金属材料焊接知识
- 格式:doc
- 大小:301.00 KB
- 文档页数:23
焊接基础知识—常用焊接方法及其特点焊接是一种将金属材料连接在一起的方法,常被用于制造、建筑和修复领域。
在焊接过程中,需要使用热源将焊条或焊丝加热到熔化状态,然后涂在需要连接的金属部分上,使其冷却后形成一种持久的连接。
以下是几种常见的焊接方法及其特点。
1.电弧焊接电弧焊接是一种常用的焊接方法,利用电能在两个金属表面之间产生弧光,以产生足够的热量来熔化金属并形成连接。
电弧焊接具有以下特点:-可以焊接各种金属,包括铁、钢和不锈钢等。
-焊接速度高,能快速完成焊接任务。
-需要较高的技术要求,包括电弧的稳定性和操作技巧。
-支持手动和自动焊接。
2.氩弧焊接氩弧焊接是一种利用氩气作为保护气体的焊接方法,通过电弧加热金属并使用氩气保护焊缝。
氩弧焊接具有以下特点:-焊接质量高,焊缝表面光滑,焊接强度高。
-可以焊接多种金属,包括铝、镁和铜等。
-需要氩气作为保护气体,增加了成本。
-需要较高的技术要求,包括操作技巧和气体控制。
3.熔覆焊接熔覆焊接是一种将一种金属层涂在另一种金属表面上的焊接方法,以增加其表面硬度和耐腐蚀性。
熔覆焊接具有以下特点:-可以使用不同的焊材覆盖金属表面,以满足不同的需求。
-可以增加被焊接金属的硬度和耐腐蚀性。
-需要专门的设备和工艺进行熔覆焊接。
-适用于修复和保护金属工件的表面。
4.焊锡焊接焊锡焊接是一种使用焊锡作为焊剂的焊接方法,常用于电子设备制造和电气连接。
焊锡焊接具有以下特点:-焊接温度较低,可以避免金属熔化。
-可以焊接小尺寸的金属部件。
-需要较高的技术要求,包括焊接温度和时间的控制。
-可以使用手工焊接和自动焊接设备。
5.接触焊接接触焊接是一种利用电流通过金属接触点进行焊接的方法,通常用于连接薄金属材料。
-焊接速度快,可以在短时间内完成焊接任务。
-可以焊接薄金属材料,如铝箔和电子元件等。
-需要较高的电流和电压。
-可以使用手工焊接和自动焊接设备。
综上所述,这些是几种常见的焊接方法及其特点。
根据具体的需求和材料,选择适合的焊接方法可以提高焊接质量和效率。
常用金属材料的焊接性焊接是指将两个或多个金属材料通过加热或施加压力等方式连接在一起的工艺。
常用的金属材料包括钢铁、铝、铜、镍、钛等。
这些金属材料在焊接时拥有不同的特性和焊接性能。
下面将针对常见金属材料的焊接性进行详细介绍。
1.钢铁焊接性钢铁是最常见的金属材料之一,其焊接性能较好。
在钢铁焊接中常用的方法包括电弧焊、气焊、激光焊等。
其中,电弧焊是最常见的焊接方法,在焊接钢铁时通常使用熔化电极和熔化极性相同的焊条。
钢铁的焊接性能取决于其成分、组织结构以及焊接方法等因素。
2.铝焊接性铝是一种常见的轻金属,其焊接性能较差。
由于铝的氧化膜容易形成,这会降低焊接接头的强度和质量。
为了提高铝的焊接性能,可以采用预处理、焊接保护气体等方法。
常见的铝焊接方法有气焊、TIG焊等。
在气焊中需要使用钡剂等预处理剂来清除氧化膜,而TIG焊则可以通过惰性气体的保护来减少氧化膜的生成。
3.铜焊接性铜是一种良好的导电材料,其焊接性能较好。
常见的铜焊接方法有气焊、TIG焊、电弧焊等。
在铜焊接中,氧化膜的清除很重要,可以使用钝化剂等预处理剂来清除氧化膜。
TIG焊和电弧焊是常用的铜焊接方法,可以通过选择合适的焊接材料和控制焊接参数来获得理想的焊接接头。
4.镍焊接性镍是一种耐腐蚀性较好的金属材料,其焊接性能较好。
常见的镍焊接方法有电弧焊、TIG焊等。
镍焊接时,需要注意选择合适的焊接材料和适当的焊接参数来获得理想的焊接接头。
在镍焊接中,尤其需要注意焊接电缆和接地端之间的电气连接,以避免电弧腐蚀。
5.钛焊接性钛是一种重要的结构材料,其焊接性能较好。
常用的钛焊接方法有电弧焊、激光焊等。
在钛焊接中,需要注意选择合适的焊接材料和适当的焊接参数,以避免产生气泡和裂纹等缺陷。
此外,钛焊接还需要进行保护气体的控制,以避免氧化等不良影响。
综上所述,常用金属材料的焊接性能因成分、组织结构以及焊接方法等因素的不同而有所差异。
了解和掌握这些材料的焊接性能对于实际应用和工程设计具有重要意义,能够确保焊接接头的质量和可靠性。
常用金属材料的焊接工艺引言焊接是一种将金属材料连接在一起的常用方法。
在工程领域中,焊接广泛应用于建筑、制造、航空、汽车等行业。
对于不同的金属材料,焊接工艺也有所不同。
本文将介绍常用金属材料的焊接工艺,包括钢、铝和铜的焊接工艺。
一、钢的焊接工艺钢的焊接工艺主要包括电弧焊、气体保护焊和电阻焊。
1. 电弧焊电弧焊是一种常用的钢焊接工艺。
常见的电弧焊方法包括手工电弧焊和埋弧焊。
•手工电弧焊:手工电弧焊是最基本的焊接方法之一。
其原理是通过电流引起两个金属工件之间的弧光放电,产生高温从而使两个金属工件熔化并连接在一起。
手工电弧焊的优点是操作简单、易控制,适用于焊接各类钢材。
•埋弧焊:埋弧焊是一种自动化的焊接方法。
其原理是通过电极焊丝和工件之间自动产生和保持电弧,从而将焊丝熔化形成焊缝。
埋弧焊的优点是焊接速度快、焊缝质量好,适用于焊接大型结构。
2. 气体保护焊气体保护焊是一种在焊接过程中利用惰性气体保护焊接区域免受大气影响的焊接方法。
常见的气体保护焊方法包括氩弧焊和二氧化碳保护焊。
•氩弧焊:氩弧焊是一种使用纯氩气或氩气和氦气的混合气体作为保护气体的焊接方法。
氩弧焊的优点是焊缝干净、焊缝质量高,适用于焊接不锈钢等。
•二氧化碳保护焊:二氧化碳保护焊是一种使用二氧化碳作为保护气体的焊接方法。
二氧化碳保护焊的优点是焊接速度快、成本低,适用于焊接碳钢等。
3. 电阻焊电阻焊是一种利用电流通过电阻产生的热量进行焊接的方法。
电阻焊适用于焊接薄板、管道等金属材料。
常见的电阻焊方法包括点焊和缝焊。
•点焊:点焊是一种通过在工件接触区域施加高电流短时间加热的方法。
点焊的优点是焊接速度快、焊缝质量好,适用于焊接金属片。
•缝焊:缝焊是一种通过在工件接触区域施加高电流长时间加热的方法。
缝焊的优点是焊接强度高、耐腐蚀性好,适用于焊接管道等。
二、铝的焊接工艺铝的焊接工艺主要包括惰性气体焊和摩擦焊。
1. 惰性气体焊惰性气体焊是一种在焊接过程中利用惰性气体保护焊接区域免受氧化影响的焊接方法。
金属材料焊接知识一、焊接的特点焊接是通过加热或加压,或者两者并用,并且用或不用填充材料,使焊件达到原子结合的一种加工方法。
所以焊接是一种把分离的金属件连接成为不可拆卸的一个整体的加工方法。
在焊接被广泛应用以前,不同拆卸连接的主要方法是铆接。
与铆接相比,焊接具有节省金属、生产率高、致密性好、操作条件好、易于实现机械化和自动化。
所以现在焊接已基本取代连接铆接。
焊接的另一个特点是可以化大为小、以小拼大。
在制造大型机件与结构件或复杂的机器零件时,可以化大为小、化复杂为简单的方法准备坏料,用铸-焊、锻-焊联合工艺,用小型铸、锻设备生产大或复杂零件。
例如我国生产的大型水压机立柱或发电机主轴等。
第三,焊接可制造双金属结构。
用焊接方法可制不同材料的复杂层容器,对焊不同材料的零件或工具(如较粗的钻头,就是用45号作钻柄,高速钢作钻头的切削部分)等。
所以,焊接是进行金属构件、机器零件等的重要加工方法,如桥梁、建筑构件、船体、锅炉、车箱、容器等。
此外,焊接还是修补铸、锻件的缺陷和磨损零件的重要方法。
二、焊接方法的分类焊接的方法很多,按焊接过程的特点不同可分为:熔焊、压焊和钎焊三大类。
1.熔焊焊接过程中,将焊件接头加热至熔化状态,不加压力完成焊接的方法称为熔焊。
根据热源不同,这类焊接方法有气焊、熔焊、电渣焊、气体保护焊、电子束焊等多种。
2.压焊焊接过程中,必须对焊件施加压力(加热或不加热),以完成焊接的方法称为压焊,属于这类焊接的方法有电阻焊(点焊、缝焊、对焊等)、摩擦焊、超声波焊、冷压焊等多种。
3.钎焊钎焊是采用比母材熔点低的金属材料作钎料,将焊件和钎料加热到高于钎料熔点,低于母材熔点的温度,利用液态钎料润湿母材,填充接头间隙并与母材相互扩散实现连接焊件的方法,属于这类焊接方法的有硬钎焊与软钎焊等。
三、焊接接头的组成用焊接方法连接的接头称为焊接接头(简称接头),焊接接头包括焊缝、熔合区和热影响区三部分。
被焊的工件材料称为母材(或称基本金属)。
金属材料与焊接基础知识1.金属材料的分类金属材料主要分为有色金属和非色金属两大类。
有色金属包括铜、铝、铅、锡等,非色金属包括铁、钢等。
根据金属的组织结构和外形特点,金属材料可以进一步分为结晶态金属、非晶态金属和准晶态金属。
2.金属材料的特点金属材料具有良好的导电、导热性能,以及较高的强度和塑性。
金属材料也具有较高的熔点和热膨胀系数。
此外,金属材料容易与氧气反应生成氧化物,容易发生腐蚀。
3.焊接的基本概念焊接是利用高温将金属材料熔接在一起的过程。
焊接可以达到使焊缝与母材具有相同或相似的物理和化学性能的目的。
焊接方法可以分为气焊、电弧焊、电阻焊和激光焊等几种。
4.焊接的分类焊接可以分为气焊、弧焊、电阻焊、激光焊和电子束焊等几种。
气焊主要是通过燃烧混合气体来提供热源进行焊接;弧焊主要是使用电弧作为热源进行焊接;电阻焊主要是利用电流通过基材和焊件之间产生的电阻热进行焊接;激光焊则是利用激光束进行焊接;电子束焊则是利用电子束的能量进行焊接。
5.焊接缺陷与检测焊接中常见的缺陷主要有焊缝夹杂物、焊缝裂纹、焊接变形等。
为了保证焊接质量,需要进行焊缺陷的检测。
常见的焊缺陷检测方法有目视检测、超声波检测、射线检测等。
6.焊接安全注意事项在进行焊接操作时应注意个人安全。
首先,应佩戴焊接面罩和防护手套,以保护眼睛和皮肤免受强光和热溅的伤害。
其次,操作时应注意周围环境的通风和防护,避免中毒和火灾等危险。
最后,需要注意焊接设备和材料的正确使用和保养,以确保操作安全。
7.焊接中常用的金属材料焊接中常用的金属材料主要包括钢、铝、铜等。
钢是最常用的金属材料之一,具有较高的强度和耐用性。
铝和铜具有良好的导电和导热性能,适用于一些特殊焊接需求。
8.焊接材料与焊接参数在进行焊接操作时,需要选择合适的焊接材料和调整相应的焊接参数。
焊接材料包括焊芯和焊条。
焊接参数主要包括焊接电流、焊接电压、焊接速度等。
选择合适的焊接材料和调整适当的焊接参数对焊接质量至关重要。
常用金属材料焊接金属材料焊接是一种常见的金属连接技术,可以将不同金属材料通过焊接工艺连接在一起,形成牢固的连接。
常用金属材料焊接包括钢铁、铝、铜等材料。
本文将分别介绍这些常用金属材料的焊接方法和注意事项。
1.钢铁焊接钢铁是一种常见的金属材料,广泛应用于建筑、机械、汽车等行业。
钢铁的焊接方法包括电弧焊、气焊、埋弧焊等。
电弧焊是一种常用的钢铁焊接方法,通过电流引发的电弧将焊接材料熔化并连接在一起。
电弧焊有手工电弧焊和自动化电弧焊两种形式。
气焊是一种利用氧-乙炔火焰将焊接材料加热至熔化并连接在一起的焊接方法。
气焊适用于焊接较大的钢结构和管道。
埋弧焊是一种自动化焊接方法,通过将焊丝和电弧埋入焊缝内进行焊接。
埋弧焊适用于大规模的钢结构和管道焊接。
2.铝焊接铝是一种轻质金属,具有良好的导热性、导电性和耐腐蚀性。
铝焊接方法包括气焊、TIG焊和MIG焊等。
气焊是一种适用于铝的焊接方法,通过氧-乙炔火焰将焊接材料加热至熔化并连接在一起。
气焊适用于钢铝混合结构的焊接。
TIG焊(氩弧焊)是一种适用于铝的高质量焊接方法,通过在焊接区域产生一个惰性气体保护罩,利用电弧将焊接材料熔化并连接在一起。
MIG焊是一种适用于铝的快速焊接方法,通过在焊接区域提供连续的金属焊丝,并通过惰性气体保护罩保护焊接区域。
3.铜焊接铜是一种良好的导电材料,广泛用于电气设备、管道等领域。
铜焊接方法主要包括气焊、TIG焊和电弧焊。
气焊适用于铜的焊接,通过氧-乙炔火焰将焊接材料加热至熔化并连接在一起。
TIG焊适用于高质量的铜焊接,通过在焊接区域产生一个惰性气体保护罩,利用电弧将焊接材料熔化并连接在一起。
电弧焊是一种适用于铜的常用焊接方法,通过电弧将焊接材料熔化并连接在一起。
总结:常用金属材料焊接方法有很多种,需要根据具体的材料和应用场景选择合适的焊接方法。
在进行金属材料焊接时,需要注意的事项包括焊接工艺参数的选择、保护措施的采取、焊接接头的准备和后续处理等。
常用金属材料的焊接资料焊接是一种常用的金属加工工艺,广泛应用于各个行业中。
下面将介绍一些常用的金属材料的焊接资料。
1.碳钢焊接:碳钢是最常见的金属材料之一,其焊接方法有多种,包括电弧焊、气焊、电渣焊、激光焊等。
焊接碳钢时需要注意的是,焊缝区域应该保持干燥,避免氧化和水分的存在。
2.不锈钢焊接:不锈钢具有抗腐蚀性能,其焊接过程中需要注重保护焊缝的气氛。
常用的不锈钢焊接方法有TIG焊、MIG焊、电弧焊等。
焊接时需要注意选择正确的焊丝和焊接电流,并进行合适的气氛保护,以避免氧化和腐蚀的发生。
3.铝合金焊接:铝合金是一种轻质且强度高的金属材料,常用于航空、汽车等领域。
铝合金焊接方法有TIG焊、MIG焊、激光焊等。
焊接时需要注意铝合金的热导性较高,容易热变形和氧化,因此需要使用合适的固定与保护设备,同时焊接速度要快,以降低热影响区域。
4.钛合金焊接:钛合金具有高强度和轻质的特点,在航空、航天等领域有广泛应用。
钛合金焊接方法有TIG焊、电弧焊等。
焊接钛合金时需要注意其化学活性高,易与氧、氮等元素发生反应,因此焊接时需要严格控制气氛,并避免焊缝处受到氧化。
5.镍合金焊接:镍合金具有良好的抗腐蚀性能和高温强度,广泛应用于化工、航空等领域。
镍合金的焊接方法有TIG焊、电弧焊、MIG焊等。
在焊接镍合金时,需要注意用合适的焊接材料和焊接参数,避免冷裂纹和热裂纹的产生。
总之,不同金属材料在焊接时需要采用不同的焊接方法和参数,并注意控制焊接过程中的温度、气氛和湿度等因素,以保证焊接质量和性能。
此外,适当的焊接前和焊接后的热处理也是很关键的,可以提高焊接接头的强度和稳定性。
常用金属材料的焊接焊接是将两个或多个金属材料通过加热或压力等方式连接在一起的工艺。
常用金属材料包括钢铁、铝、铜、镍、钛等。
本文将对这些常用金属材料的焊接进行介绍。
1.钢铁焊接钢铁是最常见的金属材料,广泛用于制造工业产品和建筑结构。
常见的钢铁焊接方法包括电弧焊、气体保护焊和电阻焊。
电弧焊是使用电弧将钢铁材料熔化,然后冷却形成焊接接头。
气体保护焊使用保护气体包围焊接区域,防止氧气与熔融金属发生反应,常用的保护气体有氩气和二氧化碳。
电阻焊是利用将钢铁材料加热至熔化点的电流通过两个金属接触点,使其熔化并形成焊接接头。
2.铝焊接铝是一种轻质金属,广泛用于汽车、航空航天和电子行业等领域。
铝的焊接方法有气体保护焊、电弧焊和激光焊。
气体保护焊是最常用的铝焊接方法,常用的保护气体包括纯氩气和氦气。
铝的熔点较低,热传导性好,容易氧化,需要采用专门的焊接方法和设备。
3.铜焊接铜是一种优良的导电和导热金属,广泛用于电气、电子和管道等领域。
铜的焊接方法包括气体保护焊、电弧焊和电阻焊。
气体保护焊是最常用的铜焊接方法,常用的保护气体包括氩气和氮气。
铜的导电性好,热传导性也好,焊接时需要注意控制热量和保护气氛。
4.镍焊接镍是一种高温合金材料,广泛用于化工、航空航天和核能等领域。
镍的焊接方法包括气体保护焊和电弧焊。
镍材料在高温下容易产生氧化,需要使用适当的保护气氛进行焊接。
5.钛焊接钛是一种轻质高强度金属,广泛用于航空航天和医疗器械等高端领域。
钛的焊接方法包括电弧焊、激光焊和电子束焊。
钛在高温下容易与氧气发生反应,产生氧化物,导致焊接接头质量下降,因此焊接时需要采用保护气氛或真空环境。
总结:常用金属材料的焊接方法各有特点,适用于不同的金属和应用领域。
在进行焊接时,需要根据金属材料的性质、应用要求和焊接设备的可用性选择合适的焊接方法,并严格控制焊接过程中的工艺参数,以确保焊接接头的质量和性能。
除了以上介绍的常用焊接方法,还有一些其他的特殊焊接方法和技术,如激光深层焊接、摩擦焊接等,可以在特定的应用领域中发挥重要作用。
金属材料焊接性知识要点1. 金属焊接性:指同质材料或异质材料在制造工艺条件下,能够形成完整接头并满足预期使用要求的能力;包括工艺焊接性和使用焊接性;2. 工艺焊接性:金属或材料在一定的焊接工艺条件下,能否获得优质致密无缺陷和具有一定使用性能的焊接接头能力;3. 使用焊接性:指焊接接头和整体焊接结构满足各种性能的程度,包括常规的力学性能;4. 影响金属焊接性的因素:1、材料本因素2、设计因素3、工艺因素4、服役环境5. 评定焊接性的原则:1评定焊接接头中产生工艺缺陷的倾向,为制定合理的焊接工艺提供依据;2评定焊接接头能否满足结构使用性能的要求;6. 实验方法应满足的原则:1可比性 2针对性 3再现性 4经济性7. 常用焊接性试验方法:A:斜Y坡口焊接裂纹试验法: 此法主要用于评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性; B:插销试验 C:压板对接焊接裂纹试验法 D:可调拘束裂纹试验法一问答:1、“小铁研”实验的目的是什么,适用于什么场合了解其主要实验步骤,分析影响实验结果稳定性的因素有哪些答:1、目的是用于评定用于评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性;评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性时,影响结果稳定因素焊接接头拘束度预热温度角变形和未焊透;一般认为低合金钢“小铁研实验”表面裂纹率小于20%时;用于一般焊接结构是安全的2、影响工艺焊接性的主要因素有哪些答:影响因素:1材料因素包括母材本身和使用的焊接材料,如焊条电弧焊的焊条、埋弧焊时的焊丝和焊剂、气体保护焊时的焊丝和保护气体等;2设计因素焊接接头的结构设计会影响应力状态,从而对焊接性产生影响;3工艺因素对于同一种母材,采用不同的焊接方法和工艺措施,所表现出来的焊接性有很大的差异;4服役环境焊接结构的服役环境多种多样,如工作温度高低、工作介质种类、载荷性质等都属于使用条件;3、举例说明有时工艺焊接性好的金属材料使用焊接性不一定好;答:金属材料使用焊接性能是指焊接接头或整体焊接结构满足技术条件所规定的各种使用性能主要包括常规的力学性能或特定工作条件下的使用性能,如低温韧性、断裂韧性、高温蠕变强度、持久强度、疲劳性能以及耐蚀性、耐磨性等;而工艺焊接性是指金属或材料在一定的焊接工艺条件下,能否获得优质致密、无缺陷和具有一定使用性能的焊接接头的能力;比如低碳钢焊接性好,但其强度、硬度却没有高碳钢好;4、为什么可以用热影响区最高硬度来评价钢铁材料的焊接冷裂纹敏感性焊接工艺条件对热影响区最高硬度有什么影响答:因为1.冷裂纹主要产生在热影响区;2其直接评定的是冷裂纹产生三要素中最重要的,接头淬硬组织,所以可以近似用来评价冷裂纹;一般来说,焊接接头包括热影响区,它的硬度值相对于母材硬度值越高,证明焊接接头的韧性就越差,综合机械性能也就越差,容易出现脆化,断裂等危害;合理的焊接工艺条件就是减少这种硬度值的差异,保证焊接接头的使用性能;碳当量增大时,热影响区淬硬倾向随之提高,但并非始终保持线性关系;三合金结构钢的焊接低碳调质钢的焊接性分析低碳调质钢主要是作为高强度的焊接结构用钢,因此含碳量限制的较低,在合金成分的设计上考虑了焊接性的要求;低碳调质钢碳的质量分数不超过%,焊接性能远优于中碳调质钢;由于这类钢的焊接热影响区是低碳马氏体,马氏体转变温度Ms较高,所形成的马氏体具有“自回火”特性,使得焊接冷裂纹倾向比中碳调质钢小;低碳调质钢热影响区获得细小的低碳马氏体ML组织或下贝氏体B组织时,韧性良好,而韧性最佳的组织为ML与低温转变贝氏体组织B的混合组织下贝氏体的板条间结晶位相差较大,有效晶粒直径取决于板条宽度,比较微细,韧性良好,当ML与BL混合生成时,原奥氏体晶粒被先析出的B有效地分割,促使ML有更多的形核位置,且限制了ML的生长,因此ML+B混合组织有效晶粒最为细小; Ni是发展低温钢的一个重要元素;为了提高钢的低温性能,可加入Ni元素,形成含Ni的铁素体低温钢,如钢等在提高Ni的同时,应降低含碳量和严格限制S、P的含量及N、H、O的含量,防止产生时效脆性和回火脆性等;这类钢的热处理条件为正火、正火+回火和淬火+回火等;1在低温钢中由于含碳量和杂质S、P的含量控制的都很严格,所以液化裂纹在这类钢中不是很明显;2另一个问题是回火脆性,要控制焊后回火温度和冷却速度;低温钢焊接的工艺特点:除要防止出现裂纹外,关键是要保证焊缝和热影响区的低温韧性,这是制定低温钢焊接工艺的一个根本出发点;9Ni钢具有优良的低温韧性但用与9Ni钢相似的铁素体焊材时所得焊缝的韧性很差;这除了与铸态焊缝组织有关外,主要与焊缝中的含氧量有很大的关系;与9Ni钢同质的11Ni铁素体焊材,只有在钨极氩弧焊时才能获得良好的低温韧性;因为此时能使焊缝金属中氧的质量分数降低到与母材相同的%以下;二中碳调质钢的焊接性分析一焊缝中的热裂纹中碳调质钢含碳量及合金元素含量都较高,因此液-固相区间大,偏析也更严重,具有较大的热裂纹倾向;二冷裂纹中碳调质钢由于含碳量高,加入的合金元素多,淬硬倾向明显;由于M s点低,在低温下形成的马氏体一般难以产生自回火效应,冷裂倾向严重;三再热裂纹四热影响区的性能变化1、过热区的脆化1中碳调质钢由于含碳量高,加入的合金元素多,有相当大的淬硬性,因而在焊接过热区内容易产生硬脆的高碳马氏体,冷却速度越大,生成的高碳马氏体越多,脆化倾向越严重; 2即使大线能量也难以避免高碳M出现,反而会使M更粗大,更脆; 3一般采用小线能量,同时预热、缓冷和后热措施改善过热区性能;2、热影响区软化焊后不能进行调质处理时,需要考虑热影响区软化问题;调质钢的强度级别越高,软化问题越严重;软化程度和软化区的宽度与焊接线能量、焊接方法有很大关系;热源越集中的焊接方法,对减小软化越有利;三、中碳调质钢的焊接工艺特点1中碳调质钢一般在退火状态下焊接,焊后通过整体调质处理才能获得性能满足要求的均匀焊接接头; 2 时必须在调质后进行焊接时,热影响区性能恶化往往难以解决; 3 焊前所处的状态决定了焊接时出现问题的性质和采取的工艺措施;一:分析Q345钢的焊接性特点,给出相应的焊接材料及焊接工艺要求;答:Q345钢属于热轧钢,其碳当量小于%,焊接性良好,一般不需要预热和严格控制焊接热输入,从脆硬倾向上,Q345钢连续冷却时,珠光体转变右移,使快冷下的铁素体析出,剩下富碳奥氏体来不及转变为珠光体,而转变为含碳量高的贝氏体与马氏体具有淬硬倾向,Q345刚含碳量低含锰高,具有良好的抗热裂性能,在Q345刚中加入V、Nb达到沉淀强化作用可以消除焊接接头中的应力裂纹;被加热到1200℃以上的热影响区过热区可能产生粗晶脆化,韧性明显降低,Q345钢经过600℃×1h退火处理,韧性大幅提高,热应变脆化倾向明显减小;;焊接材料:对焊条电弧焊焊条的选择:E5系列;埋弧焊:焊剂SJ501,焊丝H08A/H08MnA.电渣焊:焊剂HJ431、HJ360焊丝H08MnMoA;CO2气体保护焊:H08系列和YJ5系列;预热温度:100~150℃;焊后热处理:电弧焊一般不进行或600~650℃回火;电渣焊900~930℃正火,600~650℃回火二:Q345与Q390的焊接性有何差异Q345的焊接工艺是否适用于Q390的焊接,为什么答:Q345与Q390都属于热轧钢,化学成分基本相同,只是Q390的Mn含量高于Q345,从而使Q390的碳当量大于Q345,所以Q390的淬硬性和冷裂纹倾向大于Q345,其余的焊接性基本相同;Q345的焊接工艺不一定适用于Q390的焊接,因为Q390的碳当量较大,一级Q345的热输入较宽,有可能使Q390的热输入过大会引起接头区过热的加剧或热输入过小使冷裂纹倾向增大,过热区的脆化也变的严重;三:低合金高强钢焊接时选择焊接材料的原则是什么焊后热处理对焊接材料有什么影响答:选择原则:考虑焊缝及热影响区组织状态对焊接接头强韧性的影响;由于一般不进行焊后热处理,要求焊缝金属在焊态下应接近母材的力学性能;中碳调质钢,根据焊缝受力条件,性能要求及焊后热处理情况进行选择焊接材料,对于焊后需要进行处理的构件,焊缝金属的化学成分应与基体金属相近;5.分析低碳调质钢焊接时可能出现的问题简述低碳调质钢的焊接工艺要点,典型的低碳调质钢如14MnMoNiB、HQ70、HQ80的焊接热输入应控制在什么范围在什么情况下采用预热措施,为什么有最低预热温度要求,如何确定最高预热温度;答:焊接时易发生脆化,焊接时由于热循环作用使热影响区强度和韧性下降;焊接工艺特点:焊后一般不需热处理,采用多道多层工艺,采用窄焊道而不用横向摆动的运条技术;;典型的低碳调质钢的焊接热输入应控制在Wc%时不应提高冷速,Wc%时可提高冷速减小热输入焊接热输入应控制在小于481KJ/cm当焊接热输入提高到最大允许值裂纹还不能避免时,就必须采用预热措施,当预热温度过高时不仅对防止冷裂纹没有必要,反而会使800~500℃的冷却速度低于出现脆性混合组织的临界冷却速度,使热影响区韧性下降,所以需要避免不必要的提高预热温度,包括屋间温度,因此有最低预热温度;通过实验后确定钢材的焊接热输入的最大允许值,然后根据最大热输入时冷裂纹倾向再来考虑,是否需要采取预热和预热温度大小,包括最高预热温度;8同一牌号的中碳调质钢分别在调质状态和退火状态进行焊接时焊接工艺有什么差别为什么中碳调质钢一般不在退火的状态下进行焊接在调质状态下焊接:若为消除热影响区的淬硬区的淬硬组织和防止延迟裂纹产生,必须适当采用预热,层间温度控制,中间热处理,并焊后及时进行回火处理,若为减少热影响的软化,应采用热量集中,能量密度越大的方法越有利,而且焊接热输入越小越好;在退火状态下焊接:常用焊接方法均可,选择材料时,焊缝金属的调质处理规范应与母材的一致,主要合金也要与母材一致,在焊后调质的情况下,可采用很高的预热温度和层间温度以保证调质前不出现裂纹; 因为中碳调质钢淬透性、淬硬性大,在退火状态下焊接处理不当易产生延迟裂纹,一般要进行复杂的焊接工艺,采取预热、后热、回火及焊后热处理等辅助工艺才能保证接头使用性能;9. 低温钢用于-40度和常温下使用时在焊接工艺和材料上选择是否有所差别为什么答:低温钢为了保证焊接接头的低温脆化及热裂纹产生要求材料含杂质元素少,选择合适的焊材控制焊缝成分和组织形成细小的针状铁素体和少量合金碳化物,可保证低温下有一定的AK要求; 对其低温下的焊接工艺选择采用SMAW时用小的线能量焊接防止热影响区过热,产生WF 和粗大M,采用快速多道焊减少焊道过热;采用SAW时,可用振动电弧焊法防止生成柱状晶;10、分析热轧钢和正火钢的强化方式和主强化元素又什么不同,二者的焊接性有何差别在制定焊接工艺时要注意什么问题答:热轧钢的强化方式有:1固溶强化,主要强化元素:Mn,Si;2细晶强化,主要强化元素:Nb,V;3沉淀强化,主要强化元素:Nb,V.;正火钢的强化方式焊接性:热轧钢含有少量的合金元素,碳当量较低冷裂纹倾向不大,正火钢含有合金元素较多,淬硬性有所增加,碳当量低冷裂纹倾向不大;热轧钢被加热到1200℃以上的热影响区可能产生粗晶脆化,韧性明显降低,而是、正火钢在该条件下粗晶区的V析出相基本固溶,抑制A长大及组织细化作用被削弱,粗晶区易出现粗大晶粒及上贝氏体、M-A等导致韧性下降和时效敏感性增大;制定焊接工艺时根据材料的结构、板厚、使用性能要求及生产条件选择焊接方法;11、低碳调质钢和中碳调质钢都属于调质钢,他们的焊接热影响区脆化机制是否相同为什么低碳钢在调质状态下焊接可以保证焊接质量,而中碳调质钢一般要求焊后热处理答:低碳调质钢:在循环作用下,t8/5继续增加时,低碳钢调质钢发生脆化,原因是奥氏体粗化和上贝氏体与M-A组元的形成;中碳调质钢:由于含碳高合金元素也多,有相当大淬硬倾向,马氏体转变温度低,无自回火过程,因而在焊接热影响区易产生大量M组织大致脆化;低碳调质钢一般才用中、低热量对母材的作用而中碳钢打热量输入焊接在焊后进行及时的热处理能获得最佳性能焊接接头.12、珠光体耐热钢的焊接性特点与低碳调质钢有什么不同珠光体耐热钢选用焊接材料的原则与强度用钢有什么不同why答:珠光体耐热钢和低碳调质钢都存在冷裂纹,热影响区硬化脆化以及热处理或高温长期使用中的再热裂纹,但是低碳调质钢中对于高镍低锰类型的刚有一定的热裂纹倾向,而珠光体耐热钢当材料选择不当时才可能常产生热裂纹;珠光体耐热钢在选择材料上不仅有一定的强度还要考虑接头在高温下使用的原则,特别还要注意焊接材料的干燥性,因为珠光体耐热钢是在高温下使用有一定的强度要求;第四章不锈钢及耐热钢的焊接不锈钢:指在大气环境下及有侵蚀性化学介质中使用的钢;耐热钢:包括抗氧化钢和热强钢;抗氧化钢指在高温下具有抗氧化性能的钢,对高温强度要求不高; 热强钢:指在高温下即具有抗氧化能力,又要具有高温强度;热强性:指在高温下长时工作时对断裂的抗力持久强度,或在高温下长时工作时抗塑性变形的能力蠕变抗力;※部分概念:1.铬当量:在不锈钢成分与组织间关系的图中各形成铁素体的元素,按其作用的程度折算成Cr元素以Cr的作用系数为1的总和,即称为Cr当量;2.镍当量:不锈钢成分与组织间关系的图中各形成奥氏体的元素按其作用的程度,折算成Ni元素以Ni的作用系数为1的总和,即称为Ni当量;3. 4750 C脆化: 高铬铁素体不锈钢在400~540度范围内长期加热会出现这种脆性,由于其最敏感的温度在475度附近,故称475度脆性,此时钢的强度、硬度增加,而塑性、韧性明显下降;4.凝固模式:凝固模式首先指以何种初生相γ或δ开始结晶进行凝固过程,其次是指以何种相完成凝固过程;四种凝固模式:以δ相完成凝固过程,凝固模式以F表示;初生相为δ,然后依次发生包晶反应和共晶反应,凝固模式以FA表示;初生相为γ,然后依次发生包晶反应和共晶反应,凝固模式以AF表示;初生相为γ,直到凝固结束不再发生变化,用A表示凝固模式;5.应力腐蚀裂纹:在应力和腐蚀介质共同作用下,在低于材料屈服点和微弱的腐蚀介质中发生的开裂形式6. σ相脆化: σ相是一种脆硬而无磁性的金属间化合物相,具有变成分和复杂的晶体结构;25-20钢焊缝在800~875℃加热时,γ向σ转变非常激烈;在稳定的奥氏体钢焊缝中,可提高奥氏体化元素镍和氮,克服σ脆化;7、晶间腐蚀:在晶粒边界附近发生的有选择性的腐蚀现象;8、贫铬机理:过饱和固溶的碳向晶粒边界扩散;与边界附近的铬形成铬的碳化物CR23C16或Fe、Cr C6并在晶界析出,由于碳比铬扩散的快的多,铬来不及从晶内补充到晶界附近,以至于邻近晶界的晶粒周边层Cr的质量分数低于12%,即所谓“贫铬”现象奥氏体钢产生热裂纹的原因1、奥氏体钢的导热系数小和线胀系数大,在焊接局部加热和冷却条件下,接头在冷却过程中可形成较大的拉应力;3、奥氏体钢及焊缝的合金组成复杂,不仅S、P、Sn、Sb之类会形成易溶液膜,一些合金元素因溶解度有限如Si、Nb,也可能形成易溶共晶;选择焊接材料注意问题:1、应坚持“适用性原则”;2、根据所选各焊接材料的具体成分来确定是否适用;3、考虑具体应用的焊接方法和工艺参数可能造成的熔合比大小;4、根据技术条件规定的全面焊接性要求来确定合金化程度5、不仅要重视焊缝金属合金系统,而且要注意具体合金成分在该合金系统中的作用;不仅考虑使用性能的要求,要考虑防止焊接缺陷的工艺焊接性要求;焊接工艺要点:134页1、合理选择焊接方法2、控制焊接参数3、接头设计合理性应给予足够的重视4、尽可能控制焊接工艺的稳定以保证焊缝金属成分稳定5、控制焊缝成形6、防止工件表面污染马氏体不锈钢焊前热处理和焊后热处理的特点:答:采用同质焊缝焊接马氏体不锈钢时,为防止接头形成冷裂纹,易采取预热措施;预热温度的选择与材料的厚度,填充金属的种类,焊接方法和接头的拘束度有关,其中与碳含量关系最大;马氏体不锈钢预热温度不宜过高,否者使奥氏体晶粒粗大,并且随冷却温度降低,还会形成粗大铁素体加晶界碳化物组织,使焊接接头塑性和强度均有所下降;焊后热处理的目的是降低焊缝和热影响区的硬度,改善其塑性和韧性,同时减少焊接残余应力; 焊后热处理必须严格限制焊件的温度,焊件焊后不可随意从焊接温度直接升温进行回火热处理;3. 18-8型不锈钢焊接接头区域在那些部位可能产生晶间腐蚀,是由于什么原因造成如何防止答:18-8型焊接接头有三个部位能出现腐蚀现象:{1}焊缝区晶间腐蚀产生原因根据贫铬理论,碳与晶界附近的Cr形成Cr23C6,并在在晶界析出,导致γ晶粒外层的含Cr量降低,形成贫Cr层,使得电极电位下降,当在腐蚀介质作用下,贫Cr层成为阴极,遭受电化学腐蚀;{2}热影响区敏化区晶间腐蚀是由于敏化区在高温时易析出铬的碳化物,形成贫Cr层,造成晶间腐蚀;{3}融合区晶间腐蚀{刀状腐蚀};只发生在焊Nb或Ti的18-8型钢的融合区,其实质也是与M23C6沉淀而形成贫Cr有关,高温过热和中温敏化连过程依次作用是其产生的的必要条件; 防止方法:{1}控制焊缝金属化学成分,降低C%,加入稳定化元素Ti、Nb;{2}控制焊缝的组织形态,形成双向组织{γ+15%δ};{3}控制敏化温度范围的停留时间;{4}焊后热处理:固溶处理,稳定化处理,消除应力处理;5. 奥氏体钢焊接时为什么常用“超合金化”焊接材料答:为提高奥氏体钢的耐点蚀性能,采用较母材更高Cr、Mo含量的“超合金化”焊接材料;提高Ni含量,晶轴中Cr、Mo的负偏析显着减少,更有利于提高耐点蚀性能;6. 铁素体不锈钢焊接中容易出现什么问题焊条电弧焊和气体保护焊时如何选择焊接材料在焊接工艺上有什么特点答:易出现问题:{1}焊接接头的晶间腐蚀;{2}焊接接头的脆化①高温脆性②σ相脆化③475℃脆化; SMAW要求耐蚀性:选用同质的铁素体焊条和焊丝;要求抗氧化和要求提高焊缝塑性:选用A焊条和焊丝; CO2气保焊选用专用焊丝H08Cr20Ni15VNAl; 焊接工艺特点:{1}采用小的q/v,焊后快冷——控制晶粒长大;{2}采用预热措施,T℃<=300℃——接头保持一定ak;{3}焊后热处理,严格控制工艺——消除贫Cr区;{4}最大限度降低母材和焊缝杂质——防止475℃脆性产生;{5}根据使用性能要求不同,采用不同焊材和工艺方法;9. 双相不锈钢的成分和性能特点,与一般A不锈钢相比双相不锈钢的焊接性有何不同在焊接工艺上有什么特点答:双相不锈钢是在固溶体中F和A相各占一半,一般较少相的含量至少也要达到30%的不锈钢;这类钢综合了A不锈钢和F不锈钢的优点,具有良好的韧性、强度及优良的耐氧化物应力腐蚀性能; 与一般A不锈钢相比:{1}其凝固模式以F模式进行;{2}焊接接头具有优良的耐蚀性,耐氯化物SCC性能,耐晶间腐蚀性能,但抗H2S的SCC性能较差;{3}焊接接头的脆化是由于Cr的氮化物析出导致;{4}双相钢在一般情况下很少有冷裂纹,也不会产生热裂纹; 焊接工艺特点:{1}焊接材料应根据“适用性原则”,不同类型的双向钢所用焊材不能任意互换,可采取“适量”超合金化焊接材料;{2}控制焊接工艺参数,避免产生过热现象,可适当缓冷,以获得理想的δ/γ相比例;{3}A不锈钢的焊接注意点同样适合双相钢的焊接;10、不锈钢焊接时,为什么要控制焊缝中的含碳量如何控制焊缝中的含碳量答:焊缝中的含碳量易形成脆硬的淬火组织,降低焊缝的韧性,提高冷裂纹敏感性;碳容易和晶界附近的Cr结合形成Cr的碳化物Cr23C6,并在晶界析出,造成“贫Cr”现象,从而造成晶间腐蚀;选择含碳量低的焊条和母材,在焊条中加入Ti,Zr,Nb,V等强碳化物形成元素来降低和控制含氟中的含碳量;11、简述奥氏体不锈钢产生热裂纹的原因在母材和焊缝合金成分一定的条件下,焊接时应采取何种措施防止热裂纹答:产生原因:{1}奥氏体钢的热导率小,线膨胀系数大,在焊接局部加热和冷却条件下,接头在冷却过程中产生较大的拉应力;{2}奥氏体钢易于联生结晶形成方向性强的柱状晶的焊缝组织,有利于杂质偏析,而促使形成晶间液膜,显然易于联生结晶形成方向性强的柱状晶的焊缝组织,有利于杂质偏析,而促使形成晶间液膜,显然易于促使产生凝固裂纹;{3}奥氏体钢及焊缝的合金组成较复杂,不仅S、P、Sn、Sb之类杂质可形成易溶液膜,一些合金元素因溶解度有限{如Si、Nb},也易形成易溶共晶;防止方法:{1}严格控制有害杂质元素{S、P —可形成易溶液膜};{2}形成双向组织,以FA模式凝固,无热裂倾向;{3}适当调整合金成分:Ni<15%,适当提高铁素体化元素含量,使焊缝δ%提高,从而提高抗裂性;Ni>15%时,加入Mn、W、V、N和微量Zr、Ta、Re{<%}达到细化焊缝、净化晶界作用,以提高抗裂性;{4}选择合适的焊接工艺;12、何为“脆化现象”铁素体不锈钢焊接时有哪些脆化现象,各发生在什么温度区域如何避免答:“脆化现象”就是材料硬度高,但塑性和韧性差;现象:{1}高温脆性:在900~1000℃急冷至室温,焊接接HAZ的塑性和韧性下降;可重新加热到750~850℃,便可恢复其塑性;{2}σ相脆化:在570~820℃之间加热,可析出σ相;σ相析出与焊缝金属中的化学成分、组织、加热温度、保温时间以及预先冷变形有关;加入Mn使σ相所需Cr的含量降低,Ni能使形成σ相所需温度提高;{3}475℃脆化:在400~500℃长期加热后可出现475℃脆性适当降低含Cr量,有利于减轻脆化,若出现475℃脆化通过焊后热处理来消除;。
焊接主要知识点归纳总结一、焊接原理1、焊接原理概述焊接是一种通过加热金属使其融化,然后冷却后连接金属部件的加工方法。
焊接是金属材料连接的重要方法之一,通常使用高温热源(如火焰、电弧、激光等)来加热金属,使其达到融化温度,然后通过化学或物理作用使两种或两种以上金属材料连接在一起。
2、焊接原理的基本要点在进行焊接时,需要考虑以下几个方面的问题:(1)金属材料的选择:不同材质的金属在焊接时需要选择不同的焊接方法和焊接材料。
(2)热源的选择:常见的热源有电弧焊、气焊、激光焊等,选择适合的热源可以确保焊接结果的质量。
(3)焊接材料的选择:焊接材料包括焊条、焊丝、焊粉等,不同焊接材料具有不同的特性和适用范围。
(4)焊接环境的控制:焊接时需要充分考虑焊接环境的温度、湿度、通风等因素,以确保焊接质量。
二、焊接种类1、常见的焊接种类(1)电弧焊接:是使用电弧作为能量源的一种焊接方法,主要有手工电弧焊、自动埋弧焊、气体保护电弧焊等。
(2)气焊:是使用氧、乙炔等气体燃料的一种常见的焊接方法,适合于外场作业。
(3)激光焊:是使用激光束作为能量源的一种现代焊接方法,具有高效、精确、环保等优点。
2、不同焊接方法的适用范围和特点(1)手工电弧焊适用于对焊接技术要求不高的小型结构件。
(2)自动埋弧焊适用于对焊接速度和焊接质量要求较高的情况。
(3)气体保护电弧焊适用于焊接对焊接环境要求较高的情况。
(4)激光焊适用于对焊接精度和焊接速度要求较高的情况。
三、焊接设备1、焊接设备的分类和作用(1)焊接机:主要用于产生电弧焊接所需的电能和电流。
(2)气焊设备:主要由氧气、乙炔等气体燃料和气管、焊枪等组成,用于产生高温火焰进行焊接。
(3)激光焊设备:主要由激光发生器、光束传输系统、焊接头等组成,用于产生激光束进行焊接。
2、焊接设备的选购和维护选购焊接设备时需要考虑设备的稳定性、安全性、使用寿命等方面的指标,并且在日常使用时需要进行定期维护和保养,以确保设备的良好状态。
常用金属材料的焊接及工艺焊接是将两块金属材料通过熔化或压合的方式连接在一起的工艺。
在工业生产和日常生活中,常见的金属材料有钢、铝、铜和不锈钢等。
这些金属材料有各自的特点和要求,因此焊接的工艺也有所不同。
1.钢的焊接及工艺:钢是一种常见的金属材料,广泛应用于各个工业领域。
钢的焊接可以采用以下几种常见的工艺:-电弧焊:电弧焊是一种常见的钢材焊接方法。
它通过电弧的热能来熔化金属材料,并使用焊条或电极将材料连接在一起。
-气体保护焊:气体保护焊可以使用氩气、二氧化碳等气体来保护焊接区域,以防止氧气的影响。
这种焊接方法适用于高质量的焊接,如航空航天领域。
-点焊:点焊是一种快速连接薄钢板的焊接方法。
它通过不断的电流瞬间加热来熔化和连接钢板。
2.铝的焊接及工艺:铝是一种轻质金属材料,常用于航空和汽车工业。
由于铝的导热性较好,焊接时需要特殊的工艺:-氩弧焊:氩弧焊是铝材料常用的焊接方法。
在焊接过程中,需要使用高纯度的氩气来保护焊接区域,以防止氧气和水分的影响。
-熔化焊接:熔化焊接是将铝材料加热到熔点,并添加熔化焊丝进行连接的方法。
这种焊接方法适用于厚度较大的铝材料。
3.铜的焊接及工艺:铜是一种导电性和导热性较好的金属材料,在电子和电力行业应用广泛。
铜的焊接可以采用以下几种工艺:-焊锡焊接:焊锡焊接是一种常见的铜材料焊接方法。
它使用焊锡将铜材料连接在一起,通过焊锡的熔化点来实现焊接。
-气焊:气焊是一种高温焊接方法,适用于厚度较大的铜材料。
在焊接过程中,使用氧气和乙炔的混合气体来产生高温火焰,将铜材料加热到熔点并连接在一起。
4.不锈钢的焊接及工艺:不锈钢是一种耐腐蚀性较好的金属材料,常用于食品加工和化工行业。
不锈钢的焊接可以采用以下几种工艺:-TIG焊接:TIG焊接是一种高质量的焊接方法,适用于不锈钢的连接。
在焊接过程中,需要使用惰性气体(如氩气)进行保护,以防止氧气的影响。
-焊锡焊接:焊锡焊接也可以用于不锈钢材料。
金属材料与焊接基础知识内容第一章概述一、电力系统锅炉用钢的发展二、国产超超临界电站锅炉用钢的研制第二章金属材料的基础知识一、金属材料的基本性能二、铁碳相图的基础知识三、铸铁四、钢第三章钢的热处理一、概述二、钢在加热时的转变三、钢在冷却时的转变四、钢的退火与正火五、钢的淬火六、钢的回火七、合金元素对钢热处理的影响八、冷却时构件内的应力形成及对力学性能的影响九、钢的加热缺陷及其防止措施第四章超超临界锅炉典型钢材的焊接一、概述二、T/P92钢焊接三、Super304H、HR3C钢焊接四、T23、T24钢焊接第五章焊接问题讨论一、问题的提出二、需要研究的问题第一章概述一、电力系统锅炉用钢及其发展随着我国电力事业的发展,以及科技的进步,目前我国新安装的火电机组基本上都是600MW、660MW、1000MW的超超临界的发动机组。
具有关部门估计,到今年底我国发电装机容量可达9.5亿kW,到2015年达12亿kW,到2020年达15亿kW。
因此,电力行业的发展后劲十足,任重道远。
我国能源发展的基本方针是:“提高能源效率,保护生态环境,加强电网建设,大力发展水电,优化发展煤电,积极发展核电,适度发展天然气发电,鼓励新能源发电”。
对于火力发电系统来说,要提高煤电的发电效率,降低排放。
就要提高发电机组的容量以及蒸汽温度和压力。
超超临界发电机组的容量及其工作温度和压力与其它机组相比都有了很大的提高,工作温度达605℃(过热器出口温度),工作压力在27MPa左右。
因此,对发电机组材料的性能要求有了很大的提高。
大容量、高参数的超临界机组(按主蒸汽出口压力分类,压力大于22.0Mpa为超临界压力锅炉)、超超临界机组(国际上通常把主蒸汽压力在28Mpa以上或主汽、再热汽温在580℃以上的机组定义为超超临界机组)代表了未来电站锅炉发展的趋势。
如日本在1995年就已将火电机组的主蒸汽参数提高到593℃、压力31Mpa[1],欧洲也将在目前超超临界机组主蒸汽参数600℃、压力30Mpa的基础上,进一步发展、提高超超临界机组的效率,并计划在2012年建成主蒸汽参数700℃、压力37.5Mpa的超超临界机组。
金属材料焊接金属材料焊接是一种常见的加工工艺,它广泛应用于各种工业领域,包括汽车制造、航空航天、建筑和电子设备等。
焊接是将两块金属材料通过加热或压力连接在一起的过程,通过这种方式可以制造出各种形状和尺寸的金属构件。
在进行金属材料焊接时,需要考虑材料的种类、焊接方法、焊接工艺和焊接质量控制等方面的问题。
首先,选择合适的金属材料是进行焊接的第一步。
不同种类的金属材料具有不同的物理和化学性质,因此在进行焊接时需要根据材料的特点选择合适的焊接方法和焊接材料。
例如,对于不锈钢材料,通常采用氩弧焊或激光焊接方法,而对于铝合金材料,则可以选择气体保护焊或摩擦搅拌焊等方法。
其次,焊接方法是影响焊接质量的关键因素之一。
常见的焊接方法包括电弧焊、气体保护焊、激光焊和摩擦搅拌焊等。
每种焊接方法都有其适用的范围和特点,选择合适的焊接方法可以提高焊接效率和焊接质量。
例如,对于需要高焊接速度和精度的金属构件,可以选择激光焊或摩擦搅拌焊方法,而对于焊接厚度较大的构件,则可以选择电弧焊或气体保护焊方法。
此外,焊接工艺对焊接质量也有重要影响。
焊接工艺包括焊接前的准备工作、焊接过程中的控制和焊接后的处理等环节。
在焊接前,需要对焊接接头进行清洁和预热,以保证焊接质量。
在焊接过程中,需要控制焊接电流、焊接速度和焊接压力等参数,以确保焊接接头的质量和稳定性。
在焊接后,还需要对焊接接头进行后处理,包括去除焊渣、表面处理和热处理等,以提高焊接接头的强度和耐腐蚀性。
最后,焊接质量控制是确保焊接接头质量的关键环节。
焊接质量控制包括焊接接头的检测和评定,以及焊接过程中的监控和记录等。
常见的焊接质量检测方法包括X射线检测、超声波检测和磁粉检测等,通过这些方法可以发现焊接接头中的缺陷和裂纹等问题,以及评定焊接接头的质量等级。
在焊接过程中,还需要对焊接参数进行实时监控和记录,以便对焊接质量进行追溯和分析。
综上所述,金属材料焊接是一项复杂的加工工艺,它涉及材料选择、焊接方法、焊接工艺和焊接质量控制等多个方面的问题。