图像分割新法综述
- 格式:doc
- 大小:22.50 KB
- 文档页数:3
图像分割方法综述
图像分割是图像处理的一个重要研究课题,它的目的是将图像分
割成若干个不重叠的区域,每一个区域对应着图像中的一个物体,分
割结果有助于进一步提取它们的相关信息。
近年来,已有许多图像分割方法被提出,其中包括基于标签传播、模板与聚类、基于特征聚类、图割等。
基于标签传播的图像分割是一种非监督学习方法,它的基本思想
是通过将图像的局部结构和对象的先验信息投影到相应的标签空间上,通过传播把他们之间的关系扩展到整个图像,从而实现分割的目的。
模板与聚类法是一种经典的图像分割方法,它的基本思想是基于
模板匹配机制,将图像区域进行分类,再利用聚类算法对区域进行聚类,从而实现图像分割。
基于特征聚类是一种基于计算机视觉的图像分割方法,它是基于
目标特征空间应用聚类的方法,通过分析图像的纹理、色彩、颜色变
化等,以实现图像分割的目的。
图割作为图像分割中的一个重要方法,它将图像分割问题转化为
求解图形分割问题,将图像分割问题转化为在相关能量函数中寻求使
能量函数最小值的最小割集。
以上是近年来几种图像分割方法的大致介绍,每种方法都有自己
的特点和优势,根据不同的图像情况选择合适的分割方法可以获得较
好的处理结果。
图像分割技术研究综述随着科技的快速发展,图像分割技术作为计算机视觉领域的重要分支,已经在众多应用领域中发挥着越来越重要的作用。
本文将对图像分割技术的研究进行综述,包括其发展历程、应用领域、研究成果以及未来研究方向。
图像分割技术是指将图像按照像素或区域进行划分,从而提取出感兴趣的目标或背景的过程。
图像分割技术在信号处理、计算机视觉、机器学习等领域具有重要的应用价值。
例如,在智能交通中,图像分割技术可以用于车辆检测和跟踪;在医学图像分析中,图像分割技术可以用于病灶区域提取和诊断。
根据图像分割技术所采用的方法,可以将其大致分为以下几类:基于阈值的分割、基于区域的分割、基于边缘的分割、基于模型的分割以及基于深度学习的分割。
1、基于阈值的分割是一种简单而又常用的图像分割方法,其基本原理是通过设定一个阈值,将图像的像素值进行分类,从而将图像分割为不同的区域。
基于阈值的分割方法实现简单、运算效率高,但在处理复杂图像时,往往难以选择合适的阈值,导致分割效果不理想。
2、基于区域的分割方法是根据图像像素的灰度或颜色特征,将图像分割为不同的区域。
这类方法通常适用于均匀背景和简单目标的图像,但对于复杂背景和遮挡情况的处理效果较差。
3、基于边缘的分割方法是通过检测图像中的边缘信息,将不同区域之间的边界提取出来,从而实现图像分割。
这类方法对噪声和光照变化较为敏感,需要结合其他方法进行优化。
4、基于模型的分割方法通常是利用数学模型对图像进行拟合,从而将图像中的目标或背景分离出来。
常用的模型包括参数化模型和非参数化模型两类。
这类方法能够处理复杂的图像特征,但对模型的选择和参数调整要求较高。
5、基于深度学习的分割方法是通过训练深度神经网络,实现对图像的自动分割。
这类方法具有强大的特征学习和自适应能力,能够处理各种复杂的图像特征,但在计算复杂度和训练成本方面较高。
近年来,随着人工智能和机器学习技术的快速发展,基于深度学习的图像分割技术在学术研究和实际应用中取得了显著的成果。
图像分割新方法综述*郑晓曦 严俊龙(五邑大学信息学院 江门 529020)摘 要 图像分割是图像处理与计算机视觉的基本问题之一,是图像处理到图像分析的关键步骤。
随着越来越多人的研究,近年来涌现了许多新理论、新方法。
但是没有一种方法能满足所有图像分割领域。
在总结国内外最近几年相关学者的论文及其著作的基础上,对图像分割方法进行分类和讨论。
在综述其相关方法的同时阐述每类分割方法的特点,对其它研究者在分割方法的选择上有一定的指导作用。
关键词 图像分割 综述 图像处理中图分类号 T P3911 引言图像分割是计算机视觉领域中极为重要的内容之一,是实现自动图像分析和模式识别的首要问题,也是图像处理的经典难题之一。
图像分割的质量的优劣、区域界限定位的精度直接影响后续的区域描述以及图像的分析和理解,是图像处理、分析、理解中一个举足轻重的技术环节。
很多学者对目前提出的上千种图像分割方法作了综述[1],[2]和分类。
文献[1]将分割方法划分为基于数据驱动和基于模型驱动的分割方法;文献[2]将其划分为边缘检测、基于区域和其他方法;本文主要介绍近几年在图像分割中出现的新方法及新理论,以及对传统方法的改进。
2 基于偏微分方程的图像分割基于偏微分方程的图像分割是图像分割领域中的一个重要分支[3]。
近年来,有关的内容日益成为研究人员关注的热点。
目前,已经拥有许多成熟的图像分割方法,其中M u m f o r d-S h a h模型是一个较为常用的方法。
这个方法的主要思路是:给定一幅图像g(x),图像分割目标就是寻找一个光滑的图像u(x)和不光滑的集合K(用来代表“边界”),使以下的泛函:E(u,K)=∫k( u(x)2+β(u-g)2)d x+ l e n g t h(K)最小,其中а,β是参数。
公式有非常深刻的物理背景:(u-g)2这一项可以保证u(x)与原图像g(x)保持内容上的基本一致, u(x)2确保了绝大部分区域光滑,而l e n g t h(K)项是为了使图像的边界最简单,这3项的折中保证了图像分割的效果。
图像分割新法综述摘要图像分割是图像处理与计算机视觉的基本问题之一,是图像处理到图像分析的关键步骤。
在综述其相关方法的同时阐述每类分割方法的特点,对其它研究者在分割方法的选择上有一定的指导作用。
关键词图像分割;图像处理;方法0 引言图像分割是计算机视觉领域中极为重要的内容之一,是实现自动图像分析和模式识别的首要问题,也是图像处理的经典难题之一。
图像分割的质量的优劣、区域界限定位的精度直接影响后续的区域描述以及图像的分析和理解,是图像处理、分析、理解中一个举足轻重的技术。
1 遗传算法在图像分割中的应用遗传算法是基于进化论自然选择机制的、并行的、统计的、随机化的搜索方法。
对此,科学家们进行了大量的研究工作,并成功地将它们运用于各种类型的优化问题中。
在分割复杂的图像时,人们往往采用多参量进行信息融合,在多参量参与的最优值的求取过程中,优化计算是最重要的,把自然进化的特征应用到计算机算法中,将能解决很多优化计算的困难。
遗传算法的出现为解决这类问题提供了新而有效的途径,它不仅可以得到全局最优解,而且大量缩短了计算时间。
2 基于小波分析和变换的分割方法小波变换是一种多尺度多通道分析工具,比较适合对图像进行多尺度的边缘检测。
小波分解的级数可以控制观察距离的“调焦”,而改变高斯函数的标准差可选择所检测边缘的细节程度。
小波变换的计算复杂度较低,抗噪声能力强。
另外,利用正交小波基的小波变换也可提取多尺度边缘,并可通过对图像奇异度的计算和估计来区分一些边缘的类型。
在多尺度分析下,图像的类别信息和位置信息是一对矛盾,两者之间存在不确定性。
在利用多尺度进行分割时,跨多个尺度的图像分析相当于在较粗尺度下以高位置分辨率换取较大类别分辨率。
因此,如何组合跨尺度信息,恢复已丢失的空间分辨率是多尺度分割算法的难点。
多尺度分割的任务就是根据所有尺度下的信息,平衡类别信息与位置信息之间的矛盾,使内在的不确定性达到最小化。
充分考虑尺度之间的拓扑关系和对称性,可以大大提高分割算法的计算效率。
医疗影像诊断中的图像分割技术综述医疗影像诊断是现代医学领域中非常重要的一部分,对于各种疾病的准确诊断和治疗起着至关重要的作用。
而其中的图像分割技术则是医疗影像诊断过程中的关键环节,它能够将医学图像中的不同组织结构或病变区域分割出来,并提供了有助于医生判断和分析的可视化信息。
本文将对医疗影像诊断中的图像分割技术进行综述,并介绍其应用于不同医学图像领域的研究进展和挑战。
首先,我们来了解一下医疗影像图像分割的基本概念。
图像分割是指将图像中的像素根据其灰度、颜色、纹理等特征进行分类和分组,从而得到每个组织结构或病变区域的边缘轮廓。
而医疗影像图像分割的目标是帮助医生提取出感兴趣的解剖结构、器官或病变区域,使医学影像的诊断和治疗更加准确和可靠。
在医疗影像图像分割的研究领域中,常用的分割方法可以分为基于阈值的方法、基于区域的方法和基于边缘的方法。
基于阈值的方法是最简单和最常用的方法,它根据像素的灰度值与事先设定的阈值进行比较,将符合条件的像素标记为目标或非目标。
基于区域的方法则根据像素之间的相似性进行分组,将相似性较高的像素划分为同一区域。
而基于边缘的方法则通过检测图像中的边缘或轮廓来进行分割。
近年来,随着深度学习技术的快速发展和广泛应用,深度学习在医疗影像图像分割中也取得了显著的进展。
深度学习方法能够通过学习大量的医学影像数据,自动提取特征并进行图像分割,大大提高了分割的准确性和可靠性。
其中,卷积神经网络(CNN)是最常用的深度学习模型之一,在医疗影像图像分割中得到了广泛应用。
通过设计合适的网络结构和优化算法,CNN在医疗影像图像分割中能够达到较高的准确率和良好的鲁棒性。
除了深度学习方法外,还有一些其他常用的医疗影像图像分割技术,如基于聚类的方法、基于形状模型的方法和基于图论的方法等。
这些方法根据不同的图像特征和分割任务选择合适的算法和模型,能够有效地完成医疗影像图像分割任务。
例如,基于聚类的方法通过将像素分组为不同的聚类,来实现图像分割。
计算机视觉技术中的图像分割方法综述计算机视觉技术已经成为了现代科学和工程领域中的重要研究方向之一。
在计算机视觉领域中,图像分割是一项关键技术,用于将图像分割成多个区域,以便进一步分析和理解图像的内容。
在本文中,我们将综述计算机视觉技术中的图像分割方法。
图像分割在许多应用中具有重要的作用,例如医学图像分析、目标检测和识别、图像编辑和增强等。
根据分割的目标和应用需求,可以将图像分割方法分为基于区域的方法、基于边缘的方法和基于深度学习的方法。
基于区域的方法是根据图像中的颜色、纹理、亮度等特征将图像分割成不同的区域。
其中,基于阈值分割是最简单和常用的方法。
它根据像素的灰度值和预定的阈值将图像分为前景和背景区域。
另外,基于区域增长的方法根据相似像素的邻域关系将图像分割成具有相似特征的区域。
这些方法在处理简单的图像场景时表现良好,但在复杂的场景下效果可能不理想。
基于边缘的方法主要关注图像中物体的边界。
这些方法首先检测出图像中的边缘,然后根据边缘将图像分割为不同的区域。
其中,基于边缘检测算子(如Canny 算子)的方法是最常用的。
它通过检测图像中的强边缘来实现分割。
此外,还有基于水平分割和基于边缘的分水岭算法等方法。
这些方法在处理具有复杂边缘结构的图像时表现较好。
基于深度学习的图像分割方法在最近的研究中取得了显著的进展。
深度学习模型,特别是卷积神经网络(CNN),可以学习到图像的高层特征和语义信息,从而实现准确的图像分割。
其中,全卷积网络(FCN)是最著名的方法之一,它使用卷积和反卷积操作来预测每个像素的类别。
另外,U-Net、DeepLab和Mask R-CNN等方法也被广泛应用于图像分割领域。
这些深度学习方法在处理复杂的图像场景时具有很强的鲁棒性和准确性。
除了上述方法,还有一些其他的图像分割方法值得关注。
例如,基于图割的方法可以将图像分割问题转化为图论中的最小割问题,并使用最小割算法求解。
此外,基于形状的方法将图像分割问题转化为形状匹配或曲线演化问题,并通过优化方法求解。
文献综述电子信息工程图像分割方法综述摘要:图像分割是图像理解的基础,图像分割的算法研究越来越受到关注,早期的图像分割算法在之后的研究中得到完善。
活动轮廓模型是图像分割和边界提取的重要工具之一,主要包括了参数形式活动轮廓模型和几何形式活动轮廓模型两大类,本文对这两类模型进行了大概的说明,简单叙述了相对的优点,如几何活动轮廓模型在变形的过程中能处理曲线拓扑变化。
鉴于活动轮廓模型所存在的缺点,提出了水平集算法,使得计算的范围和简易程度有了很大的发展。
最后指出了图像分割的算法还有一些进一步优化的研究发展方向。
关键词:图像分割,参数活动轮廓模型,几何活动轮廓模型,水平集1.引言对图像进行处理,通过图像分割、目标分离、特征提取、参数测量等技术,将原始的图象转化为更抽象更紧凑的形式,使得更高层的图像分析和理解成为可能。
其中图像分割已经越来越受到人们的关注,作为一种图像处理与计算机视觉操作的预处理手段,已经应用到了很多的领域,图像分割可以定义为:根据图像特征对图像进行区域划分[1]过程,图像分割的效果好坏会直接影响到后续的处理结果,所以图像分割是一个基本而又关键的技术,为此人们提出了很多有效的、具有鲁棒性的分割算法。
图像分割方法有很多,按知识的特点和层次可分为数据驱动和模型驱动两大类[2],前者有Roberts算子、Sobel算子和Canny算子、阈值分割、分水岭算法和模糊聚类分割算法等;后者是直接建立在先验知识的基础上的,如基于活动轮廓模型的图像分割。
水平集的应用领域是隐含曲线(曲面)的运动[3],现在水平集已经广泛应用于图像恢复、图像增强、图像分割、物体跟踪、形状检测与识别、曲面重建、最小曲面、最优化以及流体力学中的一些方面。
一个好的图像分割算法应具有以下特点:1、有效性,能将图像中感兴趣的区域或目标分割出来的有效规则。
2、整体性。
能得到图像中感兴趣区域或目标的无断点和离散点的封闭边界。
3、精确性,分割所得到的感兴趣区域或目标边界与实际情况贴近。
摘要图像分割是把图像划分为有意义的若干区域的图像处理技术,分割技术在辅助医学诊断及运动分析、结构分析等领域都有着重要的研究价值和广泛的应用发展前景。
在阅读大量文献的基础上,本文对图像分割技术的理论基础、发展历程及图像分割方法的热点、难点问题进行了分类综述,对不同分割算法优缺点进行了总结和归纳,并对图像分割的发展趋势进行了初步的展望和预测。
在此基础上,为了对图像分割理论有更直观的认识,本文选取并行边界算法和分水岭算法这两种方法,用MATLAB软件进行了基础的仿真,并对结果进行了分析和总结,本文重点对一些近年来新兴的算法,比如水平集(Level-set)算法、马尔科夫随机场算法(Markov)、模糊算法、遗传算法、数学形态学算法等进行了概略性的探讨,对这些新兴算法的特点、原理、研究动态进行了分析和总结。
关键词:图像分割;边界;区域;水平集;马尔科夫AbstractImage segmentation is an image processing technology that divides the image into a number of regions. Image segmentation has very important significance in supporting medical diagnosis, motion analysis, structural analysis and other fields.Based on recent research, a survey on the theory and development of image segmentation, hot and difficult issues in image segmentation is given in this article. And describes the characteristics of each method as well as their respective advantages and disadvantages in image segmentation .This article introduces and analyzes some basic imaging and image segmentation methods in theory and describes the development trends of medical image segmentation. To have a better understanding of image segmentation, I use MATLAB software to stimulate on images about the parallel edge algorithms and watershed algorithm. And the analysis of the segmentation results is given in the article.This article introduces and analyzes the new algorithms in recent years such as Level-set algorithm, Markov algorithm, Fuzzy algorithm, Genetic algorithm and Morphological algorithm. In this paper, the features, theory and research trends of these algorithms are analyzed and summarized.Keywords: Image segmentation; Border; Area;Level-set;Markov第1章引言1.1 图像分割的背景和重要作用图像是传达信息的一种方式,图像中含有大量的有用信息,理解图像并从图像中抽取信息以用来完成其他工作是数字图像技术中一个重要的应用领域,而理解图像的第一步就是图像的分割。
图像分割方法综述图像分割是图像处理中的一项关键技术,自20世纪70年代起一直受到人们的高度重视,至今已提出上千种分割算法。
主要分类:基于边缘的算法、阈值分割法、基于区域的分割算法、结合特定理论工具的分割方法。
一、基于边缘的算法:通过检测出不同区域边界来进行分割。
边缘点往往是图像某些特征变化剧烈的点,这些点往往是一阶导数极大的点或者二阶过零的点,基于此提出了一系列边缘检测的算法.图像的边缘是图像最基本的特征之一,基于边缘的分割方法可以说是人们最早研究的方法。
1959年,Julez在“一种基于边缘检测的电视信号编码方法”一文中首次提及边缘检测技术,开创了边缘检测的先河。
边缘检测方法试图通过检测不同区域间的边缘来解决图像分割问题。
边缘检测技术可以按照处理的顺序分为串行边缘检测以及并行边缘检测。
边缘检测主要包括以下几种方法:基于灰度直方图的边缘检测分割技术、梯度最大值的检测方法、二阶导数的零交叉点检测方法以及小波多尺度边缘检测的方法基于灰度直方图的边缘检测分割技术:1962年,Doyle提出的基于灰度直方图的边缘检测分割技术,计算量小,有一定的抗噪声性能,能够较理想的得到图像的边缘分割效果代表文章:基于灰度与边缘的图像分割方法A Grouping-Feature and Nesting-Kernel Scene Image Segmentation Algorithm优点:边缘定位准确缺点:对噪声敏感,检测到的边缘经常不能闭合。
二、阈值分割法:是灰度图像分割的一个比较常用的方法,通过阈值,把图像中灰度级大于阈值的像素和小于阈的像素分类,从而实现图像分割。
比较经典的算法有Otsu阈值分割法、最大熵阈值法、迭代阈值法、基于直方图的阈值分割算法。
1、最大类间方差法是在判决分析最小二乘法原理的基础上推导得出的求最佳阈值的方法。
发展:大津:1979 年基于最大类间方差的阈值分割算法,刘健庄:1993 年推广到二维,增加了其抗噪性,达到了较好的分割效果;景晓军:2003 年发展到三维,范九伦:2007 年进行了修正,给出了新的递推公式。
图像分割新法综述
摘要图像分割是图像处理与计算机视觉的基本问题之一,是图
像处理到图像分析的关键步骤。
在综述其相关方法的同时阐述每类分割方法的特点,对其它研究者在分割方法的选择上有一定的指导作用。
关键词图像分割;图像处理;方法
中图分类号 tp39文献标识码 a 文章编号
1674-6708(2010)17-0112-01
0 引言
图像分割是计算机视觉领域中极为重要的内容之一,是实现自动图像分析和模式识别的首要问题,也是图像处理的经典难题之一。
图像分割的质量的优劣、区域界限定位的精度直接影响后续的区域描述以及图像的分析和理解,是图像处理、分析、理解中一个举足轻重的技术。
1 遗传算法在图像分割中的应用
遗传算法是基于进化论自然选择机制的、并行的、统计的、随机化的搜索方法。
对此,科学家们进行了大量的研究工作,并成功地将它们运用于各种类型的优化问题中。
在分割复杂的图像时,人们往往采用多参量进行信息融合,在多参量参与的最优值的求取过程中,优化计算是最重要的,把自然进化的特征应用到计算机算法中,将
能解决很多优化计算的困难。
遗传算法的出现为解决这类问题提供了新而有效的途径,它不仅可以得到全局最优解,而且大量缩短了
计算时间。
2 基于小波分析和变换的分割方法
小波变换是一种多尺度多通道分析工具,比较适合对图像进行多尺度的边缘检测。
小波分解的级数可以控制观察距离的“调焦”,而改变高斯函数的标准差可选择所检测边缘的细节程度。
小波变换的计算复杂度较低,抗噪声能力强。
另外,利用正交小波基的小波变换也可提取多尺度边缘,并可通过对图像奇异度的计算和估计来区分一些边缘的类型。
在多尺度分析下,图像的类别信息和位置信息是一对矛盾,两者之间存在不确定性。
在利用多尺度进行分割时,跨多个尺度的图像分析相当于在较粗尺度下以高位置分辨率换取较大类别分辨率。
因此,如何组合跨尺度信息,恢复已丢失的空间分辨率是多尺度分割算法的难点。
多尺度分割的任务就是根据所有尺度下的信息,平衡类别信息与位置信息之间的矛盾,使内在的不确定性达到最小化。
充分考虑尺度之间的拓扑关系和对称性,可以大大提高分割算法的计算效率。
3 基于人工神经网络的分割方法
近几年神经网络在图像分割中的应用得到了很大的发展,按照处理数据类型大致上可以分为两类:一类是基于象素数据的神经网络算法;另一类是基于特征数据的神经网络算法,即特征空间的聚类分割方法。
基于象素数据分割的神经网络算法用高维的原始图像数据作为神经网络训练样本,比起基于特征数据的算法能够提供更多的图像信息,但是各个象素是独立处理的,缺乏一定的拓扑结构,而
且数据量大,计算速度相当慢,不适合实时数据处理。
目前,有很多神经网络算法是基于象素进行图像分割的,如hopfield神经网络、细胞神经网络、概率自适应神经网络等。
基于特征的神经网络算法主要是对特征空间的聚类分割方法进行改造。
特征空间聚类分割方法关键的问题是有效特征参数的提取和聚类方法的构造。
有效的特征提取方法有很多,大致上可以分为4种:几何特征方法、统计特性方法、信号特性方法和基于图像模型的方法。
传统的聚类方法效果差,且是基于一定前提假设的,神经网络打破了传统聚类方法的限制,已经成为寻找聚类新方法的基础。
目前,使用的神经网络模型有sofm神经网络,legion神经网络模型、前向反馈神经网络等。
神经网络在解决如ct图像、遥感图像、声纳图像等一系列复杂的图像分割方面显示了其特有的优势,但解决问题的机理很难理解,网络节点个数、网络层数等的设计还缺乏比较系统的理论指导。
另外,神经网络的训练有时比较费时。
4 结论
从上述内容可知,图像分割没有一个通用的算法,只能从实际问题出发选择合适的算法。
随越来越多人对图像分割的研究,将会产生更多的新的理论、方法和工具,但是它们的方向始终会朝着对图像分割的更智能化、精确化和实用化方向发展。