2008年高考全国卷1(理科数学)
- 格式:doc
- 大小:464.00 KB
- 文档页数:4
2008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅰ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至9页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意:1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效..........3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式: 如果事件A B ,互斥,那么球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)kkn kn n P k C P P k n -=-= ,,,一、选择题1.函数y =的定义域为( )A .{}|0x x ≥B .{}|1x x ≥C .{}{}|10x x ≥D .{}|01x x ≤≤2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )3.在A B C △中,AB = c ,AC = b .若点D 满足2BD DC = ,则AD =( )A .2133+b c B .5233-c b C .2133-b c D .1233+b c4.设a ∈R ,且2()a i i +为正实数,则a =( ) A .2B .1C .0D .1-5.已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =( ) A .138B .135C .95D .236.若函数(1)y f x =-的图像与函数ln 1y =的图像关于直线y x =对称,则()f x =( ) A .21x e -B .2x eC .21x e +D .22x e +7.设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( ) A .2B .12C .12-D .2-8.为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像,只需将函数sin 2y x =的图像( ) A .向左平移5π12个长度单位 B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位9.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( )A .(10)(1)-+∞ ,,B .(1)(01)-∞- ,,C .(1)(1)-∞-+∞ ,,D .(10)(01)- ,,10.若直线1x y ab+=通过点(cos sin )M αα,,则( )A .221a b +≤ B .221a b +≥C .22111ab+≤D .22111ab+≥11.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为A B C △的A .B .C .D .中心,则1A B 与底面ABC 所成角的正弦值等于( )A .13B.3C.3D .2312.如图,一环形花坛分成A B C D ,,,四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( ) A .96B .84C .60D .482008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅰ)第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共7页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试..题卷上作答无效........ 3.本卷共10小题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(注意:在试题卷上作答无效.........) 13.若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .14.已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .15.在A B C △中,A B B C =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .16.等边三角形ABC 与正方形A B D E 有一公共边A B ,二面角C A B D --的余弦值为3,M N ,分别是A C B C ,的中点,则E M A N ,所成角的余弦值等于 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) (注意:在试题卷上作答无效.........) 设A B C △的内角A B C ,,所对的边长分别为a b c ,,,且3cos cos 5a B b A c -=.(Ⅰ)求tan cot A B 的值; (Ⅱ)求tan()A B -的最大值.18.(本小题满分12分) (注意:在试题卷上作答无效.........) 四棱锥A B C D E -中,底面B C D E 为矩形,侧面A B C ⊥底面B C D E ,2B C =,CD =,A B A C =.(Ⅰ)证明:AD C E ⊥;(Ⅱ)设C E 与平面A B E 所成的角为45 ,求二面角C A D E --的大小.19.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知函数32()1f x x ax x =+++,a ∈R .(Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数()f x 在区间2133⎛⎫--⎪⎝⎭,内是减函数,求a 的取值范围.20.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳DE AB性的即为患病动物,呈阴性即没患病.下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验. (Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率; (Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望. 21.(本小题满分12分)(注意:在试题卷上作答无效.........) 双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知O A AB O B 、、成等差数列,且BF与FA 同向. (Ⅰ)求双曲线的离心率;(Ⅱ)设A B 被双曲线所截得的线段的长为4,求双曲线的方程.22.(本小题满分12分)(注意:在试题卷上作答无效.........) 设函数()ln f x x x x =-.数列{}n a 满足101a <<,1()n n a f a +=. (Ⅰ)证明:函数()f x 在区间(01),是增函数; (Ⅱ)证明:11n n a a +<<;(Ⅲ)设1(1)b a ∈,,整数11ln a b k a b-≥.证明:1k a b +>.2008年普通高等学校招生全国统一考试 理科数学(必修+选修Ⅰ)参考答案1. C. 由()10,0,1,0;x x x x x -≥≥≥=得或2. A .根据汽车加速行驶212s at =,匀速行驶s vt =,减速行驶212s at =-结合函数图像可知;3. A. 由()2AD AB AC AD -=-,322AD AB AC c b =+=+ ,1233A D c b =+ ;4. D. ()()()22221210,1a i i a ai i a a i a +=+-=-+->=-;5. C. 由243511014,104,3,104595a a a a a d S a d +=+=⇒=-==+=;6. B.由()()()()21212ln 1,1,y x xy x e f x ef x e --=⇒=-==;7.D.由()3212211,','|,2,21121x x y y y a a x x x =+==+=-=--==----;8.A.55cos 2sin 2sin 2,3612y x x x πππ⎛⎫⎛⎫⎛⎫=+=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭只需将函数s in 2y x =的图像向左平移5π12个单位得到函数πcos 23y x ⎛⎫=+⎪⎝⎭的图像. 9.D .由奇函数()f x 可知()()2()0f x f x f x xx--=<,而(1)0f =,则(1)(1)0f f -=-=,当0x >时,()0(1)f x f <=;当0x <时,()0(1)f x f >=-,又()f x 在(0)+∞,上为增函数,则奇函数()f x 在(,0)-∞上为增函数,01,10x x <<-<<或.10.D .由题意知直线1x y ab+=与圆221x y +=221111ab+≤1,≥.另解:设向量11(cos ,sin ),(,)a bααm =n =,由题意知cos sin 1abαα+=由⋅≤m n m n可得cos sin 1abαα=+≤11.C.由题意知三棱锥1A ABC-为正四面体,设棱长为a,则1AB=,棱柱的高13A O a===(即点1B到底面ABC的距离),故1A B与底面ABC所成角的正弦值为113A OA B=.另解:设1,,AB AC AA为空间向量的一组基底,1,,AB AC AA的两两间的夹角为060长度均为a,平面ABC的法向量为111133O A A A A B A C=--,11AB AB AA=+211112,33O A AB a O A AB⋅===则1A B与底面ABC所成角的正弦值为11113O A ABA O AB⋅=12.B.分三类:种两种花有24A种种法;种三种花有342A种种法;种四种花有44A种种法.共有234444284A A A++=.另解:按A B C D---顺序种花,可分A C、13.答案:9.如图,作出可行域,作出直线:20l x y-=,将l平移至过点A处时,函数2z x y=-有最大值9.14. 答案:2.由抛物线21y ax=-的焦点坐标为1(0,1)4a-为坐标原点得,14a=,则2114y x=-与坐标轴的交点为(0,1),(2,0),(2,0)--,则以这三点围成的三角形的面积为14122⨯⨯=15.答案:38.设1A B B C==,7cos18B=-则222252cos9AC AB BC AB BC B=+-⋅⋅= 53A C=,582321,21,3328ca c ea=+====.16.答案:16.设2A B=,作CO ABDE⊥面,O H AB⊥,则C H A B⊥,C H O∠为二面角C A B D--cos1C H O H C H C H O==⋅∠=,结合等边三角形ABC与正方形A B D E可知此四棱锥为正四棱锥,则AN EM C H ===11(),22A N A C A B E M A C A E =+=- ,11()()22A N E M A B A C A C A E ⋅=+⋅-=12故E M A N ,所成角的余弦值16A N E M A N E M⋅=另解:以O 为坐标原点,建立如图所示的直角坐标系,则点(1,1,0),(1,1,0),(1,1,0),(0,A B E C ----,1111(,,(,,222222M N ---,则31131(,,(,,),,2222222AN EM AN EM ==-⋅= 故E M A N ,所成角的余弦值16A N E MA NE M ⋅= .17.解析:(Ⅰ)在A B C △中,由正弦定理及3cos cos 5a B b A c -=可得3333sin cos sin cos sin sin()sin cos cos sin 5555A B B A C A B A B A B -==+=+即sin cos 4cos sin A B A B =,则tan cot 4A B =;(Ⅱ)由tan cot 4A B =得tan 4tan 0A B =>2tan tan 3tan 3tan()1tan tan 14tan cot 4tan A B BA B A BB B B --===+++≤34当且仅当14tan cot ,tan ,tan 22B B B A ===时,等号成立,故当1tan 2,tan 2A B ==时,tan()A B -的最大值为34.18.解:(1)取B C 中点F ,连接D F 交C E 于点O , A B A C =,∴AF BC ⊥,又面A B C ⊥面B C D E ,∴A F ⊥面B C D E , ∴AF C E ⊥.tan tan 2C ED FD C ∠=∠=,∴90OED ODE ∠+∠= ,90DOE ∴∠=,即C E D F ⊥,C E ∴⊥面AD F ,CE A D ∴⊥.(2)在面A C D 内过C 点作A D 的垂线,垂足为G .C G AD ⊥,CE AD ⊥,A D ∴⊥面C EG ,E G A D ∴⊥, 则C G E ∠即为所求二面角的平面角.3AC C D C G AD==,3D G =,3EG ==,C E =222cos 210C G G E C EC G E C G G E+-∠==-,πarccos 10C G E ⎛∴∠=- ⎝⎭,即二面角C A D E --的大小πarccos 10⎛- ⎝⎭. 19. 解:(1)32()1f x x ax x =+++求导:2()321f x x ax '=++ 当23a ≤时,0∆≤,()0f x '≥,()f x 在R 上递增当23a >,()0f x '=求得两根为3x =即()f x在3⎛-∞ ⎝⎭递增,33⎛⎝⎭递减,3⎛⎫+∞⎪ ⎪⎝⎭递增 (2)233133a a ⎧---⎪⎪⎨-+⎪-⎪⎩≤,且23a >解得:74a ≥20.解:对于乙:0.20.40.20.80.210.210.64⨯+⨯+⨯+⨯=.(Ⅱ)ξ表示依方案乙所需化验次数,ξ的期望为20.430.440.2 2.8E ξ=⨯+⨯+⨯=. 21. 解:(Ⅰ)设O A m d =-,AB m =,O B m d =+ 由勾股定理可得:222()()m d m m d -+=+ 得:14d m =,tan b A O F a∠=,4tan tan 23A B A O B A O F O A∠=∠==由倍角公式∴22431b ab a =⎛⎫- ⎪⎝⎭,解得12b a=,则离心率2e =(Ⅱ)过F 直线方程为()a y x c b=--,与双曲线方程22221x y ab-=联立将2a b =,c =代入,化简有22152104x x bb-+=124x =-=将数值代入,有4=解得3b = 故所求的双曲线方程为221369xy-=。
2008年普通高等学校招生全国统一考试本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至9页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意:1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效..........3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式: 如果事件A B ,互斥,那么球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)kkn kn n P k C P P k n -=-= ,,,一、选择题1.函数y =的定义域为( )A .{}|0x x ≥B .{}|1x x ≥C .{}{}|10x x ≥D .{}|01x x ≤≤2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )3.在A B C △中,AB = c ,AC = b .若点D 满足2BD DC = ,则AD =( )A .2133+b c B .5233-c b C .2133-b c D .1233+b c4.设a ∈R ,且2()a i i +为正实数,则a =( ) A .2B .1C .0D .1-5.已知等差数列{}na 满足244a a +=,3510a a +=,则它的前10项的和10S =( ) A .138B .135C .95D .236.若函数(1)y f x =-的图像与函数ln 1y =的图像关于直线y x =对称,则()f x =( )A .e2x-1B .e 2xC .e 2x+1D . e2x+27.设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( )A .2B .12C .12-D .2-8.为得到函数πcos 23y x ⎛⎫=+⎪⎝⎭的图像,只需将函数sin 2y x =的图像( ) A .向左平移5π12个长度单位 B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位9.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( )A .(10)(1)-+∞ ,,B .(1)(01)-∞- ,,C .(1)(1)-∞-+∞ ,,D .(10)(01)- ,,10.若直线1x y ab+=通过点(cos sin )M αα,,则( )A .221a b +≤ B .221a b+≥C.22111ab+≤D .22111ab+≥11.已知三棱柱111A B C A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为A .B .C .D .A B C △的中心,则1A B 与底面ABC 所成角的正弦值等于( )A .13B .3C .3D .2312.如图,一环形花坛分成A B C D ,,,四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( ) A .96 B .84 C .60 D .482008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅰ)第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共7页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.......... 3.本卷共10小题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(注意:在试题卷上作答无效.........) 13.13.若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .14.已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .15.在A B C △中,A BB C =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .16.等边三角形ABC 与正方形A BD E 有一公共边A B ,二面角C A B D --的余弦值为3,M 、N 分别是AC 、BC 的中点,则EM 、AN 所成角的余弦值等于 .17.(本小题满分10分) (注意:在试题卷上作答无效.........) 设A B C △的内角A B C ,,所对的边长分别为a 、b 、c ,且3cos cos 5a B b A c -=.(Ⅰ)求tancot A B 的值; (Ⅱ)求tan()A B -的最大值. 18.(本小题满分12分) (注意:在试题卷上作答无效.........) 四棱锥A B C D E -中,底面B C D E 为矩形,侧面A B C ⊥底面B C D E ,2B C =,CD =A B A C =.(Ⅰ)证明:AD C E ⊥;(Ⅱ)设C E 与平面A B E 所成的角为45 ,求二面角C A D E --的大小.19.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知函数32()1f x x ax x =+++,a ∈R .(Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数()f x 在区间2133⎛⎫--⎪⎝⎭,内是减函数,求a 的取值范围.20.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性的即没患病.下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止.DE AB3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率; (Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望. 21.(本小题满分12分)(注意:在试题卷上作答无效.........) 双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知O A AB O B 、、成等差数列,且BF 与FA 同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设A B 被双曲线所截得的线段的长为4,求双曲线的方程.22.(本小题满分12分)(注意:在试题卷上作答.......无效..) 设函数()ln f x x x x =-.数列{}n a 满足101a <<,1()n n a f a +=. (Ⅰ)证明:函数()f x 在区间(01),是增函数; (Ⅱ)证明:11n n a a +<<;(Ⅲ)设1(1)b a ∈,,整数11ln a b k a b-≥.证明:1k a b +>.参考答案一、选择题 1、C 2、A3、A4、D5、C6、B7、D 8、A 9.D 10.D . 11.B . 12.B. 二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上. 13.答案:9.14. 答案:2.15.答案:38. 16.答案:16.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.解析:(Ⅰ)由正弦定理得 a=CBc b CA c sin sin ,sin sin =acosB-bcosA=(A CBB C A cos sin sin cos sin sin ⋅-⋅)c =c B A AB B A ⋅+-)sin(cos sin cos sin=c B A B A B A B A ⋅+-sin cos cos sin sin cos cos sin=1cot tan )1cot (tan +-B A cB A依题设得c B A c B A 531cot tan )1cot (tan =+- 解得tanAcotB=4(II)由(I )得tanA=4tanB ,故A 、B 都是锐角,于是tanB>0 tan(A-B)=B A B A tan tan 1tan tan +-=BB 2tan 41tan 3+≤43,且当tanB=21时,上式取等号,因此tan(A-B)的最大值为4318.解:(I)作AO ⊥BC ,垂足为O ,连接OD ,由题设知,AO ⊥底面BCDE ,且O 为BC 中点, 由21==DECD CDOC 知,Rt △OCD ∽Rt △CDE ,从而∠ODC=∠CED ,于是CE ⊥OD , 由三垂线定理知,AD ⊥CE⊂ABC 。
2008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至9页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意: 1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目. 2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效..........3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式: 如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)k kn k n n P k C P P k n -=-= ,,,一、选择题 1.函数y =的定义域为( )A .{}|0x x ≥B .{}|1x x ≥ C .{}{}|10x x ≥D .{}|01x x ≤≤2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )A .B .C .D .3.在ABC △中,AB = c ,AC = b .若点D 满足2BD DC = ,则AD =( )A .2133+b c B .5233-c b C .2133-b c D .1233+b c4.设a ∈R ,且2()a i i +为正实数,则a =( ) A .2B .1C .0D .1-5.已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =( ) A .138 B .135C .95D .236.若函数(1)y f x =-的图像与函数1y =的图像关于直线y x =对称,则()f x =( ) A .21x e -B .2x eC .21x e +D .22x e +7.设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( ) A .2B .12C .12- D .2-8.为得到函数πcos 23y x ⎛⎫=+⎪⎝⎭的图像,只需将函数sin 2y x =的图像( ) A .向左平移5π12个长度单位B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位9.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( ) A .(10)(1)-+∞ ,, B .(1)(01)-∞- ,, C .(1)(1)-∞-+∞ ,,D .(10)(01)- ,,10.若直线1x ya b+=通过点(cos sin )M αα,,则( ) A .221a b +≤ B .221a b +≥ C .22111a b+≤D .22111a b +≥11.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( )A .13B.3CD .2312.如图,一环形花坛分成A B C D ,,,四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( ) A .96 B .84 C .60 D .482008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅰ)第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共7页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.......... 3.本卷共10小题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(注意:在试题卷上作答无效.........) 13.13.若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .14.已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .15.在ABC △中,AB BC =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .16.等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --的余弦值为,M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) (注意:在试题...卷上作答无效......) 设ABC △的内角A B C ,,所对的边长分别为a b c ,,,且3cos cos 5a Bb Ac -=. (Ⅰ)求tan cot A B 的值; (Ⅱ)求tan()A B -的最大值.tanA=4tanB,⑵由第⑴知,2tan A tan B 3tanB33tan A=4tanB,tan(A B)===11+tan A tan B 1+4tan B4+4tanB tan B11=4tanB,tan B=tan B 2≤-⑵∵而-当且仅且∴时“=”成立。
2008年普通高等学校统一考试数学(理科)参考答案一、选择题 1.B 2.B 3.D 4.C 5.A 6.B 7.C 8.D 9.A10.D11.A12.C二、填空题 13.314.321515.43π 16.1.乙品种棉花的纤维平均长度大于甲品种棉花的纤维平均长度(或:乙品种棉花的纤维长度普遍大于甲品种棉花的纤维长度).2.甲品种棉花的纤维长度较乙品种棉花的纤维长度更分散.(或:乙品种棉花的纤维长度较甲品种棉花的纤维长度更集中(稳定).甲品种棉花的纤维长度的分散程度比乙品种棉花的纤维长度的分散程度更大).3.甲品种棉花的纤维长度的中位数为307mm,乙品种棉花的纤维长度的中位数为318mm . 4.乙品种棉花的纤维长度基本上是对称的,而且大多集中在中间(均值附近).甲品种棉花的纤维长度除一个特殊值(352)外,也大致对称,其分布较均匀.三、解答题 17.解:(Ⅰ)设{}n a 的公差为d ,由已知条件,11145a d a d +=⎧⎨+=-⎩,解出13a =,2d =-.所以1(1)25n a a n d n =+-=-+. (Ⅱ)21(1)42n n n S na d n n -=+=-+24(2)n =--. 所以2n =时,n S 取到最大值4. 18.解:如图,以D 为原点,DA则(100)DA =,,uu u r ,(001)CC '=,,u u u r .连结BD ,B D ''.在平面BB D D ''中,延长DP 交B D ''于H . 设(1)(0)DH m m m =>,,u u u r,由已知60DH DA <>=,o uuu r uu u r, 由cos DA DH DA DH DADH =<>,uu u r uuu r uu u r uuu r uu u r uuu rg可得2m解得2m =,所以1DH ⎫=⎪⎪⎝⎭uuu r .(Ⅰ)因为0011cos 2DH CC +⨯+⨯'<>==,uuu r uuu r 所以45DH CC '<>=,o uuu r uuu r. 即DP 与CC '所成的角为45.(Ⅱ)平面AA D D ''的一个法向量是(010)DC =,,u u u r.因为01101cos 2DH DC ⨯+⨯+⨯<>==,uuu r uuu r , 所以60DH DC <>=,o uuu r uuu r. 可得DP 与平面AA D D ''所成的角为30. 19.解:(Ⅰ)由题设可知1Y 和2Y 的分布列分别为150.8100.26EY =⨯+⨯=,221(56)0.8(106)0.24DY =-⨯+-⨯=,220.280.5120.38EY =⨯+⨯+⨯=,2222(28)0.2(88)0.5(128)0.312DY =-⨯+-⨯+-⨯=.(Ⅱ)12100()100100x x f x D Y D Y -⎛⎫⎛⎫=+⎪ ⎪⎝⎭⎝⎭2212100100100x x DY DY -⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭22243(100)100x x ⎡⎤=+-⎣⎦ 2224(46003100)100x x =-+⨯, 当6007524x ==⨯时,()3f x =为最小值.20.解:(Ⅰ)由2C :24y x =知2(10)F ,. 设11()M x y ,,M 在2C 上,因为253MF =,所以1513x +=, 得123x =,13y =.M 在1C 上,且椭圆1C 的半焦距1c =,于是 222248193 1.a bb a ⎧+=⎪⎨⎪=-⎩, 消去2b 并整理得 4293740a a -+=,解得2a =(13a =不合题意,舍去). 故椭圆1C 的方程为22143x y +=. (Ⅱ)由12MF MF MN +=u u u r u u u u r u u u r知四边形12MF NF 是平行四边形,其中心为坐标原点O , 因为l MN ∥,所以l 与OM 的斜率相同,故l的斜率323k ==.设l的方程为)y x m =-.由223412)x y y x m ⎧+=⎪⎨=-⎪⎩,,消去y 并化简得 22916840x mx m -+-=.设11()A x y ,,22()B x y ,,12169mx x +=,212849m x x -=. 因为OA OB ⊥uu r uu u r,所以12120x x y y +=. 121212126()()x x y y x x x m x m +=+-- 2121276()6x x m x x m =-++22841676699m m m m -=-+g g21(1428)09m =-=.所以m =.此时22(16)49(84)0m m ∆=-⨯->, 故所求直线l的方程为y =-,或y =+.21.解: (Ⅰ)21()()f x a x b '=-+, 于是2123210(2)a b a b ⎧+=⎪+⎪⎨⎪-=+⎪⎩,, 解得11a b =⎧⎨=-⎩,, 或948.3a b ⎧=⎪⎪⎨⎪=-⎪⎩,因a b ∈Z ,,故1()1f x x x =+-. (Ⅱ)证明:已知函数1y x =,21y x=都是奇函数. 所以函数1()g x x x=+也是奇函数,其图像是以原点为中心的中心对称图形. 而1()111f x x x =-++-. 可知,函数()g x 的图像按向量(11)=,a 平移,即得到函数()f x 的图像,故函数()f x 的图像是以点(11),为中心的中心对称图形. (Ⅲ)证明:在曲线上任取一点00011x x x ⎛⎫+⎪-⎝⎭,.由0201()1(1)f x x '=--知,过此点的切线方程为2000200111()1(1)x x y x x x x ⎡⎤-+-=--⎢⎥--⎣⎦. 令1x =得0011x y x +=-,切线与直线1x =交点为00111x x ⎛⎫+ ⎪-⎝⎭,. 令y x =得021y x =-,切线与直线y x =交点为00(2121)x x --,. 直线1x =与直线y x =的交点为(11),.从而所围三角形的面积为00000111212112222121x x x x x +---=-=--.所以,所围三角形的面积为定值2.22.解:(Ⅰ)证明:因为MA 是圆O 的切线,所以OA AM ⊥. 又因为AP OM ⊥.在Rt OAM △中,由射影定理知,2OA OM OP =g .(Ⅱ)证明:因为BK 是圆O 的切线,BN OK ⊥.同(Ⅰ),有2OB ON OK =g,又OB OA =, 所以OP OM ON OK =g g ,即ON OMOP OK=. 又NOP MOK =∠∠,所以ONP OMK △∽△,故90OKM OPN ==∠∠. 23.解:(Ⅰ)1C 是圆,2C 是直线.1C 的普通方程为221x y +=,圆心1(00)C ,,半径1r =. 2C的普通方程为0x y -+=.因为圆心1C到直线0x y -=的距离为1, 所以2C 与1C 只有一个公共点. (Ⅱ)压缩后的参数方程分别为1C ':cos 1sin 2x y θθ=⎧⎪⎨=⎪⎩,(θ为参数); 2C ':24x y t ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数). 化为普通方程为:1C ':2241x y +=,2C ':12y x =,联立消元得2210x ++=,其判别式24210∆=-⨯⨯=,所以压缩后的直线2C '与椭圆1C '仍然只有一个公共点,和1C 与2C 公共点个数相同. 24.解:(Ⅰ)44()2124848.x f x x x x ⎧⎪=-+<⎨⎪->⎩, ≤,, ≤,图像如下:(Ⅱ)不等式842x x --->,即()2f x >, 由2122x -+=得5x =.由函数()f x 图像可知,原不等式的解集为(5)-∞,.2019高中教师读书心得体会作为教师,在教授知识的提示,也应该利用空暇时刻渐渐品读一些好书,吸收书中的精华。
2008年普通高等学校招生全国统一考试理科数学 第Ⅰ卷参考公式: 如果事件A B ,互斥,那么球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么34π3V R =n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)k k n kn n P k C P P k n -=-=,,, 一、选择题 1.函数y )A .{}|0x x ≥B .{}|1x x ≥C .{}{}|10x x ≥D .{}|01x x ≤≤2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )3.在ABC △中,AB =c ,AC =b .若点D 满足2BD DC =,则AD =( )A .2133+b cB .5233-c bC .2133-b cD .1233+b cA .B .C .D .4.设a ∈R ,且2()a i i +为正实数,则a =( ) A .2 B .1 C .0D .1-5.已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =( )A .138B .135C .95D .236.若函数(1)y f x =-的图像与函数1y =的图像关于直线y x =对称,则()f x =( ) A .21x e-B .2xeC .21x e+D .22x e+7.设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( ) A .2B .12C .12-D .2-8.为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像,只需将函数sin 2y x =的图像( ) A .向左平移5π12个长度单位B .向右平移5π12个长度单位C .向左平移5π6个长度单位D .向右平移5π6个长度单位9.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()f x f x x --<的解集为( )A .(10)(1)-+∞,,B .(1)(01)-∞-,,C .(1)(1)-∞-+∞,,D .(10)(01)-,,10.若直线1x y a b +=通过点(cos sin )M αα,,则( ) A .221a b +≤ B .221a b +≥ C .22111a b +≤ D .22111a b +≥11.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( )A .13B. C. D .2312.如图,一环形花坛分成A B C D ,,,四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( ) A .96B .84C .60D .48第Ⅱ 卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.13.若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .14.已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .15.在ABC △中,AB BC =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .16.等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --的余弦值为,M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)设ABC △的内角A B C ,,所对的边长分别为a b c ,,,且3cos cos 5a B b A c-=. (Ⅰ)求tan cot A B 的值;(Ⅱ)求tan()A B -的最大值. 18.(本小题满分12分)四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,CD =AB AC =.(Ⅰ)证明:AD CE ⊥;(Ⅱ)设CE 与平面ABE 所成的角为45,求二面角C AD E --的大小.19.(本小题满分12分)已知函数32()1f x x ax x =+++,a ∈R . (Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数()f x 在区间2133⎛⎫--⎪⎝⎭,内是减函数,求a 的取值范围.20.(本小题满分12分)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性的即没患病.下面是两种化验方法: 方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率; (Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望.C DE AB21.(本小题满分12分)双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知OA AB OB 、、成等差数列,且BF 与FA 同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程. 22.(本小题满分12分)设函数()ln f x x x x =-.数列{}n a 满足101a <<,1()n n a f a +=. (Ⅰ)证明:函数()f x 在区间(01),是增函数; (Ⅱ)证明:11n n a a +<<;(Ⅲ)设1(1)b a ∈,,整数11ln a bk a b -≥.证明:1k a b +>.答案与解析:1.C解析: 由(1)x x x -≥≥0,0得0x x =≥1,或; 2.A解析:根据汽车加速行驶212s at =,匀速行驶s vt =,减速行驶212s at =-结合函数图象可知. 3. A解析:2(),322AD AB AC AD AD AB AC -=-=+=c +b ,1233AD =c +b4. D解析:222()(21)2(1)0,1a i i a ai i a a i a +=+-=-+->=- 5.C解析:243511014,104,3,10454013595a a a a a d S a d +=+==-==+=-+=由得6. B解析:2(1)2(1)21,(1),()y x xy x e f x e f x e --=⇒=-==7. D解析:3212211,,11(1)2x x y y y x x x =+''==+=-=----,2,2a a -==-8.A解析:π55cos 2sin(2)sin 2()3612y x x x ππ⎛⎫=+=+=+ ⎪⎝⎭,只需将函数sin 2y x =的图像向左平移5π12个单位得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像. 9.D解析:由奇函数()f x 可知()()2()0f x f x f x x x --=<,而(1)0f =,则(1)(1)0f f -=-=,当0x >时,()0(1)f x f <=;当0x <时,()0(1)f x f >=-,又()f x 在(0)+∞,上为增函数,则奇函数()f x 在(,0)-∞上为增函数,01,10x x <<-<<或. 10.D解析:由题意知直线1x ya b +=与圆221x y +=22111a b+1,≥.另解:设向量11(cos ,sin ),(,)a b ααm =n =,由题意知cos sin 1a b αα+=由⋅≤m n m n可得cos sin 1a b αα=+11.C解析:由题意知三棱锥1A ABC -为正四面体,设棱长为a,则1AB =,棱柱的高13AO a ==(即点1B 到底面ABC 的距离),故1AB 与底面ABC所成角的正弦值为11AO AB =. 另解:设1,,AB AC AA 为空间向量的一组基底,1,,AB AC AA 的两两间的夹角为060长度均为a ,平面ABC 的法向量为111133OA AA AB AC=--,11AB AB AA =+ 2111126,,333OA AB a OA AB ⋅===则1AB 与底面ABC 所成角的正弦值为111123OA AB AO AB ⋅=.12.B解析:分三类:种两种花有24A 种种法;种三种花有342A 种种法;种四种花有44A 种种法.共有234444284A A A ++=. 另解:按A B C D ---顺序种花,可分A C 、同色与不同色有43(1322)84⨯⨯⨯+⨯= 13.答案:9解析:如图,作出可行域,作出直线0:20l x y -=,将0l 平移至过点A 处时,函数2z x y =-有最大值9. 14. 答案:2解析:由抛物线21y ax =-的焦点坐标为1(0,1)4a -为坐标原点得,14a =,则2114y x =-与坐标轴的交点为(0,1),(2,0),(2,0)--,则以这三点围成的三角形的面积为14122⨯⨯= 15.答案:38解析:设1AB BC ==,7cos 18B =-则222252cos 9AC AB BC AB BC B =+-⋅⋅=53AC =,582321,21,3328c a c e a =+====.16.答案:16解析:设2AB =,作CO ABDE ⊥面,OH AB ⊥,则CH AB ⊥,CHO ∠为二面角C AB D --cos 1CH OH CH CHO =⋅∠=,结合等边三角形ABC与正方形ABDE 可知此四棱锥为正四棱锥,则AN EM CH ===11(),22AN AC AB EM AC AE =+=-,11()()22AN EM AB AC AC AE ⋅=+⋅-=12 故EM AN ,所成角的余弦值16AN EMAN EM⋅=另解:以O 为坐标原点,建立如图所示的直角坐标系, 则点(1,1,0),(1,1,0),(1,1,0),A B E C ----,1111(,,(,,222222M N ---,则3121321(,,),(,,),,322222AN EM AN EM AN EM ==-⋅===故EM AN ,所成角的余弦值16AN EMAN EM ⋅=.17.解析:(Ⅰ)在ABC △中,由正弦定理及3cos cos 5a B b A c-= 可得3333sin cos sin cos sin sin()sin cos cos sin 5555A B B A C A B A B A B-==+=+即sin cos 4cos sin A B A B =,则tan cot 4A B =; (Ⅱ)由tan cot 4A B =得tan 4tan 0A B =>2tan tan 3tan 3tan()1tan tan 14tan cot 4tan A B B A B A B B B B --===+++≤34当且仅当14tan cot ,tan ,tan 22B B B A ===时,等号成立,故当1tan 2,tan 2A B ==时,tan()A B -的最大值为34.18.解:(1)取BC 中点F ,连接DF 交CE 于点O ,AB AC =,∴AF BC ⊥,又面ABC ⊥面BCDE ,∴AF ⊥面BCDE ,∴AF CE ⊥.tan tan 2CED FDC ∠=∠=,∴90OED ODE ∠+∠=,90DOE ∴∠=,即CE DF ⊥,CE ∴⊥面ADF ,CE AD ∴⊥.(2)在面ACD 内过C 点作AD 的垂线,垂足为G .CG AD ⊥,CE AD ⊥,AD ∴⊥面CEG ,EG AD ∴⊥,则CGE ∠即为所求二面角的平面角.23AC CD CG AD==,DG =,EG ==,CE =222cos 2CG GE CE CGE CG GE +-∠==,πarccos CGE ∴∠=-⎝⎭,即二面角C AD E --的大小πarccos -⎝⎭.19. 解:(1)32()1f x x ax x =+++求导:2()321f x x ax '=++ 当23a≤时,0∆≤,()0f x '≥,()f x 在R 上递增当23a >,()0f x '=求得两根为x =即()f x在3a ⎛--∞ ⎪⎝⎭,递增,33a a ⎛--+ ⎪⎝⎭,递减,3a ⎛⎫-++∞⎪ ⎪⎝⎭递增 (2)2313--,且23a >解得:74a ≥20.解:(Ⅰ)对于甲:对于乙:0.20.40.20.80.210.210.64⨯+⨯+⨯+⨯=.(Ⅱ)ξ表示依方案乙所需化验次数,ξ的期望为20.430.440.2 2.8E ξ=⨯+⨯+⨯=. 21. 解:(Ⅰ)设OA m d =-,AB m =,OB m d =+ 由勾股定理可得:222()()m d m m d -+=+得:14d m =,tan b AOF a ∠=,4tan tan 23AB AOB AOF OA ∠=∠==由倍角公式∴22431ba b a =⎛⎫- ⎪⎝⎭,解得12b a =,则离心率e =. (Ⅱ)过F 直线方程为()a y x c b =--,与双曲线方程22221x y a b -=联立将2a b =,c =代入,化简有22152104x x b b -+=124x =-=将数值代入,有4=解得3b = 故所求得双曲线方程为:221369x y -=.22. 设函数()ln f x x x x =-.数列{}n a 满足101a <<,1()n n a f a +=. (Ⅰ)证明:函数()f x 在区间(01),是增函数; (Ⅱ)证明:11n n a a +<<;(Ⅲ)设1(1)b a ∈,,整数11ln a bk a b -≥.证明:1k a b +>. 22.解析:(Ⅰ)证明:()ln f x x x x =-,()ln f x x '=-,当(01)x ∈,时,()ln 0f x x '=-> 故函数()f x 在区间(01),是增函数; (Ⅱ)证明:(数学归纳法证明)(ⅰ)当1n =时,101a <<,11ln 0a a < 211111()ln a f a a a a a ==->由函数()f x 在区间(01),是增函数,且函数()f x 在1x =处连续,则()f x 在区间(01],是增函数,21111()ln 1a f a a a a ==-<,即121a a <<成立; (ⅱ)假设当(*)x k k N =∈时,11k k a a +<<成立,即1101k k a a a +<<<≤那么当1n k =+时,由()f x 在区间(01],是增函数,1101k k a a a +<<<≤得 1()()(1)k k f a f a f +<<.而1()n n a f a +=,则121(),()k k k k a f a a f a +++==, 121k k a a ++<<,也就是说当1n k =+时,11n n a a +<<也成立; 根据(ⅰ)、(ⅱ)可得对任意的正整数n ,11n n a a +<<恒成立.(Ⅲ)证明:由()ln f x x x x =-.1()n n a f a +=可得 k k k k a a b a b a ln 1--=-+11ln k i i i a b a a ==--∑ 若存在某i k ≤满足i a b ≤,则由⑵知:1k i a b a b +-<-≥0 若对任意i k ≤都有b a i >,则k k k k a a b a b a ln 1--=-+ 11ln k i i i a b a a ==--∑11ln k i i a b a b ==--∑11()ln k i i a b a b==--∑b ka b a ln 11--> b ka b a ln 11--≥)(11b a b a --->0=,即1k a b +>成立.。
2008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅰ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至9页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意: 1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目. 2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效..........3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式: 如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)k k n kn n P k C P P k n -=-=,,,一、选择题1.函数y =)A .{}|0x x ≥ B .{}|1x x ≥ C .{}{}|10x x ≥D .{}|01x x ≤≤2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )3.在ABC △中,AB =c ,AC =b .若点D 满足2BD DC =,则AD =( ) A .2133+b cB .5233-c b C .2133-b cD .1233+b c 4.设a ∈R ,且2()a i i +为正实数,则a =( ) A .2B .1C .0D .1-5.已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =( ) A .138B .135C .95D .236.若函数(1)y f x =-的图像与函数1y =的图像关于直线y x =对称,则()f x =( )A .e 2x-1B .e 2xC .e 2x+1D . e 2x+27.设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( ) A .2B .12C .12- D .2-8.为得到函数πcos 23y x ⎛⎫=+⎪⎝⎭的图像,只需将函数sin 2y x =的图像( ) A .向左平移5π12个长度单位 B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位9.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( )A .(10)(1)-+∞,,B .(1)(01)-∞-,,C .(1)(1)-∞-+∞,, D .(10)(01)-,,10.若直线1x ya b+=通过点(cos sin )M αα,,则( ) A .221a b +≤ B .221a b +≥ C .22111a b+≤D .22111a b+≥ 11.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为A .B .C .D .ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( )A .13BCD .2312.如图,一环形花坛分成A B C D ,,,四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( ) A .96 B .84 C .60 D .482008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅰ)第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共7页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.......... 3.本卷共10小题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(注意:在试题卷上作答无效.........) 13.13.若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .14.已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .15.在ABC △中,AB BC =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .16.等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --的余弦值为,M 、N 分别是AC 、BC 的中点,则EM 、AN 所成角的余弦值等于 . 三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) (注意:在试题卷上作答无效.........) 设ABC △的内角A B C ,,所对的边长分别为a 、b 、c ,且3cos cos 5a Bb Ac -=. (Ⅰ)求tan cot A B 的值; (Ⅱ)求tan()A B -的最大值. 18.(本小题满分12分) (注意:在试题卷上作答无效.........) 四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,CD =AB AC =.(Ⅰ)证明:AD CE ⊥;(Ⅱ)设CE 与平面ABE 所成的角为45,求二面角C AD E --的大小.19.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知函数32()1f x x ax x =+++,a ∈R . (Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,求a 的取值范围. 20.(本小题满分12分)CDE AB(注意:在试题卷上作答无效.........) 已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性的即没患病.下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;(Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望. 21.(本小题满分12分)(注意:在试题卷上作答无效.........) 双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知OA AB OB 、、成等差数列,且BF 与FA 同向. (Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程. 22.(本小题满分12分)(注意:在试题卷上作答无效.........) 设函数()ln f x x x x =-.数列{}n a 满足101a <<,1()n n a f a +=.(Ⅰ)证明:函数()f x 在区间(01),是增函数; (Ⅱ)证明:11n n a a +<<; (Ⅲ)设1(1)b a ∈,,整数11ln a bk a b-≥.证明:1k a b +>.参考答案一、选择题 1、C 2、A 3、A 4、D 5、C 6、B 7、D 8、A 9.D 10.D . 11.B . 12.B. 二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上. 13.答案:9.14. 答案:2.15.答案:38. 16.答案:16. 三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.解析:(Ⅰ)由正弦定理得a=CBc b C A c sin sin ,sin sin = acosB-bcosA=(A CBB C A cos sin sin cos sin sin ⋅-⋅)c =c B A AB B A ⋅+-)sin(cos sin cos sin=c B A B A BA B A ⋅+-sin cos cos sin sin cos cos sin=1cot tan )1cot (tan +-B A cB A依题设得c B A c B A 531cot tan )1cot (tan =+- 解得tanAcotB=4(II)由(I )得tanA=4tanB ,故A 、B 都是锐角,于是tanB>0 tan(A-B)=B A BA tan tan 1tan tan +-=B B 2tan 41tan 3+ ≤43, 且当tanB=21时,上式取等号,因此tan(A-B)的最大值为4318.解:(I)作AO ⊥BC ,垂足为O ,连接OD ,由题设知,AO ⊥底面BCDE ,且O 为BC 中点, 由21==DE CD CD OC 知,Rt △OCD ∽Rt △CDE , 从而∠ODC=∠CED ,于是CE ⊥OD ,由三垂线定理知,AD ⊥CE(II )由题意,BE ⊥BC ,所以BE ⊥侧面ABC ,又BE ⊂侧面ABE ,所以侧面ABE ⊥侧面ABC 。
考分:630分方案一:您的成绩高于2011年新疆本科一批(理科)录取控制分数线157分,高于2011年新疆本科二批(理科)录取控制分数线223分。
系统根据高校往年录取分数线及各省最低录取控制分数线,结合您的成绩为您推荐如下高校:系统为您推荐的本科一批次院校序号院校名称所在地类别教育部直属985工程211工程1 浙江大学浙江公办√√√2 复旦大学上海公办√√√3 上海交通大学上海公办√√√4 北京大学北京公办√√√方案二:参考年份:2011年考生来源:新疆考生科类:理工高考分数:630注:录取线差 = 高校平均分 - 省市分数线以下高校的录取平均分所在区间为630±10分高校名称所在地层次录取批次高校平均分省市分数线录取线差走势图中国人民大学北京本科 2 639 473(第一批) 166 查看北京航空航天大学北京本科 2 627 473(第一批) 154 查看对外经济贸易大学北京本科 2 623 473(第一批) 150 查看南开大学天津本科 2 633 473(第一批) 160 查看同济大学上海本科 2 631 473(第一批) 158 查看上海财经大学上海本科 2 638 473(第一批) 165 查看考分625分:方案一:您的成绩高于2011年新疆本科一批(理科)录取控制分数线152分,高于2011年新疆本科二批(理科)录取控制分数线218分。
系统根据高校往年录取分数线及各省最低录取控制分数线,结合您的成绩为您推荐如下高校:系统为您推荐的本科一批次院校序号院校名称所在地类别教育部直属985工程211工程1 中国科学技术大学安徽公办×√√2 南京大学江苏公办√√√3 浙江大学浙江公办√√√4 复旦大学上海公办√√√5 上海交通大学上海公办√√√方案二:考分620分:您的成绩高于2011年新疆本科一批(理科)录取控制分数线147分,高于2011年新疆本科二批(理科)录取控制分数线213分。
1.Amdahl提出的计算机系统机构的经典定义是:计算机系统结构是程序员看到的计算机属性,即概念性结构和功能特性。
2.计算机系统中的提高并行性的措施很多,但就其基本思想而言,可以归为3类技术途径,这就是时间重叠、资源重复和资源共享。
3.MIPS的数据寻址方式有立即数寻址和偏移量寻址两种,但通过把0作为偏移量可实现寄存器间接寻址,而把 RO作为基址寄存器可实现16位绝对寻址方式。
4.交叉访问存储器通常有两种地址映像方式:顺序交叉和取模交叉,其中取模交叉方式不仅可以减少体冲突而且可以使用位选择方法来代替在确定体内地址时使用的除法运算。
5.互联网络从拓扑结构上可分为静态互连网络和动态…。
6.根据存储器的分布方式,多处理器计算机有两种基本结构,就是集中式共享存储结构和具有分布的物理存储器结构。
7.在多处理器系统中并行性遇到的挑战,一个是程序中的并行性有限,另一个是相对较高的通信开销。
1.系列机软件必须保证( C )A.向前兼容,并向上兼容B.向前兼容,并向下兼容C.向后兼容,力争向上兼容D.向后兼容,力争向下兼容2.计算机系统结构不包括( C )A.数据表示 B.机器工作状态的定义和切换C.主存速度 D.信息保护3.字串位并是指同时对一个字的所有位进行处理,其并行等级( D )A.不存在并行性 B.较高的并行性C.最高一级的并行性D.已经开始出现并行性4.RISC计算机的指令系统集类型是(C )A.堆栈型 B.累加器型C.寄存器—寄存器型 D.寄存器-存储器型5.关于“一次重叠”说法不正确的是( A )A.仅“执行K”与“分析K+1”重叠B. 应尽量使“分析K+1”与“执行K”时间相等C. “分析K”完后立即开始“执行K”D. 只需一套指令分析部件和一套执行部件6.在Cache存储器中常用的地址映象方式是( C )A.全相联映 B.页表法映象C.组相联映象 D.段页表映象7.块冲突概率最高的Cache地址映象方式是( A )A.直接 B.组相联 C.段相联 D.全相联8.设8个处理器编号分别为0,1,2,…,7用Cube2 (交换函数中的C2)互联函数时,第3号处理机与第( D )号处理机相联。
2008年高考数学全国一卷试题和答案2008年普通高等学校夏季招生考试数学理工农医类(全国Ⅰ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至9页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意:1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答.......无效... 3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R表示球的半径 ()()()P A B P A P B =g g 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n次独立重复试验中恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)k kn k n n P k C P P k n -=-=L ,,,一、选择题 1.函数(1)y x x x- )A .{}|0x x ≥B .{}|1x x ≥C .{}{}|10x x U ≥D .{}|01x x ≤≤2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s看作时间t 的函数,其图像可能是( )3.在ABC △中,AB =u u u r c ,AC =u u u r b .若点D 满足2BD DC =u u u r u u u r,则AD =u u u r ( )s OA s t Os t Os OB C DA .2133+b cB .5233-c bC .2133-b c D .1233+b c 4.设a ∈R ,且2()a i i +为正实数,则a =( )A .2B .1C .0D .1- 5.已知等差数列{}na 满足244aa +=,3510aa +=,则它的前10项的和10S =( )A .138B .135C .95D .23 6.若函数(1)y f x =-的图像与函数1y x =的图像关于直线y x =对称,则()f x =( ) A .21x e - B .2xe C .21x e + D .22x e +7.设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( )A .2B .12C .12- D .2- 8.为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像,只需将函数sin 2y x=的图像( )A .向左平移5π12个长度单位 B .向右平移5π12个长度单位C .向左平移5π6个长度单位D .向右平移5π6个长度单位9.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x --<的解集为( ) A .(10)(1)-+∞U ,, B .(1)(01)-∞-U ,, C .(1)(1)-∞-+∞U ,, D .(10)(01)-U ,,10.若直线1x y a b+=通过点(cos sin )M αα,,则( ) A .221ab +≤ B .221ab +≥ C .22111a b +≤D .22111a b +≥11.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( ) A .13B 2C 3D .2312.如图,一环形花坛分成A B C D ,,,四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( )A .96B .84C .60D .48DB CA2008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共7页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试..题卷上作答无效........3.本卷共10小题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(注意:在试题卷上作答无效.........)13.若x y,满足约束条件3003x yx yx⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y=-的最大值为 . 14.已知抛物线21y ax=-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .15.在ABC △中,AB BC =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C,则该椭圆的离心率e =.16.等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --的余弦值为3,M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 . 三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)(注意:在试题卷上作答无........效.) 设ABC △的内角A B C ,,所对的边长分别为a b c ,,,且3cos cos 5a Bb A c-=.(Ⅰ)求tan cot A B 的值; (Ⅱ)求tan()A B -的最大值.(注意:在试题卷上作答无效.........) 四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,2CD =AB AC =. (Ⅰ)证明:AD CE ⊥;(Ⅱ)设CE 与平面ABE 所成的角为45o,求二面角C AD E--的大小.19.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知函数32()1f x xax x =+++,a ∈R .(Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数()f x 在区间2133⎛⎫--⎪⎝⎭,内是减函数,求a 的取值范围.CDE A B(注意:在试题卷上作答无效.........) 已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止. 方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验. (Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;(Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望.21.(本小题满分12分)(注意:在试题卷上作答无效.........) 双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知OA AB OB u u u r u u u r u u u r 、、成等差数列,且BFu u u r与FAu u u r同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程.22.(本小题满分12分)(注意:在试题卷上作答无效.........) 设函数()ln f x x x x =-.数列{}na 满足101a <<,1()n n af a +=.(Ⅰ)证明:函数()f x 在区间(01),是增函数; (Ⅱ)证明:11nn aa +<<;(Ⅲ)设1(1)b a ∈,,整数11ln a bk a b-≥.证明:1k a b+>.2008年普通高等学校招生全国统一考试 理科数学(必修+选修Ⅱ)参考答案1.C.2.A.3.A.4.D.5.C.6.B.7.D.8.A.9.D .10.D .11.B12.B.13.答案:9.14. 答案:2.15.答案:38.16.答案:16. 三、17.解:(Ⅰ)由正弦定理得 ,sin sin ,sin sin CB c bC A c a == c A CBB C A A b B a )cos sin sin cos sin sin (cos cos ⋅-⋅=-,1cot tan )1cot (tan sin cos cos sin sin cos cos sin )sin(cos sin cos sin +-=⋅+-=⋅+-=B A c B A c B A B A B A B A cB A AB B A依题设得:.4cot tan .531cot tan )1cot (tan ==+-B A c B A c B A 解得(Ⅱ)由(Ⅰ)得tanA=4tanB,故A 、B 都是锐角,于是tanB>0.,43tan 41tan 3tan tan 1tan tan )tan(2≤+=+-=-B B BA B A B A且当tanB=21时,上式取等号。
2008年普通高等学校招生全国统一考试(全国1卷)理科数学(必修+选修Ⅰ)一、选择题 1.函数y =)A .{}|0x x ≥ B .{}|1x x ≥ C .{}{}|10x x ≥D .{}|01x x ≤≤2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )3.在ABC △中,AB =c ,AC =b .若点D 满足2BD DC =,则AD =( ) A .2133+b cB .5233-c b C .2133-b cD .1233+b c 4.设a ∈R ,且2()a i i +为正实数,则a =( ) A .2B .1C .0D .1-5.已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =( ) A .138B .135C .95D .236.若函数(1)y f x =-的图像与函数ln1y =的图像关于直线y x =对称,则()f x =( )A .e2x-1B .e 2xC .e2x+1D . e2x+27.设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( ) A .2B .12C .12- D .2-8.为得到函数πcos 23y x ⎛⎫=+⎪⎝⎭的图像,只需将函数sin 2y x =的图像( ) A .向左平移5π12个长度单位 B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位9.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( )A .B .C .D .A .(10)(1)-+∞,,B .(1)(01)-∞-,,C .(1)(1)-∞-+∞,,D .(10)(01)-,,10.若直线1x ya b+=通过点(cos sin )M αα,,则( ) A .221a b +≤ B .221a b +≥ C .22111a b+≤D .22111a b+≥ 11.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( )A .13BCD .2312.如图,一环形花坛分成A B C D ,,,四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( ) A .96 B .84 C .60 D .48二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上. (注意:在试题卷上作答无效.........) 13.13.若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为14.已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .15.在ABC △中,AB BC =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .16.等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --的余弦值为3,M 、N 分别是AC 、BC 的中点,则EM 、AN 所成角的余弦值等于 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) 设ABC △的内角A B C ,,所对的边长分别为a 、b 、c ,且3cos cos 5a Bb Ac -=. (Ⅰ)求tan cot A B 的值; (Ⅱ)求tan()A B -的最大值.18.(本小题满分12分)四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,CD =AB AC =.(Ⅰ)证明:AD CE ⊥;(Ⅱ)设CE 与平面ABE 所成的角为45,求二面角C AD E --的大小.19.(本小题满分12分)已知函数32()1f x x ax x =+++,a ∈R . (Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,求a 的取值范围. 20.(本小题满分12分)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性的即没患病.下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止. 方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;(Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望.CDE AB21.(本小题满分12分)双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知OA AB OB 、、成等差数列,且BF 与FA 同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程. 22.(本小题满分12分) 设函数()ln f x x x x =-.数列{}n a 满足101a <<,1()n n a f a +=. (Ⅰ)证明:函数()f x 在区间(01),是增函数; (Ⅱ)证明:11n n a a +<<;(Ⅲ)设1(1)b a ∈,,整数11ln a bk a b-≥.证明:1k a b +>.2008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅰ)参考答案一、选择题 1、C2、A3、A4、D5、C6、B7、D8、A9.D10.D .11.B .12.B.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上. 13.答案:9.14. 答案:2.15.答案:38. 16.答案:16. 三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.解析:(Ⅰ)由正弦定理得 a=CBc b C A c sin sin ,sin sin =acosB-bcosA=(A CBB C A cos sin sin cos sin sin ⋅-⋅)c=c B A A B B A ⋅+-)sin(cos sin cos sin =c B A B A B A B A ⋅+-sin cos cos sin sin cos cos sin =1cot tan )1cot (tan +-B A cB A 依题设得c B A c B A 531cot tan )1cot (tan =+-,解得tanAcotB=4(II)由(I )得tanA=4tanB ,故A 、B 都是锐角,于是tanB>0 tan(A-B)=B A BA tan tan 1tan tan +-=B B 2tan 41tan 3+ ≤43, 且当tanB=21时,上式取等号,因此tan(A-B)的最大值为4318.解:(I)作AO ⊥BC ,垂足为O ,连接OD ,由题设知,AO ⊥底面BCDE ,且O 为BC 中点, 由21==DE CD CD OC 知,Rt △OCD ∽Rt △CDE , 从而∠ODC=∠CED ,于是CE ⊥OD , 由三垂线定理知,AD ⊥CE(II )由题意,BE ⊥BC ,所以BE ⊥侧面ABC ,又BE ⊂侧面ABE ,所以侧面ABE ⊥侧面ABC 。
2008年全国统一高考数学试卷(理科)(全国卷Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)函数的定义域为()A.{x|x≥0}B.{x|x≥1}C.{x|x≥1}∪{0}D.{x|0≤x≤1} 2.(5分)掷一个骰子,向上一面的点数大于2且小于5的概率为p1,拋两枚硬币,正面均朝上的概率为p2,则()A.p1<p2 B.p1>p2 C.p1=p2D.不能确定3.(5分)在△ABC中,=,=.若点D满足=2,则=()A.B.C.D.4.(5分)设a∈R,且(a+i)2i为正实数,则a=()A.2 B.1 C.0 D.﹣15.(5分)已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138 B.135 C.95 D.236.(5分)若函数y=f(x)的图象与函数y=ln的图象关于直线y=x 对称,则f(x)=()A.e2x﹣2B.e2x C.e2x+1D.e2x+27.(5分)设曲线在点(3,2)处的切线与直线ax+y+1=0垂直,则a=()A.2 B.C.D.﹣28.(5分)为得到函数的图象,只需将函数y=sin2x的图象()A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位9.(5分)设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式<0的解集为()A.(﹣1,0)∪(1,+∞)B.(﹣∞,﹣1)∪(0,1)C.(﹣∞,﹣1)∪(1,+∞)D.(﹣1,0)∪(0,1)10.(5分)若直线=1与圆x2+y2=1有公共点,则()A.a2+b2≤1 B.a2+b2≥1 C. D.11.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,则AB1与底面ABC所成角的正弦值等于()A.B. C. D.12.(5分)如图,一环形花坛分成A,B,C,D四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为()A.96 B.84 C.60 D.48二、填空题(共4小题,每小题5分,满分20分)13.(5分)若x,y满足约束条件,则z=2x﹣y的最大值为.14.(5分)已知抛物线y=ax2﹣1的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为.15.(5分)在△ABC中,AB=BC,.若以A,B为焦点的椭圆经过点C,则该椭圆的离心率e=.16.(5分)等边三角形ABC与正方形ABDE有一公共边AB,二面角C﹣AB﹣D的余弦值为,M,N分别是AC,BC的中点,则EM,AN 所成角的余弦值等于.三、解答题(共6小题,满分74分)17.(10分)设△ABC的内角A,B,C所对的边长分别为a,b,c,且acosB﹣bcosA=c.(Ⅰ)求的值;(Ⅱ)求tan(A﹣B)的最大值.18.(12分)四棱锥A﹣BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,BC=2,,AB=AC.(Ⅰ)证明:AD⊥CE;(Ⅱ)设CE与平面ABE所成的角为45°,求二面角C﹣AD﹣E的大小.19.(12分)已知函数f(x)=﹣x2+ax+1﹣lnx.(Ⅰ)当a=3时,求函数f(x)的单调递增区间;(Ⅱ)若f(x)在区间(0,)上是减函数,求实数a的取值范围.20.(12分)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;(Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望.21.(12分)双曲线的中心为原点O,焦点在x轴上,两条渐近线分别为l1,l2,经过右焦点F垂直于l1的直线分别交l1,l2于A,B两点.已知||、||、||成等差数列,且与同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB被双曲线所截得的线段的长为4,求双曲线的方程.22.(12分)设函数f(x)=x﹣xlnx.数列{a n}满足0<a1<1,a n+1=f (a n).(Ⅰ)证明:函数f(x)在区间(0,1)是增函数;(Ⅱ)证明:a n<a n+1<1;(Ⅲ)设b∈(a1,1),整数.证明:a k+1>b.2008年全国统一高考数学试卷(理科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2008•全国卷Ⅰ)函数的定义域为()A.{x|x≥0}B.{x|x≥1}C.{x|x≥1}∪{0}D.{x|0≤x≤1}【分析】偶次开方的被开方数一定非负.x(x﹣1)≥0,x≥0,解关于x的不等式组,即为函数的定义域.【解答】解:由x(x﹣1)≥0,得x≥1,或x≤0.又因为x≥0,所以x≥1,或x=0;所以函数的定义域为{x|x≥1}∪{0}故选C.2.(5分)(2008•全国卷Ⅰ)掷一个骰子,向上一面的点数大于2且小于5的概率为p1,拋两枚硬币,正面均朝上的概率为p2,则()A.p1<p2 B.p1>p2 C.p1=p2D.不能确定【分析】计算出各种情况的概率,然后比较即可.【解答】解:大于2小于5的数有2个数,∴p1==;投掷一次正面朝上的概率为,两次正面朝上的概率为p2=×=,∵>,∴p1>p2.故选B.3.(5分)(2008•全国卷Ⅰ)在△ABC中,=,=.若点D满足=2,则=()A.B.C.D.【分析】把向量用一组向量来表示,做法是从要求向量的起点出发,尽量沿着已知向量,走到要求向量的终点,把整个过程写下来,即为所求.本题也可以根据D点把BC分成一比二的两部分入手.【解答】解:∵由,∴,∴.故选A4.(5分)(2008•全国卷Ⅰ)设a∈R,且(a+i)2i为正实数,则a=()A.2 B.1 C.0 D.﹣1【分析】注意到a+bi(a,b∈R)为正实数的充要条件是a>0,b=0 【解答】解:(a+i)2i=(a2+2ai﹣1)i=﹣2a+(a2﹣1)i>0,a=﹣1.故选D.5.(5分)(2008•全国卷Ⅰ)已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138 B.135 C.95 D.23【分析】本题考查的知识点是等差数列的性质,及等差数列前n项和,根据a2+a4=4,a3+a5=10我们构造关于基本量(首项及公差)的方程组,解方程组求出基本量(首项及公差),进而代入前n项和公式,即可求解.【解答】解:∵(a3+a5)﹣(a2+a4)=2d=6,∴d=3,a1=﹣4,∴S10=10a1+=95.故选C6.(5分)(2008•全国卷Ⅰ)若函数y=f(x)的图象与函数y=ln的图象关于直线y=x对称,则f(x)=()A.e2x﹣2B.e2x C.e2x+1D.e2x+2【分析】由函数y=f(x)的图象与函数y=ln的图象关于直线y=x 对称知这两个函数互为反函数,故只要求出函数y=f(x)的反函数即可,欲求原函数的反函数,即从原函数y=ln中反解出x,后再进行x,y互换,即得反函数的解析式.【解答】解:∵,∴,∴x=(e y﹣1)2=e2y﹣2,改写为:y=e2x﹣2∴答案为A.7.(5分)(2008•全国卷Ⅰ)设曲线在点(3,2)处的切线与直线ax+y+1=0垂直,则a=()A.2 B.C.D.﹣2【分析】(1)求出已知函数y在点(3,2)处的斜率;(2)利用两条直线互相垂直,斜率之间的关系k1•k2=﹣1,求出未知数a.【解答】解:∵y=∴y′=﹣∵x=3∴y′=﹣即切线斜率为﹣∵切线与直线ax+y+1=0垂直∴直线ax+y+1=0的斜率为﹣a.∴﹣•(﹣a)=﹣1得a=﹣2故选D.8.(5分)(2008•全国卷Ⅰ)为得到函数的图象,只需将函数y=sin2x的图象()A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位【分析】先根据诱导公式将函数化为正弦的形式,再根据左加右减的原则进行平移即可得到答案.【解答】解:∵,只需将函数y=sin2x的图象向左平移个单位得到函数的图象.故选A.9.(5分)(2008•全国卷Ⅰ)设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式<0的解集为()A.(﹣1,0)∪(1,+∞)B.(﹣∞,﹣1)∪(0,1)C.(﹣∞,﹣1)∪(1,+∞)D.(﹣1,0)∪(0,1)【分析】首先利用奇函数定义与得出x与f(x)异号,然后由奇函数定义求出f(﹣1)=﹣f(1)=0,最后结合f(x)的单调性解出答案.【解答】解:由奇函数f(x)可知,即x与f (x)异号,而f(1)=0,则f(﹣1)=﹣f(1)=0,又f(x)在(0,+∞)上为增函数,则奇函数f(x)在(﹣∞,0)上也为增函数,当0<x<1时,f(x)<f(1)=0,得<0,满足;当x>1时,f(x)>f(1)=0,得>0,不满足,舍去;当﹣1<x<0时,f(x)>f(﹣1)=0,得<0,满足;当x<﹣1时,f(x)<f(﹣1)=0,得>0,不满足,舍去;所以x的取值范围是﹣1<x<0或0<x<1.故选D.10.(5分)(2008•全国卷Ⅰ)若直线=1与圆x2+y2=1有公共点,则()A.a2+b2≤1 B.a2+b2≥1 C. D.【分析】用圆心到直线的距离小于或等于半径,可以得到结果.【解答】解:直线与圆有公共点,即直线与圆相切或相交得:d≤r ,∴故选D.11.(5分)(2008•全国卷Ⅰ)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,则AB1与底面ABC所成角的正弦值等于()A.B. C. D.【分析】法一:由题意可知三棱锥A1﹣ABC为正四面体,设棱长为2,求出AB1及三棱锥的高,由线面角的定义可求出答案;法二:先求出点A1到底面的距离A1D的长度,即知点B1到底面的距离B1E的长度,再求出AE的长度,在直角三角形AEB1中求AB1与底面ABC所成角的正切,再由同角三角函数的关系求出其正弦.【解答】解:(法一)因为三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,设为D,所以三棱锥A1﹣ABC为正四面体,设棱长为2,则△AA1B1是顶角为120°等腰三角形,所以AB1=2×2×sin60°=2,A1D==,所以AB1与底面ABC所成角的正弦值为==;(法二)由题意不妨令棱长为2,点B1到底面的距离是B1E,如图,A1在底面ABC内的射影为△ABC的中心,设为D,故DA=,由勾股定理得A1D==故B1E=,如图作A1S⊥AB于中点S,易得A1S=,所以AB1==2,所以AB1与底面ABC所成角的正弦值sin∠B1AE==.故选B.12.(5分)(2008•全国卷Ⅰ)如图,一环形花坛分成A,B,C,D四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为()A.96 B.84 C.60 D.48【分析】这道题比起前几年出的高考题要简单些,只要分类清楚没有问题,分为三类:分别种两种花、三种花、四种花,分这三类来列出结果.【解答】解:分三类:种两种花有A42种种法;种三种花有2A43种种法;种四种花有A44种种法.共有A42+2A43+A44=84.故选B二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2008•全国卷Ⅰ)若x,y满足约束条件,则z=2x﹣y的最大值为9.【分析】首先作出可行域,再作出直线l0:y=2x,将l0平移与可行域有公共点,直线y=2x﹣z在y轴上的截距最小时,z有最大值,求出此时直线y=2x﹣z经过的可行域内的点的坐标,代入z=2x﹣y中即可.【解答】解:如图,作出可行域,作出直线l0:y=2x,将l0平移至过点A处时,函数z=2x﹣y有最大值9.14.(5分)(2008•全国卷Ⅰ)已知抛物线y=ax2﹣1的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为2.【分析】先根据抛物线y=ax2﹣1的焦点坐标为坐标原点,求得a,得到抛物线方程,进而可知与坐标轴的交点的坐标,进而可得答案.【解答】解:由抛物线y=ax2﹣1的焦点坐标为坐标原点得,,则与坐标轴的交点为(0,﹣1),(﹣2,0),(2,0),则以这三点围成的三角形的面积为故答案为215.(5分)(2008•全国卷Ⅰ)在△ABC中,AB=BC,.若以A,B为焦点的椭圆经过点C,则该椭圆的离心率e=.【分析】设AB=BC=1,,则,由此可知,从而求出该椭圆的离心率.【解答】解:设AB=BC=1,,则,∴,.答案:.16.(5分)(2008•全国卷Ⅰ)等边三角形ABC与正方形ABDE有一公共边AB,二面角C﹣AB﹣D的余弦值为,M,N分别是AC,BC 的中点,则EM,AN所成角的余弦值等于.【分析】先找出二面角的平面角,建立边之间的等量关系,再利用向量法将所求异面直线用基底表示,然后利用向量的所成角公式求出所成角即可.【解答】解:设AB=2,作CO⊥面ABDE,OH⊥AB,则CH⊥AB,∠CHO为二面角C﹣AB﹣D的平面角,结合等边三角形ABC与正方形ABDE可知此四棱锥为正四棱锥,则,=故EM,AN所成角的余弦值故答案为:三、解答题(共6小题,满分74分)17.(10分)(2008•全国卷Ⅰ)设△ABC的内角A,B,C所对的边长分别为a,b,c,且acosB﹣bcosA=c.(Ⅰ)求的值;(Ⅱ)求tan(A﹣B)的最大值.【分析】本题考查的知识点是正弦定理及两角和与差的正切函数,(Ⅰ)由正弦定理的边角互化,我们可将已知中,进行转化得到sinAcosB=4cosAsinB,再利用弦化切的方法即可求的值.(Ⅱ)由(Ⅰ)的结论,结合角A,B,C为△ABC的内角,我们易得tanA=4tanB>0,则tan(A﹣B)可化为,再结合基本不等式即可得到tan(A﹣B)的最大值.【解答】解:(Ⅰ)在△ABC中,,由正弦定理得即sinAcosB=4cosAsinB,则;(Ⅱ)由得tanA=4tanB>0当且仅当时,等号成立,故当时,tan(A﹣B)的最大值为.18.(12分)(2008•全国卷Ⅰ)四棱锥A﹣BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,BC=2,,AB=AC.(Ⅰ)证明:AD⊥CE;(Ⅱ)设CE与平面ABE所成的角为45°,求二面角C﹣AD﹣E的大小.【分析】(1)取BC中点F,证明CE⊥面ADF,通过证明线面垂直来达到证明线线垂直的目的.(2)在面AED内过点E作AD的垂线,垂足为G,由(1)知,CE⊥AD,则∠CGE即为所求二面角的平面角,△CGE中,使用余弦定理求出此角的大小.【解答】解:(1)取BC中点F,连接DF交CE于点O,∵AB=AC,∴AF⊥BC.又面ABC⊥面BCDE,∴AF⊥面BCDE,∴AF⊥CE.再根据,可得∠CED=∠FDC.又∠CDE=90°,∴∠OED+∠ODE=90°,∴∠DOE=90°,即CE⊥DF,∴CE⊥面ADF,∴CE⊥AD.(2)在面ACD内过C点作AD的垂线,垂足为G.∵CG⊥AD,CE⊥AD,∴AD⊥面CEG,∴EG⊥AD,则∠CGE即为所求二面角的平面角.作CH⊥AB,H为垂足.∵平面ABC⊥平面BCDE,矩形BCDE中,BE⊥BC,故BE⊥平面ABC,CH⊂平面ABC,故BE⊥CH,而AB∩BE=B,故CH⊥平面ABE,∴∠CEH=45°为CE与平面ABE所成的角.∵CE=,∴CH=EH=.直角三角形CBH中,利用勾股定理求得BH===1,∴AH=AB﹣BH=AC﹣1;直角三角形ACH中,由勾股定理求得AC2=CH2+AH2=3+(AC﹣1)2,∴AB=AC=2.由面ABC⊥面BCDE,矩形BCDE中CD⊥CB,可得CD⊥面ABC,故△ACD为直角三角形,AD===,故CG===,DG==,,又,则,∴,即二面角C﹣AD﹣E的大小.19.(12分)(2010•大纲版Ⅱ)已知函数f(x)=﹣x2+ax+1﹣lnx.(Ⅰ)当a=3时,求函数f(x)的单调递增区间;(Ⅱ)若f(x)在区间(0,)上是减函数,求实数a的取值范围.【分析】(1)求单调区间,先求导,令导函数大于等于0即可.(2)已知f(x)在区间(0,)上是减函数,即f′(x)≤0在区间(0,)上恒成立,然后用分离参数求最值即可.【解答】解:(Ⅰ)当a=3时,f(x)=﹣x2+3x+1﹣lnx∴解f′(x)>0,即:2x2﹣3x+1<0函数f(x)的单调递增区间是.(Ⅱ)f′(x)=﹣2x+a﹣,∵f(x)在上为减函数,∴x∈时﹣2x+a﹣≤0恒成立.即a≤2x+恒成立.设,则∵x∈时,>4,∴g′(x)<0,∴g(x)在上递减,∴g(x)>g()=3,∴a≤3.20.(12分)(2008•全国卷Ⅰ)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;(Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望.【分析】(1)由题意得到这两种方案的化验次数,算出在各个次数下的概率,写出化验次数的分布列,求出方案甲所需化验次数不少于依方案乙所需化验次数的概率.(2)根据上一问乙的化验次数的分布列,利用期望计算公式得到结果.【解答】解:(Ⅰ)若乙验两次时,有两种可能:①先验三只结果为阳性,再从中逐个验时,恰好一次验中概率为:②先验三只结果为阴性,再从其它两只中验出阳性(无论第二次试验中有没有,均可以在第二次结束),∴乙只用两次的概率为.若乙验三次时,只有一种可能:先验三只结果为阳性,再从中逐个验时,恰好二次验中概率为在三次验出时概率为∴甲种方案的次数不少于乙种次数的概率为:(Ⅱ)ξ表示依方案乙所需化验次数,∴ξ的期望为Eξ=2×0.6+3×0.4=2.4.21.(12分)(2008•全国卷Ⅰ)双曲线的中心为原点O,焦点在x轴上,两条渐近线分别为l1,l2,经过右焦点F垂直于l1的直线分别交l1,l2于A,B两点.已知||、||、||成等差数列,且与同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB被双曲线所截得的线段的长为4,求双曲线的方程.【分析】(1)由2个向量同向,得到渐近线的夹角范围,求出离心率的范围,再用勾股定理得出直角三角形的2个直角边的长度比,联想到渐近线的夹角,求出渐近线的斜率,进而求出离心率.(2)利用第(1)的结论,设出双曲线的方程,将AB方程代入,运用根与系数的关系及弦长公式,求出待定系数,即可求出双曲线方程.【解答】解:(1)设双曲线方程为,由,同向,∴渐近线的倾斜角为(0,),∴渐近线斜率为:,∴.∵||、||、||成等差数列,∴|OB|+|OA|=2|AB|,∴|AB|2=(|OB|﹣|OA|)(|OB|+|OA|)=(|OB|﹣|OA|)•2|AB|,∴,∴,可得:,而在直角三角形OAB中,注意到三角形OAF也为直角三角形,即tan∠AOB=,而由对称性可知:OA的斜率为k=tan,∴,∴2k2+3k﹣2=0,∴;∴,∴,∴.(2)由第(1)知,a=2b,可设双曲线方程为﹣=1,∴c=b.由于AB的倾斜角为+∠AOB,故AB的斜率为tan(+∠AOB )=﹣cot(∠AOB)=﹣2,∴AB的直线方程为y=﹣2(x﹣b),代入双曲线方程得:15x2﹣32bx+84b2=0,∴x1+x2=,x1•x2=,∴4=•=•,即16=﹣112b2,∴b2=9,所求双曲线方程为:﹣=1.22.(12分)(2008•全国卷Ⅰ)设函数f(x)=x﹣xlnx.数列{a n}满足0<a1<1,a n+1=f(a n).(Ⅰ)证明:函数f(x)在区间(0,1)是增函数;(Ⅱ)证明:a n<a n+1<1;(Ⅲ)设b∈(a1,1),整数.证明:a k+1>b.【分析】(1)首先求出函数的导数,然后令f′(x)=0,解出函数的极值点,最后根据导数判断函数在区间(0,1)上的单调性,从而进行证明.(2)由题意数列{a n}满足0<a1<1,a n+1=f(a n),求出a n+1=a n﹣a n lna n,然后利用归纳法进行证明;=f(a n)可得a k+1=a k﹣b﹣a k,然后(3)由题意f(x)=x﹣xlnx,a n+1进行讨论求解.【解答】解:(Ⅰ)证明:∵f(x)=x﹣xlnx,∴f′(x)=﹣lnx,当x∈(0,1)时,f′(x)=﹣lnx>0故函数f(x)在区间(0,1)上是增函数;(Ⅱ)证明:(用数学归纳法)(i)当n=1时,0<a1<1,a1lna1<0,a2=f(a1)=a1﹣a1lna1>a1,∵函数f(x)在区间(0,1)是增函数且函数f(x)在x=1处连续,∴f(x)在区间(0,1]是增函数,a2=f(a1)=a1﹣a1lna1<1,即a1<a2<1成立,(ⅱ)假设当x=k(k∈N+)时,a k<a k+1<1成立,即0<a1≤a k<a k+1<1,那么当n=k+1时,由f(x)在区间(0,1]是增函数,0<a1≤a k<a k+1<1,得f(a k)<f(a k+1)<f(1),=f(a n),而a n+1则a k=f(a k),a k+2=f(a k+1),a k+1<a k+2<1,+1也就是说当n=k+1时,a n<a n+1<1也成立,根据(ⅰ)、(ⅱ)可得对任意的正整数n,a n<a n+1<1恒成立.=f(a n)可得(Ⅲ)证明:由f(x)=x﹣xlnx,a n+1a k+1=a k﹣a k lna k=,1)若存在某i≤k2,满足a i≤b3,则由(Ⅱ)知:a k+1﹣b<a i﹣b≥04,2)若对任意i≤k6,都有a i>b,则a k+1=a k﹣a k lna k==≥a1﹣b1﹣ka1ln=0,即a k>b成立.+1。
一、填空题(本大题满分44分)本大题共有11题,只要求直接填写结果,每个空格填对得4分,否则一律得零分.1.不等式11x -<的解集是 .2.若集合{}|2A x x =≤,{}|B x x a =≥满足{2}A B = ,则实数a = . 3.若复数z 满足(2)z i z =- (i 是虚数单位),则z = . 4.若函数f (x )的反函数为12()log f x x -=,则()f x = .5.若向量a ,b 满足12a b == ,且a 与b 的夹角为3π,则a b += . 6.若直线10ax y -+=经过抛物线24y x =的焦点,则实数a = . 7.若z 是实系数方程220x x p ++=的一个虚根,且2z =,则p = .8.在平面直角坐标系中,从六个点:(00)(20)(11)(02)(22)A B C D E ,,,,,,,,,中任取三个,这三点能构成三角形的概率是 (结果用分数表示).9.若函数()()(2)f x x a bx a =++(常数a b ∈R ,)是偶函数,且它的值域为(]4-∞,,则该函数的解析式()f x = .10.已知总体的各个体的值由小到大依次为2,3,3,7,a ,b ,12,13.7,18.3,20,且总体的中位数为10.5.若要使该总体的方差最小,则a 、b 的取值分别是 .11.在平面直角坐标系中,点A B C ,,的坐标分别为(01)(42)(26),,,,,.如果()P x y ,是ABC △围成的区域(含边界)上的点,那么当w xy =取到最大值时,点P 的坐标是 .二、选择题(本大题满分16分)本大题共有4题,每题都给出代号为A 、B 、C 、D 的四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,选对得4分,不选、选错或者选出的代号超过一个(不论是否都写在圆括号内),一律得零分.12.设p 是椭圆2212516x y +=上的点.若12F F ,是椭圆的两个焦点,则12PF PF +等于( ) A .4 B .5 C .8 D .1013.给定空间中的直线l 及平面α.条件“直线l 与平面α内两条相交直线都垂直”是“直线l 与平面α垂直”的( )A.充分非必要条件 B.必要非充分条件C .充要条件 D.既非充分又非必要条件 14.若数列{}n a 是首项为l ,公比为32a -的无穷等比数列,且{}n a 各项的和为a ,则a 的值是( )A.1 B.2 C.12 D.5415.如图,在平面直角坐标系中,Ω是一个与x 轴的正半轴、y 轴的正半轴分别相切于点C 、D 的定圆所围成的区域(含边界),A 、B 、C 、D 是该圆的四等分点.若点()P x y ,、点()P x y ''',满足x x '≤且y y '≥,则称P 优于P '.如果Ω中的点Q 满足:不存在Ω中的其它点优于Q ,那么所有这样的点Q 组成的集合是劣弧( ) A. ABB . BCC . CDD . DA 三、解答题(本大题满分90分)本大题共有6题,解答下列各题必须写出必要的步骤.16.(本题满分12分)如图,在棱长为2的正方体1111ABCD A BC D -中,E 是BC 1的中点.求直线DE 与平面ABCD 所成角的大小(结果用反三角函数值表示).17.(本题满分13分)如图,某住宅小区的平面图呈扇形AOC .小区的两个出入口设置在点A 及点C 处,小区里有两条笔直的小路AD DC ,,且拐弯处的转角为120.已知某人从C 沿CD 走到D 用了10分钟,从D 沿DA 走到A 用了6分钟.若此人步行的速度为每分钟50米,求该扇形的半径OA 的长(精确到1米).18.(本题满分15分)本题共有2个小题,第1个题满分5分,第2小题满分10分. 已知函数f (x )=sin2x ,g (x )=cos π26x ⎛⎫+ ⎪⎝⎭,直线()x t t =∈R 与函数()()f x g x ,的图像分别交于M 、N 两点.(1)当π4t =时,求|MN |的值; A BCD A 1B 1C 1D 1 EA BCD OxyΩ120° CD OA(2)求|MN |在π02t ⎡⎤∈⎢⎥⎣⎦,时的最大值.19.(本题满分16分)本题共有2个小题,第1小题满分8分,第2小题满分8分. 已知函数||1()22xx f x =-. (1)若()2f x =,求x 的值;(2)若2(2)()0t f t mf t +≥对于[12]t ∈,恒成立,求实数m 的取值范围.20.(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分7分.已知双曲线2212x C y -=:.(1)求双曲线C 的渐近线方程;(2)已知点M 的坐标为(01),.设p 是双曲线C 上的点,Q 是点P 关于原点的对称点. 记MP MQ λ=.求λ的取值范围;(3)已知点D E M ,,的坐标分别为(21)(21)(01)---,,,,,,P 为双曲线C 上在第一象限内的点.记l 为经过原点与点P 的直线,s 为DEM △截直线l 所得线段的长.试将s 表示为直线l 的斜率k 的函数. 21.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分. 已知数列{}n a :11a =,22a =,3a r =,32n n a a +=+(n 是正整数),与数列 {}n b :11b =,20b =,31b =-,40b =,4n n b b +=(n 是正整数). 记112233n n n T b a b a b a b a =++++ .(1)若1231264a a a a ++++= ,求r 的值;(2)求证:当n 是正整数时,124n T n =-;(3)已知0r >,且存在正整数m ,使得在121m T +,122m T +, ,1212m T +中有4项为100.求r 的值,并指出哪4项为100.2008年全国普通高等学校招生统一考试 上海数学试卷(文史类)答案要点及评分标准说明1.本解答列出试题的一种或几种解法,如果考生的解法与所列解法不同,可参照解答中评分标准的精神进行评分.2.评阅试卷,应坚持每题评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅,当考生的解答在某一步出现错误,影响了后继部分,但该步以后的解答未改变这一题的内容和难度时,可视影响程度决定后面部分的给分,这时原则上不应超过后面部分应给分数之半,如果有较严重的概念性错误,就不给分. 一、(第1题至第11题) 1.(02), 2.2 3.1i + 4.2()x x ∈R5.76.1- 7.48.459.224x -+10.10.510.5a b ==,11.552⎛⎫ ⎪⎝⎭,二、(第12题至第15题) 12.D 13.C 14.B 15.D 三、(第16题至第21题)16.解:过E 作EF BC ⊥,交BC 于F ,连接DF . EF ⊥ 平面ABCD ,EDF ∴∠是直线DE 与平面ABCD 所成的角. ································································· 4分 由题意,得1112EF CC ==. 112CF CB == ,5DF ∴=. ························· 8分EF DF ⊥ ,5tan 2EF EDF DF ∴∠==.························ 10分 故直线DE 与平面ABCD 所成角的大小是5arctan5.··················································· 12分 17.解法一:设该扇形的半径为r 米.由题意,得ABCD A 1B 1C 1D 1EF500CD =(米),300DA =(米),60CDO ∠= . ······················································· 4分在CDO △中,2222cos60CD OD CD OD OC +-= , ················································ 6分 即2221500(300)2500(300)2r r r +--⨯⨯-⨯=, ··························································· 9分 解得490044511r =≈(米). 答:该扇形的半径OA 的长约为445米. ··········································································· 13分 解法二:连接AC ,作OH AC ⊥,交AC 于H . ···························································· 2分由题意,得500CD =(米),300AD =(米),120CDA ∠= . ·································· 4分在ACD △中,2222cos120AC CD AD CD AD =+-222150030025003007002=++⨯⨯⨯=, 700AC ∴=(米), ·· ················································· 6分22211cos 214AC AD CD CAD AC AD +-∠== . ·········································································· 9分在直角HAO △中,350AH =(米),11cos 14HAO ∠=, 4900445cos 11AH OA HAO ∴==≈∠(米).答:该扇形的半径OA 的长约为445米. ··········································································· 13分18.解:(1)πππsin 2cos 2446MN ⎛⎫⎛⎫=⨯-⨯+ ⎪ ⎪⎝⎭⎝⎭······································································· 2分 2π31cos32=-=. ··············································································································· 5分 (2)πsin 2cos 26MN t t ⎛⎫=-+⎪⎝⎭33sin 2cos 222t t =- ·········································································································· 8分 π3sin 26t ⎛⎫=- ⎪⎝⎭. ··········································································································· 11分 π02t ⎡⎤∈⎢⎥⎣⎦,,πππ2π666t ⎡⎤-∈--⎢⎥⎣⎦,, ··········································································· 13分 CDOAHMN ∴的最大值为3. ···································································································· 15分 19.解:(1)当0x <时,()0f x =;当0x ≥时,1()22xx f x =-. ··························· 2分 由条件可知1222xx -=,即222210x x --= , 解得212x=±. ················································································································· 6分 20x > , 2log (12)x ∴=+ ··························································································· 8分 (2)当[12]t ∈,时,2211222022t t t ttm ⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭≥, ················································ 10分 即()()242121ttm ---≥.2210t -> ,()221t m ∴-+≥. ··················································································· 13分 [12]t ∈ ,,()212[175]t ∴-+∈--,, 故m 的取值范围是[)5-+∞,. ··························································································· 16分 20.解:(1)所求渐近线方程为202y x -=,202y x +=. ······································ 3分 (2)设P 的坐标为00()x y ,,则Q 的坐标为00()x y --,. ·············································· 4分 0000(1)(1)MP MQ x y x y λ==----,,2220003122x y x =--+=-+. ······························································································· 7分02x ≥,λ∴的取值范围是(]1-∞-,. ······························································································ 9分 (3)若P 为双曲线C 上第一象限内的点, 则直线l 的斜率202k ⎛⎫∈ ⎪ ⎪⎝⎭,. ···························································································· 11分 由计算可得,当102k ⎛⎤∈ ⎥⎝⎦,时,222()11s k k k=+-; 当1222k ⎛⎫∈ ⎪ ⎪⎝⎭,时,2221()1k s k k k k +=++. ··································································· 15分s ∴表示为直线l 的斜率k 的函数是2222211012()2112122k k k s k k k k k k ⎧+<⎪-⎪=⎨+⎪+<<⎪+⎩,≤,,. ·········· 16分 21.解:(1)12312a a a a ++++1234(2)56(4)78(6)r r r r =++++++++++++++484r =+. ···························································································································· 2分48464r += ,4r ∴=. ·································································································· 4分证明:(2)用数学归纳法证明:当m +∈Z 时,124n T n =-.①当1n =时,1213579114T a a a a a a =-+-+-=-,等式成立. ··································· 6分 ②假设n k =时等式成立,即124k T k =-, 那么当1n k =+时,12(1)121211231251271291211k k k k k k k k T T a a a a a a +++++++=+-+-+- ············································ 8分 4(81)(8)(84)(85)(84)(88)k k k r k k k r k =-++-+++-++++-+ 444(1)k k =--=-+,等式也成立.根据①和②可以断定:当n +∈Z 时,124n T n =-. ··························································· 10分 解:(3)124(1)m T m m =-≥.当121n m =+,122m +时,41n T m =+; 当123n m =+,124m +时,41n T m r =-+-; 当125n m =+,126m +时,45n T m r =+-; 当127n m =+,128m +时,4n T m r =--; 当129n m =+,1210m +时,44n T m =+;当1211n m =+,1212m +时,44n T m =--. ······························································ 13分41m + 是奇数,41m r -+-,4m r --,44m --均为负数,∴这些项均不可能取到100. ······························································································ 15分 4544100m r m ∴+-=+=,解得24m =,1r =,此时293T ,294T ,298T 为100. ···························································································· 18分。
2008年全国卷ⅠⅠ高考理科数学真题及答案本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至10页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.不能答在试题卷上.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.参考公式:如果事件互斥,那么 球的表面积公式 A B ,()()()P A B P A P B +=+24πS R =如果事件相互独立,那么 其中表示球的半径 A B ,R球的体积公式()()()P A B P A P B = 如果事件在一次试验中发生的概率是,那么 A p 34π3V R =次独立重复试验中事件恰好发生次的概率 其中表示球的半径n A k R()(1)(012)k kn k k n P k C p p k n -=-= ,,,,一、选择题1.设集合,( ){|32}M m m =∈-<<Z {|13}N n n M N =∈-=Z 则,≤≤A . B . C .D . {}01,{}101-,,{}012,,{}1012-,,,2.设且,若复数是实数,则( ) a b ∈R ,0b ≠3()a bi +A . B .C .D .223b a =223a b =229b a =229a b =3.函数的图像关于( ) 1()f x x x=-A .轴对称B . 直线对称y x y -=C . 坐标原点对称 D . 直线对称x y =4.若,则( ) 13(1)ln 2ln ln x e a x b x c x -∈===,,,,A .<<B .<<C . <<D . <<a b c c a b b a c b c a 5.设变量满足约束条件:,则的最小值( )x y ,222y x x y x ⎧⎪+⎨⎪-⎩,,.≥≤≥y x z 3-=A . B . C . D .2-4-6-8-6.从20名男同学,10名女同学中任选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的概率为( ) A .B .C .D .9291029192920297.的展开式中的系数是( )64(1(1x A .B .C .3D .44-3-8.若动直线与函数和的图像分别交于两点,则x a =()sin f x x =()cos g x x =M N ,的最大值为( )MN A .1BCD .29.设,则双曲线的离心率的取值范围是( ) 1a >22221(1)x y a a -=+e A .B .C .D .(25),(210.已知正四棱锥的侧棱长与底面边长都相等,是的中点,则S ABCD -E SB AE SD,所成的角的余弦值为( ) A .B CD .132311.等腰三角形两腰所在直线的方程分别为与,原点在等腰三20x y +-=740x y --=角形的底边上,则底边所在直线的斜率为( ) A .3B .2C .D . 13-12-12.已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于( ) A .1B .C .D .223 第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.设向量,若向量与向量共线,则(12)(23)==,,,a b λ+a b (47)=--,c .=λ14.设曲线在点处的切线与直线垂直,则 . axy e =(01),210x y ++=a =15.已知是抛物线的焦点,过且斜率为1的直线交于两点.设F 24C y x =:F C A B ,,则与的比值等于 .FA FB >FA FB 16.平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件① ; 充要条件② . (写出你认为正确的两个充要条件)三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) 在中,,. ABC △5cos 13B =-4cos 5C =(Ⅰ)求的值;sin A (Ⅱ)设的面积,求的长. ABC △332ABC S =△BC 18.(本小题满分12分)购买某种保险,每个投保人每年度向保险公司交纳保费元,若投保人在购买保险的一年度a 内出险,则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为.41010.999-(Ⅰ)求一投保人在一年度内出险的概率;p (Ⅱ)设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元). 19.(本小题满分12分)如图,正四棱柱中,,点在上且.1111ABCD A B C D -124AA AB ==E 1CC EC E C 31=(Ⅰ)证明:平面;1A C ⊥BED A 1B 1C 1D 1(Ⅱ)求二面角的大小. 1A DE B -- 20.(本小题满分12分)设数列的前项和为.已知,,.{}n a n n S 1a a =13nn n a S +=+*n ∈N (Ⅰ)设,求数列的通项公式;3nn n b S =-{}n b (Ⅱ)若,,求的取值范围.1n n a a +≥*n ∈N a 21.(本小题满分12分)设椭圆中心在坐标原点,是它的两个顶点,直线与AB 相交(20)(01)A B ,,,)0(>=k kx y 于点D ,与椭圆相交于E 、F 两点.(Ⅰ)若,求的值;6ED DF =k (Ⅱ)求四边形面积的最大值. AEBF 22.(本小题满分12分) 设函数.sin ()2cos xf x x=+(Ⅰ)求的单调区间;()f x (Ⅱ)如果对任何,都有,求的取值范围. 0x ≥()f x ax ≤a参考答案和评分参考评分说明: 1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要 考查内容比照评分参考制订相应的评分细则. 2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和 难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题不给中间分.一、选择题1.B 2.A 3.C 4.C 5.D 6.D 7.B 8.B 9.B 10.C 11.A 12.C 二、填空题13.2 14.2 5.3+16.两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形.注:上面给出了四个充要条件.如果考生写出其他正确答案,同样给分. 三、解答题 17.解:(Ⅰ)由,得, 5cos 13B =-12sin 13B =由,得.4cos 5C =3sin 5C =所以. ∙∙∙∙∙∙∙∙∙∙∙∙5分 33sin sin()sin cos cos sin 65A B C B C B C =+=+=(Ⅱ)由得 332ABC S =△, 133sin 22AB AC A ⨯⨯⨯=由(Ⅰ)知,33sin 65A =故 , ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8分65AB AC ⨯=又 , sin 20sin 13AB B AC AB C ⨯==故 ,. 2206513AB =132AB =所以 . ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙10分sin 11sin 2AB A BC C ⨯==18.解:各投保人是否出险互相独立,且出险的概率都是,记投保的10 000人中出险的人数为p ,ξ则.4~(10)B p ξ,(Ⅰ)记表示事件:保险公司为该险种至少支付10 000元赔偿金,则发生当且仅A A当, ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2分0ξ=()1()P A P A =-1(0)P ξ=-=,4101(1)p =--又,410()10.999P A =-故. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙5分 0.001p =(Ⅱ)该险种总收入为元,支出是赔偿金总额与成本的和. 10000a 支出 ,1000050000ξ+盈利 ,10000(1000050000)a ηξ=-+盈利的期望为 , ∙∙∙∙∙∙∙∙∙∙∙∙∙∙9分 100001000050000E a E ηξ=--由知,,43~(1010)B ξ-,31000010E ξ-=⨯4441010510E a E ηξ=--⨯.4443410101010510a -=-⨯⨯-⨯0E η≥4441010105100a ⇔-⨯-⨯≥1050a ⇔--≥(元). 15a ⇔≥故每位投保人应交纳的最低保费为15元. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙12分19.解法一:依题设知,.2AB =1CE =(Ⅰ)连结交于点,则.AC BD F BD AC ⊥由三垂线定理知,. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙3分 1BD A C ⊥在平面内,连结交于点,1A CA EF 1A C G 由于,1AA ACFC CE==故,,1Rt Rt A AC FCE △∽△1AA C CFE ∠=∠E A 1B 1C 1D 1H与互余.CFE ∠1FCA ∠于是.1A C EF ⊥与平面内两条相交直线都垂直,1A C BED BD EF ,所以平面. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6分 1A C ⊥BED (Ⅱ)作,垂足为,连结.由三垂线定理知,GH DE ⊥H 1A H 1A H DE ⊥故是二面角的平面角. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8分1A HG ∠1A DE B --EF ==,CE CF CG EF ⨯==EG ==, 13EG EF=13EF FD GH DE ⨯=⨯=又,. 1A C ==11A G A C CG =-=.11tan A GA HG HG∠==所以二面角的大小为. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙12分 1A DE B --arctan 解法二:以为坐标原点,射线为轴的正半轴, D DA x 建立如图所示直角坐标系.D xyz -依题设,. 1(220)(020)(021)(204)B CE A ,,,,,,,,,,,,(021)(220)DE DB == ,,,,,. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙3分 11(224)(204)A C DA =--= ,,,,,(Ⅰ)因为,,10A C DB = 10A C DE =故,. 1A C BD ⊥1A C DE ⊥又,DB DE D = 所以平面. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6分1A C⊥DBE x(Ⅱ)设向量是平面的法向量,则()x y z =,,n 1DA E ,.DE ⊥ n 1DA ⊥ n 故,.20y z +=240x z +=令,则,,. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙9分1y =2z =-4x =(412)=-,,n 等于二面角的平面角, 1A C ,n 1A DE B --.111cos A C A C A C==,n n n 所以二面角的大小为∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙12分 1A DE B --20.解:(Ⅰ)依题意,,即, 113nn n n n S S a S ++-==+123nn n S S +=+由此得. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4分1132(3)n n n n S S ++-=-因此,所求通项公式为,.① ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6分13(3)2n n n n b S a -=-=-*n ∈N (Ⅱ)由①知,,13(3)2nn n S a -=+-*n ∈N 于是,当时,2n ≥1n n n a S S -=- 1123(3)23(3)2n n n n a a ---=+-⨯---⨯,1223(3)2n n a --=⨯+-12143(3)2n n n n a a a --+-=⨯+-,22321232n n a --⎡⎤⎛⎫=∙+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦当时,2n ≥21312302n n n a a a -+⎛⎫⇔∙+- ⎪⎝⎭≥≥.9a ⇔-≥又.2113a a a =+>综上,所求的的取值范围是. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙12分 a [)9-+∞,21.(Ⅰ)解:依题设得椭圆的方程为,2214x y +=直线的方程分别为,. ∙∙∙∙∙∙∙∙∙∙∙∙2分 AB EF ,22x y +=(0)y kx k =>如图,设,其中, 001122()()()D x kx E x kx F x kx ,,,,,12x x <且满足方程, 12x x ,22(14)4k x +=故.①21x x =-=由知,得;6ED DF = 01206()x x x x -=-021215(6)77x x x x =+==由在上知,得. D AB 0022x kx +=0212x k=+所以, 212k =+化简得,2242560k k -+=解得或. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6分 23k =38k =(Ⅱ)解法一:根据点到直线的距离公式和①式知,点到的距离分别为E F ,AB1h . ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙9分2h 又,所以四边形的面积为AB ==AEBF 121()2S AB h h =+12===,≤当,即当时,上式取等号.所以的最大值为 ∙∙∙∙∙∙∙∙12分 21k =12k =S 解法二:由题设,,.1BO =2AO =设,,由①得,, 11y kx =22y kx =20x >210y y =->故四边形的面积为AEBFBEF AEF S S S =+△△ ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙9分222x y =+===当时,上式取等号.所以的最大值为. ∙∙∙∙∙∙∙∙∙∙∙∙∙12分 222x y =S 22.解: (Ⅰ). ∙∙∙∙∙∙∙∙∙2分 22(2cos )cos sin (sin )2cos 1()(2cos )(2cos )x x x x x f x x x +--+'==++当()时,,即; 2π2π2π2π33k x k -<<+k ∈Z 1cos 2x >-()0f x '>当()时,,即. 2π4π2π2π33k x k +<<+k ∈Z 1cos 2x <-()0f x '<因此在每一个区间()是增函数, ()f x 2π2π2π2π33k k ⎛⎫-+ ⎪⎝⎭,k ∈Z 在每一个区间()是减函数. ∙∙∙∙∙∙∙∙∙6分()f x 2π4π2π2π33k k ⎛⎫++ ⎪⎝⎭,k ∈Z (Ⅱ)令,则()()g x ax f x =-第 11 页 共 11 页22cos 1()(2cos )x g x a x +'=-+2232cos (2cos )a x x =-+++.211132cos 33a x ⎛⎫=-+- ⎪+⎝⎭故当时,.13a ≥()0g x '≥又,所以当时,,即. ∙∙∙∙∙∙∙∙9分 (0)0g =0x ≥()(0)0g x g =≥()f x ax ≤当时,令,则.103a <<()sin 3h x x ax =-()cos 3h x x a '=-故当时,.[)0arccos3x a ∈,()0h x '>因此在上单调增加.()h x [)0arccos3a ,故当时,,(0arccos3)x a ∈,()(0)0h x h >=即.sin 3x ax >于是,当时,.(0arccos3)x a ∈,sin sin ()2cos 3xxf x ax x =>>+当时,有.0a ≤π1π0222f a ⎛⎫=>∙ ⎪⎝⎭≥因此,的取值范围是. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙12分 a 13⎡⎫+∞⎪⎢⎣⎭,。
2008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分、第Ⅰ卷1至2页、第Ⅱ卷3至10页、考试结束后,将本试卷和答题卡一并交回、第Ⅰ卷注意事项:1、答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上、2、每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑、如需改动,用橡皮擦干净后,再选涂其他答案标号、不能答在试题卷上、3、本卷共12小题,每小题5分,共60分、在每小题给出的四个选项中,只有一项是符合题目要求的、参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B = 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(012)k k n kk n P k C p p k n -=-=,,,,一、选择题1、设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z 则,≤≤( )A 、{}01,B 、{}101-,,C 、{}012,,D 、{}1012-,,,2、设a b ∈R ,且0b ≠,若复数3()a bi +是实数,则( ) A 、223b a = B 、223a b =C 、229b a =D 、229a b =3、函数1()f x x x=-的图像关于( )A 、y 轴对称B 、 直线x y -=对称C 、 坐标原点对称D 、 直线x y =对称4、若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( ) A 、a <b <cB 、c <a <bC 、 b <a <cD 、 b <c <a5、设变量x y ,满足约束条件:222y x x y x ⎧⎪+⎨⎪-⎩,,.≥≤≥,则y x z 3-=的最小值( )A 、2-B 、4-C 、6-D 、8-6、从20名男同学,10名女同学中任选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的概率为( ) A 、929B 、1029C 、1929D 、20297、64(1(1的展开式中x 的系数是( ) A 、4-B 、3-C 、3D 、48、若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为( )A 、1BCD 、29、设1a >,则双曲线22221(1)x y a a -=+的离心率e 的取值范围是( ) A、B、C 、(25),D、(210、已知正四棱锥S ABCD -的侧棱长与底面边长都相等,E 是SB 的中点,则AE SD ,所成的角的余弦值为( ) A 、13B、3C、3D 、2311、等腰三角形两腰所在直线的方程分别为20x y +-=与740x y --=,原点在等腰三角形的底边上,则底边所在直线的斜率为( ) A 、3B 、2C 、13-D 、12-12、已知球的半径为2,相互垂直的两个平面分别截球面得两个圆、若两圆的公共弦长为2,则两圆的圆心距等于( ) A 、1B 、2C 、3D 、22008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分、把答案填在题中横线上、13、设向量(12)(23)==,,,a b ,若向量λ+a b 与向量(47)=--,c 共线,则=λ 、 14、设曲线ax y e =在点(01),处的切线与直线210x y ++=垂直,则a = 、 15、已知F 是抛物线24C y x =:的焦点,过F 且斜率为1的直线交C 于A B ,两点、设FA FB >,则FA 与FB 的比值等于 、16、平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件① ; 充要条件② 、 (写出你认为正确的两个充要条件)三、解答题:本大题共6小题,共70分、解答应写出文字说明,证明过程或演算步骤、 17、(本小题满分10分) 在ABC △中,5cos 13B =-,4cos 5C =、 (Ⅰ)求sin A 的值;(Ⅱ)设ABC △的面积332ABC S =△,求BC 的长、 18、(本小题满分12分)购买某种保险,每个投保人每年度向保险公司交纳保费a 元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金、假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立、已知保险公司在一年度内至少支付赔偿金10 000元的概率为41010.999-、(Ⅰ)求一投保人在一年度内出险的概率p ;(Ⅱ)设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元)、19、(本小题满分12分)如图,正四棱柱1111ABCD A BC D -中,124AA AB ==,点E 在1CC 上且EC E C 31=、 (Ⅰ)证明:1AC ⊥平面BED ; (Ⅱ)求二面角1A DE B --的大小、20、(本小题满分12分)设数列{}n a 的前n 项和为n S 、已知1a a =,13n n n a S +=+,*n ∈N 、(Ⅰ)设3n n n b S =-,求数列{}n b 的通项公式; (Ⅱ)若1n n a a +≥,*n ∈N ,求a 的取值范围、21、(本小题满分12分)设椭圆中心在坐标原点,(20)(01)A B ,,,是它的两个顶点,直线)0(>=k kx y 与AB 相交于点D ,与椭圆相交于E 、F 两点、 (Ⅰ)若6ED DF =,求k 的值; (Ⅱ)求四边形AEBF 面积的最大值、 22、(本小题满分12分) 设函数sin ()2cos xf x x=+、(Ⅰ)求()f x 的单调区间;(Ⅱ)如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围、ABCD EA 1B 1C 1D 12008年普通高等学校招生全国统一考试 理科数学试题(必修+选修Ⅱ)参考答案和评分参考评分说明:1、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要 考查内容比照评分参考制订相应的评分细则、2、对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和 难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分、3、解答右端所注分数,表示考生正确做到这一步应得的累加分数、4、只给整数分数、选择题不给中间分、一、选择题1、B2、A3、C4、C5、D6、D7、B8、B9、B 10、C 11、A 12、C 二、填空题13、2 14、2 5、3+16、两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形、注:上面给出了四个充要条件、如果考生写出其他正确答案,同样给分、 三、解答题 17、解:(Ⅰ)由5cos 13B =-,得12sin 13B =, 由4cos 5C =,得3sin 5C =、所以33sin sin()sin cos cos sin 65A B C B C B C =+=+=、 ····································· 5分 (Ⅱ)由332ABC S =△得 133sin 22AB AC A ⨯⨯⨯=, 由(Ⅰ)知33sin 65A =,故 65AB AC ⨯=, ·············································································· 8分又 sin 20sin 13AB B AC AB C ⨯==, 故 2206513AB =,132AB =、 所以 sin 11sin 2AB A BC C ⨯==、 ································································· 10分18、解:各投保人是否出险互相独立,且出险的概率都是p ,记投保的10 000人中出险的人数为ξ, 则4~(10)B p ξ,、(Ⅰ)记A 表示事件:保险公司为该险种至少支付10 000元赔偿金,则A 发生当且仅当0ξ=, ····································································································· 2分()1()P A P A =-1(0)P ξ=-=4101(1)p =--,又410()10.999P A =-,故0.001p =、 ······························································································· 5分 (Ⅱ)该险种总收入为10000a 元,支出是赔偿金总额与成本的和、 支出 1000050000ξ+,盈利 10000(1000050000)a ηξ=-+,盈利的期望为 1000010000500E aE ηξ=--, ·········································· 9分由43~(1010)B ξ-,知,31000010E ξ-=⨯,4441010510E a E ηξ=--⨯4443410101010510a -=-⨯⨯-⨯、0E η≥4441010105100a ⇔-⨯-⨯≥1050a ⇔--≥ 15a ⇔≥(元)、故每位投保人应交纳的最低保费为15元、 ························································· 12分19、解法一:依题设知2AB =,1CE =、(Ⅰ)连结AC 交BD 于点F ,则BD AC ⊥、由三垂线定理知,1BD AC ⊥、 ········································································· 3分 在平面1ACA 内,连结EF 交1AC 于点G ,由于1AA ACFC CE== 故1Rt Rt A AC FCE △∽△,1AAC CFE ∠=∠, CFE ∠与1FCA ∠互余、于是1AC EF ⊥、 1AC 与平面BED 内两条相交直线BD EF ,都垂直, 所以1AC ⊥平面BED 、 ·················································································· 6分 (Ⅱ)作GH DE ⊥,垂足为H ,连结1A H 、由三垂线定理知1A H DE ⊥,故1A HG ∠是二面角1A DE B --的平面角、························································ 8分EF =CE CF CG EF ⨯==EG ==、 13EG EF =,13EF FD GH DE ⨯=⨯=又1AC ==11AG AC CG =-=、11tan A GA HG HG∠== 所以二面角1A DE B --的大小为 ················································· 12分 解法二:以D 为坐标原点,射线DA 为x 轴的正半轴, 建立如图所示直角坐标系D xyz -、依题设,1(220)(020)(021)(204)B C E A ,,,,,,,,,,,、(021)(220)DE DB ==,,,,,,AB CDEA 1B 1C 1D 1 FH G11(224)(204)AC DA =--=,,,,,、 ····································································· 3分 (Ⅰ)因为10AC DB =,10AC DE =, 故1AC BD ⊥,1AC DE ⊥、 又DBDE D =,所以1AC ⊥平面DBE 、 ·················································································· 6分 (Ⅱ)设向量()x y z =,,n 是平面1DA E 的法向量,则DE ⊥n ,1DA ⊥n 、故20y z +=,240x z +=、令1y =,则2z =-,4x =,(412)=-,,n 、 ····················································· 9分1AC ,n 等于二面角1A DE B --的平面角, 11114cos 42AC AC AC ==,nn n 、 所以二面角1A DE B --的大小为、 ················································· 12分 20、解:(Ⅰ)依题意,113n n n n n S S a S ++-==+,即123n n n S S +=+,由此得1132(3)n n n n S S ++-=-、 ······································································· 4分 因此,所求通项公式为13(3)2n n n n b S a -=-=-,*n ∈N 、① ······························································ 6分 (Ⅱ)由①知13(3)2n n n S a -=+-,*n ∈N , 于是,当2n ≥时,1n n n a S S -=-1123(3)23(3)2n n n n a a ---=+-⨯---⨯ 1223(3)2n n a --=⨯+-,12143(3)2n n n n a a a --+-=⨯+-22321232n n a --⎡⎤⎛⎫=∙+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦, 当2n ≥时,21312302n n n a a a -+⎛⎫⇔∙+- ⎪⎝⎭≥≥9a ⇔-≥、又2113a a a =+>、综上,所求的a 的取值范围是[)9-+∞,、 ························································· 12分 21、(Ⅰ)解:依题设得椭圆的方程为2214x y +=, 直线AB EF ,的方程分别为22x y +=,(0)y kx k =>、 ····································· 2分 如图,设001122()()()D x kx E x kx F x kx ,,,,,,其中12x x <, 且12x x ,满足方程22(14)4k x +=,故21x x =-=、①由6ED DF =知01206()x x x x -=-,得021215(6)77x x x x =+==; 由D 在AB 上知0022x kx +=,得0212x k=+、 所以212k =+, 化简得2242560k k -+=,解得23k =或38k =、 ······················································································ 6分 (Ⅱ)解法一:根据点到直线的距离公式和①式知,点E F ,到AB 的距离分别为1h ==2h==·······················································9分又AB==AEBF的面积为121()2S AB h h=+1525(14k=+==≤当21k=,即当12k=时,上式取等号、所以S的最大值为 ························ 12分解法二:由题设,1BO=,2AO=、设11y kx=,22y kx=,由①得2x>,21y y=->,故四边形AEBF的面积为BEF AEFS S S=+△△222x y=+ ····································································································9分===当222x y=时,上式取等号、所以S的最大值为······································· 12分22、解:(Ⅰ)22(2cos)cos sin(sin)2cos1()(2cos)(2cos)x x x x xf xx x+--+'==++、 ·····························2分2008年高考各省各科真题及解析11 / 11当2π2π2π2π33k x k -<<+(k ∈Z )时,1cos 2x >-,即()0f x '>; 当2π4π2π2π33k x k +<<+(k ∈Z )时,1cos 2x <-,即()0f x '<、 因此()f x 在每一个区间2π2π2π2π33k k ⎛⎫-+ ⎪⎝⎭,(k ∈Z )是增函数, ()f x 在每一个区间2π4π2π2π33k k ⎛⎫++ ⎪⎝⎭,(k ∈Z )是减函数、 ····························· 6分 (Ⅱ)令()()g x ax f x =-,则22cos 1()(2cos )x g x a x +'=-+ 2232cos (2cos )a x x =-+++ 211132cos 33a x ⎛⎫=-+- ⎪+⎝⎭、 故当13a ≥时,()0g x '≥、 又(0)0g =,所以当0x ≥时,()(0)0g x g =≥,即()f x ax ≤、 ························ 9分 当103a <<时,令()sin 3h x x ax =-,则()cos 3h x x a '=-、 故当[)0arccos3x a ∈,时,()0h x '>、因此()h x 在[)0arccos3a ,上单调增加、故当(0arccos3)x a ∈,时,()(0)0h x h >=, 即sin 3x ax >、于是,当(0arccos3)x a ∈,时,sin sin ()2cos 3x x f x ax x =>>+、 当0a ≤时,有π1π0222f a ⎛⎫=>∙ ⎪⎝⎭≥、 因此,a 的取值范围是13⎡⎫+∞⎪⎢⎣⎭,、 ··································································· 12分。
2008年普通高等学校招生全国统一考试理科数学含答案本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至10页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.不能答在试题卷上.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B = 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(012)k k n kk n P k C p p k n -=-=,,,, 一、选择题1.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z 则,≤≤( )A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,,【答案】B【解析】{}1,0,1,2--=M ,{}3,2,1,0,1-=N ,∴{}1,0,1-=N M【高考考点】集合的运算,整数集的符号识别。
【评注】历年来高考数学第一个小题一般都是集合问题,都超简单。
其实集合问题是可以出难题的,但高考中的集合问题比较简单。
需要注意的是:很多复习书都把集合作为高考数学复习的起点,我认为这是不妥当的,高中的集合问题涉及到的集合知识并不多(就是一种表达方式),其难度主要体现在知识的综合性上,学生应当先学习其他知识,再在集合中综合。
建议把“数学的基本运算”作为高考数学复习的起点,学生花1个月的时间温习、强化初等数学的基本运算是必要的,重要的,也是值得的。
2008年普通高等学校夏季招生考试数学理工农医类(全国Ⅰ) 本试卷分第I 卷(选择题)和第I I卷(非选择题)两部分.第I 卷1至2页,第II 卷3至9页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意:ﻩ1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.......... 3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.参考公式:如果事件A B ,互斥,那么 ﻩﻩﻩﻩ 球的表面积公式()()()P A B P A P B +=+ﻩ ﻩﻩﻩ 24πS R =ﻩ如果事件A B ,相互独立,那么ﻩ ﻩﻩﻩ其中R 表示球的半径ﻩ()()()P A B P A P B = ﻩﻩ球的体积公式 如果事件A 在一次试验中发生的概率是P ,那么34π3V R = ﻩn 次独立重复试验中恰好发生k 次的概率ﻩ 其中R 表示球的半径()(1)(01,2)k k n k n n P k C P P k n -=-=,,,一、选择题1.函数y ( )A.{}|0x x ≥ﻩB.{}|1x x ≥ C.{}{}|10x x ≥ ﻩD.{}|01x x ≤≤ 2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )3.在ABC △中,AB =c ,AC =b .若点D 满足2BD DC =,则AD =( )A .B .C .D .A.2133+b c ﻩB .5233-c b ﻩ C.2133-b c ﻩﻩﻩD.1233+b c 4.设a ∈R ,且2()a i i +为正实数,则a =( )A.2ﻩﻩB .1 ﻩC .0ﻩﻩD .1-5.已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =( )A.138ﻩﻩB .135ﻩﻩC.95ﻩ D.236.若函数(1)y f x =-的图像与函数ln 1y =的图像关于直线y x =对称,则()f x =( )A.21x e - B.2x e ﻩ C .21x e + ﻩD.22x e +7.设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( ) A.2 ﻩB.12 ﻩC.12-ﻩ D.2- 8.为得到函数πcos 23y x ⎛⎫=+⎪⎝⎭的图像,只需将函数sin 2y x =的图像( ) A .向左平移5π12个长度单位 ﻩB.向右平移5π12个长度单位 C.向左平移5π6个长度单位 ﻩ D.向右平移5π6个长度单位 9.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x --<的解集为( )A.(10)(1)-+∞,,B.(1)(01)-∞-,,C.(1)(1)-∞-+∞,, ﻩD .(10)(01)-,, 10.若直线1x y a b+=通过点(cos sin )M αα,,则( ) A .221a b +≤ﻩ B.221a b +≥ﻩﻩC.22111a b +≤ D .22111a b+≥ 11.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( )A .13ﻩﻩB.3 ﻩ C .3 ﻩD .2312.如图,一环形花坛分成A B C D ,,,四块,现有4种不同的花供选种,要求在每块里种1种。