指数幂及其运算随堂练习-人教A版高中数学必修第一册
- 格式:doc
- 大小:117.02 KB
- 文档页数:2
4.1.2 无理数指数幂及其运算性质必备知识基础练1.计算:2a 2b 3×3a 3b =( ) A .5a 6b 3B .6a 6b 3C .6a 5b 4D .5a 5b 42.计算a 3a ·3a 2的结果为( )A .a 32B .a 116C .a 56 D .a 653.下列运算正确的是( ) A .a 3+a 4=a 7B .a 4·a 2=a 6C .a 23÷a -23=a 23 D .(a 2·b 12)3=a 5b 724.对于a >0,b >0,下列等式成立的是( )A .a 23·a 32=a B .(a 12a 13)6=a 3a 2C .(a 3)2=a 9D .a -12·a 12=05.若102x=25,则10-x等于( ) A .15B .-15 C .150 D .16256.(多选)下列说法中错误的是( ) A .根式都可以用分数指数幂来表示B .分数指数幂不表示相同式子的乘积,而是根式的一种新的写法C .无理数指数幂有的不是实数D .有理数指数幂的运算性质不适用于无理数指数幂 7.已知x >0,化简()x3-23+2=________.8.[2022·山东滨州高一期末](278)23-(-14)2+(19)0=________.关键能力综合练1.化简(a 3b 12)12÷(a 12b 14)(a >0,b >0)结果为( )A .aB .bC .a bD .b a2.若2x =3,2y =4,则2x +y的值为( )A .7B .10C .12D .343.计算(4a -3b -23)·(-3a -1b )÷(4a -4b -53)得( ) A .-32b 2 B .32b 2C .3b 2D .-3b 24.若0<a <1,b >0,且a b-a -b=-2,则a b +a -b的值为( ) A .2 2 B .±2 2 C .-2 2 D . 6 5.已知a +1a=3,则a 2+a -2的值是( )A .47B .45C .50D .356.(多选)以下化简结果正确的是(字母均为正数)( ) A .a 52·a 13·a 136=1B .(a 6·b -9)-23=a -4b 6C .-15a 12b 13c -3425a -12b 13c54=-35acD .(-2x 14y -13)(3x -12y 23)(-4x 14y 23)=24y7.[2022·河北邯郸高一期末]计算:432-(-94)0+6(3-π)6+[(-3)6]12=________.8.设α,β是方程5x 2+10x +1=0的两个根,则2α·2β=________,(2α)β=________. 9.计算下列各式(式中字母均是正数)(1)(2a 23b 12)(-6a 12b 13)÷(-3a 16b 56);(2)(3a 2-a 3)÷4a 2.10.已知a 12+a -12=3,求下列各式的值:(1)a +a -1; (2)a -a -1.核心素养升级练 1.已知3a -1+3a -2+3a -3=117,则(a +1)(a +2)(a +3)=( )A .120B .210C .336D .5042.化简:(1+1232)(1+1216)(1+128)(1+124)(1+122)(1+12)=________.3.已知a >0,且a 2x=2+1,求下列代数式的值. (1)(a x+a -x)(a x -a -x);(2)a x +a -xa x -a-x ;(3)a 3x +a -3x a x +a-x .4.1.2 无理数指数幂及其运算性质必备知识基础练1.答案:C解析:依题意,原式=2×3×a 2+3×b3+1=6a 5b 4.2.答案:B 解析:a 3a ·3a 2=a 3a 12·a23=a 3a76=a3-76=a 116.3.答案:B解析:A 选项a 3+a 4不能再进行运算;B 选项a 4·a 2=a 6,同底数幂相乘,底数不变,指数相加,故正确;C 选项a 23÷a -23,同底数幂相除,底数不变,指数相减,故应为a 23÷a -23=a 43;D 选项(a 2·b 12)3,积的幂等于幂的积,故应为(a 2·b 12)3=a 6b 32.4.答案:B解析:对于选项A ,a 23·a 32=a 23+32=a 136,选项A 错误;对于选项B ,(a 12b 13)6=a 12×6b 13×6=a 3b 2,选项B 正确;对于选项C ,(a 3)2=a3×2=a 6,选项C 错误;对于选项D ,a -12·a 12=a 0=1,选项D 错误.5.答案:A解析:由102x =25得,(10x )2=25,则10x =5,∴10-x=15.6.答案:CD 解析:A.由na m=a mn,1na m=a -mn ,(n ,m ∈N *),知根式都可以用分数指数幂来表示,故正确;B .由na m=a mn ,1na m=a -mn ,(n ,m ∈N *),知分数指数幂不表示相同式子的乘积,而是根式的一种新的写法,故正确;C .实数包括无理数和有理数,所以无理指数幂是实数,故错误;D .由指数幂的运算法则知:有理数指数幂的运算性质适用于无理数指数幂,故错误. 7.答案:x 7解析:因为x >0,所以由幂的运算法则得(x 3-2)3+2=x(3-2)(3+2)=x9-2=x 7.8.答案:3关键能力综合练1.答案:A解析:根据实数指数幂的运算公式,可得:(a 3b 12)12÷(a 12b 14)=a 32b 14÷(a 12b 14)=a 32-12b 14-14=a .2.答案:C解析:因为2x =3,2y =4,所以2x +y=2x ·2y=3×4=12.3.答案:D 解析:原式=-3a -3-1-(-4)b-23+1-(-53)=-3b 2.4.答案:A解析:由题设,(a b -a -b )2=a 2b -2+a -2b=4,即a 2b +a-2b=6,又(a b +a -b )2=a 2b +2+a -2b=8,且a b+a -b>0,所以a b+a -b=2 2. 5.答案:A解析:∵a +1a=3,∴(a +1a)2=a +2+a -1=9,即a +a -1=7,∴(a +a -1)2=a 2+a -2+2=49, ∴a 2+a -2=47. 6.答案:BD解析:A 选项:a 52·a 13·a 136=a 52+13+136=a 5≠1,A 选项错误;B 选项:(a 6·b -9)-23=a6×(-23)b(-9)×(-23)=a -4b 6,B 选项正确;C 选项:-15a 12b 13c -3425a -12b 13c54=-35a 12-(-12)b 13-13c -34-54=-35ac -2≠-35ac ,C 选项错误; D 选项:(-2x 14y -13)(3x -12y 23)(-4x 14y 23)=24x 14-12+14y-13+23+23=24y ,D 选项正确.7.答案:31+π解析:432-(-94)0+6(3-π)6+[(-3)6]12=8-1+π-3+27=31+π.8.答案:14 215解析:利用一元二次方程根与系数的关系,得α+β=-2,αβ=15.则2α·2β=2α+β=2-2=14,(2α)β=2αβ=215.9.解析:(1)原式=[2×(-6)÷(-3)]·a 23+12-16·b 12+13-56=4ab 0=4a .(2)原式=(a 23-a 32)÷a 12=a 23÷a 12-a 32÷a 12=a 23-12-a 32-12=a 16-a =6a -a .10.解析:(1)(a 12+a -12)2=a +a -1+2=9,所以a +a -1=7.(2)(a +a -1)2=a 2+a -2+2=49,所以a 2+a -2=47; (a -a -1)2=a 2+a -2-2=47-2=45,所以a -a -1=±3 5.核心素养升级练1.答案:C 解析:3a -1+3a -2+3a -3=(9+3+1)×3a -3=117,得3a -3=9,解得:a =5,所以(a +1)(a+2)(a +3)=336.2.答案:2-1263解析:原式=(1+1232)(1+1216)(1+128)(1+124)(1+122)(1+12)×(1-12)×2=(1+1232)(1+1216)(1+128)(1+124)(1+122)×(1-122)×2 =(1+1232)(1+1216)(1+128)(1+124)×(1-124)×2 =(1+1232)(1+1216)(1+128)×(1-128)×2 =(1+1232)(1+1216)×(1-1216)×2 =(1+1232)×(1-1232)×2 =(1-1264)×2 =2-1263.3.解析:(1)因为a >0,且a 2x=2+1, 所以a-2x=12+1=2-1(2+1)(2-1)=2-1, 所以(a x+a -x)(a x-a -x)=a 2x-a-2x=2+1-(2-1)=2.(2)a x +a -x a x -a -x =(a x +a -x )2(a x -a -x )(a x +a -x)=a 2x +a -2x +22=2+1+(2-1)+22=2+1. (3)a 3x +a -3x a x +a -x =(a x +a -x )(a 2x -a x ·a -x +a -2x )a x +a -x=a 2x -a x ·a -x +a -2x =2+1-1+(2-1)=22-1.。
更上一层楼基础·巩固·达标1.下列命题中正确的个数为( )①-3是81的四次方根 ②正数的n 次方根有两个 ③a 的n 次方根就是n a ④n n a =a(a ≥0)A .1个B .2个C .3个D .4个 思路解析:①正确,由(-3)4=81即可验证; ②不正确,要对n 分奇偶讨论;③不正确,a 的n 次方根可能有一个值,也可能有两个值;④正确,根据根式运算的依据,当n 为奇数时,n n a =a 是正确的,当n 为偶数时,若a ≥0,则有n n a =a .综上所述,故选B . 答案:B2.下列各式①42)4(n -,②412)4(+-n ,③54a ,④45a (各式的n ∈N ,a ∈R )中,有意义的是( )A.①②B.①③C.①②③④D.①③④思路解析:∵n ∈N ,∴(-4)2n+1<0.∴②式是负数开偶次方,不成立.又∵a ∈R ,∴a 5∈R .∴当a 5<0时,④式不成立.∴②④不正确. 答案:B3.把根式52)(2---b a 改写成分数指数幂的形式为( )A.52)(2---b a B.25)(2---b aC.)(22525----b aD.)(22525----b a答案:A4.以下各式的化简错误的选项是( ) A.1513152a b a -=1 B.))()((322132413141y xy x yx ∙---=yC.3296)(--b a =a -4b 6D.ac cb a cb a 532515453121433121-=---思路解析:按照幂的乘法除法运算律,得A 、B 、C 都正确,而D 的左边=-53a ·c -2≠右边. 答案:D5.下列结论中正确的个数是( )①当a <0时,232)(a =a 3②n n a =|a| ③函数y=21)2(-x -(3x-7)0的定义域是(2,+∞) ④若100a =5,10b =2,则2a+b=1A.0B.1C.2D.3思路解析:取a=-2,可验证①不正确;当n 为奇数时,②不正确; ③y=21)2(-x -(3x-7)0的定义域应是[2,37)∪(37,+∞),③不正确; ④由100a =5,得102a =5 (1) 又10b =2 (2)(1)×(2)得102a+b =10.∴2a+b=1,此命题正确. 答案:B综合·应用·创新6.计算:31027.0--(-71)-2+43256-3-1+(12-)0=___________________.思路解析:原式=313)3.0(--(-7-1)-2+434)4(-31+1 =310-49+64-31+1=19. 答案:197.设5x =4,5y =2,则52x-y =____________________. 思路解析:∵5x =4,5y =2, ∴52x-y=245)5(5)5(222==yy x x =8. 答案:88.如果a 3=3,a 10=384,a 3[71310)(a a]n-3=_______________________.思路解析:原式=3[71)3384(]n-3=3·[71128]n-3=3·2n-3. 答案:3·2n-39.计算:213323121)()1.0()4()41(----∙b a ab .思路解析:原式=2542541044002323232322321==∙∙-b a b a b a . 答案:254 10.已知2121-+xx =3,求32222323++++--x x x x 的值.思路解析:∵2121-+xx =3,∴(2121-+x x )2=9.∴x+x -1=7.∴原式=523272)17(332)(2)1)((32)()(2211212122321321=+-+-⨯=+-+++-+=++++----x x x x x x x x x x . 答案:52。
4.1.2无理数指数幂及其运算性质(用时45分钟)【选题明细表】知识点、方法题号根式与指数幂的互化3,6指数幂运算性质1,2,4,5,8,9条件求值7,10,11,12基础巩固1.化简的结果()A.6a B.a -C.9a -D.29a 【答案】C【解析】2115211115113366326236221()(3)((9)93a b a b a b a b a +---÷=-=-,故选C.2.已知0a >,则1111222222()()a a a a --+--=()A.2244a a -+B.4C.2244a a --D.4-【答案】B【解析】因为2211111122222(2)4a a a a a a a a ----⎛⎫⎛⎫+--=++-+-= ⎪ ⎪⎝⎭⎝⎭,故选B.)A.5 B.5 C.−5 D.﹣5【答案】B=534=52×14=512=5,故选B4.设2x =8y+1,9y =3x-9,则x+y 的值为()A.18B.21C.24D.27【答案】D【解析】因为2x =8y+1=23(y+1),所以x=3y+3,因为9y =3x-9=32y ,所以x-9=2y,解得x=21,y=6,所以x+y=27.所以本题选D.5.计算:21031(8(2019)2-++=()A.6B.7C.8D.32【答案】B 【解析】()120318201924172-⎛⎫++=++= ⎪⎝⎭故选:B.=______.【答案】8()1344322=8⎡⎤==⎢⎥⎣⎦.故答案为:8.7.已知17a a +=,则22a a -+=______.【答案】47【解析】222117247a a a a a a -+=∴+=+-=,().8.01163471.586-⎛⎫⨯-+- ⎪⎝⎭=_____________.【答案】110【解析】由幂的运算法则及根式意义可知,01163471.586-⎛⎫⨯-+⨯- ⎪⎝⎭111131-233333443222=+22+23-=24272333()()()()⨯⨯++⨯-110=,故填110.能力提升9.121121332a b a b ---⎛⎫ ⎪=_____.【答案】1a【解析】1211212133211111551151323322366221661515156666661a a b a b a b a b a b a a a a b a b a b ---⎛⎫⨯---+-- ⎪⎝⎭--⎛⎫ ⎪⋅⋅⋅⋅⋅======⋅⋅⋅本题正确结果:1a10.已知x α+x −α=25,x 1, ,则x α−x −α=________.【答案】-4.【解析】由x α+x −α=25,则(x α+x −α)2=x 2α+x −2α+2=2 ,解得x 2α+x −2α=18,又由(x α−x −α)2=x 2α+x −2α−2=18−2=16因为x 1, ,根据幂函数的单调性,可得x α x −α,即x α−x −α ,所以x α−x −α=−4,故答案为:−4.11.求值:(1)220.53327491()()(0.008)8925---+⨯;()2已知13(0)a a a -+=>,求112222aa a a --++.【答案】(1)89-;(2)7.【解析】(1)原式=21232384910001279825⎛⎫⎛⎫⎛⎫-+⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭471178251932599=-+⨯=-+=-;()123(0)a a a -+=>,112122()25a a a a --∴+=++=,1122a a -+=2212()27a a a a --+=+-=,1122227a a a a --+∴=+.素养达成12.0.50934-++(﹣﹣()2设0a >;()3若1122x x -+=12212x x x x --+-+-的值.【答案】(1)43π+;(2)116 a -;(3)1 4.【解析】()1原式241133ππ=++-+=+;()2原式4111326223a a a a a --⋅==⋅;()3若1122x x -+=则14x x -+=,2214x x -+=,故122141121424x x x x --+--==+--.。