反比例函数图像和性质教学设计
- 格式:doc
- 大小:114.00 KB
- 文档页数:5
一、教学目标:1. 知识与技能:(1)理解反比例函数的定义;(2)会绘制反比例函数的图像;(3)掌握反比例函数的性质。
2. 过程与方法:(1)通过实例引导学生认识反比例函数;(2)利用信息技术工具绘制反比例函数的图像;(3)通过观察图像,探索反比例函数的性质。
3. 情感态度与价值观:培养学生对数学的兴趣,提高学生分析问题、解决问题的能力。
二、教学重点与难点:1. 教学重点:(1)反比例函数的定义;(2)反比例函数的图像;(3)反比例函数的性质。
2. 教学难点:(1)反比例函数图像的绘制;(2)反比例函数性质的探索。
三、教学过程:1. 导入:通过生活中的实例,如化学中的稀释问题,引出反比例函数的概念。
2. 自主学习:学生自主探究反比例函数的定义,了解反比例函数的基本特点。
3. 合作交流:学生分组讨论,分析反比例函数的图像特点,总结反比例函数的性质。
4. 教师讲解:讲解反比例函数的图像绘制方法,引导学生利用信息技术工具进行绘制。
5. 练习巩固:学生独立完成反比例函数图像的绘制,加深对反比例函数的理解。
四、课后作业:1. 绘制反比例函数的图像,并标注出其性质;2. 选取一个实际问题,运用反比例函数解决。
五、教学反思:本节课通过实例导入,引导学生自主学习反比例函数的定义,合作交流探讨反比例函数的图像和性质。
在教学过程中,注意引导学生利用信息技术工具进行绘制,提高学生的动手操作能力。
课后作业的设置,旨在巩固所学知识,培养学生的应用能力。
在下一节课中,将继续深入讲解反比例函数的应用,提高学生解决问题的能力。
六、教学内容:反比例函数的图像特点1. 教学目标:(1)能描述反比例函数的图像特点;(2)能运用反比例函数的图像特点解决实际问题。
2. 教学重点与难点:(1)反比例函数图像的特点;(2)反比例函数图像在实际问题中的应用。
3. 教学过程:(1)复习反比例函数的定义;(2)引导学生观察反比例函数的图像,总结图像特点;(3)通过实例,讲解反比例函数图像在实际问题中的应用。
反比例函数的图象与性质教案•相关推荐反比例函数的图象与性质教案范文(通用8篇)作为一名教师,时常会需要准备好教案,教案是教学蓝图,可以有效提高教学效率。
那么大家知道正规的教案是怎么写的吗?下面是小编精心整理的反比例函数的图象与性质教案范文,欢迎阅读与收藏。
反比例函数的图象与性质教案篇1教学目标知识与技能:1、进一步熟悉作函数图象的主要步骤,会作反比例函数的图象。
2、体会函数的三种表示方法的相互转换,对函数进行认识上的整合。
3、培养学生从函数图象中获取信息的能力,初步探索反比例函数的性质。
过程与方法:通过学生自己动手列表,描点,连线,提高学生的作图能力;通过观察图象,概括反比例函数图象的有关性质,训练学生的概括总结能力、情感、态度与价值观:让学生积极参与到数学学习活动中去,增强他们对数学学习的好奇心和求知欲。
教学重难点1) 重点:画反比例函数图象并认识图象的特点。
2)难点:画反比例函数图象。
教学关键:教师画图中要规范,为学生树立一个可以学习的模板。
教学方法:激发诱导,探索交流,讲练结合三位一体的教学方式。
教学手段:教师画图,学生模仿。
教具:三角板,小黑板。
学法:学生动手、动眼,、动耳、采用自主,合作、探究的学习方法。
教学过程一:课前检测:1、什么叫做反比例函数;(一般地,如果两个变量x、y之间的关系可以表示成y= (k为常数,k0)的形式,那么称y是x的反比例函数。
)2、反比例函数的定义中需要注意什么?(1)k为常数,k0(2)从y= 中可知x作为分母,所以x不能为零。
二:激发兴趣导入新课问题1:对于一次函数 y = kx + b ( k 0 )的图象与性质,我们是如何研究的?y=kx+b y=kxK0 一、二、三一、三b0 一、三、四K0 一、二、四二、四b0 二、三、四问题2:对于反比例函数 y=k/x ( k是常数,k 0 ),我们能否象一次函数那样进行研究呢?可以问题3:画图象的步骤有哪些呢?(1)列表(2)描点(3)连线(教学片断:师:上一节课我们研究了反比例函数,今天我们继续研究反比例函数,下面哪位同学说一下自己对反比例函数的了解。
初中数学《反比例函数的图象和性质》教学设计一. 教材分析《反比例函数的图象和性质》是初中数学的重要内容,主要让学生了解反比例函数的图象和性质,理解反比例函数在实际生活中的应用。
通过学习,学生能够掌握反比例函数的定义,了解反比例函数的图象特点,理解反比例函数的性质,并能运用反比例函数解决实际问题。
二. 学情分析学生在学习《反比例函数的图象和性质》之前,已经学习了函数的概念,比例函数和一次函数的图象和性质。
但学生在学习过程中可能对反比例函数的概念和性质理解不深,对反比例函数的图象特点把握不准。
因此,在教学过程中,教师要注重引导学生理解反比例函数的概念,通过实际例子让学生感受反比例函数的图象和性质。
三. 教学目标1.了解反比例函数的定义,理解反比例函数的图象和性质。
2.能够运用反比例函数解决实际问题。
3.培养学生的数学思维能力和解决问题的能力。
四. 教学重难点1.反比例函数的定义2.反比例函数的图象和性质3.反比例函数在实际生活中的应用五. 教学方法采用问题驱动法、案例教学法、小组合作学习法等,引导学生通过自主学习、合作探讨,理解反比例函数的图象和性质,提高学生的数学思维能力和解决问题的能力。
六. 教学准备1.PPT课件2.教学案例和实际问题3.反比例函数的图象和性质的相关资料七. 教学过程1.导入(5分钟)通过一个实际问题引入反比例函数的概念,如“一辆汽车以60km/h的速度行驶,行驶1小时,行驶的路程是多少?”让学生思考并回答问题,引导学生认识到反比例函数在实际生活中的应用。
2.呈现(15分钟)利用PPT课件,展示反比例函数的图象和性质,让学生直观地感受反比例函数的特点。
同时,教师讲解反比例函数的定义,解释反比例函数的图象和性质。
3.操练(15分钟)让学生通过自主学习,理解并掌握反比例函数的定义,然后进行一些相关的练习题,让学生在实际操作中加深对反比例函数的理解。
4.巩固(10分钟)通过一些实际问题,让学生运用反比例函数解决问题,巩固学生对反比例函数的理解。
反比例函数的图像和性质教学设计标题:反比例函数的图像和性质教学设计引言:反比例函数是数学中一个重要的概念,在实际生活中有着广泛的应用。
理解反比例函数的图像和性质对于学生掌握数学知识和解决实际问题非常重要。
本文将介绍一个针对反比例函数的图像和性质的教学设计,帮助学生更好地理解和应用这一概念。
一、教学目标1. 理解反比例函数的概念和性质;2. 能够画出反比例函数的图像;3. 熟练应用反比例函数解决实际问题。
二、教学内容和过程1. 概念讲解首先,通过简单易懂的语言解释反比例函数的概念,如:反比例函数是形如y = k/x的函数,其中k是一个常数。
然后,引导学生思考反比例函数的性质,如:- 当x趋近于0时,y趋近于无穷大;- 当x趋近于无穷大时,y趋近于0;- 函数图像关于y轴对称。
2. 图像练习在学生已经了解反比例函数的概念后,进行图像练习。
教师可以提供一系列的反比例函数的函数式,要求学生画出其图像,并解释函数式中各个参数的作用。
例如,要求学生画出函数y = 3/x的图像,并说明当x取不同值时,函数图像的变化情况。
这样可以帮助学生更好地理解反比例函数的图像特点。
3. 实际应用接下来,引导学生将反比例函数应用于实际问题的解决中。
给出一些与反比例函数相关的实际问题,如:某电子产品的价格与销量成反比例关系,已知当销量为1000时,价格为500元,要求学生利用反比例函数解决:- 当销量为2000时,价格是多少?- 当价格为100元时,销量是多少?通过实际问题的解决,让学生将抽象的反比例函数与实际情况联系起来,提高解决问题的能力。
4. 总结归纳最后,对反比例函数的图像和性质进行总结归纳。
学生可以梳理出反比例函数图像的特点,如图像与坐标轴的关系、函数图像的变化趋势等。
同时,学生还可以总结反比例函数的性质,并提出自己的观点和思考。
三、评估为了测试学生对反比例函数图像和性质的理解和应用能力,可以设计相应的形式评估,如选择题、填空题和解决实际问题的题目等。
一、教案基本信息反比例函数的图象与性质教案教学设计课时安排:2课时教学对象:高中数学一年级学生教学目标:1. 让学生理解反比例函数的定义和表达式;2. 让学生掌握反比例函数的图象特征;3. 让学生了解反比例函数的性质;4. 培养学生运用数学知识解决实际问题的能力。
教学重点:1. 反比例函数的定义和表达式;2. 反比例函数的图象特征;3. 反比例函数的性质。
教学难点:1. 反比例函数图象的理解;2. 反比例函数性质的推导。
二、教学准备教学工具:黑板、粉笔、多媒体教学设备教学素材:反比例函数图象和性质的PPT课件、例题、练习题三、教学过程第一课时1. 导入新课教师通过展示实际问题,引导学生回顾正比例函数的图象和性质,为新课的学习做好铺垫。
2. 反比例函数的定义与表达式(1)教师引导学生观察实际问题,引出反比例函数的概念;(2)教师给出反比例函数的表达式;(3)学生跟随教师一起总结反比例函数的定义和表达式。
3. 反比例函数的图象特征(1)教师利用PPT课件展示反比例函数的图象;(2)教师引导学生观察反比例函数的图象特征,总结规律;(3)学生跟随教师一起归纳反比例函数的图象特征。
4. 反比例函数的性质(1)教师引导学生从图象特征出发,推导反比例函数的性质;(2)教师给出反比例函数的性质表述;(3)学生跟随教师一起总结反比例函数的性质。
第二课时5. 应用拓展(1)教师出示应用题,引导学生运用反比例函数的知识解决问题;(2)学生独立解答问题,教师进行指导;(3)教师总结解题方法,强调反比例函数在实际问题中的应用。
6. 课堂小结教师带领学生回顾本节课所学内容,总结反比例函数的定义、表达式、图象特征和性质。
7. 布置作业教师出示课后练习题,要求学生巩固反比例函数的知识。
四、教学反思教师在课后对教学效果进行反思,针对学生的掌握情况调整教学策略,为后续课程的教学做好准备。
五、教学评价通过课堂表现、作业完成情况和课后练习的成绩,对学生在本次课程中的学习效果进行评价。
反比例函数的图象与性质教案教学设计一、教学目标:1. 知识与技能:让学生掌握反比例函数的定义,理解反比例函数的图象和性质,能够运用反比例函数解决实际问题。
2. 过程与方法:通过观察、分析、归纳等方法,引导学生探索反比例函数的图象与性质,培养学生的抽象思维能力和数形结合思想。
3. 情感态度与价值观:激发学生对数学的兴趣,培养学生勇于探究、积极进取的精神,使学生认识到数学在生活中的重要性。
二、教学重点与难点:1. 教学重点:反比例函数的定义,反比例函数的图象与性质。
2. 教学难点:反比例函数图象的理解,反比例函数性质的推导。
三、教学方法与手段:1. 教学方法:采用引导发现法、问题驱动法、合作交流法等。
2. 教学手段:利用多媒体课件、反比例函数图象软件、黑板等。
四、教学过程:1. 导入新课:通过展示实际问题,引导学生思考反比例函数的定义,引出本节课的内容。
2. 自主探究:让学生利用软件绘制反比例函数的图象,观察图象特征,引导学生发现反比例函数的性质。
3. 小组讨论:4. 教师讲解:对学生的探究结果进行点评,讲解反比例函数的图象与性质,引导学生深入理解。
5. 巩固练习:布置练习题,让学生运用所学知识解决问题,巩固反比例函数的图象与性质。
6. 课堂小结:五、课后作业:1. 完成练习册上的相关题目。
2. 调查生活中反比例函数的应用实例,下节课分享。
教学反思:课后对教学效果进行反思,针对学生的掌握情况,调整教学策略,以提高教学效果。
六、教学策略与实施1. 案例分析:通过分析生活中的实际案例,如化学实验中的浓度配比、经济学中的成本与产量关系等,让学生直观地感受到反比例函数的应用。
2. 数学软件辅助:利用数学软件或在线图形计算器,让学生实时观察不同反比例函数的图象,从而加深对函数性质的理解。
3. 分层教学:针对不同学生的学习水平,设计不同难度的教学内容和练习题,确保每个学生都能在课堂上得到有效的学习。
4. 互动式教学:鼓励学生在课堂上提问和分享自己的见解,通过问答和讨论,提高学生的参与度和思维能力。
反比例函数的图像与性质教案教案标题:反比例函数的图像与性质教学目标:1. 理解反比例函数的定义及其特点;2. 掌握绘制反比例函数图像的方法;3. 理解反比例函数图像的性质。
教学准备:1. 教师:准备反比例函数的定义、性质和图像的讲解材料;2. 学生:准备笔、纸和计算器。
教学过程:导入(5分钟):1. 引入反比例函数的概念,与学生一起回顾比例函数的定义及其性质;2. 提问:你们对反比例函数有什么了解?它与比例函数有何不同?讲解(15分钟):1. 讲解反比例函数的定义:y = k/x,其中k为常数且不等于0;2. 解释反比例函数的性质:当x增大时,y减小;当x减小时,y增大;3. 通过实例演示如何计算反比例函数的值,并讨论k的正负对函数图像的影响;4. 讲解反比例函数图像的特点:曲线经过第一象限的原点,且与坐标轴无交点。
练习(15分钟):1. 学生在纸上绘制反比例函数y = 3/x的图像,并标出至少5个点;2. 学生计算并填写表格:x取1、2、3、4、5时,对应的y值;3. 学生观察表格数据,并总结反比例函数图像的特点。
拓展(10分钟):1. 引导学生思考:如果反比例函数的定义中的k为负数,图像会有什么变化?2. 学生尝试绘制反比例函数y = -2/x的图像,并与之前的图像进行比较;3. 学生讨论负数k对反比例函数图像的影响,并总结出结论。
归纳(5分钟):1. 教师与学生一起总结反比例函数的图像与性质;2. 学生回答以下问题:反比例函数图像经过哪个象限的原点?与坐标轴是否有交点?作业:1. 学生完成课堂练习的剩余部分,并绘制反比例函数y = -4/x的图像;2. 学生回答书面问题:反比例函数图像的性质与比例函数图像的性质有何不同?评估:1. 教师检查学生在课堂练习中的图像绘制情况;2. 教师评估学生对反比例函数图像与性质的理解程度。
教学延伸:1. 学生可以进一步探索反比例函数的应用,如在实际问题中的应用;2. 学生可以尝试绘制更多不同参数的反比例函数图像,比较它们之间的差异。
《11.2反比例函数的图像与性质》一、教材分析(一)教材的地位及作用《反比例函数的图像和性质》是苏科版数学教材八年级下册第十一章第二节内容,本课为第一课时.是在学习了反比例函数的概念后对反比例的进一步研究,主要介绍了反比例函数的图像是双曲线和双曲线的作法.八年级上册学习的一次函数图像的作法为本课的学习提供了方法的引领,本课是学生第一次接触曲线形的图像,是继续研究反比例性质、学习二次函数的基础,在教材中起着承上启下的重要作用.(二)教学目标1.知道反比例函数的图像是双曲线,能用描点法画出反比例函数的图像;2.类比一次函数,经历列表、描点、连线画双曲线的过程,理解图像能更直观的反应函数的特征,体会数形结合的思想.(三)教学重点、难点教学重点:反比例函数图像的画法.教学难点:体会解析式与图像的联系,正确地画出双曲线.二、学情分析学生在八年级上册学习过一次函数,知道作函数图像列表、描点、连线的基本步骤,反比例函数概念的学习为研究反比例函数的图形奠定了知识的基础.但是反比例函数的图像是学生第一次接触曲线型的图像,而且是两个分支的图像,这对他们来说有一定的难度.在教学时可采用先引导学生思考然后画图,充分交流讨论,暴露学生的思维过程,针对错误进行评析,借助课件动态直观展示图像的生成过程,帮助他们突破难点.三、教学过程(一)问题导学1.我们已经学习了反比例函数,它的一般形式是什么?2.请大家类比一次函数的学习,我们认识了函数后,接下来研究什么?3.一次函数的图像是一条直线,反比例函数的图像是什么呢?【设计意图】类比一次函数,知道研究函数一般先理解其概念,然后研究其图像和性质,让学生构建函数的认知结构.用问题串的方式自然地引出课题,激发学生的求知欲.(二)合作探究活动一:思考 以反比例函数xy 6=为例, 1.自变量x 可以取任何实数吗?(学生发现x 不可以为0.)那这个函数的图像与y 轴有交点吗?因变量y 可以取任何实数吗?这个函数的图像与x 轴有交点吗?2.若x 取正,那y 呢?若x 取负,那y 呢?这个函数的图像会在哪几个象限?3.当x >0时,随着x 的增大,y 怎样变化? 当x <0时,随着x 的增大,y 怎样变化?4.通过以上问题,你能估计反比例函数xy 6=图像的基本概貌吗? (先思考,再小组交流.这里不要求学生准确描述,鼓励其用自己的语言来描述函数图像.)【设计意图】由于反比例函数的图像是曲线,且分成两支,学生初次接触有一定的难度,故而在作图前先思考,“由数想形”,根据函数表达式中x 、y 的取值范围及相互关系,初步估计图形的基本概貌——位置(象限、与坐标轴的交点等)、趋势(上升、下降等).一方面渗透数形结合的数学思想,另外这也是探究未知函数的性质与图像的一种方法. 活动二:画xy 6=的图像 1.我们的估计正确不正确,可以怎样来验证?(学生回答,画出函数的图像)2.回忆一次函数的图像画法,你认为画函数图像的步骤是什么?3.需要把 x 的所有值全部列举出来吗?你认为选取哪些值合适呢?为什么?(根据学生回答示范列表)4.请大家根据表格描点、画图.(在事先准备好的网格坐标系中画图)5.请将自己所作的图像与小组内的同学交流,找出自己与同学作图的不同并分析原因;(教师巡视并选出几个有代表性错误的图像和一幅正确图像)6.利用实物展台展示学生作图,你们认为这些图像正确吗?结合学生错误进行讨论、分析.(如连线没有向两方无限延伸,连线与坐标轴相交,两个分支用线连接,用线段将相邻两点连接等错误)7.利用几何画板展示图像的动态生成过程;8.先说说反比例函数xy 6=的图像的特征,再比较与一次函数的图像有哪些不 同,请与同学交流.【设计意图】引导学生正确地列表,这样才能更直观地显示出图像的特征,然后放手让学生自己尝试作图,暴露他们的思维过程.通过对典型错误的分析和正确图像的比较以及课件的直观展示,帮助学生更深刻地理解图像的基本特征如:连线必须是光滑的,是两个分支,延伸部分有逐渐靠近坐标轴的趋势但永远不可能与坐标轴相交等,体会图像的种种特征是由反比例的解析式的特点决定的,感受数形结合的思想. 活动三:画xy 6-=的图像 1.不画图,你能说说反比例函数xy 6-=图像的特征吗?说明理由. 2.请在网格坐标系中画出反比例函数xy 6-=的图像. (此处大多学生应该是用描点法画图,可能有学生利用x y 6-=与xy 6=的关系来画图,鼓励多种方法画图.)3.对照图像,刚才对函数xy 6-=图像特征的表述正确吗? 4.观察x y 6=与x y 6-=的图像,它们有什么共同特征? 5.根据学生回答板书双曲线及其基本特征.【设计意图】让学生经历类比、猜想、观察、归纳的过程,培养学生的思维,帮助学生更好地理解双曲线的特征,自主建构双曲线模型,体会数形结合的思想,积累数学活动经验.(三)练习巩固 同桌两人分别画出函数x y 4=与xy 4-=的图像(一人画一个),并请同桌说出你所作的函数图像的特点.【设计意图】通过小游戏的方式调动学生的学习积极性,巩固作图的技能,加深对双曲线特征的理解.(四)小结反思请与同学交流:1.今天这节课你有什么收获?2.你认为最重要、最关键的知识是什么?3.你是用什么方法获得新知识的?4.你还有什么疑惑需要提出来和大家讨论吗?【设计意图】没有反思就没有进步,用问题串的方式引导学生将回顾本课所学知识并内化到自己的认知结构中,总结探究的方法,积累数学活动经验,感受数形结合、类比的思想.(五)分层拓学1.必做题:2.选做题:观察课堂所画的四个反比例函数图像,你能将它们分类吗?分类标准是什么?你能类比一次函数给出反比例函数的增减性吗?【设计意图】分层的练习既面向全体又关注个体差异,选做题让学有余力的学生有了施展的舞台,同时又为下节课的学习做好铺垫.六、板书设计。
反比例函数的图象和性质教案设计第一章:反比例函数的定义与表达式1.1 反比例函数的定义引导学生回顾正比例函数的定义,提出反比例函数的概念。
通过实际例子,让学生理解反比例函数表示两个变量之间的关系。
1.2 反比例函数的表达式介绍反比例函数的一般形式y = k/x (其中k 为常数,k ≠0)。
解释反比例函数中的k 值对函数图象的影响。
第二章:反比例函数的图象特点2.1 反比例函数图象的形状引导学生观察反比例函数图象,发现其形状为双曲线。
解释双曲线的特点及其与反比例函数的关系。
2.2 反比例函数图象的渐近线引导学生观察反比例函数图象,发现其图象具有两条渐近线。
解释渐近线的概念及其在反比例函数图象中的表现。
第三章:反比例函数的性质3.1 反比例函数的单调性引导学生分析反比例函数在不同区间的单调性。
解释反比例函数单调性的原因及其与比例系数k 的关系。
3.2 反比例函数的奇偶性引导学生观察反比例函数图象,发现其具有奇偶性。
解释反比例函数奇偶性的概念及其与比例系数k 的关系。
第四章:反比例函数的应用4.1 反比例函数在实际问题中的应用提供实际问题,引导学生运用反比例函数解决问题。
解释反比例函数在实际问题中的应用场景,如速度与时间的关系。
4.2 反比例函数的综合应用提供综合问题,引导学生综合运用反比例函数解决问题。
强调反比例函数在其他数学领域中的应用,如在几何中的运用。
第五章:反比例函数的图象和性质的巩固练习5.1 反比例函数图象的绘制引导学生独立绘制反比例函数的图象,巩固对反比例函数图象的理解。
提供不同比例系数的函数,让学生绘制并分析其图象特点。
5.2 反比例函数性质的练习题提供练习题,让学生运用反比例函数的性质解决问题。
强调对反比例函数单调性、奇偶性等性质的理解和应用。
第六章:反比例函数的图象变换6.1 反比例函数的平移引导学生理解反比例函数图象的平移规律,即上下移动对应y 轴的平移,左右移动对应x 轴的平移。
反比例函数的图象与性质教案优秀3篇反比例函数的图象与性质教案篇一教学目标1. 经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力。
2. 理解反比例函数的概念,会列出实际问题的反比例函数关系式。
3. 使学生会画出反比例函数的图象。
4. 经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质。
教学重点1、使学生了解反比例函数的表达式,会画反比例函数图象2、使学生掌握反比例函数的图象性质3、利用反比例函数解题教学难点1、列函数表达式2、反比例函数图象解题教学过程教师活动一、作业检查与讲评二、复习导入1.什么是正比例函数?我们知道当(1) 当路程s一定,时间t与速度v成反比例,即vt=s(s是常数)(2) 当矩形面积一定时,长a和宽b成反比例,即ab=s(s是常数)创设问题情境问题1:小华的爸爸早晨骑自行车带小华到15千米外的镇上去赶集,回来时让小华乘坐公共汽车,用的时间少了。
假设自行车和汽车的速度在行驶过程中都不变,爸爸要小华找出从家里到镇上的时间和乘坐不同交通工具的速度之间的关系。
分析和其他实际问题一样,要探求两个变量之间的关系,就应先选用适当的符号表示变量,再根据题意列出相应的函数关系式。
设小华乘坐交通工具的速度是v千米/时,从家里到镇上的时间是t小时。
因为在匀速运动中,时间=路程÷速度,所以从这个关系式中发现:1.路程一定时,时间t就是速度v的反比例函数。
即速度增大了,时间变小;速度减小了,时间增大。
2.自变量v的取值是v0.问题2:学校课外生物小组的同学准备自己动手,用旧围栏建一个面积为24平方米的矩形饲养场。
设它的一边长为x(米),求另一边的长y(米)与x的函数关系式。
分析根据矩形面积可知xy=24,即从这个关系中发现:1.当矩形的面积一定时,矩形的一边是另一边的反比例函数。
即矩形的一边长增大了,则另一边减小;若一边减小了,则另一边增大;2.自变量的取值是x0.三、新课讲解上述两个函数都具有的形式,一般地,形如(k是常数,k≠0)的函数叫做反比例函数(proportional function).说明1.反比例函数与正比例函数定义相比较,本质上,正比例y=kx,即,k是常数,且k≠0;反比例函数,则xy=k,k是常数,且k≠0.可利用定义判断两个量x和y满足哪一种比例关系。
人教版数学九年级下册26.1.2《反比例函数的图象和性质》教学设计一. 教材分析人教版数学九年级下册26.1.2《反比例函数的图象和性质》是反比例函数部分的重要内容。
本节内容是在学生已经掌握了比例函数的知识基础上进行学习的,通过本节课的学习,使学生理解反比例函数的概念,会画反比例函数的图象,了解反比例函数的性质,并能运用反比例函数解决一些实际问题。
二. 学情分析九年级的学生已经具备了一定的函数知识,对于比例函数有一定的了解,但反比例函数作为一种新的函数形式,对学生来说还比较陌生。
因此,在教学过程中,需要引导学生通过观察、分析、归纳等方法,自主探究反比例函数的图象和性质,提高学生的动手操作能力和思维能力。
三. 教学目标1.知识与技能:使学生理解反比例函数的概念,会画反比例函数的图象,了解反比例函数的性质。
2.过程与方法:通过观察、分析、归纳等方法,培养学生自主探究的能力。
3.情感态度与价值观:激发学生学习函数的兴趣,培养学生的团队协作精神。
四. 教学重难点1.反比例函数的概念及其图象的画法。
2.反比例函数的性质及其运用。
五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生主动探究,培养学生的动手操作能力和思维能力。
六. 教学准备1.教学课件:制作反比例函数的图象和性质的课件,用于辅助教学。
2.学生活动材料:反比例函数图象和性质的练习题,用于巩固所学知识。
3.教学设备:投影仪、计算机等。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾比例函数的知识,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过课件展示反比例函数的图象和性质,引导学生观察、分析,并总结反比例函数的特点。
3.操练(10分钟)教师布置练习题,学生独立完成,巩固所学知识。
教师选取部分学生的作业进行讲解和点评。
4.巩固(5分钟)教师通过提问方式检查学生对反比例函数图象和性质的掌握情况,并对学生的回答进行指导和纠正。
反比例函数的图象和性质教学设计
一、教学内容解析
本课选自《义务教育教科书数学》人民教育出版社就年级数学下册第26章第1节反例函数第二课时,教学内容是反比例函数的图象和性质。
本节课的核心内容是“图象的特征”、“函数的性质”以及它们之间的关系。
通过图象和性质可以揭示反比例函数的本质。
反比例函数是最基本的初等函数之一,是继一次函数学习之后,对函数学习的一般规律和方法的再次学习研究.也是学习后续各类函数的基础。
本节课是通过描点法画函数图象、借助图象探究总结函数性质以及函数图象性质的简单应用这三个内容展开的。
二.教学目标
1.会画反比例函数图象,会根据图象探索反比例函数的性质.
2.经历反比例函数的探究过程,感悟“数形结合”、“变化与对应”的数学思想.
3. 鼓励学生独立思考、合作交流、共同探究,提高学生数学学习的自信心.
目标解析
1.利用描点法画反比例函数的图象是本节课的一个重点内容。
虽然前面
学习过描点法画函数图象,但是学生对于画函数图象的规范性还比较
欠缺,需要进一步巩固,另外由于反比例函数图象的特征于一次函数
有很大的区别,所以学生容易犯一些习惯性的错误。
学生需要意识到
这些问题才会在画图象的时候更加规范和准确。
2.本节课主要是类比一次函数的探究方法开展探究活动的,主要是通过
画函数图象、借助图象探究性质、根据图象和性质发现总结一般的规
律来进行本节课的探究学习的。
学生通过这些过程,逐步感受到从哪
些角度去认识函数、学会研究函数的一些方法、理解探究的一些基本
的数学思想,为进一步学习函数打下基础。
3.学生通过对反比例函数的探究,经历独立思考、合作交流归纳总结等
活动,培养了学生的思维能力和学习的信心。
三、学生学情分析
学生已经学习了描点法画函数的图象,但是画图象的注意问题掌握的还不熟练,画函数的图象还不规范。
也经历过一次函数图象和性质的探究过程,对函数的探究方法有了一定的认识和经验。
由于反比例函数的图象和性质较一次函数有所区别,也更复杂,学生理解起来更加困难。
所以,我制定
如下教学重难点:
教学重点
反比例函数的图象和性质
教学难点
反比例函数的性质
四、教学策略分析
描点法画函数图象时,第一步列表很多学生的习惯都不相同,所以老师引导学生通过讨论需注意的问题,然后统一完成列表,描点和连线让学生自己完成,然后展示不规范的图象让学生讨论发现问题。
探究函数性质时,主要以提问的方式引导学生从数和形两个角度去理解函数图象的特征和函数的性质。
对于教学中的难点,如描述性质的增减性、对“在每个象限内”如何理解等问题,适当的给学生提示和启发,鼓励学生观察、思考、发现、归纳和总结。
借助几何画板、电子白板等软硬件技术帮助学生更好地认识图象和性质。
五、教学过程.
(一)温故知新
1. 正比例函数)0(≠=k kx y 的性质我们是怎样研究的?
学生活动:填表
2. 反比例函数的定义.
设计意图:学生回顾正比例函数的图象、性质及研究思路,为用类比的方法探究反比例函数的性质做准备。
(二)探究新知
【活动1】
例1:画出反比例函数x
y 6=
的图象. 师生活动:
(1)引导学生列表、描点、作图;强调注意事项,如自变量的取值。
(2)展示学生作品,共同讨论所画图象存在的问题;
(3)课件演示反比例函数图象的生成过程,给出双曲线的名称,并渗透它的形态特征.
设计意图:图象是直观描述和研究函数的重要工具,通过经历用描点法画出反
比例函数图象的过程,使学生对反比例函数有一个初步的感性认识。
【活动2】 观察函数x
y 6=
的图象,思考: (1) 函数的图象是什么形状?位于哪些象限? (2) 在每个象限内,图象的走势怎样?
(3) 在每个象限内,随着x 的增大,函数值y 是如何变化的?你是怎么观
察出来的?
(4) 图象会与坐标轴相交吗?为什么?
思考:强调“在每一象限内”该怎么理解?让学生举出反例说明为什么? 设计意图:引导学生根据函数图象探究反比例函数的性质,渗透“数形结合”的数学思想。
【活动3】
试一试:画出反比例函数x
y 6-=的图象,并讨论: (1) 函数x y 6-=的图象与函数x
y 6=有什么相同点和不同点? (2) 在每个象限内,函数x
y 6-=图象的走势怎样?随着自变量x 的增大,函数值y 将怎样变化?
设计意图:学生根据已有经验经历独自探究反比例函数图象和性质的过程,培养学生独立探究的能力,增强学生学习的信心。
【活动4】
猜想:你能想象出函数x y 8=和函数x
y 3-=的大致图象吗? (1) 它们的图象分别与哪个函数有相似之处?
(2) 它们有相同的性质吗?你能描述它们的性质吗?
(3) 你认为它们具有相同性质的原因是什么?
设计意图:培养学生观察、发现和猜想的学习习惯。
【活动5】
观察图象,验证猜想
教师用几何画板展示当 0>k 或0<k 时,反比例函数图象的变化情况, 问:图象的变化过程中,不变的是什么?
设计意图:引导学生通过特殊情况发现一般的规律,渗透“从特殊到一般”的数学思想,也进一步让学生体会到“数形结合”的数学思想。
(三)归纳总结 反比例函数k y
=
(0≠k )的图象和性质: 设计意图:通过归纳,培养学生抽象概括能力.
(四)应用新知
问题1:甲、乙两地相距120千米,汽车匀速从甲地驶往乙地,显然汽车行驶的时间由速度确定,时间与速度的函数关系式为:
思考:这个反比例函数的性质是什么?在这一问题中反映了怎样的实际意义? 函数的图象位于哪些象限?
设计意图:巩固反比例函数的性质,反映了数学源于生活,也可以应用于生活。
同时,学生也体会到自变量的取值对函数图象的影响。
练习:
1.已知反比例函数x k y =的图象如图所示,则k 0
且在图象的每一支上,y 值随x 的增大而 .
2.下列关于函数x
y 24=的图象或性质的说法,错误的是A.图象是双曲线 B.图象位于一、三象限 C .y 值随x 的增大而减小 D.图象经过点(-4,-6)
3.反比例函数x
k y =
,当0>x 时,y 随x 的增大而减小,则图象 位于_______象限,k 0. 设计意图:通过练习,巩固新知.使学生对反比例函数的图象和性质有了进一步的认识.
(五)课堂小结
本节课我们是如何探究反比例函数的性质的?你有什么收获?
设计意图:学生通过对本节课的知识要点和探究方法的总结,对反比例函数性质的探究过程和方法有一个较为整体、全面认识,为以后类似的探究活动积累经验,同时,培养学生良好的学习习惯.
(六)课后作业
将反比例函数x
k y =(k 为常数,0≠k )与正比例函数kx y =(k 为常数,第1题图
≠
k)进行对比,回答下列问题:
(1)两种函数的解析式有何相同与不同?两种函数的图象的特征有何区别?
(2)在常数k相同的情况下,当自变量x变化时,两种函数的函数值y的变化趋势有什么区别?
(3)两种函数中x的取值范围有何不同?常数k的符号改变对两种函数图象所处象限的影响如何?
设计意图:学生通过对一些基本函数图象和性质的对比,学会从多个角度去区分各类函数,进一步培养学生研究函数的方法和技巧.
(七)板书设计
一.反比例函数的概念三.反比例函数
k
y
x
=(0
≠
k)的图象特征和性质:
二.反比例函数的图象四.课堂小结
描点法:
列表、描点、连线。