清华大学最优控制--课程概述
- 格式:pdf
- 大小:97.23 KB
- 文档页数:1
最优控制教课纲领课程基本信息( Course Information )课程代码 MA4125 * 学时 * 学分 3( Course Code ) MA424(Credit Hours )48( Credits )* 课程名称 (中文)最优控制( Course Name )(英文) Optimal Control Methods 课程性质 专业方向选修 B 组(Course Type)讲课对象 理工科各专业本科生( Audience )讲课语言中文(Language of Instruction)* 开课院系 数学系( School )先修课程 《高等数学》、《线性代数》( Prerequisite )讲课教师周 钢课程网址 无(Instructor )(Course Webpage)* 课程简介( Description )* 课程简介( Description )从数学的角度,最优控制问题是最优化问题中拥有特别构造的一类问题。
就问题的根源看,它又是控制问题。
最优控制研究动向系统在各样拘束条件下追求使目标泛函取极值的最优控制函数和最优状态轨线的数学理论和方法。
最优控制问题波及范围广跨度大,几乎理工医农,管理军事以致人文经法领域,都存在着大批此类问题。
最优化就是追求最优系统和构造,发掘系统潜力的有力武器,学会求解最优控制问题,是应用数学工作者的最基本修养之一。
本课程的主要任务是,从各个教课环节指引学生认识不一样数学识题的特色和相应数学模型的构造,自己学会剖析实质问题,成立各样数目之间的联系,写出正确的合理的最优控制的模型;领悟求解最优控制问题解法是怎样提出的数学思想,并学会怎样依据这些思想来组成相应方法的技巧;学会能正确地解说计算结果的物理意义的能力。
最基本的是学会和培育系统地、动向地、综合地考虑,认识和办理问题的思想方法和着手能力。
这样,经过本课程的各个教课环节,提升学生的数学素质,增强学生展开科研工作和解决实质问题的能力。
最优控制学院专业班级姓名学号1948年维纳发表了题为《控制论—关于动物和机器中控制与通讯的科学》的论文,第一次科学的提出了信息、反馈和控制的概念,为最优控制理论的诞生和发展奠定了基础。
钱学森1954年所着的《工程控制论》直接促进了最优控制理论的发展和形成。
最优控制理论所研究的问题可以概括为:对一个受控的动力学系统或运动过程,从一类允许的控制方案中找出一个最优的控制方案,使系统的运动在由某个初始状态转移到指定的目标状态的同时,其性能指标值为最优。
这类问题广泛存在于技术领域或社会问题中。
从数学上看,确定最优控制问题可以表述为:在运动方程和允许控制范围的约束下,对以控制函数和运动状态为变量的性能指标函数(称为泛函)求取极值(极大值或极小值)。
解决最优控制问题的主要方法有古典变分法(对泛函求极值的一种数学方法)、极大值原理和动态规划。
最优控制已被应用于综合和设计最速控制系统、最省燃料控制系统、最小能耗控制系统、线性调节器等。
例如,确定一个最优控制方式使空间飞行器由一个轨道转换到另一轨道过程中燃料消耗最少,选择一个温度的调节规律和相应的原料配比使化工反应过程的产量最多,制定一项最合理的人口政策使人口发展过程中老化指数、抚养指数和劳动力指数等为最优等,都是一些典型的最优控制问题。
最优控制理论是50年代中期在空间技术的推动下开始形成和发展起来的。
苏联学者Л.С.庞特里亚金1958年提出的极大值原理和美国学者R.贝尔曼1956年提出的动态规划,对最优控制理论的形成和发展起了重要的作用。
线性系统在二次型性能指标下的最优控制问题则是R.E.卡尔曼在60年代初提出和解决的。
最优控制理论-主要方法解决最优控制问题的主要方法解决最优控制问题,必须建立描述受控运动过程的运动方程为了解决最优控制问题,必须建立描述受控运动过程的运动方程,给出控制变量的允许取值范围,指定运动过程的初始状态和目标状态,并且规定一个评价运动过程品质优劣的性能指标。
最优控制一、课程基本情况二、课程内容简介主要内容包括为:最优化问题的基本概念、最优控制中的变分法、极大值原理、动态规划和线性二次型最优控制问题。
为了培养学生现代化的分析与设计能力,在每一部分都涉及利用MATLAB对其实现的方法,让学生在有限的时间内,掌握最优控制的基本原理与应用技术。
三、课程教学大纲第1章绪论(4学时)1. 教学内容及基本要求本章的基本要求是使学生了解最优控制理论的基本知识和基本方法。
主要内容包括:最优控制的发展;最优控制问题;最优控制的提法;最优控制的求解方法。
2. 重点、难点最优控制的提法、最优控制的求解方法等。
第2章最优控制中的变分法(14学时)1. 教学内容及基本要求本章的基本要求是使学生掌握利用变分法求解最优控制的方法。
主要内容包括:静态最优控制的解;变分法;应用变分法求解最优控制问题;角点条件。
2. 重点、难点无约束情况下的角点条件和内点约束情况下的角点条件下最优控制的求解等。
第3章极大值原理(12学时)1. 教学内容及基本要求本章的基本要求是使学生掌握利用极大值原理求解最优控制的方法。
主要内容包括:连续系统的极大值原理;离散系统的极大值原理;极大值原理的应用。
2. 重点、难点极大值原理的应用等。
第4章动态规划(12学时)1. 教学内容及基本要求本章的基本要求是使学生掌握利用动态规划求解最优控制的方法。
主要内容包括:动态规划的基本原理;离散系统的动态规划;连续系统的动态规划;动态规划与变分法和极大值原理的关系。
2. 重点、难点动态规划在微分对策问题中的应用等。
第5章线性二次型最优控制问题(12学时)1. 教学内容及基本要求本章的基本要求是使学生掌握线性二次型最优控制问题的求解方法。
主要内容包括:线性二次型问题;状态调节器;输出调节器;输出跟踪器;离散系统的线性二次型最优控制;利用MATLAB求解二次型最优控制问题。
2. 重点、难点线性二次型的微分对策问题等。
四、课程知识单元与知识点1. 论述●最优控制理论基本概念●最优控制理论常用的求解方法2. 变分法●普通函数的极值问题●变分法的基本概念●变分法在动态最优控制中的应用3. 极大值原理●极大值原理的基本概念●离散系统的动态规划和连续系统的动态规划;●极大值原理的应用4. 动态规划●动态规划的基本概念●基于动态规划的微分对策问题●动态规划与变分法和极大值原理的关系5. 线性二次型最优控制●线性二次型问题●状态调节器●输出调节器●跟踪器各部分都列举了大量的应用实例及利用MATLAB对其实现的方法,便于读者掌握和巩固所学知识。
最优控制理论教学大纲
一、引言
最优控制理论是控制工程领域中的重要分支,旨在寻找使系统性能
达到最优的控制策略。
本教学大纲旨在为学生提供最优控制理论的基
础知识和应用技能,使他们能够在实际工程中灵活应用最优控制理论,提高工程系统的性能。
二、最优控制理论概述
1. 最优控制概念
2. 最优控制问题分类
3. 最优控制理论的历史发展
三、最优控制理论基础知识
1. 动态规划理论
2. 变分法
3. 极大值原理
4. 动态系统建模
四、最优控制理论应用
1. 线性二次型最优控制问题
2. Pontryagin最小原理
3. 最优控制在机器人控制中的应用
4. 预测控制
五、最优控制理论实践案例
1. 飞行器自动驾驶控制
2. 汽车智能驾驶系统
3. 工业生产过程中的最优控制应用
六、教学方法
1. 理论讲解结合实例分析
2. 班级讨论和小组作业
3. 实验室实践操作和仿真演示
七、评估方式
1. 期中考试
2. 课堂作业
3. 期末大作业
八、参考教材
1. "Optimal Control Theory: An Introduction" by Donald E. Kirk
2. "Optimal Control Applications in Electric Power Systems" by Louie Wei
通过本教学大纲的学习,学生将全面掌握最优控制理论的基础知识和应用技能,为将来从事控制工程领域的工作打下坚实基础。
愿学生们在学习过程中努力钻研,不断提升自我,在最优控制理论领域取得优异成绩!。
《最优控制》课程教学⼤纲《最优控制》课程教学⼤纲课程代码:060142002课程英⽂名称:Optimal Control课程总学时:32 讲课:32 实验:0 上机:0适⽤专业:⾃动化专业⼤纲编写(修订)时间:2017.11⼀、⼤纲使⽤说明(⼀)课程的地位及教学⽬标《最优控制》是现代控制理论的重要组成部分,它已⼴泛应⽤于军事和⼯业及经济领域中,例如空间技术、系统⼯程、⼈⼝理论、经济管理、决策及⼯业过程控制等等。
并在各个领域取得了显著的成果。
本课程是⾃动化专业的⼀门选修课,其基本任务和教学⽬标是要求⾃动化专业学⽣掌握最优控制理论及应⽤的基础知识及解最优控制问题的常⽤⽅法,了解最优控制的发展⽅向,为将来的专业发展打下⼀定的基础。
(⼆)知识、能⼒及技能⽅⾯的基本要求1.基本知识:初步掌握最优控制的基础理论,如最优控制问题的概念、最优控制的数学描述、解决最优控制问题⽅法及⼆次型性能指标最优控制问题。
2.基本理论和⽅法:初步掌握解决最优控制问题的⼀些基本⽅法,如古典变分原理,庞德⾥亚⾦极⼤(⼩)值原理和贝尔曼动态规划⽅法。
3.基本技能:利⽤最优控制理论和⽅法能够解决的实际最优控制问题。
(三)实施说明1.教学⽅法:从基本教育出发,站在培养⼈才的⾼度上,来看待本课程所应承担的责任。
在讲授具体内容时,要分清每⼀部分内容在本课程中所处的地位,这样才能在⼤纲实施过程中得⼼应⼿。
要提⾼学⽣的基本素质,要求学⽣化被动吸收为主动索取知识。
2.教学⼿段:本课程属于技术基础课,在教学中采⽤电⼦教案、CAI课件及多媒体教学系统等先进教学⼿段,以确保在有限的学时内,全⾯、⾼质量地完成课程教学任务。
为了提⾼教学效果,可采⽤多环节教学⽅式,如课程讲授、课堂提问及课前预习和课后阅读。
对于每次课堂讲授,原则上采⽤两个层次讲解,即⼀是提出研究的问题;⼆是介绍解决问题的各种⽅法及其存在的优缺点,培养学⽣创新思维意识。
通过课堂提问,在课堂上调动学⽣积极性,促进其思考,提⾼教与学互动性。
最优控制课程概述最优控制理论的形成和发展和整个现代自动控制理论的形成和发展十分不开的。
在20世纪50年代初期,就有人开始发表从工程观点研究最短时间控制问题的文章,尽管其最优性的证明多半借助于几何图形,仅带有启发性质,但毕竟为发展现代控制理论提供了第一批实际模型。
由于最优控制问题引人注目的严格表述形式,特别是空间技术的迫切需求,从而吸引了大批科学家的密切注意。
经典变分理论只能解决一类简单的最优控制问题,因为它只对无约束或开集性约束是有效的。
而实际上碰到的更多的是容许控制属于闭集的一类最优控制问题,这就要求人们去探索、求解最优控制问题的新途径。
在种种新方法中,有俩种方法最富成效:一种是苏联学者庞特里亚金(Л.С.Понтрягин)的“极大值原理”;另一类是美国学者贝尔曼(R.E.Bellman)的“动态规划”[2]。
受力学中哈密顿(Hamilton)原理的启发,庞特里亚金等人把“极大值原理”作为一种推测首先推测出来,随后不久又提供了一种严格的证明,并于1958年在爱丁堡召开的国际数学会议上首先宣读。
“动态规划”是贝尔曼在1953-1957年逐步创立的,他依旧最优性原理发展了变分学中的哈密顿—雅可比理论,构成了“动态规划”。
它是一种适用于计算机计算,处理问题范围更广的方法。
在现代控制理论的形成和发展中,极大值原理、动态规划和卡尔曼(R.E.Kalman)的最优估计理论都起过重要的推动作用[3]。
现代控制理论的形成和发展和数字计算机的飞速发展和广约应用密不可分。
由于计算机的“在线”参与控制,这样,既不要求把控制器归结为简单的校正网络,也不一定要求有封闭形式的解析解,因此,使得最优控制的工程实现了可能。
反过来又提出了许多新的理论问题,导致最优控制的直接和间接计算方法的大批研究成果的出现,进一步推动了控制理论的发展。
最优控制的含义最优控制,就是将通常的最优控制问题抽象成一个数学问题,并且用数学语言严格的表示出来,最优控制可分为静态最有和动态最有两类。
中液体温度经1小时后上升到40℃,并要求
例2 月球上的软着陆问题(运动控制)飞船靠其发动机产生一与月球重力方向相反的推力u(t),以使飞船在月球表面实现软着陆,要寻求发动机推力的最优控制规律,以便使燃料的消耗为最少。
设飞船质量为m(t),高度为h(t),垂直速度为v(t),发动机推力为u(t),月球表面的重力加速度为常数g 。
设不带燃料的飞船质量为M ,初始燃料的总质量为F .初始高度为h 0,初始的垂直速度为v 0,那么飞船的运动方程式可以表示为:
⎪⎪⎩⎪⎪⎨⎧−=+−==)()()()()()()(t ku t m
t m t u g t v t v t h &&&初始条件
⎪⎩
⎪⎨⎧+===F M m v v h h )0()0()0(00终端条件
)(0
)(==f f t v t h 约束条件
α
≤≤)(0t u
性能指标:
使燃料消耗为最小,即
)(f t m J =达到最大值
我们的任务是寻求发动机推力的最
优控制规律u(t),它应满足约束条件,使飞船由初始状态转移到终端状态,并且使性能指标为极值(极大值)。
或使时间最短。
或试验而得到的。
值。