单相逆变电源控制系统硬件设计毕业论文
- 格式:doc
- 大小:1.02 MB
- 文档页数:55
摘要摘要随着“绿色环保”概念的提出,以解决电力紧张,环境污染等问题为目的的新能源利用方案得到了迅速的推广,这使得研究可再生能源回馈电网技术具有了十分重要的现实意义。
如何可靠地、高质量地向电网输送功率是一个重要的问题,因此在可再生能源并网发电系统中起电能变换作用的逆变器成为了研究的一个热点。
本文以全桥逆变器为对象,详细论述了基于双电流环控制的逆变器并网系统的工作原理,推导了控制方程。
内环通过控制LCL滤波中的电容电流,外环控制滤波后的网侧电流。
大功率并网逆变器的开关频率相对较低,相对于传统的L 型或LC 型滤波器,并网逆变器采用LCL 型输出滤波器具有输出电流谐波小,滤波器体积小的优点,在此基础上本系统设计了LCL滤波器。
本文分析比较了单相逆变器并网采用单闭环和双闭环两种控制策略下的并网电流,并对突加扰动情况下系统动态变化进行了分析。
在完成并网控制系统理论分析的基础上,本文设计并制作了基于TMS320LF2407DSP的数字化控制硬件实验系统,包括DSP 外围电路、模拟量采样及调理电路、隔离驱动电路、保护电路和辅助电源等,最后通过MATLAB仿真软件进行验证理论的可行性,实现功率因数为1的并网要求。
关键词并网逆变器;LCL滤波器;双电流环控制;DSPWith the concept of”Green and Environmental Protection”was proposed.All kinds of new energy exploitation program are in the rapid promotion,which is in order to solve the power shortage,pollution and other issues.It makes exploring renewable energy feedback the grid technology has a very important practical significance.How to deliver power into the grid reliably and quality is an important problem,the inverter mat Can transform the electrical energy in the system of the renewable resource to be fed into the grid is becoming one of the hot points in intemational research.Based on the bridge inverter the analysis of the working principle and the deduction of the control equation have been presented. The strategy integrates an outer loop grid current regulator with capacitor current regulation to stabilize the system. The current regulation is used for the outer grid current control loop. The frequency of switching is slower in the high power grid-connected inverter. Compared with tradition type L or type LC, output filter and output current‟s THD of type LCL are all smaller.So on this basis, the system uses the LCL filter. This paper compares the net current of the single-phase inverter and net single loop and double loop under two control strategies, and the case of sudden disturbance of the dynamic change of the system.In complete control system on the basis of theoretical analysis, design and production of this article is based on TMS320LF2407DSP‟s digital control hardware test system, including the DSP external circuit, analog sampling and conditioning circuit, isolation, driver circuit, protection circuit and auxiliary power, etc., via MATLAB software to validate the feasibility of the theory. Achieve power factor is 1 and network requirements.Keywords Grid-connected inverter;LCL filter; Double current loop control;DSP目录摘要 (I)Abstract (II)第1章绪论 (1)1.1国内外可再生能源开发的现状及前景 (1)1.1.1 可再生能源开发的现状及前景 (1)1.1.2可再生能源并网发电系统 (3)1.2并网逆变器的研究现状及趋势 (4)1.3本文的结构及主要内容 (6)第2章单相并网逆变器总体设计 (8)2.1并网逆变器组成原理及主体电路硬件设计 (8)2.1.1 系统逆变主体电路拓扑结构及原理 (8)2.1.2 系统主体电路参数设计 (9)2.2逆变器的SPWM调制方式分析 (10)2.3LCL滤波器的设计 (14)2.3.1 利用隔离变压器漏感确定LCL滤波 (14)2.3.2 LCL滤波器数学模型及波特图分析 (15)2.3.3 LCL滤波器的参数设计 (16)2.4并网控制策略的提出 (18)2.4.1 电流型并网模型分析 (18)2.4.2 几种控制方法分析 (20)2.4.3 使用双电流闭环控制策略 (23)2.5本章小结 (25)第3章系统仿真及结果分析 (26)3.1单相逆变器开环仿真 (26)3.2单相逆变器并网单闭环仿真分析 (27)3.3基于双电流环的单相逆变器并网仿真分析 (28)3.4突加扰动时系统动态分析 (29)3.5本章小结 (31)第4章数字化并网控制系统硬件设计 (32)4.1基于DSP的并网控制系统整体设计 (32)4.2系统电路设计 (33)4.2.1 DSP外围电路设计 (33)4.2.2 模拟信号采样电路 (34)4.2.3 隔离、驱动电路 (36)4.2.4 多功能控制电源设计 (37)4.2.5 保护电路设计 (38)4.3本章小结 (38)结论 (39)参考文献 (42)致谢 .................................................................................... 错误!未定义书签。
漳州师范学院毕业论文(设计)基于PIC单片机单相SPWM逆变电源的设计The Design of Inverter Basing on PIC Microcontroller Single-phase SPWM姓名:林小章学号:080502230系别:物理与电子信息工程系专业:电子信息科学与技术年级: 2008级指导教师:黄成老师2011年12 月31日摘要本系统以单片机PIC16F877A为控制核心的单相全桥式电压型SPWM逆变电源。
系统主要由交流220V变压隔离成可调交流电,再整流变换成直流电,SPWM信号通过光耦隔离器控制由开关管MOEFET组成的逆变器件的工作状态,实现对输出的控制,即AC-DC-AC变换。
从而得到频率和幅度都可调的正弦交流电,后端再对电压、电流以及频率的采样,从而实现闭环的控制。
该逆变电源输出的正弦交流电精度高,性能稳定,实用价值高,在电力电子技术中应用广泛。
关键词:SPWM;逆变器;驱动电路;场效应管IRF840AbstractThis system is a single-phase full-bridge voltage-type inverter which is based on PIC16F877A microcontroller. It is mainly transformed from 220V AC to adjustable AC, then rectifies to DC. Signal SPWM controls the working status of the inverter device which consists of switch MOEFET through the photon coupled isolator. And this procedure achieves the control of the output. That is the AC-DC-AC conversion. Consequently, the sinusoidal alternating current whose frequency and amplitude are both adjustable comes into being. Later, the samples of voltage, current, and frequency are taken in order to control the closed-loop. The sinusoidal alternating current from this inverter is in possession of high accuracy, stable performance, and high practical utility. Thus, it is widely applied to power electronic technology.Key words:SPWM; inverter Driving; circuit;the field effect manage IRF840目录摘要 (I)ABSTRACT (I)1. 引言........................................................................................ 错误!未定义书签。
电力电子技术课程设计说明书单相桥式逆变电路的设计院、部学生姓名:指导教师:职称专业:班级:学号:完成时间:摘要随着电力电子技术的高速发展,逆变电路的应用非常广泛,蓄电池、干电池、太阳能电池等都是直流电源,当我们使用这些电源向交流负载供电时,就需要用到逆变电路了。
本次基于MOSFET的单相桥式无源逆变电路的课程设计,主要涉及IGBT的工作原理、全桥的工作特性和无源逆变的性能。
本次所设计的单相全桥逆变电路采用IGBT作为开关器件,将直流电压Ud 逆变为波形电压,并将它加到纯电阻负载两端。
首先分析了单项桥式逆变电路的设计要求。
确定了单项桥式逆变电路的总体方案,对主电路、保护电路、驱动电路等单元电路进行了设计和参数的计算,其中保护电路有过电压、过电流、电压上升率、电流上升率等,选择和校验了IGBT、SG3525等元器件,IGBT是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件, 兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。
最后利用MATLAB仿真软件建立了SIMULINK仿真模型,并进行了波形仿真,仿真的结果证明了完成设计任务要求,满足设计的技术参数要求。
关键词:单相;逆变;设计ABSTRACTWith the rapid development of power electronics technology, the inverter circuit is widely used, batteries, dry batteries, solar cells are DC power supply, when we use these power supply power to the AC load, you need to use the inverter circuit. This time based on MOSFET single phase bridge inverter circuit design, mainly related to the work principle of IGBT, the full bridge of the working characteristics and the performance of passive inverter. The single-phase full bridge inverter circuit designed by IGBT as the switching device, the DC voltage Ud inverter as the waveform voltage, and will be added to the pure resistance load at both ends.Firstly, the design requirements of the single bridge inverter circuit are analyzed. To determine the overall scheme of single bridge inverter circuit, of the main circuit, protection circuit, driving circuit unit circuit design and parameter calculation, the protection circuit have voltage, current and voltage rate of rise, the current rate of rise, selection and validation of the IGBT and SG3525 components, IGBT is by BJT (bipolar transistor) and MOS (insulated gate field effect transistor) composed of full control type voltage driven type power semiconductor devices, both MOSFET's high input impedance and GTR low conductance through the advantages of pressure drop. At last, the MATLAB simulation software is used to build the SIMULINK model, and the simulation results are carried out. The results prove that the design task is required to meet the design requirements.Keywords: single phase; inverter; design目录1 绪论 (1)1.1 逆变电路的背景与意义 (1)1.2 逆变器技术的发展现状 (2)1.3 本设计主要内容 (2)2 单相桥式逆变电路主电路设计 (3)2.1 方案设计 (3)2.1.1 系统框图 (3)2.1.2 主电路框图 (3)2.2 逆变电路分类及特点 (3)2.2.1 电压型逆变电路的特点 (3)2.2.2 单项全桥逆变电路的移相调压方式 (4)2.3 主电路的设计 (4)2.4 相关参数的计算 (5)3 辅助电路设计 (7)3.1 保护电路的设计 (7)3.1.1 保护电路的种类 (7)3.1.2 保护电路的作用 (7)3.1.3 过电流保护电路 (8)3.2 驱动电路的设计 (8)3.2.1 驱动电路的种类及作用 (8)3.2.2 驱动电路的设计 (8)3.2.3 驱动电路的原理 (9)3.3 控制电路的设计 (9)3.3.1 控制电路的作用 (9)3.3.2 控制电路原理分析 (9)4 仿真分析 (11)4.1 仿真软件MATLAB介绍 (11)4.2 主电路仿真图及参数计算 (13)4.3 仿真所得波形 (16)4.4 波形分析 (17)结束语 (18)参考文献 (19)附录 (21)1 绪论1.1 逆变电路的背景与意义随着电力电子技术的高速发展,逆变电路的应用非常广泛,蓄电池、干电池、太阳能电池等都是直流电源,当我们使用这些电源向交流负载供电时,就需要用到逆变电路了。
毕业设计(论文)《500W 单相逆变电源》专业(系) 电气工程系班 级 铁自092学生姓名 周康学 号 200901350213指导老师 严俊完成日期2011届毕业设计任务书一、课题名称:500W单相逆变电源二、指导教师:严俊三、设计内容与要求1、课题概述单相逆变电源是将直流电逆变成单相交流电,可将车载蓄电池逆变成交流电为用电器提供交流电,也可作为计算机的UPS电源。
该单相逆变电源先将直流电通过输入逆变电路逆变成交流电,然后用高频变压器升压;升压后的交流电整流后再通过输出逆变电路进行SPWM调节,使输出为工频220V 正弦波电压。
输入逆变电路控制采用专用芯片,输出逆变电路SPWM控制及逆变电源的各种保护采用单片机控制。
当蓄电池的电压过高或过低时逆变电源将停止工作并灯光指示报警,保护逆变电源和蓄电池;当蓄电池的电压在正常范围内波动时,输出电压不变;当输出电流过大时,单片机将停止SPWM输出,保护电源的器件。
2、设计内容与要求设计内容:(1)逆变电源的输入逆变主电路的设计;(2)逆变电源的输出逆变主电路的设计;(3)MOSFET器件的选择及驱动与保护电路设计;(4)PWM控制电路的设计;(5)电流及电压检测电路;(6)单片机控制电路及程序编写(流程图);(7)其它辅助保护功能等设计。
设计要求:(1)画出系统各环节电路图;(2)系统各环节的原理介绍;(3)系统各环节元件参数计算及选择;(4)元件明细表;(5)程序流程图。
四、设计参考书1、《新型半导体器件及其应用实例》电子工业出版社2、《现代逆变技术及其应用》科学出版社3、《新型开关电源设计与应用》科学出版社4、《电子变压器手册》辽宁科学技术出版社5、《半导体变流技术》机械工业出版社6、《电力电子设备设计和应用手册》机械工业出版社7、《基于C语言编程MCS-51单片机原理及应用》清华大学版社8、《自动检测技术》湖南铁道职业技术学院9、相关网站五、设计说明书要求1、封面2、目录3、内容摘要(200~400字左右,中英文)4、引言5、正文(设计方案比较与选择,设计方案原理、计算、分析、论证,设计结果的说明及特点)6、结束语7、附录(参考文献、图纸、材料清单等)六、毕业设计进程安排(小四、宋体)1~2周:布置任务,弄懂设计要求及原理。
单相电压源型逆变器控制系统设计摘要:大量UPS系统在为许多不允许供电中断的重要用电设备提供不间断供电,研发UPS的关键便是电压源型逆变器,控制输出高质量电压波形,且带非线性负载和负载突变的情况下,仍能保持电压的稳定和高质量。
本文的主要内容是研究单相电压源型逆变器,采用电压电流双环瞬时值反馈控制技术,并详细讨论了基于极点配置的双环PI控制参数的整定。
同时提出单环超前滞后电压瞬时值反馈控制,并做了大量仿真研究,显示这两种控制方式都具有优越的控制性能。
关键词:双环控制;极点配置;超前滞后;电压源型逆变器The control system design of single-phase voltage sourceinverterAbstract: Uninterruptible Power Supply (UPS) systems are widely used for supplying critical equipment which can t' afford utility power failure. The core of a UPS system is a in verter which Con trol the output voltage waveform with high quality. Eve n conn ected with non li near load and mutati on al load, it still can maintain the stability of voltage and the quality. this paper is to study the sin gle-phase voltage source in verter, adopti ng the in sta ntan eous values of voltage and curre nt double-loop feedback con trol tech no logy. The dual-loop PI con trol parameters sett ing based on pole assignment is discussed in detail. At the same time single-loop instantaneous voltage value with the lead-lag control strategy. And lots of simulation have been achieved.A inverter is the core of a UPS system. To achieve nearly sinusoidal output voltage even with nonlinear loads, many waveform correction techniques have been proposed. This dissertation focuses on the research of the instantaneous feedback tech no logy of PWM in verters. Both con trol methods show excelle nt performa nee.Keywords: dual-loop control ;PWM inverter ;CVCF ;lead-lag control strategy1引言能源的紧张,让人们越来越重视能源利用的高效性。
德州职业技术学院毕业设计(论文)(2012届毕业生)题目小功率单相逆变电源的设计制作指导教师张洪宝系部电子与新能源工程技术系专业应用电子技术班级09级应用电子技术学号 0124姓名张艳霞2011年 9月 19 日至 2011年 11月 18日共 9 周该设计主要应用电力电子电路技术和开关电源电路技术有关知识。
涉及模拟集成电路、电源集成电路、直流稳压电路、开关稳压电路等原理,充分运用芯片KA7500B的固定频率脉冲宽度调制电路及场效应管(N沟道增强型MOSFET)的开关速度快、无二次击穿、热稳定性好的优点而组合设计的电路。
该逆变电源的主要组成部分为:DC/DC电路、输入过压保护电路、输出过压保护电路、过热保护电路、DC/AC变换电路、振荡电路、全桥电路。
在工作时的持续输出功率为150W,具有工作正常指示灯、输出过压保护、输入过压保护以及过热保护等功能。
该电源的制造成本较为低廉,实用性强,可作为多种便携式电器通用的电源。
关键词:过热保护;过压保护;集成电路;振荡频率;脉宽调制The main application of power electronic circuit design technology and switching power supply circuit technology knowledge. Involves analog integrated circuits, power supply integrated circuits, DC circuit, the switching regulator circuit theory, make full use of the chip KA7500B fixed frequency pulse width modulation circuit and FET (N-channel enhancement mode MOSFET) switching speed, no second breakdown, thermal stability, good benefits and the modular design of the circuit. The inverter main components: DC / DC circuit, input over-voltageprotection circuit, output over-voltage protection circuit, overheat protection circuit, DC / AC conversion circuit, oscillation circuit, full-bridge circuit. In the work of continuous output power of 150W, with a normal light work, output overvoltage protection, input over-voltage protection and thermal overload protection. The power of the relatively low manufacturing cost, practical, and a variety of portable electronic devices can be used as a common power supply.Keywords: thermal protection; over-voltage protection; integrated circuits; oscillation frequency; pulse width modulation目录第一章概述 (1)1. 2逆变电源的技术性能指标及主要特点 (2)第二章逆变电源的主要元器件及其特性 (3)KA7500B电流模式PWM控制器 (3)场效应管 (6)三极管 (7)LM324N功能及特点 (7)DC/DC变换电路(附工作指示灯) (10)输入过压保护电路 (11)输出过压保护电路 (12)DC/AC变换电路 (13)KA7500B芯片І外围电路 (15)电路结构如图11,包含过热保护电路及振荡电路。
单相逆变器设计与仿真班级学技术要求:逆变器类型:单相逆变器输出额定电压:825V输出额定功率:25KVA输出额定频率:50HZ功率因素:≥0.8过载倍数:1.5⑴、设计主电路参数;⑵、建立数学模型,给出控制策略,计算控制器参数;⑶、建立仿真模型,给出仿真结果,对仿真结果进行分析。
目录一、单相逆变器设计 .....................................................................................................- 4 -1、技术要求 ..........................................................................................................- 4 -2、电路原理图 .......................................................................................................- 4 -3、负载参数计算 ...................................................................................................- 4 -3.1、负载电阻最小值计算 ...............................................................................- 5 -3.2、负载电感最小值计算 ...............................................................................- 5 - 3.3、滤波电容计算..........................................................................................- 5 - 4、无隔离变压器时,逆变器输出电流计算 .............................................................- 6 -4.1、长期最大电流(长)O I ...............................................................................- 6 -4.2、短期最大电流短)(0I .................................................................................- 7 - 5、无隔离变压器时,逆变器输出电流峰值 .............................................................- 7 -5.1、长期电流峰值长)(OP I ...............................................................................- 7 - 5.2、短期电流峰值短)(OP I ...............................................................................- 7 - 6、滤波电感计算 ...................................................................................................- 7 -6.1、滤波电感的作用 ......................................................................................- 7 - 6.2、设计滤波器时应该注意的问题 .................................................................- 7 - 6.3、设计滤波器的要求...................................................................................- 8 - 7、逆变电路输出电压(滤波电路输入电压) .........................................................- 8 -7.1、空载........................................................................................................- 9 - 7.2、 额定负载纯阻性1cos =ϕ .....................................................................- 9 - 7.3、额定负载阻感性8.0cos =ϕ ....................................................................- 9 - 7.4、过载纯阻性1cos =ϕ ............................................................................ - 10 - 7.5、过载阻感性8.0cos =ϕ ......................................................................... - 11 - 8、逆变电路输出电压 .......................................................................................... - 11 - 9、逆变电路和输出电路之间的电压匹配 .............................................................. - 12 - 10、根据开关压降电流选择开关器件.................................................................... - 12 - 11、开关器件的耐压 ............................................................................................ - 13 - 12、单相逆变器的数学模型.................................................................................. - 13 - 13、输出滤波模型................................................................................................ - 14 - 14、单相逆变器的控制策略.................................................................................. - 15 - 14.1、电压单闭环控制系统 ........................................................................... - 15 - 14.2、电流内环、电压外环双闭环控制系统 ................................................... - 16 -二、单相逆变器仿真 ................................................................................................... - 20 -1、输出滤波电路仿真 .......................................................................................... - 20 -2、电压单闭环控制系统仿真 ................................................................................ - 21 -3、电流内环、电压外环双闭环控制系统 .............................................................. - 23 -一、单相逆变器设计1、技术要求输出额定电压:825V输出额定功率:25KVA输出额定频率:50HZ功率因素:≥0.8过载倍数:1.52、电路原理图图1 单相全桥逆变电路设计步骤:(1)、根据负载要求,计算输出电路参数。
控制的单相逆变电源系统设计LC滤波电路毕业设计PWM控制的单相逆变电源系统设计摘要随着国民经济的高速发展和国内外能源供应的紧张,电能的开发和利用显得更为重要。
尤其是面对经济和科学技术发展的今天,一款稳定,易携带的交流电源正是我们现在方便生活重要的一种途径。
目前,国内外都在致力于发展新能源,太阳能发电,风力发电,潮汐发电等。
但是这些电能最终输出的都是不稳定的交流电,要想得到一款稳定的交流电源,逆变技术就要发挥极大的用处了。
本文设计的单相PWM逆变电源属于交流电源,采用电压反馈控制,通过调节占空比的方法来改变驱动电压脉冲宽度来调整和稳定输出电压。
其主电路构成采用的是Boost电路和全桥电路的组合。
控制电路采用的是IR2110控制,产生PWM 波触发桥式电路,升压电路,输出稳定电压,本文还设计了过流保护电路,提高了系统的稳定性。
本文详细的分析了逆变电源的工作过程,并推到了重要的公式,最后对设计进行了仿真设计,验证了系统的可行性。
关键词:逆变技术,脉冲宽度调制,场效应管,升压电路Design of Single Phase Inventer Power SystemControlled of PwmAbstractWith the high-speed developing of national economy and the shortage supply of world electrical energy supplies, the development and utilization of electric power is more important. Especially in the face of economic and scientific and technological development today, a stable, easy to carry AC power is important that we are now a way of life convenient. At present, domestic and foreign are committed to the development of new energy sources, solar power, wind power, tidal power generation. But these are unstable final output power AC, in order to get a stable AC power inverter technology will play a significant useful.This design of single-phase PWM inverter power belongs to AC power, voltage-feedback control method by adjusting the duty cycle of the pulse width of the drive voltage is changed to adjust and stabilize the output voltage. The main circuit Boost circuit is used in combination and a full-bridge circuit. Control circuit uses a IR2110 control, PWM wave trigger bridge circuit, the boost circuit, stable output voltage, the paper also designed the overcurrent protection circuit to improve system stability.This detailed analysis of the inverter's work process, and pushed to the important formula, the final design of the design of the simulation to verify the feasibility of the system.Keywords:inverter technology, pulse widthmodulation, FET,boost circuit目录摘要............................................................................................................................ I Abstract ....................................................................................................................... II 第1章绪论.. (1)1.1 背景 (1)1.2 目前研究现状 (3)1.2.1 UPS及交流净化电源 (3)1.2.2 交流稳压电源 (4)1.2.3 工业电源的发展 (4)1.2.4 直流开关电源 (5)1.3 论文主要研究内容 (6)第2章系统方案及基本原理 (7)2.1 系统的基本要求 (7)2.2 系统实现的理论基础 (7)2.2.1 采样理论 (7)2.2.2 面积等效原理 (9)2.2.3 PWM逆变电路及控制方法 (11)2.2.4 Boost升压电路 (15)2.3 系统可行方案和选择 (17)第3章系统的主要模块 (20)3.1 系统的主要组成 (20)3.2 系统主电路设计 (20)3.2.1 主电路拓扑 (20)3.2.2 主电路工作过程 (21)3.2.3 主电路参数设计 (23)3.3 IR2110芯片控制电路的设计 (26)3.4 辅助电路的设计 (28)3.4.1 过流保护电路 (28)3.4.2 开关管驱动信号电路 (29)3.4.3 LC滤波电路 (30)第4章仿真分析 (31)4.1 仿真目的 (31)4.2 仿真电路 (31)4.2.1 主电路仿真图 (31)4.2.2 PWM产生图 (31)4.3 仿真波形 (33)4.3.1 波形仿真 (33)4.3.2 输出电压分析 (33)4.3.3输出电流分析 (34)第5章结束语 (36)5.1 结论 (36)5.2 展望 (36)参考文献 (37)致谢 (38)第1章绪论1.1 背景电力电子技术的发展一次经历了整流器时代、逆变器时代和变频器时代,一些电源也就应运而生。
单相逆变器设计范文首先,单相逆变器的设计需要考虑以下几个方面:输出电压波形、输出功率、效率和保护措施。
1.输出电压波形:单相逆变器的输出电压波形应尽可能接近正弦波,以保证输出电能的质量。
常见的设计方法包括:方波逆变器、脉宽调制(PWM)逆变器和多脉泽调制(MPPT)逆变器。
其中,PWM逆变器是最常用的设计方法,通过高频开关器件的开关控制实现。
2.输出功率:逆变器的输出功率决定了其应用范围。
在设计单相逆变器时,需根据具体需求选择适当的功率等级。
输出功率主要受限于逆变器的开关器件和电路拓扑结构。
常用的逆变器拓扑结构有单相桥式逆变器、双半桥逆变器、全桥逆变器等。
选择适合的拓扑结构能提高逆变器的功率密度和转换效率。
3.效率:逆变器的效率对于能量转换非常重要,可以通过优化设计和控制算法来提高效率。
有效的设计方法包括:降低开关器件的导通和开通损耗、降低电路的额定电流和电压降以减少传导损耗等。
此外,合理的散热设计和抑制电磁干扰也能提高逆变器的效率。
4.保护措施:逆变器的保护措施是确保其正常运行和安全性的重要组成部分。
常见的保护措施包括:过电流保护、过温保护、短路保护、过压保护等。
通过添加适当的保护电路和控制算法,可以有效防止逆变器受损或损坏。
设计单相逆变器需要一定的电力电子知识和设计经验。
下面提供一个基本的单相逆变器设计流程作为参考:1.确定输出功率和电压:根据应用需求确定单相逆变器的输出功率和电压等级。
2.选择逆变器拓扑结构:选择适合的逆变器拓扑结构,并进行电路分析和计算。
常见的逆变器拓扑结构包括全桥逆变器和单相桥式逆变器。
3.选择开关器件:根据输出功率和电压确定合适的开关器件,如功率MOSFET、IGBT等。
考虑开关器件的导通和开通特性,以及损耗和成本等因素。
4.控制电路设计:设计适当的控制电路和算法,实现逆变器的开关控制。
常见的控制方法包括PWM调制、电流控制和电压控制等。
5.散热设计:根据逆变器的功率密度和工作条件设计散热系统,确保逆变器在长时间工作时的温度控制和散热效果。
单相逆变电源控制系统硬件设计毕业论文目录摘要 (I)Abstract (II)1 绪论 (1)1.1 引言 (1)1.2 国外研究现状及趋势 (2)1.2.1 逆变电源研究的技术现状 (2)1.2.2 逆变电源技术研究的发展趋势 (3)1.3 本文的研究目的及容 (4)1.4 逆变电源的控制策略 (6)2 SPWM控制原理 (10)2.1 PWM概述 (10)2.2 PWM波形的基本原理 (11)2.3 SPWM的调制方式 (11)2.3.1单极性SPWM调制 (12)2.3.2双极性SPWM调制 (13)2.4 SPWM实现方式 (14)2.4.1 比较器实现SPWM (14)2.4.2 专用集成电路实现SPWM (14)2.4.3 单片机实现SPWM (14)2.4.4 DSP实现SPWM (14)3 逆变电路建模及主电路参数计算 (16)3.1 单相全桥式逆变电路拓扑图及等效电路 (16)3.2 单相全桥逆变电路的数学模型 (17)3.2.1 连续状态空间模型 (17)3.3 单相逆变器主电路设计 (18)3.3.1 负载参数计算 (18)3.3.2 输出 LC 滤波器的设计 (19)3.3.3 IGBT 模块的选择 (19)4 控制策略及系统仿真 (21)4.1 PID概述 (21)4.2 数字PID控制 (21)4.3 PID参数的整定原则 (22)4.4 双闭环控制的原理 (23)5 硬件电路设计 (27)5.1 控制芯片选择 (27)5.2 采样与信号调理电路 (29)5.3 IGBT驱动电路设计 (31)5.4 保护模块设计 (33)5.5 其他辅助电路 (33)5.5.1 时钟电路 (33)5.5.2 复位电路 (34)5.5.3 仿真器连接JTAG (35)5.5.4 故障保护单元 (35)5.5.5 SCI接口电路 (35)5.6 电磁兼容设计 (35)结束语 (38)致谢 (39)参考文献 (40)附录 (42)1 绪论1.1引言逆变是对电能进行变换和控制的一种基本形式,它完成将直流电变换成交流电的功能,现代逆变技术就是研究现代逆变电路的理论和应用设计方法的学科。
这门学科综合了现代电力电子开关器件技术、现代功率变换技术、模拟和数字电子技术、PWM技术、开关电源技术和现代控制技术等多种实用设计技术,己被广泛的用于工业和民用领域中的各种功率变换系统和装置中。
随着电力电子技术的飞速发展和各行各业对电气设备控制性能要求的提高,逆变技术在许多领域获得了越来越广泛的应用。
下面列举的是其几个方面的主要应用。
(1)光伏发电能源危机和环境污染是目前全世界面临的重大问题,开发利用新能源和可再生能源是21世纪世界经济发展中最具决定性影响的技术之一,充分开发利用太阳能是世界各国可持续发展的能源战略决策,其中光伏发电最受瞩目。
太阳能光伏发电就是将由太阳电池阵列产生的直流电,通过逆变电路变换为交流电供给负载或并入电网,供用户使用。
(2)不间断电源系统在通信设备、医疗设备等对电源持续供电要求高的设备中都需要采用不间断电源UPS。
UPS的主要构件有充电器和逆变器。
在电网有电时,充电器为蓄电池充电,负载由电网供电:在电网停电时,逆变器将蓄电池提供的直流电逆变成交流电供给用电设备。
(3)交流电动机变频调速采用逆变技术将普通交流电网电压变化成电压、频率都可调的交流电,供给交流电动机,以便调节电动机的转速。
(4)直流输电由于交流输电架线复杂、损耗大、电磁波污染环境,所以直流输电是一个发展方向。
首先把交流电整流成高压直流电,再进行远距离输送,然后再逆变成交流电供给用电设备。
(5)风力发电风力发动机因受风力变化的影响,发出的交流电很不稳定,并网或供给用电设备都不安全。
可以将其整成直流,然后再逆变成比较稳定的交流,就能安全的并到交流电网上或直接供给用电设备。
1.2 国外研究现状及趋势1.2.1逆变电源研究的技术现状随着逆变器控制技术的发展,电压型逆变电源出现了许多的变压、变频控制方法。
目前采用较多的是脉宽调制技术即PWM控制技术,即利用控制输出电压的脉冲宽度,将直流电压调制成等幅宽度可变的系列交流输出电压脉冲,来控制输出电压的有效值、控制输出电压谐波的分布和抑制谐波。
由于PWM技术可以迅速地控制输出电压,及其有效地进行谐波抑制,因而它的动态响应好,在输出电压质量、效率诸方面有着明显的优点。
根据形成PWM波原理的不同,大致可以分为以下几种:矩形波PWM、正弦波PWM(SPWM)、空间相量PWM(SVM)、特定谐波消除PWM、电流滞环PWM等。
这四类PWM 波各有优缺点,因而适用于不同的场合。
本文主要讨论正弦波逆变器,因此主要讨论SPWM正弦脉宽调制法。
SPWM正弦脉宽调制法是调制波为正弦波,载波为三角波或锯齿波的一种脉宽调制法,它是1964年由A.Schonung和H.Stemmler把通讯系统的调制技术应用到逆变器而产生的,后来由Bristol大学的S.R.Bower等于1975年对该技术正式进行了推广应用。
这项技术的特点是原理简单,通用性强,控制和调节性能好,具有消除谐波、调节和稳定输出电压的多种作用,是一种比较好的波形改善法。
它的出现为中小型逆变器的发展起了重要的推动作用。
目前随着工业用的高速数字信号处理器(DSP)的发展,正弦波逆变器的控制技术方案也由传统的模拟控制向现代数字化控制的方向发展。
采用数字化控制,不仅可以大大降低控制电路的复杂程度,提高电源设计和制造的灵活性,而且可以采用更先进的控制方法,从而提高逆变电源系统输出波形的质量和可靠性。
在正弦波逆变电源数字化控制方法中,目前国外研究得比较多的主要有数字PID控制、无差拍控制、双环反馈控制、重复控制、滑模变结构控制、模糊控制以及神经网络控制等。
PID控制是一种传统控制方法,由于其算法简单成熟,设计过程中不过分依赖系统参数,鲁棒性好和可靠性高,在模拟控制的正弦波逆变电源系统中得到了广泛的应用。
随着微处理器技术的发展,具有较快的动、静态响应特性数字PID算法获得应用。
1.2.2逆变电源技术研究的发展趋势电源系统是现代电子设备不可或缺的重要组成部分。
1969年诞生的逆变电源可靠性高、稳定性好、调节特性优良、而且体积小、重量轻、功耗低,在电子和电气领域得到了极其广泛的应用。
随着电力电子技术的飞速发展和各行各业对电气设备控制性能要求的提高,逆变技术在许多领域的应用也越来越广泛,对电源性能的要求越来越高。
许多行业的用电设备都不是直接使用电网提供的交流电作为电源,而是通过各种形式对电网交流电进行交换,从而得到各自所需要的电能形式。
在电力电子技术的应用及各种电源系统中,逆变电源技术均处于核心地位。
近年来,现代逆变电源技术发展主要表现出以下几种趋势:(1)高频化。
理论分析和实践经验表明:电器产品的变压器、电感和电容的体积重量与供电频率的平方根成反比。
所以当我们把频率从工频50Hz提高到20KHZ,提高400倍的话,用电设备的体积重量大体下降至工频设计的5~10%,其主要材料可以节约90%甚至更高,还可以节电30%甚至更多。
由于功率电子器件工作频率上限的逐步提高,促使许多原来采用电子管的传统高频设备固态化,原材料消耗显著降低、电源装置小型化、系统的动态反应加快,更可以深刻体现技术含量的价值。
(2)模块化。
模块化有两方面的含义,其一是功率器件的模块化,其二是指电源单元的模块化。
我们常见的器件模块,含有一单元,两单元,六单元直至七单元,包括开关器件和与之反并联的续流二极管,实质上都属于“标准”功率模块(SPM)。
近年,有些公司把开关器件的驱动保护电路也集成到功率模块中去,构成了“智能化”功率模块(IPM),不但缩小了整机的体积,更方便了整机的设计制造。
有些制造商开发了“用户专用”功率模块(ASPM),它把一台整机的几乎所有硬件都以芯片的形式安装到一个模块中,使元器件之间不再有传统的引线连接,把寄生参数降到最小,从而把器件承受的电应力降至最低,提高了系统的可靠性。
另外,大功率的开关电源,由于器件容量的限制和增加冗余、提高可靠性方面的考虑,一般采用多个独立的模块电源并联工作,采用均流技术,所有模块共同分担负载电流,一旦其中某个模块失效,其他模块再平均分担负载电力。
这样,不但提高了功率容量,在器件容量有限的情况下满足了大电流输出的要求,而且通过增加相对整个系统来说功率很小的冗余电源模块,极大的提高系统可靠性,即使万一出现单模块故障,也不会影响系统的正常工作,而且为电源修复提供充分的时间。
(3)数字化。
现在数字式信号,数字电路越来越重要,数字信号处理技术日趋完善成熟,显示出越来越多的优点:便于计算机处理控制、避免模拟信号的畸变失真、提高系统抗干扰能力、便于软件包调试和遥感遥测遥调、也便于自诊断,容错等技术的植入,同时也为电源的并联技术发展提供了方便。
(4)绿色化。
随着各种政策法规的出台,对无污染的绿色电源的呼声越来越高。
绿色电源的含义有两层:首先是显著节电,这意味着发电容量的节约,而发电是造成环境污染的重要原因。
为了使电源系统绿色化,电源应加装高效滤波器,还应在电网输入端采用功率因数校正技术和软开关技术。
提高输入功率因数具有重要意义,不仅可以减少对电网的污染,降低市电的无功损耗,起到环保和节能的效果,而且还能减少相应的投资,提高运行可靠性。
提高功率因数的传统方法是采用无源功率因数校正技术,目前较先进的方法是:单相输入的采用有源功率因数校正技术,三相输入的采用SPWM高频整流提高功率因数。
随着电子电源的集成化、模块化、智能化的发展和电力电子器件的高性能化、拓扑电路理论的创新、现代控制技术的广泛应用及其实现的手段的先进性,现代电源的设计及分析工具得以进一步完善。
今后电源技术将朝着高效率、高功率因数和高可靠性方向发展,并不断实现低谐波污染、低环境污染、低电磁干扰和小型化、轻量化。
从而为今后的绿色电源产品和设备的发展提供强有力的技术保证,这也将是现代电源发展的必然结果。
1.3 本文的研究目的及容随着数字信号处理(DSP)技术的成熟和普遍,新一代的数字信号处理器(DSP)采用哈佛结构、流水线操作,即程序、数据存储器彼此相互独立,在每一时钟周期中能完成取指、译码、读数据以及执行指令等多个操作从而大大减少指令执行周期。
另外,由于其特有的寄存器结构,功能强大的寻址方式,灵活的指令系统及其强大的浮点运算能力,使得DSP不仅运算能力较单片机有了较大地提高,而且在该处理器上更容易实现高级语言。
正是由于其特殊的结构设计和超强的数据运算能力,使得DSP能用软件实现以前需用硬件才能实现的功能,也同样使数字信号处理中的一些理论和算法可以实时实现。
数字控制由于其控制理论与实施手段的不断完善,且因为其具有高度集成化控制电路、精确的控制精度、以及稳定的工作性能,如今己成为功率电子学的一个重要研究方向,而且数字控制也是最终实现电源模块化、集成化、数字化、绿色化的有效手段。