讨论它们的线性相关性.
解: Ee1,e2, ,en
结论: 线性无关
问题: n=3时, e1,e2,e3 分别是什么?
上述向量组又称基本向量组或单位坐标向量组.
一些结论:
(1) 一个零向量线性相关, 一个非零向量线性无关;
(2) 两个向量线性相关当且仅当 它们的对应分量成比例;
(3) 一个向量组线性无关,则增加其中每个向 量的分量所得新向量组仍线性无关。
例如: 2 1 1 0 a11 1,a212,a312,b33
则 b 能由 a1, a2, a3线性表示.
解方程组 x 1 a 1 x 2 a 2 x 3 a 3 b
既解方程组
2x1x12xx22
x3 x3
0 3
x1 x2 2x3 3
得
x1 1 1
x2 x3
c
1 1
线性表示
AXB有解,其中 A (1 ,2, ,m )
B (1,2, ,l)
R (A )R (A ,B )
定理3: 向量组 B :1,2, ,l能由 A :1,2, ,m
线性表示,则 R(B) ≤ R(A) 。
其中 A ( 1 ,2 ,,m ) , B ( 1 ,2 ,,l )
证:根据定理 2 有 R(A) = R(A, B) 而 R(B) ≤ R(A, B),因此 R(B) ≤ R(A)。
定义4:设向量组 A : 1 , 2 , , m , 若存在不全为零实数 1 , 2 , , m , 使得 11 2 2 m m 0
则称向量组 A线性相关. 否则称向量组A线性无关.
定理4: n 维向Ax 量 组0 1有 ,非 2, 零 ,解 m,线其 性相A 关 中 1 ,2 , ,m R(A)m