电考点:考查非纯电阻电路、电功率的计算点评:本题难度中等,对于非纯电阻电路欧姆定律不再适用,但消耗电功率依然是UI 的乘积,求解第3问时从能量守恒定律考虑问题是关键,注意太阳的发射功率以球面向外释放3.如图所示的电路中,R 1=4Ω,R 2=2Ω,滑动变阻器R 3上标有“10Ω,2A”的字样,理想电压表的量程有0~3V 和0~15V 两挡,理想电流表的量程有0~0.6A 和0~3A 两挡.闭合开关S ,将滑片P 从最左端向右移动到某位置时,电压表、电流表示数分别为2V 和0.5A ;继续向右移动滑片P 至另一位置,电压表指针指在满偏的13,电流表指针也指在满偏的13.求电源电动势与内阻的大小.(保留两位有效数字)【答案】7.0V ,2.0Ω. 【解析】 【分析】根据滑动变阻器的移动可知电流及电压的变化,是可判断所选量程,从而求出电流表的示数;由闭合电路欧姆定律可得出电动势与内阻的两个表达式,联立即可求得电源的电动势. 【详解】滑片P 向右移动的过程中,电流表示数在减小,电压表示数在增大,由此可以确定电流表量程选取的是0~0.6 A ,电压表量程选取的是0~15 V ,所以第二次电流表的示数为13×0.6 A =0.2 A ,电压表的示数为13×15 V =5 V 当电流表示数为0.5A 时,R 1两端的电压为U 1=I 1R 1=0.5×4 V =2 V回路的总电流为I 总=I 1+12U R =0.5+22A =1.5 A由闭合电路欧姆定律得E =I 总r+U 1+U 3, 即E =1.5r+2+2①当电流表示数为0.2 A 时,R 1两端的电压为U 1′=I 1′R 1=0.2×4V =0.8 V回路的总电流为I 总′=I 1′+12U R =0.2+0.82A =0.6A 由闭合电路欧姆定律得E =I 总′r+U 1′+U 3′, 即E =0.6r+0.8+5②联立①②解得E =7.0 V ,r =2.0Ω 【点睛】本题考查闭合电路的欧姆定律,但解题时要注意先会分析电流及电压的变化,从而根据题间明确所选电表的量程.4.如图所示,闭合电路处于方向竖直向上的磁场中,小灯泡的电阻为10Ω,其它电阻不计.当磁通量在0. 1s内从0.2Wb均匀增加到0.4Wb过程中,求:①电路中的感应电动势;②如果电路中的电流恒为0.2A,那么小灯泡在10s内产生的热量是多少.【答案】(1)2V(2)4J【解析】(1)当磁通量发生变化时,闭合电路中要产生感应电动势,根据法拉第电磁感应定律,感应电动势大小为:0.40.220.1E V Vt∆Φ-===∆(2)当小灯泡上的电流为I=0.2A时,根据焦耳定律,10s钟内产生的热量为:Q=I2Rt=0.22×10×10J=4J5.在如图所示的电路中,电源电动势E=3V,内阻r=0.5Ω,定值电阻R1=9Ω,R2=5.5Ω,电键S断开.①求流过电阻R1的电流;②求电阻 R1消耗的电功率;③将S闭合时,流过电阻R1的电流大小如何变化?【答案】(1)0.2A;(2)0.36W;(3)变大【解析】试题分析:(1)电键S断开时,根据闭合电路的欧姆定律求出电流;(2)根据211P I R=求出1R消耗的电功率;(3)将S闭合时回路中的总电阻减小,根据闭合电路的欧姆定律分析电流的变化.(1)电键S断开时,根据闭合电路的欧姆定律得:12EIR R r=++,解得:I=0.2A(2)根据211P I R=,得210.290.36P W=⨯=(3)将S闭合时,2R被短接,回路中的总电阻减小,根据闭合电路的欧姆定律:EI R r=+,可知电流变大,即流过电阻1R 的电流变大 【点睛】本题主要考查了闭合电路的欧姆定律,解决本题的关键就是要知道闭合电路的欧姆定律的表达式,并且知道回路中的电阻变化了,根据闭合电路的欧姆定律可以判断电流的变化.6.利用如图所示的电路可以测量电源的电动势和内电阻。
高考物理稳恒电流题20套(带答案)(1)一、稳恒电流专项训练1.材料的电阻率ρ随温度变化的规律为ρ=ρ0(1+αt ),其中α称为电阻温度系数,ρ0是材料在t =0℃时的电阻率.在一定的温度范围内α是与温度无关的常量.金属的电阻一般随温度的增加而增加,具有正温度系数;而某些非金属如碳等则相反,具有负温度系数.利用具有正负温度系数的两种材料的互补特性,可制成阻值在一定温度范围内不随温度变化的电阻.已知:在0℃时,铜的电阻率为1.7×10-8Ω·m ,碳的电阻率为3.5×10-5Ω·m ;在0℃附近,铜的电阻温度系数为3.9×10-3℃-1,碳的电阻温度系数为-5.0×10-4℃-1.将横截面积相同的碳棒与铜棒串接成长1.0m 的导体,要求其电阻在0℃附近不随温度变化,求所需碳棒的长度(忽略碳棒和铜棒的尺寸随温度的变化). 【答案】3.8×10-3m 【解析】 【分析】 【详解】设所需碳棒的长度为L 1,电阻率为1ρ,电阻恒温系数为1α;铜棒的长度为2L ,电阻率为2ρ,电阻恒温系数为2α.根据题意有1101)l t ρρα=+(①2202)l t ρρα=+(②式中1020ρρ、分别为碳和铜在0℃时的电阻率. 设碳棒的电阻为1R ,铜棒的电阻为2R ,有111L R S ρ=③,222LR Sρ=④ 式中S 为碳棒与铜棒的横截面积.碳棒和铜棒连接成的导体的总电阻和总长度分别为12R R R =+⑤,012L L L =+⑥式中0 1.0m L = 联立以上各式得:10112022121020L L L L R t S S Sραραρρ+=++⑦ 要使电阻R 不随温度t 变化,⑦式中t 的系数必须为零.即101120220L L ραρα+=⑧ 联立⑥⑧得:20210202101L L ραραρα=-⑨代入数据解得:313810m L -=⨯.⑩ 【点睛】考点:考查了电阻定律的综合应用本题分析过程非常复杂,难度较大,关键是对题中的信息能够吃投,比如哦要使电阻R 不随温度t 变化,需要满足的条件2.在“探究导体电阻与其影响因素的定量关系”试验中,为了探究3根材料未知,横截面积均为S =0.20mm 2的金属丝a 、b 、c 的电阻率,采用如图所示的实验电路.M 为金属丝c 的左端点,O 为金属丝a 的右端点,P 是金属丝上可移动的接触点.在实验过程中,电流表读数始终为I =1.25A ,电压表读数U 随OP 间距离x 的变化如下表:x /mm600 700 800 900 1000 120014001600180020002100220023002400U/V3.954.505.105.906.506.656.826.937.027.157.858.509.059.75⑴绘出电压表读数U 随OP 间距离x 变化的图线; ⑵求出金属丝的电阻率ρ,并进行比较.【答案】(1)如图所示; (2)电阻率的允许范围:a ρ:60.9610m -⨯Ω⋅~61.1010m -⨯Ω⋅b ρ:68.510m -⨯Ω⋅~71.1010m -⨯Ω⋅c ρ:60.9610m -⨯Ω⋅~61.1010m -⨯Ω⋅通过计算可知,金属丝a 与c 电阻率相同,远大于金属丝b 的电阻率. 【解析】(1)以OP 间距离x 为横轴,以电压表读数U 为纵轴,描点、连线绘出电压表读数U 随OP 间距离x 变化的图线.(2)根据电阻定律l R S ρ=可得S U S R l I lρ=⋅=⋅. 663(6.5 3.9)0.2010 1.04101.25(1000600)10a m m ρ----⨯⨯=Ω⋅=⨯Ω⋅⨯-⨯ 673(7.1 6.5)0.20109.6101.25(20001000)10b m m ρ----⨯⨯=Ω⋅=⨯Ω⋅⨯-⨯ 663(9.77.1)0.2010 1.04101.25(24002000)10c m m ρ----⨯⨯=Ω⋅=⨯Ω⋅⨯-⨯ 通过计算可知,金属丝a 与c 电阻率相同,远大于金属丝b 的电阻率.3.四川省“十二五”水利发展规划指出,若按现有供水能力测算,我省供水缺口极大,蓄引提水是目前解决供水问题的重要手段之一。
高考物理专题电磁学知识点之稳恒电流全集汇编及答案一、选择题1.如图所示,a、b端接入电源,当滑动变阻器滑片P向下滑动时,电路中两个灯泡都不亮,用电压表检查电路时,测得U ab=U,U cd=U,U ac=0,U bd=0,则故障原因可能是…( )A.变阻器短路B.变阻器断路C.a、c间灯泡断路D.两个灯泡都断路2.一块手机电池的背面印有如图所示的一些符号,另外在手机使用说明书上还写有“通话时间3 h,待机时间100 h”,则该手机通话和待机时消耗的功率分别约为()A.1.8 W,5.4×10-2WB.3.6 W,0.108 WC.0.6 W,1.8×10-2WD.6.48×103 W,1.94×102W3.某些肿瘤可以用“质子疗法”进行治疗。
在这种疗法中,为了能让质子进入癌细胞,首先要实现质子的高速运动,该过程需要一种被称作“粒子加速器”的装置来实现。
质子先被加速到较高的速度,然后轰击肿瘤并杀死癌细胞。
如图所示,来自质子源的质子(初速度为零),经加速电压为U的加速器加速后,形成细柱形的质子流。
已知细柱形的质子流横截面积为S,其等效电流为I;质子的质量为m,其电量为e.那么这束质子流内单位体积的质子数n是A2 I U eS mBI m eS eUC .2I eU eS mD .2Im eS eU4.如图所示为某同学利用传感器研究电容器放电过程的实验电路,实验时先使开关S 与1 端相连,电源向电容器充电,待电路稳定后把开关S 掷向2 端,电容器通过电阻放电,传感器将电流信息传入计算机,屏幕上显示出电流随时间变化的i ﹣t 曲线,这个曲线的横坐标是放电时间,纵坐标是放电电流。
仅由这个i ﹣t 曲线所提供的信息可以估算出A .电容器的电容B .一段时间内电容器放电的电荷量C .某时刻电容器两极板间的电压D .一段时间内电阻产生的热量5.图中小灯泡的规格都相同,两个电路中的电池也相同。
高考物理专题电磁学知识点之稳恒电流全集汇编及答案解析一、选择题1.如图为多用电表欧姆档的原理示意图,其中电流表的满偏电流为300μA,内阻R g=100Ω,调零电阻的最大值R0=50kΩ,电池电动势E=1.5V,电源内阻不计。
将两表笔短接调零后,用它测量电阻R x,当电流计指针只在满刻度的一半时,R x的阻值是()A.25kΩB.5kΩC.50kΩD.50Ω2.如图所示的电路,R1、R2、R4均为定值电阻,R3为热敏电阻(温度升高,电阻减小),电源的电动势为E,内阻为r.起初电容器中悬停一质量为m的带电尘埃,当环境温度降低时,下列说法正确的是()A.电压表和电流表的示数都减小B.电压表和电流表的示数都增大C.电压表和电流表的示数变化量之比保持不变D.带电尘埃将向下极板运动3.下列说法正确的是()A.电源是通过非静电力做功把电能转化为其他形式的能的装置B.库仑提出了库仑定律,并最早用实验测得元电荷e的数值C.英国物理学家法拉第最早引入了电场的概念,并提出用电场线表示电场D.牛顿设计了理想斜面实验,得出力不是物体产生运动的原因4.如图是某品牌手机电池的铭牌,根据你所学的物理知识进行判断,下列说法正确的是A.“3000mAh”表示该电池储存的电能最多10800JB.“11.55Wh”表示该电池储存的电能最多为41580JC.一个标注为“3V,4000F”的超级电容器容纳的电荷量肯定比该电池能释放的电荷量多D.用匹配的充电器给电池充电,若把电池从电量为10%充电到40%花了30分钟,则充电器消耗的平均电功率为6.93W5.硅光电池是一种太阳能电池,具有低碳环保的优点。
如图所示,图线a是该电池在某光照强度下路端电压U和电流I变化的关系图象,图线b是某电阻R的U−I图象。
在该光照强度下将它们组成闭合回路时,下列说法中正确的是()A.硅光电池的电动势大于3.6VB.硅光电池的总功率为0.4WC.硅光电池的内阻消耗的热功率为0.32WD.若将R换成阻值更大的电阻(光照不变),电源效率将减小6.某同学利用一块表头和三个定值电阻设计了如图所示的电表,该电表有1、2两个量程.关于该电表,下列说法中正确的是A.测电压时,量程1一定小于量程2,与R1、R2和R3的阻值无关B.测电流时,量程1一定大于量程2,与R1、R2和R3的阻值无关C.测电压时,量程1与量程2间的大小关系与R1、R2和R3的阻值有关D.测电流时,量程1与量程2间的大小关系与R1、R2和R3的阻值有关7.如图所示,电源电动势为E,内阻为r.电路中的2R、3R分别为总阻值一定的滑动变阻器,0R为定值电阻,1R为光敏电阻(其电阻随光照强度增大而减小).当开关S闭合时,电容器中一带电微粒恰好处于静止状态.下列说法中正确的是()A.只逐渐增大1R的光照强度,电阻0R消耗的电功率变大,电阻3R中有向上的电流B.只调节电阻3R的滑动端2P向上端移动时,电源消耗的功率变大,电阻3R中有向上的电流C .只调节电阻2R 的滑动端1P 向下端移动时,电压表示数变大,带电微粒向下运动D .若断开开关S ,电容器所带电荷量变大,带电微粒向上运动8.如图所示,A 、B 两闭合圆形线圈用同样导线且均绕成100匝。
高考物理最新电磁学知识点之稳恒电流图文答案(1)一、选择题1.如图所示,电源电动势6V E =,内电阻0.5r =Ω,变阻器1R 的最大电阻m 5.0R =Ω,2 1.5R =Ω,341000R R ==Ω,平行板电容器C 的两金属板水平放置。
开关S 与a 接触,电路稳定后( )A .电源的最大输出功率为18WB .1R 增大时,电容器的带电量减少C .1R 的阻值增大时,2R 两端的电压增大D .当开关接向b 至电路稳定过程中,流过3R 的电流方向为d c →2.如图所示为某同学利用传感器研究电容器放电过程的实验电路,实验时先使开关S 与1 端相连,电源向电容器充电,待电路稳定后把开关S 掷向2 端,电容器通过电阻放电,传感器将电流信息传入计算机,屏幕上显示出电流随时间变化的i ﹣t 曲线,这个曲线的横坐标是放电时间,纵坐标是放电电流。
仅由这个i ﹣t 曲线所提供的信息可以估算出A .电容器的电容B .一段时间内电容器放电的电荷量C .某时刻电容器两极板间的电压D .一段时间内电阻产生的热量3.图中小灯泡的规格都相同,两个电路中的电池也相同。
实验发现多个并联的小灯泡的亮度明显比单独一个小灯泡暗。
对这一现象的分析正确的是( )A.灯泡两端电压不变,由于并联分电流,每个小灯泡分得的电流变小,因此灯泡亮度变暗B.电源电动势不变,外电路电压变大,但由于并联分电流,每个小灯泡分得的电流变小,因此灯泡亮度变暗C.电源电动势不变,外电路电压变小,因此灯泡亮度变暗D.并联导致电源电动势变小,因此灯泡亮度变暗4.电动机是把电能转化成机械能的一种设备,在工农业、交通运输、国防及家电、医疗领域广泛应用。
图示表格是某品牌电动机铭牌的部分参数,据此信息,下列说法中正确的是()A.该电动机的发热功率为1100WB.该电动机转化为机械能的功率为1100WC.该电动机的线圈电阻R为8.8ΩD.该电动机正常工作时每分钟对外做的功为46.610J5.如图所示,图线a是某一电源的U-I曲线,图线b是一定值电阻的U-I曲线.若将该电源与该定值电阻连成闭合电路(已知该电源的内阻r=2.0Ω),则说法错误的是()A.该定值电阻为6ΩB.该电源的电动势为20VC.将2只这种电阻串联作为外电阻,电源输出功率最大D.将3只这种电阻并联作为外电阻,电源输出功率最大6.如图所示,电路中A灯与B灯的电阻相同,电源的内阻不可忽略,则当滑动变阻器R 的滑动片P向上滑动时,两灯亮度的变化情况是()A.A灯变亮,B灯变亮B.A灯变暗,B灯变亮C.A灯变暗,B灯变暗D.A灯变亮,B灯变暗7.如图所示的电路,闭合开关S后,a、b、c三盏灯均能发光,电源电动势E恒定且内阻r不可忽略.现将变阻器R的滑片稍向上滑动一些,三盏灯亮度变化的情况是()A.a灯变亮,b灯和c灯变暗B.a灯和c灯变亮,b灯变暗C.a灯和c灯变暗,b灯变亮D.a灯和b灯变暗,c灯变亮8.如图为某扫地机器人,已知其工作的额定电压为15V,额定功率为30W,充电额定电压为24V,额定电流为0.5A,电池容量为2000mAh,则下列说法中错误的是()A.电池容量是指电池储存电能的大小B.机器人充满电后连续工作时间约为1hC.机器人正常工作时的电流为2AD.机器人充满电大约需要4h9.如图所示,用粗细均匀的同种金属导线制成的两个正方形单匝线圈a、b,垂直放置在磁感应强度为B的匀强磁场中,a的边长为L,b的边长为2L。
第十一章 电流与磁场11-1 电源中的非静电力与静电力有什么不同?答:在电路中,电源中非静电力的作用是,迫使正电荷经过电源内部由低电位的电源负极移动到高电位的电源正极,使两极间维持一电位差。
而静电场的作用是在外电路中把正电荷由高电位的地方移动到低电位的地方,起到推动电流的作用;在电源内部正好相反,静电场起的是抵制电流的作用。
电源中存在的电场有两种:1、非静电起源的场;2、稳恒场。
把这两种场与静电场比较,静电场由静止电荷所激发,它不随时间的变化而变化。
非静电场不由静止电荷产生,它的大小决定于单位正电荷所受的非静电力,q非F E =。
当然电源种类不同,非F 的起因也不同。
11-2静电场与恒定电场相同处和不同处?为什么恒定电场中仍可应用电势概念? 答:稳恒电场与静电场有相同之处,即是它们都不随时间的变化而变化,基本规律相同,并且都是位场。
但稳恒电场由分布不随时间变化的电荷产生,电荷本身却在移动。
正因为建立稳恒电场的电荷分布不随时间变化,因此静电场的两条基本定理,即高斯定理和环路定理仍然适用,所以仍可引入电势的概念。
11-3一根铜导线表面涂以银层,当两端加上电压后,在铜线和银层中,电场强度是否相同?电流密度是否相同?电流强度是否相同?为什么?答:此题涉及知识点:电流强度d sI =⋅⎰j s ,电流密度概念,电场强度概念,欧姆定律的微分形式j E σ=。
设铜线材料横截面均匀,银层的材料和厚度也均匀。
由于加在两者上的电压相同,两者的长度又相等,故铜线和银层的场强E相同。
由于铜线和银层的电导率σ不同,根据j E σ=知,它们中的电流密度j 不相同。
电流强度d sI =⋅⎰j s ,铜线和银层的j 不同但相差不太大,而它们的横截面积一般相差较大,所以通过两者的电流强度,一般说来是不相同的。
11-4一束质子发生侧向偏转,造成这个偏转的原因可否是:(1)电场?(2)磁场?(3)若是电场和磁场在起作用,如何判断是哪一种场?答:造成这个偏转的原因可以是电场或磁场。
一、 选择题【 C 】1.(基础训练2)三条无限长直导线等距地并排安放,导线Ⅰ、Ⅱ、Ⅲ分别载有1 A ,2 A ,3 A 同方向的电流.由于磁相互作用的结果,导线Ⅰ,Ⅱ,Ⅲ单位长度上分别受力F 1、F 2和F 3,如图所示.则F 1与F 2的比值是:(A) 7/16. (B) 5/8. (C) 7/8. (D) 5/4.【答】设导线Ⅰ、Ⅱ、Ⅲ的电流强度分别为321,,I I I ,产生的磁感应强度分别为321,,B B B ,相邻导线相距为a ,则()()0203011123110301022231227,2224222II F I l B B I l a a a I I F I l B B I l a a aμμμπππμμμπππ⎛⎫=+=+= ⎪⋅⎝⎭⎛⎫=-=-= ⎪⎝⎭式中121231, 1, I 1A, I 2A, I 3A l m l m =====,得 8/7/21=F F .【 D 】2. (基础训练6)两个同心圆线圈,大圆半径为R ,通有电流I 1;小圆半径为r ,通有电流I 2,方向如图.若r << R (大线圈在小线圈处产生的磁场近似为均匀磁场),当它们处在同一平面内时小线圈所受磁力矩的大小为 (A) Rr I I 22210πμ. (B)Rr I I 22210μ. (C)rR I I 22210πμ. (D) 0.【答】大圆电流在圆心处的磁感应强度为,方向垂直纸面朝内2RI B 101μ=; 小圆电流的磁矩为方向垂直纸面朝内,,222r I p m π=所以,小圆电流受到的磁力矩的大小为2211sin 00m m M p B p B =⨯=︒=[ B ]3.(自测提高2)如图所示,一电子以速度v垂直地进入磁感强度为B的均匀磁场中,此电子在磁场中运动轨道所围的面积内的磁通量将(A) 正比于B ,反比于v 2. (B) 反比于B ,正比于v 2. (C)正比于B ,反比于v . (D) 反比于B ,反比于v .【答】 电子在磁场中做匀速率圆周运动,运动平面的法向平行于磁感应强度方向,因此,磁通量为2R B πΦ=,其中半径R 可由式2v evB m R =求得:mv R eB =,所以222mv m v B eB eB ππ⎛⎫Φ== ⎪⎝⎭.F 1F 2F 31 A2 A3 A ⅠⅡⅢOrR I 1 I 2[ B ]4、(自测提高4)一个动量为p 的电子,沿图示方向入射并能穿过一个宽度为D 、磁感强度为B(方向垂直纸面向外)的均匀磁场区域,则该电子出射方向和入射方向间的夹角为 (A)p eBD 1cos-=α.(B)p eBD 1sin -=α. (C)epBD 1sin -=α. (D) ep BD 1cos -=α.【答】电子在磁场中的轨迹为一段圆弧,如图。
作业11.1、11.211.4、11.8、11.9、11.15、11.1787磁介质90顺磁质B B >(铝、氧、锰等)弱磁质B B >>铁磁质(铁、钴、镍等)强磁性物质B B <抗磁质(铜、铋、氢等)弱磁质抗磁质顺磁质SI SI B L宏观上构成沿介质表面的等效环形电流, 称为表面束缚电流或磁化电流。
B AI 0I cbad.l113五、磁场对载流导线和运动电荷的作用(1)磁场对载流导线的作用力—安培力微分形式积分形式B l I F ⨯=d d Bl I F l⨯=⎰d 其中,是载流导线上的电流元,是所在处的磁感应强度。
l Id l I d B(2)均匀磁场对平面载流线圈的作用合力=∑F 磁力矩B p M m ⨯=式中,是载流线圈的磁矩,,其中N 是线圈匝数,I 是线圈中的电流,S 是线圈的面积,且S 的方向与电流环绕方向满足右螺旋法则。
m p S NI p m=114(3)磁力的功⎰=m1m2m d ΦΦΦI A mm1m2)(ΦI ΦΦI ∆=-=磁力的功等于电流强度I 乘以通过回路磁通量的增量∆Φm 。
(4)磁场对运动电荷的作用Bq F⨯=v 洛仑兹力:116六、磁介质(1)磁介质的分类抗磁质1<r μ顺磁质1>r μ铁磁质1>>r μ(2)磁介质的磁化在外磁场中固有磁矩沿外磁场的取向或感应磁矩的产生使磁介质的表面(或内部)出现束缚电流。
高考物理稳恒电流练习题及答案一、稳恒电流专项训练1.如图10所示,P 、Q 为水平面内平行放置的光滑金属长直导轨,相距为L 1 ,处在竖直向下、磁感应强度大小为B 1的匀强磁场中.一导体杆ef 垂直于P 、Q 放在导轨上,在外力作用下向左做匀速直线运动.质量为m 、每边电阻均为r 、边长为L 2的正方形金属框abcd 置于倾斜角θ=30°的光滑绝缘斜面上(ad ∥MN ,bc ∥FG ,ab ∥MG, dc ∥FN),两顶点a 、d 通过细软导线与导轨P 、Q 相连,磁感应强度大小为B 2的匀强磁场垂直斜面向下,金属框恰好处于静止状态.不计其余电阻和细导线对a 、d 点的作用力. (1)通过ad 边的电流I ad 是多大? (2)导体杆ef 的运动速度v 是多大?【答案】(1)238mg B L (2)1238mgrB B dL【解析】试题分析:(1)设通过正方形金属框的总电流为I ,ab 边的电流为I ab ,dc 边的电流为I dc , 有I ab =34I ① I dc =14I ② 金属框受重力和安培力,处于静止状态,有mg =B 2I ab L 2+B 2I dc L 2 ③由①~③,解得I ab =2234mgB L ④ (2)由(1)可得I =22mgB L ⑤设导体杆切割磁感线产生的电动势为E ,有E =B 1L 1v ⑥设ad 、dc 、cb 三边电阻串联后与ab 边电阻并联的总电阻为R ,则R =34r ⑦ 根据闭合电路欧姆定律,有I =E R⑧ 由⑤~⑧,解得v =121234mgrB B L L ⑨ 考点:受力分析,安培力,感应电动势,欧姆定律等.2.材料的电阻随磁场的增强而增大的现象称为磁阻效应,利用这种效应可以测量磁感应强度.如图所示为某磁敏电阻在室温下的电阻—磁感应强度特性曲线,其中R B、R0分别表示有、无磁场时磁敏电阻的阻值.为了测量磁感应强度B,需先测量磁敏电阻处于磁场中的电阻值R B.请按要求完成下列实验.(1)设计一个可以测量磁场中该磁敏电阻阻值的电路,并在图中的虚线框内画出实验电路原理图(磁敏电阻及所处磁场已给出,待测磁场磁感应强度大小约为0.6~1.0 T,不考虑磁场对电路其他部分的影响).要求误差较小.提供的器材如下:A.磁敏电阻,无磁场时阻值R0=150 ΩB.滑动变阻器R,总电阻约为20 ΩC.电流表A,量程2.5 mA,内阻约30 ΩD.电压表V,量程3 V,内阻约3 kΩE.直流电源E,电动势3 V,内阻不计F.开关S,导线若干(2)正确接线后,将磁敏电阻置入待测磁场中,测量数据如下表:123456U(V)0.000.450.91 1.50 1.79 2.71I(mA)0.000.300.60 1.00 1.20 1.80根据上表可求出磁敏电阻的测量值R B=______Ω.结合题图可知待测磁场的磁感应强度B=______T.(3)试结合题图简要回答,磁感应强度B在0~0.2 T和0.4~1.0 T范围内磁敏电阻阻值的变化规律有何不同?________________________________________________________________________.(4)某同学在查阅相关资料时看到了图所示的磁敏电阻在一定温度下的电阻—磁感应强度特性曲线(关于纵轴对称),由图线可以得到什么结论?___________________________________________________________________________.【答案】(1)见解析图(2)1500;0.90(3)在0~0.2T 范围内,磁敏电阻的阻值随磁感应强度非线性变化(或不均匀变化);在3.材料的电阻率ρ随温度变化的规律为ρ=ρ0(1+αt ),其中α称为电阻温度系数,ρ0是材料在t =0℃时的电阻率.在一定的温度范围内α是与温度无关的常量.金属的电阻一般随温度的增加而增加,具有正温度系数;而某些非金属如碳等则相反,具有负温度系数.利用具有正负温度系数的两种材料的互补特性,可制成阻值在一定温度范围内不随温度变化的电阻.已知:在0℃时,铜的电阻率为1.7×10-8Ω·m ,碳的电阻率为3.5×10-5Ω·m ;在0℃附近,铜的电阻温度系数为3.9×10-3℃-1,碳的电阻温度系数为-5.0×10-4℃-1.将横截面积相同的碳棒与铜棒串接成长1.0m 的导体,要求其电阻在0℃附近不随温度变化,求所需碳棒的长度(忽略碳棒和铜棒的尺寸随温度的变化). 【答案】3.8×10-3m 【解析】 【分析】 【详解】设所需碳棒的长度为L 1,电阻率为1ρ,电阻恒温系数为1α;铜棒的长度为2L ,电阻率为2ρ,电阻恒温系数为2α.根据题意有1101)l t ρρα=+(①2202)l t ρρα=+(②式中1020ρρ、分别为碳和铜在0℃时的电阻率. 设碳棒的电阻为1R ,铜棒的电阻为2R ,有111L R S ρ=③,222LR Sρ=④ 式中S 为碳棒与铜棒的横截面积.碳棒和铜棒连接成的导体的总电阻和总长度分别为12R R R =+⑤,012L L L =+⑥式中0 1.0m L = 联立以上各式得:10112022121020L L L L R t S S Sραραρρ+=++⑦ 要使电阻R 不随温度t 变化,⑦式中t 的系数必须为零.即101120220L L ραρα+=⑧ 联立⑥⑧得:20210202101L L ραραρα=-⑨代入数据解得:313810m L -=⨯.⑩ 【点睛】考点:考查了电阻定律的综合应用本题分析过程非常复杂,难度较大,关键是对题中的信息能够吃投,比如哦要使电阻R 不随温度t 变化,需要满足的条件4.(1)用螺旋测微器测量金属导线的直径,其示数如图所示,该金属导线的直径为mm.(2)用下列器材装成描绘电阻0R伏安特性曲线的电路,请将实物图连线成为实验电路.微安表μA(量程200μA,内阻约200Ω);电压表V(量程3V,内阻约10Ω);电阻0R(阻值约20 kΩ);滑动变阻器R(最大阻值50Ω,额定电流1 A);电池组E(电动势3V,内阻不计);开关S及导线若干.【答案】(1)1.880(1.878~1.882均正确)(2)【解析】(1)首先读出固定刻度1.5 mm再读出可动刻度38. 0×0. 01 mm="0.380" mm金属丝直径为(1.5+0.380) mm="1.880" mm.(注意半刻度线是否漏出;可动刻度需要估读)(2)描绘一个电阻的伏安特性曲线一般要求电压要从0开始调节,因此要采用分压电路.由于0V A 0100,0.5R RR R ==,因此μA 表要采用内接法,其电路原理图为 连线时按照上图中所标序号顺序连接即可.5.(18分) 如图所示,金属导轨MNC 和PQD ,MN 与PQ 平行且间距为L ,所在平面与水平面夹角为α,N 、Q 连线与MN 垂直,M 、P 间接有阻值为R 的电阻;光滑直导轨NC 和QD 在同一水平面内,与NQ 的夹角都为锐角θ。
高考物理稳恒电流专题训练答案一、稳恒电流专项训练1. 4~1.0T 范围内,磁敏电阻的阻值随磁感应强度线性变化(或均匀变化) (4)磁场反向,磁敏电阻的阻值不变. 【解析】(1)当B =0.6T 时,磁敏电阻阻值约为6×150Ω=900Ω,当B =1.0T 时,磁敏电阻阻值约为11×150Ω=1650Ω.由于滑动变阻器全电阻20Ω比磁敏电阻的阻值小得多,故滑动变阻器选择分压式接法;由于xVA xR R R R >,所以电流表应内接.电路图如图所示.(2)方法一:根据表中数据可以求得磁敏电阻的阻值分别为:130.4515000.3010R -=Ω=Ω⨯,230.911516.70.6010R -=Ω=Ω⨯,331.5015001.0010R -=Ω=Ω⨯,431.791491.71.2010R -=Ω=Ω⨯,532.7115051.8010R -=Ω=Ω⨯, 故电阻的测量值为1234515035R R R R R R ++++=Ω=Ω(1500-1503Ω都算正确.) 由于0150010150R R ==,从图1中可以读出B =0.9T 方法二:作出表中的数据作出U -I 图象,图象的斜率即为电阻(略).(3)在0~0.2T 范围,图线为曲线,故磁敏电阻的阻值随磁感应强度非线性变化(或非均匀变化);在0.4~1.0T 范围内,图线为直线,故磁敏电阻的阻值随磁感应强度线性变化(或均匀变化);(4)从图3中可以看出,当加磁感应强度大小相等、方向相反的磁场时,磁敏电阻的阻值相等,故磁敏电阻的阻值与磁场方向无关.本题以最新的科技成果为背景,考查了电学实验的设计能力和实验数据的处理能力.从新材料、新情景中舍弃无关因素,会看到这是一个考查伏安法测电阻的电路设计问题,及如何根据测得的U 、I 值求电阻.第(3)、(4)问则考查考生思维的灵敏度和创新能力.总之本题是一道以能力立意为主,充分体现新课程标准的三维目标,考查学生的创新能力、获取新知识的能力、建模能力的一道好题.2.材料的电阻率ρ随温度变化的规律为ρ=ρ0(1+αt ),其中α称为电阻温度系数,ρ0是材料在t =0℃时的电阻率.在一定的温度范围内α是与温度无关的常量.金属的电阻一般随温度的增加而增加,具有正温度系数;而某些非金属如碳等则相反,具有负温度系数.利用具有正负温度系数的两种材料的互补特性,可制成阻值在一定温度范围内不随温度变化的电阻.已知:在0℃时,铜的电阻率为1.7×10-8Ω·m ,碳的电阻率为3.5×10-5Ω·m ;在0℃附近,铜的电阻温度系数为3.9×10-3℃-1,碳的电阻温度系数为-5.0×10-4℃-1.将横截面积相同的碳棒与铜棒串接成长1.0m 的导体,要求其电阻在0℃附近不随温度变化,求所需碳棒的长度(忽略碳棒和铜棒的尺寸随温度的变化). 【答案】3.8×10-3m 【解析】 【分析】 【详解】设所需碳棒的长度为L 1,电阻率为1ρ,电阻恒温系数为1α;铜棒的长度为2L ,电阻率为2ρ,电阻恒温系数为2α.根据题意有1101)l t ρρα=+(①2202)l t ρρα=+(②式中1020ρρ、分别为碳和铜在0℃时的电阻率. 设碳棒的电阻为1R ,铜棒的电阻为2R ,有111L R S ρ=③,222LR Sρ=④ 式中S 为碳棒与铜棒的横截面积.碳棒和铜棒连接成的导体的总电阻和总长度分别为12R R R =+⑤,012L L L =+⑥式中0 1.0m L = 联立以上各式得:10112022121020L L L L R t S S Sραραρρ+=++⑦ 要使电阻R 不随温度t 变化,⑦式中t 的系数必须为零.即101120220L L ραρα+=⑧ 联立⑥⑧得:20210202101L L ραραρα=-⑨代入数据解得:313810m L -=⨯.⑩ 【点睛】考点:考查了电阻定律的综合应用本题分析过程非常复杂,难度较大,关键是对题中的信息能够吃投,比如哦要使电阻R 不随温度t 变化,需要满足的条件3.在如图所示的电路中,电源内电阻r=1Ω,当开关S 闭合后电路正常工作,电压表的读数U=8.5V ,电流表的读数I=0.5A .求: ①电阻R ; ②电源电动势E ; ③电源的输出功率P .【答案】(1)17R =Ω;(2)9E V =;(3) 4.25P w = 【解析】 【分析】 【详解】(1)由部分电路的欧姆定律,可得电阻为:5UR I==Ω (2)根据闭合电路欧姆定律得电源电动势为E =U +Ir =12V (3)电源的输出功率为P =UI =20W 【点睛】部分电路欧姆定律U =IR 和闭合电路欧姆定律E =U +Ir 是电路的重点,也是考试的热点,要熟练掌握.4.超导现象是20世纪人类重大发现之一,日前我国己研制出世界传输电流最大的高温超导电缆并成功示范运行.(l )超导体在温度特别低时电阻可以降到几乎为零,这种性质可以通过实验研究.将一个闭合超导金属圈环水平放置在匀强磁场中,磁感线垂直于圈环平面向上,逐渐降低温度使环发生由正常态到超导态的转变后突然撤去磁场,若此后环中的电流不随时间变化.则表明其电阻为零.请指出自上往下看环中电流方向,并说明理由.(2)为探究该圆环在超导状态的电阻率上限ρ,研究人员测得撤去磁场后环中电流为I ,并经一年以上的时间t 未检测出电流变化.实际上仪器只能检测出大于△I 的电流变化,其中△I<<I ,当电流的变化小于△I 时,仪器检测不出电流的变化,研究人员便认为电流没有变化.设环的横截面积为S ,环中定向移动电子的平均速率为v ,电子质量为m 、电荷量为e .试用上述给出的各物理量,推导出ρ的表达式.(3)若仍使用上述测量仪器,实验持续时间依旧为t .为使实验获得的该圆环在超导状态的电阻率上限ρ的准确程度更高,请提出你的建议,并简要说明实现方法. 【答案】(1)见解析 (2)(3)见解析【解析】(1)逆时针方向。
一、利用毕奥—萨法尔定律计算磁感应强度毕奥—萨法尔定律:304r rl Id B d⨯=πμ1.有限长载流直导线的磁场)cos (cos 4210ααπμ-=a I B ,无限长载流直导线a IB πμ20=半无限长载流直导线a IB πμ40=,直导线延长线上0=B2. 圆环电流的磁场232220)(2x R IR B +=μ,圆环中心R I B 20μ=,圆弧中心πθμ220∙=R I B 电荷转动形成的电流:πωωπ22q q T q I ===【 】基础训练1、载流的圆形线圈(半径a 1 )与正方形线圈(边长a 通有相同电流I .如图若两个线圈的中心O 1 、O 2处的磁感强度大小相同,则半径a 1与边长a 2之比a 1∶a 2为 (A) 1∶1 (B) π2∶1 (C) π2∶4 (D) π2∶8【 】基础训练3、有一无限长通电流的扁平铜片,宽度为a ,厚度不计,电流I 在铜片上均匀分布,在铜片外与铜片共面,离铜片右边缘为b 处的P 点的磁感强度B的大小为(A))(20b a I+πμ. (B)b ba aI+πln20μ.(C) bb a b I +πln 20μ. (D) )2(0b a I +πμ.解法:【 】自测提高2、通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为 (A) B P > B Q > B O . (B) B Q > B P > B O . B Q > B O > B P . (D) B O > B Q > B P . 解法:根据直线电流的磁场公式和圆弧电流产生磁场公式可得【 】自测提高7、边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度ω 绕AC 轴旋转时,在中心O 点产生的磁感强度大小为B 1;此正方形同样以角速度ω 绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感应强度的大小为B 2,则B 1与B 2间的关系为 (A) B 1 = B 2. (B) B 1 = 2B 2. (C) B 1 = 21B 2. (D) B 1 = B 2 /4. 解法:设正方形边长为a ω 相同,所以每个点电荷随着正方形旋转时形成的等效电流相同, 为当正方形绕AC 轴旋转时,一个点电荷在O 旋转产生电流,在O 点产生的总磁感小为O 点产生的磁感应强度的大小为基础训练12、一长直载流导线,沿空间直角坐标Oy 轴放置,电流沿y 正向.在原点O 处取一电流元l Id ,则该电流元在(a ,0,0)点处的磁感强度的大小为 ,方向为 。
解法:根据毕奥-萨伐尔定律自测提高19、将通有电流I 的导线在同一平面内弯成如图所示的形状,求D点的磁感强度B的大小。
解法:其中3/4圆环在D 处的场 AB 段在D 处的磁感强度BC 段在D 处的磁感强度1B、2B 、3B 方向相同,可知D 处总的B 为基础训练23如图所示,半径为R ,线电荷密度为 (>0)的均匀带电的圆线圈,绕过圆心与圆平面垂直的轴以角速度ω 转动,求轴线上任一点的B的解法:代入环形电流在轴线上产生磁场的公式得方向沿y 轴正向。
二、利用安培环路定律求对称性分布的电流周围的磁场安培环路定理:∑⎰=∙i I l d B 0μ1.无限长载流圆柱导体R r >,r I B πμ20=。
R r <202RIrB πμ= 2.长直载流螺线管⎩⎨⎧=外内00nI B μ 3.环形载流螺线管⎪⎩⎪⎨⎧=外内020rNIB πμ4.无限大载流导体薄板20nI B μ=,两块无限大载流导体薄板⎩⎨⎧=两板之间两板外侧nI B 00μ【 】基础训练5、无限长载流空心圆柱导体的内外半径分别为a 、b ,电流在导体截面上均匀分布,则空间各处的B的大小与场点到圆柱中心轴线的距离r 的关系定性地如图所示.正确的图是解法:根据安培环路定理:当 a r <时0=B 当a r b >>时 当b r >时且a r =时0=B 和a r b >>时,曲线斜率随着r 增大。
自测提高16、如图所示.电荷q (>0)均匀地分布在一个半径为R 的薄球壳外表面上,若球壳以恒角速度ω 0绕z 轴转动,则沿着z 轴从-∞到+∞磁感强度的线积分等于____________________. 解法:由安培环路定理而,故基础训练18、将半径为R 的无限长导体薄壁管(厚度忽略)沿轴向割去一宽度为h ( h << R )的无限长狭缝后,再沿轴向流有在管壁上均匀分布的电流,其面电流密度(垂直于电流的单位长度截线上的电流)为i ,则管轴线磁感强度的大小是 (提示:填补法) 解法:根据无限长直载流导线产生磁场的对称性,其产生磁场的磁感应线穿入侧面的根数(磁通量为负)与穿出的根数(磁通量为正)相同,代数和为零。
基础训练25、一无限长的电缆,由一半径为a 的圆柱形导线和一共轴的半径分别为b 、c 的圆筒状导线组成,如图11-42所示。
在两导线中有等值反向的电流I 通过,求: (1) 内导体中任一点(r<a)的磁感应强度; (2) 两导体间任一点(a<r<b)的磁感应强度;(3) 外导体中任一点(b<r<c)的磁感应强度; (4) 外导体外任一点(r>c)的磁感应强度。
解法:导线的电流成右手螺旋关系。
其大小满足:∑=内L r B I 20μπ (r 为场点到轴线的距离)(2)I r B b r a 02 :μπ=<<,(4)0B 02 :=∴=⋅>,r B c r π三、磁通量的计算S d,S d B d m ∙=Φ,⎰Φ=Φm m d高斯定理:⎰=Φ0md基础训练11、均匀磁场的磁感强度B与半径为r 的圆形平面的法线n的夹角为α ,今以圆周为边界,作一个半球面S ,S 与圆形平面组成封闭面如图11-31.则通过S 面的磁通量Φ = 。
(提示:填补法) 解法:根据磁场的高斯定理,通过S 面的磁通量数值上等于通过圆平面的通量。
当题中涉及的是封闭曲面时,面的法向方向指向凸的一面,因此通过S 面的磁通量为负值。
自测提高13、一半径为a 的无限长直载流导线,沿轴向均匀地流有电流I .若作一个半径为R = 5a 、高为l 的柱形曲面,已知此柱形曲面的轴与载流导线的轴平行且相距3a .则B在圆柱侧面S 上的积分=⎰⎰⋅SS B d _______.解法:根据无限长直载流导线产生磁场的对称性,其产生磁场的磁感应线穿入侧面的根数(磁通量为负)与穿出的根数(磁通量为正)相同,代数和为零。
基础训练22.、一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如图中画斜线部分所示,求通过该矩形平面的磁通量. 解法:根据安培环路定理,在圆柱体内部与导体中心轴线相距为r 处的磁感应强度的大小为:因此,穿过导体内矩形截面的磁通量为12-3)在导体外穿过导体外矩形截面的磁通量为故总的磁通量为附加题自测提高26、 均匀带电刚性细杆AB ,线电荷密度为λ,绕垂直于直线的轴O 以ω 角速度匀速转动(O 点在细杆AB 延长线上).如图11-43所示,求:(1) O 点的磁感强度0B ; (2) 系统的磁矩m p;(3) 若a >> b ,求B 0及p m . 解法:(1)将带电细杆分割为许多电荷元。
在距离o 点r 处选取长为dr 的电荷元,其带电dr dq λ=该电荷元随细杆转动时等效为圆电流为:它在O 点产生的磁感应强度为根据⎰=00B d B,0B 的方向也是垂直于纸面向内,0B 的大小为(2) dq 所等效的圆电流dI 方向垂直于纸面向内; 根据⎰=m m p d p,m p 的方向也是垂直于纸面朝内,m p的大小为(3)a>>b 时,AB 杆可近似看作点电荷:电量为b λ在o 点产生的磁感应强度为系统的磁矩 ★★★★布置的作业中遗漏(自测提高24)在氢原子中,电子沿着某一圆轨道绕核运动.求等效圆电流的磁矩m p与电子轨道运动的动量矩L 大小之比,并指出和L方向间的关系.(电子电荷为e ,电子质量为m )解:设电子绕核运动的轨道半径为R ,匀速圆周运动的速率为v 。
核外电子绕核运动等效的圆电流为电流的磁矩电子轨道运动的动量矩编号 ____________姓名 __________ 《大学物理Ⅱ》答题纸 第十一章mvR L =可见两者的方向相反。
(自测提高28)用安培环路定理证明,图中所表示的那种不带边缘效应的均匀磁场不可能存在. 证明:用反证法.假设存在图中那样不带边缘效应的均匀磁场,并设磁感强度的大小为B .作矩形有向闭合环路如图所示,其ab 边在磁场内,其上各点的磁感强度为B ,cd因 0≠ab .所以 B = 0,这不符合原来的假设.故这样的磁场不可能存在.。