地球化学-稀土元素标准化计算
- 格式:doc
- 大小:215.50 KB
- 文档页数:7
表中数据为山东济南辉长岩、沂南花岗岩7件样品的REE组成(ppm)1,用球粒陨石值对样品的REE组成进行标准化,作其分配模式图,对图件中表达的地球化学特征进行说明;2,计算各样品的Eu/Eu*,并对其地球化学意义进行说明;,3,假设辉长岩中造岩矿物的组成为:CPX45%,PL35%,OL20%。
结合课件中提供的REE在矿物和熔体间的分配系数,计算与辉长岩平衡的熔体的REE组成,并作REE配分模式图。
解答:1,如下表1-1为常用球粒陨石和原始地幔稀土元素组成,我采用C1 球粒陨石数据(Sun & McDonough,1989)对样品的REE进行标准化,得到了下表1-2,再根据对样品REE标准化的数据进行作样品的分配模式图,得到了图1-1表1-1表1-2图1-1通过对样品配分模式图进行分析可知道,沂南花岗岩样品中富集轻稀土元素而亏损重稀土元素,这与花岗岩的成分岩性有一定关系,花岗岩为酸性岩,主要矿物为长石、石英和云母,而这矿物主要富集轻稀土元素,并且从图中可以看出Eu的负异常,说明在岩浆结晶形成花岗岩之前就有长石结晶出来,使岩浆呈Eu 的负异常。
济南辉长岩的样品配分模式图表现出来的富集轻稀土元素没有沂南花岗岩样品那么显著,富集程度较低,这也与辉长岩的岩性成分有关,辉长岩中主要矿物为辉石和长石,长石富集轻稀土元素较为显著,而辉石相对较富集重稀土元素,但程度不是很显著,所以岩石总体表现较为富集轻稀土元素,但程度不是那么显著。
并且从图中可以看出Eu的正异常,只是不是很显著,说明长石结晶出来使岩石呈Eu的正异常。
2,Eu/Eu*=2×Eu/(Sm+Gd)(其中Eu、Sm、Gd都是为球粒陨石标准化值),根据这个求出各样品中的Eu/Eu*,如下表1-3:表1-3由上表中的Eu/Eu*值可知山东济南的辉长岩为Eu的正异常,说明在岩浆结晶时,长石和辉石先结晶出去形成辉长岩,而长石中富集Eu元素,所以在辉长岩中Eu为正异常,而后期岩浆因长石的结晶分异而呈Eu的负异常,并且逐渐向酸性过渡,结晶形成酸性岩。
表中数据为山东济南辉长岩、沂南花岗岩7件样品的REE组成(PPm)1, 用球粒陨石值对样品的REE组成进行标准化,作其分配模式图,对图件中表达的地球化学特征进行说明;2, 计算各样品的Eu/Eu* ,并对其地球化学意义进行说明;,3,假设辉长岩中造岩矿物的组成为:CPX45%, PL35%, OL20%。
结合课件中提供的REE在矿物和熔体间的分配系数,计算与辉长岩平衡的熔体的REE组成, 并作REE配分模式图。
解答:1如下表1-1为常用球粒陨石和原始地幔稀土元素组成,我采用C1球粒陨石数据(Sun & MCDOnough,1989)对样品的REE进行标准化,得到了下表1-2,再根据对样品REE标准化的数据进行作样品的分配模式图,得到了图1-1表1-1MJN0608MJNO607MJN0609MJN0606MYN0625MYN0625MYNO607La21. 055 25. 570 27. 38476 371489. 451 337.975464,135 Ce20, 261 24. 837 124.673 66 340 369* 281 254, 902 341. 503 Pr18. 421 22. 421 ΞL E7952; 421 235. 789 164, 211 205. 263 Nd17. 880 32. 270 21. 370 46. 467 165. 739 114. 347 131.692Sm14. 96717. 320 16. 60132.026 75. 163 50. 327 46. 993EU13. 793 14. 4S3 19. 130 27÷41424.138 16.897 21, 379Gd9. 732 11.290 IL 33S Ξ0.00035,961 25, 937 Γ 18,735Tb8. 824 9. 626 9. 626 17. 112 Ξ8, 34219, 786 11. 230 Dy7. 953 8. 7019. 094 16. 024 24. 291 16. 811 7. 795HO7. 067 7. 774 8. 12714. 311ΞC. S4S14. 841 6L 007Er 5. 921 6. 6477. 130 12, 085 181852 12. 50S 5. 498Tm 5. 098 5. 4&0 1 6. 275 10, &80 18, 039 IL 765 Γ 0. 490Yb 5. 588 6. 059 6. 706 12. 294 18, 647 12. 471 6. 176LU 5. 118 5. 118 5. 906 11. 024 16. 929IL 811 5. 906表1-2→-IJN06Q8 →-IJN0607IJN0609IJNO 606 T^iYNo &药 →-lYN0625 -^lYNO 607图1-1通过对样品配分模式图进行分析可知道,沂南花岗岩样品中富集轻稀土元素 而亏损重稀土元素,这与花岗岩的成分岩性有一定关系, 花岗岩为酸性岩,主要 矿物为长石、石英和云母,而这矿物主要富集轻稀土元素,并且从图中可以看出 EU 的负异常,说明在岩浆结晶形成花岗岩之前就有长石结晶出来,使岩浆呈EU的负异常。
一、实习目的由于稀土元素的原子结构、原子半径、离子半径及化合价的相似性,导致它们在自然界中常常紧密共生在一起。
因镧系收缩的缘故,使得稀土元素的离子半径从La→Lu逐渐减小,于是在岩浆过程中,这些元素在固相和液相间的分配呈现出明显的规律性变化。
Ce和Eu在自然界具有变价(Ce4+、Eu2+)的特征,Ce 和Eu的相对富集与亏损程度往往反映了特殊的地质背景。
本次实习要求掌握稀土元素的计算和作图方法,理解稀土元素的富集程度、分馏程度的地质意义,掌握Eu的亏损与富集的地质背景。
二、实习内容某地区的岩浆岩种类极为发育(表1—1和表1—2),请画出各岩类的稀土配分曲线图、结合稀土元素参数进行地质过程分析。
两种方法所得到的稀土元素参数表1—1 岩浆岩稀土元素成分表(×10-6)注:1-橄榄苏长岩,2-钾长花岗岩,3-H型花岗岩,4-A型花岗岩,5-石英闪长岩(M型花岗岩)。
稀土元素由某单位等离子光谱方法分析。
表1—2 岩浆岩稀土元素成分表(×10-6)注:表中数据由中子活化方法分析一、基本原理稀土元素通常指的是镧系元素的(La 、Ce 、Pr 、Nd 、Pm 、Sm 、Eu 、Gd 、Tb 、Dy 、Ho 、Er 、Tm 、Yb 、Lu ,其中Pm 在自然界无天然同位素),由于稀土元素的原子结构、原子半径、离子半径(RE 3+变化于0.86Å—1.14Å)及化合价的相似性使得它们在自然界往往紧密共生。
因镧系收缩造成稀土元素的离子半径从La →Lu 逐渐减小,Ce 和Eu 在自然界具有变价(Ce 4+、Eu 2+)的特征,以及介质(岩石、土壤、矿物等)的不同而引起稀土元素在自然界的分离。
为便于研究稀土元素在某介质中的分配型式,必须排除“偶数规则”的影响,最常用的方法是利用球粒陨石丰度值对稀土元素进行标准化。
这里向大家推荐W.V .Boynton(1984)提出的球粒陨石丰度值(×10-6):La 0.31;Ce 0.808;Pr 0.122;Nd 0.6;Sm 0.195;Eu 0.0735;Gd 0.259;Tb 0.047;Dy 0.322;Ho 0.0718;Er 0.21;Tm 0.0324;Yb 0.209;Lu 0.0322。
地球化学总结地壳与地幔地球化学地球的元素丰度的估算方法:1 陨石类比法,该估算方法是建立在以下假设根底之上的:1)陨石是太阳系内的产物2)陨石与小行星带物质成分相同3)陨石是星体的碎片4)陨石母体的内部结构和成分与地球相似2 地球模型法和陨石类比法在地球模型的根底上求出各圈层的质量和比值,利用陨石类型或陨石相的成分计算各圈层的元素丰度,最后用质量加权平均法求出全球的元素的丰度。
例如:华盛顿球粒陨硫铁可以代表地核的成分;球粒陨石中硅酸盐的平均成分代表地幔和地壳的成分可以按比例各取一定质量的陨石,然后分别计算出各元素的全球丰度克拉克值:地壳的平均化学成分,可以有多种表示方法重量克拉克值:指地壳中元素的重量平均含量原子克拉克值:指地壳中元素的原子平均含量地壳的平均化学成分确实定方法:1)岩石平均化学组成法克拉克将岩石圈的全部岩石分为两类:火成岩,质量占95%,水成岩占5%。
然后取样按质量加权平均值法计算地壳的成分2)细粒碎屑岩法戈尔德施密特认为,细碎屑岩是沉积物源区出露岩石经过剥蚀,搬运,并均匀混合的产物,其成分可以代表物源区地壳的平均化学组成Taylor和McLennan 那么用细粒碎屑沉积岩,特别是泥质岩作为上地壳的混合样品进行了研究。
3)地壳模型法Taylor和McLennan提出,现今大陆壳质量的75%在太古宙时期形成的,25%是在后太古宙时期形成的。
后太古宙的大陆壳生长主要发生在岛弧地区,代表性物质是岛弧安山岩,由此他们计算出了现代大陆壳的元素丰度地壳元素丰度特征:1)地壳中各种元素的丰度是极不均匀的,其中,前三种元素O,Si,Al就占了82%,前8种元素占了98%2)随原子序数的递增其丰度趋于降低,但Li,Be,B的丰度仍表现为亏损3)除了惰性气体和少数元素外,质量数为偶数的元素丰度大于奇数4)元素的丰度仍表现为质量数位4的倍数占主导地位5)相对地球整体,地壳最亏损亲铁元素,次亏损亲铜元素和少量亲氧相容元素;富集亲氧不相容元素地壳中某些元素丰度的偶数原那么被破坏的原因:1)惰性气体元素丰度异常低的原因:不易参于其他元素相结合,在漫长的地质演化历史过程中,它们易于从固体地球内部不断地通过排气作用进入大气圈,在通过脱离地球的引力作用而释放到宇宙中2)在地壳与地幔分异的过程中,局部相容元素停留在地幔中元素克拉克值在研究地球化学中的意义1〕元素的克拉克值决定了元素的地球化学行为克拉克值高的元素可以形成独立矿物,而克拉克值低的元素只能以类质同像的形式存在于主要矿物的晶格中2〕作为元素集中分散的标尺浓度克拉克值=观测值/克拉克值>1说明富集<1说明贫化3)标志地壳中元素的富集和成矿的能力浓集系数=矿石的边界品位/克拉克值浓集系数越大越不容易成矿主要类型岩石中元素的丰度特征1)超基性岩富集亲铁元素和亲氧中的相容元素2)基性岩富集亲铜元素和分配系数接近于1的亲氧元素3)酸性岩富集不相容的亲氧元素和挥发元素载体矿物:岩石中某元素主要赋存的矿物富集矿物:某元素的含量远远高于岩石平均含量的矿物地幔地球化学地幔成分的研究方法:1)上地幔成分确实定:幔源的玄武岩及其所携带的地幔岩包体,或通过构造推覆上来的地幔岩块2)下地幔成分确实定:一是根据实测的地球内部地震波速资料和高温高压下矿物的或岩石的原位声速测量资料进行综合研究获得,二是根据宇宙化学资料研究获得地幔不均一性的研究方法:1)地幔化学研究不均一性的样品地幔橄榄玄武岩玄武岩类岩石方法:元素比值和同位素比值,同位素和强的不相容元素之间的比值可以代表地幔源区岩石的比值元素丰度模式法:一种图解法,类似于用球粒陨石标准化的稀土元素模式图地幔不均一性的原因:1)在地球形成的行星吸积过程中就存在组成的化学不均一性。
地球化学稀土元素配分分析标准化管理部编码-[99968T-6889628-J68568-1689N]《地球化学》实习测验REE图表处理及参数计算一、实习目的1、掌握稀土元素组成模式图的制作方法。
2、掌握表征稀土元素组成的基本参数。
3、培养独立查阅文献及处理数据的能力。
二、基本原理1、稀土元素组成模式图1、原子序数为横坐标2、标准化数据为纵坐标3、对数刻度2、表征稀土元素组成的基本参数3、稀土总量4、轻重稀土比值5、轻稀土分异指数6、重稀土分异指数7、铕、铈异常三、实习测验内容1、绘制各类侵入岩的稀土元素组成模式图;2、计算各类侵入岩稀土元素组成的基本参数;3、对已绘制的图表和计算出的数据进行解释。
4、在以上实习内容掌握之后,自行查阅文献一篇,并进行以上3项操作。
四、实习测验步骤1、根据查阅文献数据,找到自己想要的数据表1 蒙库铁矿床岩石、矿石、矿物稀土元素成分分析(ppm)2、选出自己要的数据建立表格表2 稀土元素组成模式图(ppm)3、对数据进行球粒陨石标准化表3球粒陨石标准化后稀土元素组成模式图(ppm)图1 蒙库铁矿床稀土元素配分图5、计算稀土元素基本参数表4 表征稀土元素组成的基本参数6、数据及图表的解析(1)绿帘石:∑REE=,表明稀土元素含量较高;LR/HR=,表明轻重稀土元素间发生了较大的分异,轻稀土元素相对富集;(La/Sm)N=,(Gd/Lu)N=,显示轻重稀土元素内部都发生了分异作用,轻稀土元素分异更明显。
Eu异常值=,为强正异常;Ce异常值=,表明Ce基本无异常;稀土元素配分模式为轻稀土富集,重稀土相对亏损的右倾型,图像具有左陡右缓特点,Eu正异常明显特征。
(2)磁铁矿矿石:∑REE=,表明稀土元素含量较低;LR/HR=,表明轻重稀土元素间发生了较大的分异,轻稀土元素相对富集;(La/Sm)N=,(Gd/Lu)N=,显示轻重稀土元素内部都发生了分异作用,轻稀土元素分异更明显。
一、实习目的由于稀土元素的原子结构、原子半径、离子半径及化合价的相似性,导致它们在自然界中常常紧密共生在一起。
因镧系收缩的缘故,使得稀土元素的离子半径从La→Lu逐渐减小,于是在岩浆过程中,这些元素在固相和液相间的分配呈现出明显的规律性变化。
Ce和Eu在自然界具有变价(Ce4+、Eu2+)的特征,Ce 和Eu的相对富集与亏损程度往往反映了特殊的地质背景。
本次实习要求掌握稀土元素的计算和作图方法,理解稀土元素的富集程度、分馏程度的地质意义,掌握Eu的亏损与富集的地质背景。
二、实习内容某地区的岩浆岩种类极为发育(表1—1和表1—2),请画出各岩类的稀土配分曲线图、结合稀土元素参数进行地质过程分析。
两种方法所得到的稀土元素参数表1—1 岩浆岩稀土元素成分表(×10-6)注:1-橄榄苏长岩,2-钾长花岗岩,3-H型花岗岩,4-A型花岗岩,5-石英闪长岩(M型花岗岩)。
稀土元素由某单位等离子光谱方法分析。
表1—2 岩浆岩稀土元素成分表(×10-6)注:表中数据由中子活化方法分析一、基本原理稀土元素通常指的是镧系元素的(La 、Ce 、Pr 、Nd 、Pm 、Sm 、Eu 、Gd 、Tb 、Dy 、Ho 、Er 、Tm 、Yb 、Lu ,其中Pm 在自然界无天然同位素),由于稀土元素的原子结构、原子半径、离子半径(RE 3+变化于0.86Å—1.14Å)及化合价的相似性使得它们在自然界往往紧密共生。
因镧系收缩造成稀土元素的离子半径从La →Lu 逐渐减小,Ce 和Eu 在自然界具有变价(Ce 4+、Eu 2+)的特征,以及介质(岩石、土壤、矿物等)的不同而引起稀土元素在自然界的分离。
为便于研究稀土元素在某介质中的分配型式,必须排除“偶数规则”的影响,最常用的方法是利用球粒陨石丰度值对稀土元素进行标准化。
这里向大家推荐W.V .Boynton(1984)提出的球粒陨石丰度值(×10-6):La 0.31;Ce 0.808;Pr 0.122;Nd 0.6;Sm 0.195;Eu 0.0735;Gd 0.259;Tb 0.047;Dy 0.322;Ho 0.0718;Er 0.21;Tm 0.0324;Yb 0.209;Lu 0.0322。
表中数据为辉长岩、沂南花岗岩7件样品的REE组成(ppm)1,用球粒陨石值对样品的REE组成进行标准化,作其分配模式图,对图件中表达的地球化学特征进行说明;2,计算各样品的Eu/Eu*,并对其地球化学意义进行说明;,3,假设辉长岩中造岩矿物的组成为:CPX45%,PL35%,OL20%。
结合课件中提供的REE在矿物和熔体间的分配系数,计算与辉长岩平衡的熔体的REE组成,并作REE配分模式图。
解答:1,如下表1-1为常用球粒陨石和原始地幔稀土元素组成,我采用C1 球粒陨石数据(Sun & McDonough,1989)对样品的REE进行标准化,得到了下表1-2,再根据对样品REE标准化的数据进行作样品的分配模式图,得到了图1-1表1-1表1-2图1-1通过对样品配分模式图进行分析可知道,沂南花岗岩样品中富集轻稀土元素而亏损重稀土元素,这与花岗岩的成分岩性有一定关系,花岗岩为酸性岩,主要矿物为长石、石英和云母,而这矿物主要富集轻稀土元素,并且从图中可以看出Eu的负异常,说明在岩浆结晶形成花岗岩之前就有长石结晶出来,使岩浆呈Eu 的负异常。
辉长岩的样品配分模式图表现出来的富集轻稀土元素没有沂南花岗岩样品那么显著,富集程度较低,这也与辉长岩的岩性成分有关,辉长岩中主要矿物为辉石和长石,长石富集轻稀土元素较为显著,而辉石相对较富集重稀土元素,但程度不是很显著,所以岩石总体表现较为富集轻稀土元素,但程度不是那么显著。
并且从图中可以看出Eu的正异常,只是不是很显著,说明长石结晶出来使岩石呈Eu的正异常。
2,Eu/Eu*=2×Eu/(Sm+Gd)(其中Eu、Sm、Gd都是为球粒陨石标准化值),根据这个求出各样品中的Eu/Eu*,如下表1-3:表1-3由上表中的Eu/Eu*值可知的辉长岩为Eu的正异常,说明在岩浆结晶时,长石和辉石先结晶出去形成辉长岩,而长石中富集Eu元素,所以在辉长岩中Eu 为正异常,而后期岩浆因长石的结晶分异而呈Eu的负异常,并且逐渐向酸性过渡,结晶形成酸性岩。
元素在地球中的演化特征及演化规律摘要:元素在地球中特别是在上地壳中的演化规律,前人已经研究的很多了,相关的文献也异常丰富。
而利用稀土元素演化特征来探讨岩石、矿物甚至矿床成因,是地质科研及找矿工作的一个有效手段,作者也刚刚学习过《地球化学》这门课,因此结合所学和搜集的相关资料,本文将重点探讨稀土元素在地球演化中的特征,演化规律以及应用。
关键词:稀土元素、演化特征、规律稀土就是化学元素周期表中镧系元素——镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的元素——钪(Sc)和钇(Y)共17种元素,称为稀土元素。
其中61号元素Pm(钷)同位素衰变太快,自然界尚未测定出来,故应用中只利用其14个元素。
由于同族元素钇(Y)的地球化学性质与稀土元素相似且密切伴生,故通常把钇也归于此类,用REE或TR 示之。
稀土元素多数呈银灰色,有光泽,晶体结构多为HCP或FCC。
性质较软,在潮湿空气中不易保存,易溶于稀酸。
原子价主要是正三价(铈正四价较稳定,镨和铽也有极个别的四价氧化物,钐、铕、镱有二价化合物),能形成稳定的配合物及微溶于水的草酸盐、氟化物、碳酸盐、磷酸盐及氢氧化物等。
在三价稀土氧化物中,氧化镧的吸水性和碱性与氧化钙相似,其余则依次转弱。
三价稀土的化学性质除钪的差异较显著外,其余都很相似,所以分离较难。
一般把稀土元素分为两组,即La(57)-Eu(63)为轻稀土或铈族稀土,用LREE示之;Gd(64)-Lu(71)为重稀土,一般把钇(Y)计入重稀土,故又称钇族稀土,用HREE 或Y示之。
但也有把稀土元素划分为三组的,即轻稀土(LREE,La-Nd)、中稀土(MREE,Sm-Ho)及重稀土(HREE,Er-Lu),但一般均采用二分法2常用稀土元素特征指数此处只列出了常用稀土元素特征指数的种类、计算方法及其指示意义,致于造成其变异的原因,将有专文报道。
表中数据为山东济南辉长岩、沂南花岗岩7件样品的REE组成(ppm)1,用球粒陨石值对样品的REE组成进行标准化,作其分配模式图,对图件中表达的地球化学特征进行说明;2,计算各样品的Eu/Eu*,并对其地球化学意义进行说明;,3,假设辉长岩中造岩矿物的组成为:CPX45%,PL35%,OL20%。
结合课件中提供的REE在矿物和熔体间的分配系数,计算与辉长岩平衡的熔体的REE组成,并作REE配分模式图。
解答:1,如下表1-1为常用球粒陨石和原始地幔稀土元素组成,我采用C1 球粒陨石数据(Sun & McDonough,1989)对样品的REE进行标准化,得到了下表1-2,再根据对样品REE标准化的数据进行作样品的分配模式图,得到了图1-1表1-1表1-2图1-1通过对样品配分模式图进行分析可知道,沂南花岗岩样品中富集轻稀土元素而亏损重稀土元素,这与花岗岩的成分岩性有一定关系,花岗岩为酸性岩,主要矿物为长石、石英和云母,而这矿物主要富集轻稀土元素,并且从图中可以看出Eu的负异常,说明在岩浆结晶形成花岗岩之前就有长石结晶出来,使岩浆呈Eu 的负异常。
济南辉长岩的样品配分模式图表现出来的富集轻稀土元素没有沂南花岗岩样品那么显著,富集程度较低,这也与辉长岩的岩性成分有关,辉长岩中主要矿物为辉石和长石,长石富集轻稀土元素较为显著,而辉石相对较富集重稀土元素,但程度不是很显著,所以岩石总体表现较为富集轻稀土元素,但程度不是那么显著。
并且从图中可以看出Eu的正异常,只是不是很显著,说明长石结晶出来使岩石呈Eu的正异常。
2,Eu/Eu*=2×Eu/(Sm+Gd)(其中Eu、Sm、Gd都是为球粒陨石标准化值),根据这个求出各样品中的Eu/Eu*,如下表1-3:表1-3由上表中的Eu/Eu*值可知山东济南的辉长岩为Eu的正异常,说明在岩浆结晶时,长石和辉石先结晶出去形成辉长岩,而长石中富集Eu元素,所以在辉长岩中Eu为正异常,而后期岩浆因长石的结晶分异而呈Eu的负异常,并且逐渐向酸性过渡,结晶形成酸性岩。
稀土元素原始地幔标准化计算公式
稀土元素原始地幔标准化计算公式的研究是地球化学领域的重要课题之一。
稀
土元素是指具有原子序数为57-71的一系列元素。
它们在地壳中分布广泛,对于地
球科学和地质学的研究具有重要意义。
原始地幔标准化计算公式是一种方法,用于研究地球内部的化学成分变化,特别是地幔的成分。
原始地幔标准化计算公式主要基于稀土元素的浓度比值。
它的计算公式如下:
X/Y = (X/Y)sample / (X/Y)chondrite
其中,X和Y代表两种稀土元素,(X/Y)sample代表样本中X和Y的浓度比值,(X/Y)chondrite代表矿物群球粒陨石中X和Y的浓度比值。
原始地幔标准化计算公式的目的是将地球内部的化学成分与标准的地质样本进
行比较。
通过这种比较,地球化学家可以深入了解地球内部的物质循环、岩石形成和地球演化过程。
标准化计算公式使得不同地质样品之间的比较更加准确,消除了样品大小和地球历史的影响。
在稀土元素原始地幔标准化计算公式中,矿物群球粒陨石被选择为标准样品,
因为它们被认为是距离地幔最接近的岩石类型。
通过将地球内部的样品与矿物群球粒陨石进行比较,我们可以确定地球内部各个区域的化学差异。
总而言之,稀土元素原始地幔标准化计算公式是一种重要的地球化学计算方法,用于研究地球内部的化学成分变化。
通过这种方法,我们可以更深入地了解地球的演化过程和内部地质活动。
表中数据为辉长岩、沂南花岗岩7件样品的REE组成(ppm)
1,用球粒陨石值对样品的REE组成进行标准化,作其分配模式图,对图件中表达的地球化学特征进行说明;
2,计算各样品的Eu/Eu*,并对其地球化学意义进行说明;
,3,假设辉长岩中造岩矿物的组成为:CPX45%,PL35%,OL20%。
结合课件中提供的REE在矿物和熔体间的分配系数,计算与辉长岩平衡的熔体的REE组成,并作REE配分模式图。
解答:
1,如下表1-1为常用球粒陨石和原始地幔稀土元素组成,我采用C1 球粒陨石数据(Sun & McDonough,1989)对样品的REE进行标准化,得到了下表1-2,再根据对样品REE标准化的数据进行作样品的分配模式图,得到了图1-1
表1-1
表1-2
图1-1
通过对样品配分模式图进行分析可知道,沂南花岗岩样品中富集轻稀土元素而亏损重稀土元素,这与花岗岩的成分岩性有一定关系,花岗岩为酸性岩,主要矿物为长石、石英和云母,而这矿物主要富集轻稀土元素,并且从图中可以看出Eu的负异常,说明在岩浆结晶形成花岗岩之前就有长石结晶出来,使岩浆呈Eu 的负异常。
辉长岩的样品配分模式图表现出来的富集轻稀土元素没有沂南花岗岩样品那么显著,富集程度较低,这也与辉长岩的岩性成分有关,辉长岩中主要矿物为辉石和长石,长石富集轻稀土元素较为显著,而辉石相对较富集重稀土元素,
但程度不是很显著,所以岩石总体表现较为富集轻稀土元素,但程度不是那么显著。
并且从图中可以看出Eu的正异常,只是不是很显著,说明长石结晶出来使岩石呈Eu的正异常。
2,Eu/Eu*=2×Eu/(Sm+Gd)(其中Eu、Sm、Gd都是为球粒陨石标准化值),根据这个求出各样品中的Eu/Eu*,如下表1-3:
表1-3
由上表中的Eu/Eu*值可知的辉长岩为Eu的正异常,说明在岩浆结晶时,长石和辉石先结晶出去形成辉长岩,而长石中富集Eu元素,所以在辉长岩中Eu 为正异常,而后期岩浆因长石的结晶分异而呈Eu的负异常,并且逐渐向酸性过渡,结晶形成酸性岩。
可以推测这样品为同源岩浆所形成,主要是形成时间不同导致Eu异常不同和岩性的不同。
3,根据课件可查出REE在CPX、PL、OL等矿物和熔体间的分配系数,如下表1-4:
表1-4
在根据总分配系数的公式计算出REE在辉长岩中的总分配系数,如下表1-5:
表1-5
再根据固体、熔体和总分配系数之间的关系式计算出熔体中REE的组成,得到数据如下表1-6,再C1 球粒陨石数据(Sun & McDonough,1989)对熔体的REE进行标准化用计算结果如下表1-7,对其有进行作配分模式图,得到图1-2:
MJN0608 MJN0607 MJN0609 MJN0606
La 58.023 70.465 75.465 210.465 Ce 60.784 74.510 74.020 199.020 Nd 27.833 34.667 33.267 72.333 Sm 5.264 6.091 5.839 11.264 Eu 0.827 0.869 1.148 1.644 Tb 0.713 0.778 0.778 1.382 Er 2.037 2.287 2.453 4.158 Yb 8.120 8.803 9.744 17.863 Lu 0.325 0.325 0.375 0.7
表1-6
MJN0608 MJN0607 MJN0609 MJN0606 La 244.824 297.321 318.418 888.039 Ce 99.321 121.748 120.947 325.195 Nd 59.600 74.231 71.235 154.889 Sm 34.408 39.817 38.164 73.623 Eu 14.264 14.977 19.791 28.349 Tb 19.057 20.790 20.790 36.960 Er 12.311 13.818 14.823 25.124 Yb 47.763 51.785 57.315 105.078
Lu 12.795 12.795 14.764 27.560
表1-7
图1-2。