弹支干摩擦阻尼器在线控制转子失稳
- 格式:pdf
- 大小:270.16 KB
- 文档页数:4
第22卷第1期2024年1月动力学与控制学报J O U R N A L O FD Y N AM I C SA N DC O N T R O LV o l .22N o .1J a n .2024文章编号:1672G6553G2024G22(1)G043G009D O I :10.6052/1672G6553G2023G022㊀2023G02G06收到第1稿,2023G03G06收到修改稿.∗国家自然科学基金资助项目(12172307,12102444),N a t i o n a lN a t u r a l S c i e n c eF o u n d a t i o no fC h i n a (12172307,12102444).†通信作者E Gm a i l :181042y y@163.c o m 弹性环挤压油膜阻尼器支撑下的柔性转子系统动力学分析∗赵先锋1㊀杨洋1†㊀王子尧2㊀路宽3㊀曾劲1㊀杨翊仁1(1.西南交通大学力学与航空航天学院,成都㊀610031)(2.中国航空发动机研究院,北京㊀101304)(3.西北工业大学力学与土木建筑学院,西安㊀710072)摘要㊀弹性环挤压油膜阻尼器(E l a s t i c r i n g s q u e e z e f i l m d a m p e r ,E R S F D )具有良好的支撑作用和减振效果,但由于其结构和流场耦合行为极为复杂,使得已有的物理模型难以完整表现出E R S F D 的力学特性.为了进一步探究E R S F D 的力学机理,本文借助有限元仿真平台,采用双向流固耦合的计算方法,剖析弹性环与油膜之间的相互作用,获取E R S F D 中油膜压力的分布规律.在此基础上,利用最小二乘法进一步拟合出E R S F D 等效刚度㊁等效阻尼与转子轴颈扰动位移的映射关系,并将其分别引入柔性转子系统动力学模型中.通过数值计算研究了E R S F D 支撑下柔性转子系统的振动响应,分别给出了不同转速下转子系统的响应分岔图㊁轴心轨迹等.同时,通过对比分析,进一步揭示了E R S F D 所诱发出的转子系统丰富的非线性动力学行为,有助于对E R S F D 轴承支撑特性的理解.关键词㊀弹性环挤压油膜阻尼器,㊀转子系统,㊀双向流固耦合,㊀动力学特性中图分类号:O 313文献标志码:AD y n a m i cC h a r a c t e r i s t i c s o f F l e x i b l eR o t o r S y s t e mS u p p o r t e db yE l a s t i cR i n g S q u e e z eF i l m D a m pe r ∗Z h a oX i a n f e n g 1㊀Y a n g Y a n g 1†㊀W a n g Z i y a o 2㊀L uk u a n 3㊀Z e n g J i n 1㊀Y a n g Yi r e n 1(1.S c h o o l o fM e c h a n i c s a n dA e r o s p a c eE n g i n e e r i n g ,S o u t h w e s t J i a o t o n g U n i v e r s i t y ,C h e n g d u ㊀610031,C h i n a )(2.C h i n aR e s e a r c h I n s t i t u t e o fA e r o GE n g i n e ,B e i j i n g㊀101304,C h i n a )(3.N o r t h w e s t e r nP o l y t e c h n i c a lU n i v e r s i t y ,S c h o o l o fM e c h a n i c s ,C i v i l E n g i n e e r i n g an dA r c h i t e c t u r e ,X i a n ㊀710072,C h i n a )A b s t r a c t ㊀E l a s t i cr i n g s q u e e z ef i l m d a m p e r (E R S F D )h a sa g o o ds u p p o r t i n g an dv i b r a t i o nr e d u c t i o n e f f e c t .H o w e v e r ,d u e t o i t s c o m p l e x s t r u c t u r e a n d f l o wf i e l d c o u p l i n g b e h a v i o r ,e x i s t i n gp h y s i c a lm o d e l s a r ed i f f i c u l t t o f u l l y d e m o n s t r a t e t h em e c h a n i c a l c h a r a c t e r i s t i c so fE R S F D.T of u r t h e re x pl o r e t h e m e Gc h a n i c a lm e c h a n i s mo fE R S F D ,t h i s p a p e r a n a l y z e s t h e i n t e r a c t i o nb e t w e e n e l a s t i c r i n g an do i l f i l m w i t h t h e a i do f f i n i t e e l e m e n t s i m u l a t i o n p l a t f o r ma n db i d i r e c t i o n a l f l u i d Gs t r u c t u r e c o u p l i n g ca l c u l a t i o n m e t h Go d ,a n dob t a i n s t h e d i s t r i b u t i o n l a wo f o i l f i l m p r e s s u r e i n t h eE R S F D.O n t h i s b a s i s ,t h em a p p i n g r e l a Gt i o n s h i p b e t w e e n t h e e q u i v a l e n t s t i f f n e s s a n d e q u i v a l e n t d a m p i n g o f E R S F Da n d t h e d i s t u r b a nc ed i s p l a ce Gm e n t of t h e r o t o r j o u r n a l i s f u r t h e r f i t t e db y u s i ng th e l e a s t s q u a r em e t h o d .T h e n t h e e q ui v a l e n tm o d e l i s f u r t h e r i n t r o d u c e d i n t o t h e d y n a m i cm o d e l o f t h e f l e x i b l e r o t o r s y s t e m.T h e v i b r a t i o n r e s po n s e o f f l e x i b l e r o t o r s y s t e ms u p p o r t e db y E R S F D i s s t u d i e db y n u m e r i c a l c a l c u l a t i o n ,a n d t h e r e s po n s e b i f u r c a t i o nd i a Gg r a ma n dw h i r l i n g o r b i to f t h er o t o rs y s t e m u n d e rd i f f e r e n ts pe e d sa r ec o n d u c t e d .A t t h es a m et i m e ,动㊀力㊀学㊀与㊀控㊀制㊀学㊀报2024年第22卷t h r o u g hc o m p a r a t i v e a n a l y s i s,t h e r i c hn o n l i n e a rd y n a m i cb e h a v i o r so f r o t o r s y s t e mi n d u c e db y E R S F D a r e f u r t h e r r e v e a l e d,w h i c h i s h e l p f u l t ou n d e r s t a n d t h e s u p p o r t i n g c h a r a c t e r i s t i c s o fE R S F D.K e y w o r d s㊀e l a s t i c r i n g s q u e e z e f i l md a m p e r,㊀r o t o r s y s t e m,㊀b i d i r e c t i o n a l f l u i dGs t r u c t u r e c o u p l i n g,㊀d y n a m i c c h a r a c te r i s t i c s引言弹性环挤压油膜阻尼器(E R S F D)充分结合挤压油膜阻尼器(S F D)减振特性和支承弹性特点,被广泛应用于航空发动机转子系统中[1].对于传统的挤压油膜阻尼器而言,当转子涡动较为严重时,极易诱发油膜振荡㊁振动突跳等不利现象,对转子系统的平稳运行产生不良影响[2].相较于此,弹性环挤压油膜阻尼器在油膜间隙中引入了附加的弹性环结构,并且弹性环内外侧均具有交错分布的弧形凸台,能够将轴承外环与轴承座之间的间隙分割成多个独立的油膜区域,有效避免油膜振荡的发生.其中,靠近轴承座的部分称其为外油膜,而与之相反的称其为内油膜.当润滑油受到挤压产生油膜力时,该作用力会传递到弹性环上,继而引起结构变形.同时弹性环变形亦会引起油膜间隙发生变化,导致油膜力发生改变.由此可以发现,弹性环挤压油膜阻尼器中存在典型的双向流固耦合现象.国内外学者对E R S F D进行了广泛研究.周明等[3]基于流体动压理论,提出了弹性环挤压油膜的减振机理.X u等[4]利用有限元法研究了E R S F D渗油孔的分布对油膜阻尼特性的影响,探讨了油膜力与孔口位置在轴向和圆周方向的关系,结果表明:孔口分布可以调节阻尼系数.周海仑等[5]采用双向流固耦合原理及动网格技术,计算了内外层油膜的压力,开展了凸凹台数量㊁几何尺寸和油膜间隙对油膜动力特性的影响规律.李岩等[6]研究了配合关系对油膜阻尼器减振特性的影响,实验结果表明:弹性环内凸台为过盈配合时可能会导致阻尼器减振失效.王震林等[7]基于厚板理论建立了弹性环的运动方程,采用分时迭代方法将弹性环-油膜的控制方程进行耦合求解,结果显示:刚度主要与弹性环厚度有关,阻尼主要取决于凸台高度.江志敏等[8]采用流固耦合技术模拟二维E R S F D,发现在导流孔处流速较大,并探讨了E R S F D的减振机理以及与传统S F D在减振机理上的行为差异.该结果表明:E R S F D油膜压力呈现出与油腔间隔相关的阶梯状分布.C h e n等[9]研究一种带E R S F D的螺旋锥齿轮传动动力学模型,发现了E R S F D支承具有良好的减振效果.此外,围绕E R S F D支撑下的转子系统动力学特性研究亦取得了一定的研究进展.针对组合支撑的转子结构,罗忠等[10]进行系统性评述,阐明了不同支承的力学特征.P a n g等[11]利用平均法分析了E R S F D轴承参数与转子系统分岔行为的潜在关联.何洪等[12]对E R S F D支承的增压转子动力特性进行研究,分析弹性环阻尼器交叉刚度的影响甚小.H a n等[13]基于半解析法求解E R S F D支承下转子系统动态特征,揭示了油膜特性和突加激励对其影响规律.杨洋等[14]建立了双盘转子模型,研究不平衡故障下碰摩非线性行为.曹磊等[15]研究了E R S F D支承下转子的临界转速,证实影响临界转速的最大因素体现在凸台处的接触状态.李兵等[16]实验探究了弹性环凸台高度㊁供油条件㊁滑油温度和不平衡量等条件下E R S F D的动力学特性,结合转子振动响应,发现弹性环凸台高度较小时,系统的减振特性更为理想.张蕊华等[17]提出了一种挤压油膜阻尼器的刚度分析方法,采用将油膜刚度和外环进行串联得到其等效刚度.熊万里等[18]基于N a v i e rGS t o k e s方程动网格技术,发展了一种计算E R S F D轴承刚度和阻尼的新方法.综上所述,关于E R S F D支撑下柔性转子系统非线性动力学特性的研究尚不充分.针对这一情况,本文首先借助A N S Y S WO R K B E N C H仿真平台对E R S F D进行双向流固耦合分析,辨识出不同轴颈涡动下E R S F D所提供的等效刚度和等效阻尼.在此基础上,将其引入至柔性转子中,进行系统级非线性动力学特性研究,给出不同运行工况下系统的非线性动力学特性.通过对比线性支承和非线性支承,对比分析E R S F D引发的非线性动态特征.研究结果以期为转子系统的结构设计和故障诊断提供一定的技术支持.44第1期赵先锋等:弹性环挤压油膜阻尼器支撑下的柔性转子系统动力学分析1㊀弹性环挤压油膜阻尼器双向流固耦合分析1.1㊀E R S F D 结构建模根据表1给出的某转子系统中弹性环挤压油膜阻尼器(E R S F D )结构参数,利用S O L I DWO R K 进行精细化实体建模,如图1所示.其中,弹性环上依次分布了内外交错的凸台,将油膜形成错落有致的内外两层,且内外层油膜之间通过导流孔连接.表1㊀E R S F D 结构参数表T a b l e 1㊀S t r u c t u r e p a r a m e t e r s o fE R S F D结构参数数值内外凸台数8导流孔数8轴颈半径/mm21.5弹性环厚度/mm 1.5渗油孔直径/mm1阻尼器外圈半径/mm 23.4阻尼器轴向长度/mm 15弹性环凸台高度/mm 0.2弹性环弹性模量/G P a 210弹性环材料密度/k g /m 37850润滑油材料密度/k g /m 31100润滑油动力黏度/P a .S0.027图1㊀E R S F D 结构示意图F i g .1㊀S c h e m a t i c d i a gr a mo fE R S F Ds t r u c t u r e 为获取弹性环挤压油膜阻尼器的支承力学特性,采用双向流固耦合方式进行数值分析,其计算流程图如图2所示.首先将E R S F D 实体模型导入至WO R K B E N C H 中进行切块化网格划分,并结合弹性环结构区域和油膜分布区域进行相关界定,依次定义为S O L I D 和F L U I D 区域.为反映结构和流体之间实时的相互作用,利用T R A N S I E N TS T R U C T U R E 和C F X 进行耦合计算.在当前时间步下,分别对弹性环变形和油膜压力收敛性进行判断,将收敛后结果在耦合系统中进行数据实时交换,并进行总体收敛性判断.倘若结果收敛,则进入下一个时间步计算,否则重复上述计算直至收敛.图2㊀双向流固耦合计算流程图F i g .2㊀C h a r t o f b i d i r e c t i o n a l f l u i d Gs t r u c t u r e c o u p l i n g ca l c u l a t i o n (a)弹性环边界条件(b)油膜边界条件图3㊀E R S F D 流固耦合边界条件F i g .3㊀E R S F Df l u i d Gs t r u c t u r e i n t e r a c t i o nb o u n d a r y co n d i t i o n s 在E R S F D 运行过程中,将弹性环内凸台与转子轴颈进行紧密接触处理,两者接触面上具有相同的运动形式,并且忽略轴颈与内凸台的摩擦效应.54动㊀力㊀学㊀与㊀控㊀制㊀学㊀报2024年第22卷同时,外凸台与阻尼器外壳之间的摩擦亦不予考虑.弹性环边界条件设置如下:(1)弹性环轴向方向施加远程位移约束,限制其轴向和绕三个轴的转动;(2)流体和固体接触面建立流固耦合面,在该面上进行数据传递;(3)弹性环外凸台处施加固定约束;(4)由于转轴受到不平衡激励的作用,轴颈的运动形式以涡动形式为主,不考虑转轴本身的自转,所以施加周期位移激励,以模拟轴颈涡动,其具体表示形式如下:x i n=e i n s i n(ωt)y i n=e i n c o s(ωt)(1)其中,x i n㊁y i n分别为x,y方向位移,e i n表示轴径激励幅度,ω表示转子运行转速.此外,在流体域中边界条件相关设置如下:(1)外层油膜壁面固定;(2)油膜两端进行密封处理; (3)设立相对应的流固耦合面,用于进行流体与固体的数据交换;(4)在内层油膜与轴颈接触处施加相同的位移激励,如图3所示.1.2㊀网格无关性验证本节通过网格无关性来验证所建立的有限元模型的正确性,网格无关性保证网格对结果影响较小.由于润滑油黏度较大,流体模型采用层流模型,残差小于10-4认为收敛,边界条件如上节所述.轴颈激励幅值为0.02mm,时间步长为0.0001s进行计算,得到结果如图4.发现网格数超过20万时对结果影响较小,因此下面的计算采用此套网格.图4㊀最大内,外层油膜压力随网格数量变化规律F i g.4㊀V a r i a t i o n l a wo fm a x i m u mi n n e r o i l f i l m p r e s s u r ew i t h t h em e s hn u m b e r s1.3㊀E R S F D流场及压力分析基于上述双向流固耦合处理,本节着重关注E R S F D流场及压力分布情况.如图5所示的油膜流动矢量图,其中油膜从挤压处流向非挤压处,且在导流孔处出现了较大流速.(a)油膜流场速度云图(b)油膜流场剖面图图5㊀E R S F D中油膜流场分布图F i g.5㊀O i l f i l mf l o wf i e l dd i s t r i b u t i o n i nE R S FD图6㊀不同偏心量下内层油膜力随时间变化规律F i g.6㊀T i m e v a r y i n g l a wo f i n n e r o i l f i l mf o r c e u n d e rd i f fe r e n t e c c e n t r i c i t i es图7㊀不同偏心量下外层油膜力随时间变化规律F i g.7㊀T i m e v a r y i n g l a wo f o u t e r o i l f i l mf o r c e u n d e rd i f fe r e n t e c c e n t r i c i t i e s根据双向流固耦合系统的稳态响应,进一步分析E R S F D中内外层油膜压力分布和弹性环变形64第1期赵先锋等:弹性环挤压油膜阻尼器支撑下的柔性转子系统动力学分析情况.对周期内每时刻内外层油膜压力分布进行面上积分,得到油膜力随时间变化.由图6和图7可知,随着轴颈激励幅度的增加,油膜力波动愈发明显,当达到一定程度时容易出现油膜失稳现象.对一个周期内的油膜压力取平均,可以得到不同激励幅度下的油膜力.如图8所示,当偏心量较小时,E R S F D 油膜力与偏心量呈线性关系,而随着偏心量的增加,两者之间的非线性映射关系逐渐显著,这也意味着当转子系统转速提升到一定程度时,转子支承边界不是理想的线性边界而是更为复杂的非线性边界.对比内外层油膜压力,可以发现在小偏心量情况下,内外层油膜压力较接近,而随着偏心量的增加,内外层油膜压力的差别也将凸显.由于在大偏心量下,外层油膜受挤压的面积更大,且弹性环的位移对外层油膜影响更大.图8㊀内外层油膜力在不同偏心量下的变化规律F i g.8㊀V a r i a t i o no f i n n e r a n do u t e r o i l f i l mf o r c eu n d e r d i f f e r e n t e c c e n t r i c i t i es图9㊀不同偏心量下油膜压力分布及弹性环变形程度F i g .9㊀O i l f i l m p r e s s u r e d i s t r i b u t i o na n d e l a s t i c r i n g de f o r m a t i o nu n d e r d i f f e r e n t e c c e n t r i c i t i e s ㊀㊀为了进一步分析内外层油膜压力分布和弹性环变形随轴颈激励幅度的变化规律,依次令激励幅度分别为:e i n =0.01mm ㊁e i n =0.03mm 和e i n =0.06mm.由图9可知,随着轴颈激励幅度的增加,内外层油膜压力逐渐变大,且最大压力随轴颈位移变化是一种非线性关系.同时,对比内外层油膜压力可以发现,内层油膜的最大压力始终小于外层油膜的最大压力,说明弹性环对内层油膜挤压较大,其次内外层最大压力之间存在一定角度,这是因为弹性环的内外侧凸台交错分布将内外层油膜分隔开来导致.此外,流场采用端封处理,从而内外层油膜压力分布在轴向的分布基本是不变的,这亦说明端封的边界条件是有效的.由于内凸台与轴颈具有相同的涡动位移激励,因此位于内外凸台之间的环74动㊀力㊀学㊀与㊀控㊀制㊀学㊀报2024年第22卷位移最大且呈非对称分布.1.4㊀E R S F D等效刚度和等效阻尼拟合本节利用最小二乘法,对前节获取的双向流固耦合仿真结果进行拟合处理,以此获取E R S F D等效刚度和等效阻尼随轴颈偏心量变化的表达式.结合E R S F D结构特点,由于外层油膜被弹性环分开,且弹性环与轴颈的接触面积较小,故采用弹性元件和阻尼元件串联的方式,刚度大小是利用力与位移的比值确定.对于阻尼不考虑弹性环阻尼,只考虑油膜的阻尼,利用如下表达式计算:C=Fe i nω(2)其中C表示油膜阻尼,F表示油膜力.分析不同偏心量下系统的等效刚度和等效阻尼,如表2所示.显然,随着偏心量的增加,E R S F D 等效刚度和等效阻尼均逐渐增大,且呈现非线性变化现象.表2㊀不同偏心量下E R S F D等效刚度和等效阻尼T a b l e2㊀E q u i v a l e n t s t i f f n e s s a n de q u i v a l e n t d a m p i n g o fE R S F D w i t hd i f f e r e n t e c c e n t r i c i t i e se i n(mm)K e(MN/m)C e(N s/m)0.013.979139.4210.024.104143.7010.034.219147.7860.044.358152.6650.054.515158.2040.064.737164.514利用最小二乘法,对表2中的离散数据进行拟合处理.可进一步得到E R S F D等效支撑力表达式为:K e=-1.413ˑ1022e4i n+2.584ˑ1013e2i n+㊀3.98ˑ106(3)C e=4.097ˑ1013e3i n-1.45ˑ109e2i n+㊀4.27ˑ105e i n+135.3(4)其中,K e和C e分别表示E R S F D的等效刚度和等效阻尼,e i n表示第i个轴颈的径向位移,可表示为:e i n=x2i+y2i(5)其中x i,y i分别是第i个轴承出横向和竖向位移,进一步油膜力可以写为:F x=K e x i c o sα+C e x i c o sαF y=K e y i s i nα+C e y i s i nα{(6)其中c o sα,s i nα计算表达式为:c o sα=x i e i ns i nα=y i e i nìîíïïïï(7)2㊀双盘悬臂转子系统动力学特性分析2.1㊀转子系统动力学建模图10给出了E R S F D支撑下的双盘悬臂转子系统,其中左右转盘分别表示压气盘和涡轮盘,且压气盘存在不平衡故障.图10㊀弹性环挤压油膜阻尼器支撑下的双盘悬臂转子F i g.10㊀S c h e m a t i c d i a g r a mo f d u a lGd i s c c a n t i l e v e r r o t o rs y s t e ms u p p o r t e db y E R S F D将柔性转轴采用欧拉-伯努利梁单元进行有限元离散[14],其中每个梁单元包含2节点,且每个节点包含4个自由度.根据结构特性,将结构分为3个转轴单元和2个转盘单元.考虑到转盘刚度远大于转轴刚度,将压气盘和涡轮盘均视为集中质量块,分别安装在转轴对应节点上.因此,转盘质量矩阵和陀螺矩阵分别表示成: M d=m d00j déëêêùûúú(8) J d=000j péëêêùûúú(9)其中,m d表示转盘质量;j d表示转盘赤道转动惯量;j p表示转盘极转动惯量.根据双盘悬臂转子系统节点划分特点,进行整体结构组装.同时,在对应约束位置处,分别引入线性支撑和E R S F D支撑进行分析.同时,将压气盘不平衡激励纳入广义激励中,继而得到转子系统振动方程,如式(15)所示.M u +C u +K u=Q(10)其中,M表示转子系统质量矩阵;C表示转子系统84第1期赵先锋等:弹性环挤压油膜阻尼器支撑下的柔性转子系统动力学分析阻尼矩阵,其中包含陀螺矩阵;K表示转子系统刚度矩阵,M,C,K为16ˑ16的矩阵;Q表示转子系统广义激励,为16ˑ1的矩阵.2.2㊀转子系统动力学特性分析本节采用数值仿真的方式得到双盘悬臂转子系统压气盘横向响应分岔图,如图11所示,其中横轴是转速ω/(r a d/s),纵轴是压气盘的横向振动位移x p(m).所采用的结构参数如表3所示.表3㊀转子结构参数表T a b l e3㊀S t r u c t u r e p a r a m e t e r s o f r o t o r结构参数数值转轴外径/mm21.5转轴内径/mm11.5弹性模量E/G P a200转盘外径/mm106.2转盘厚度/mm24轴段单元长度L1/mm140轴段单元长度L2/mm501.1轴段单元长度L3/mm101.9转子材料密度/k g/m37850不平衡量/mm0.03在转速满足ωɪ[300r a d/s,1000r a d/s]时,对比分析线性支承和E R S F D支承下转子系统的动态响应差异,其中线性支承下,轴承刚度为3.83ˑ106N/m.由图11(a)可知,在线性支撑条件下,双盘悬臂转子系统在不同转速下始终呈现规则的周期1运动.同时,双盘悬臂转子系统在ω=460r a d/s时发生一阶共振.采用相同的结构参数,在相同支撑位置处,将线性支撑替换为E R S F D.由此可以进一步得到转子系统横向响应分岔图,如图11(b)所示.由于E R S F D使用引入了非线性支撑边界,使得转子系统动态响应中出现明显的非线性现象.当转速较低时,转子系统做规则的周期运动.当转速升至ω=590r a d/s时,转子系统进入拟周期运动.随着转速的进一步提高,由于边界非线性的引入,转子系统响应中发生了明显的滞后跳跃现象.当转速进一步增加时,转子系统由复杂的拟周期运动再次回归到规则的周期运动.此外,由于支撑非线性的引入,转子系统一阶临界转速改为ω=632r a d/s.对比图11(a)和图11(b),从响应幅值上来说,E R SGF D能够极大减小转子的振幅,因此E R S F D的使用,可能减轻碰摩的发生.(a)线性支撑边界(b)E R S F D支撑边界图11㊀双盘悬臂转子系统响应分岔图F i g.11㊀B i f u r c a t i o nd i a g r a mo f d u a lGd i s c c a n t i l e v e r r o t o r s y s t e m(a)转子轴心轨迹(b)转子频谱图图12㊀线性支撑下转子系统在ω=600r a d/s时振动响应F i g.12㊀V i b r a t i o nb e h a v i o r o f r o t o r s y s t e m w i t h l i n e a rs u p p o r t a tω=600r a d/s94动㊀力㊀学㊀与㊀控㊀制㊀学㊀报2024年第22卷(a)ω=600r a d/s(b)ω=720r a d/s图13㊀E R S F D支撑下转子系统在不同转速下轴心轨迹F i g.13㊀W h i r l i n g o r b i t o f r o t o r s y s t e m w i t hE R S F Ds u p p o r ta t d i f f e r e n t r o t a t i o n a l s p e e d s为了进一步对比分析线性支撑和E R S F D支撑下双盘悬臂转子系统在不同转速下的振动响应差异,选取ω=600r a d/s和ω=720r a d/s绘制压气盘轴心轨迹和频谱图,如图12,13所示.在线性支撑下,转子系统轴心轨迹呈现出规则的圆形,且频谱图中仅有单一的激励频率.而在E R S F D支撑下,转子系统的轴心轨迹由复杂的花瓣形构成,呈现典型的拟周期特征.此外,在ω=720r a d/s时,转子系统轴心轨迹呈现出非规则的椭圆形状.3㊀结论本文以弹性环挤压油膜阻尼器(E R S F D)为研究对象,采用双向流固耦合的方式数值分析了不同轴颈激励幅度下内外层油膜压力分布情况和弹性环变化规律.随后,通过最小二乘法进一步拟合出E R S F D的等效约束刚度和等效约束阻尼.在此基础上,将其引入至双盘悬臂转子系统中,对比分析线性支撑和E R S F D支撑下系统动力学响应差异.相应地,主要结论可概述如下:(1)通过对E R S F D油膜流场分布分析,发现导流孔处存在明显的高流速集中现象,且从油膜挤压处沿着油膜表面进行内外层流体交换.(2)随着扰动激励幅度的增加,内外层油膜压力均明显提高且存在明显的油膜振荡现象,同时外层油膜刚度始终大于内层油膜刚度.(3)相比于线性支撑条件,E R S F D支撑下双盘悬臂转子系统出现明显的非线性振动现象,如共振滞后和跳跃现象等.同时,对比相同转速下系统的振动幅值,E R S F D起到了明显的振动抑制效果.参考文献[1]Z HA N G W,D I N G Q.E l a s t i c r i n g d e f o r m a t i o na n d p e d e s t a l c o n t a c t s t a t u s a n a l y s i s o f e l a s t i c r i n gs q u e e z e f i l m d a m p e r[J].J o u r n a l o fS o u n da n d V iGb r a t i o n,2015,346:314-327.[2]崔颖,罗乔丹,邱凯,等.涨圈密封挤压油膜阻尼器流场与阻尼特性[J].航空动力学报,2021,36(12):2474-2481.C U IY,L U O Q D,Q I U K,e ta l.F l o wf i e l da n dd a m p i n g c h a r a c te r i s t i c s of p i s t o n r i ng s e a l e d s q u e e z ef i l m d a m p e r[J].J o u r n a l o f A e r o s p a c e P o w e r,2021,36(12):2474-2481.(i nC h i n e s e) [3]周明,李其汉,晏砺堂.弹性环式挤压油膜阻尼器减振机理研究[J].航空动力学报,1998,13(4):403-407+459.Z HO U M,L i Q H,Y a nLT.S t u d y o n v i b r a t i o n r eGd u c t i o n me c h a n i s m o fe l a s t i cr i n g s q u e e z eo i lf i l md a m pe r[J].J o u r n a l o fA e r o s p a c eP o w e r,1998,13(4):403-407+459.(i nC h i n e s e)[4]X U Y X,C H E N X,Z O UJB,e ta l.I n f l u e n c eo f o r i f i c ed i s t r i b u t i o no nt h ec h a r a c t e r i s t i c so fe l a s t i cr i n gGs q u e e z e f i l m d a m p e r s f o r f l y w h e e l e n e r g yGs t o rGa g e s y s t e m[J].I E E E T r a n s a c t i o n so nP l a s m aS c iGe n c e,2013,41(5):1272-1279.[5]周海仑,张晨帅,艾延廷,等.弹性环式挤压油膜阻尼器的流固耦合建模及动力特性分析[J].机械工程学报,2020,56(20):195-205.Z HO U H L,Z HA N GCS,A IYT,e t a l.S t u d y o nd y n a m i cc h a r a c te r i s t i c sa n d m o d e l i n g of e l a s t i cr i n gs q u e e z e f i l md a m p e r b a s e d o n f l u i dGs t r u c t u r e i n t e r a cGt i o n[J].J o u r n a l o fM e c h a n i c a lE n g i n e e r i n g,2020,56(20):195-205.(i nC h i n e s e)[6]李岩,廖眀夫,王四季.配合关系对弹性环式挤压油膜阻尼器减振特性的影响[J].振动与冲击,05第1期赵先锋等:弹性环挤压油膜阻尼器支撑下的柔性转子系统动力学分析2020,39(11):232-238.L IY,L I A O M F,WA N GSJ.E f f e c t o nv i b r a t i n ga t t e n u a t i o nb y t h ef i to fe l a s t i cr i n g s q u e e z ef i l md a m pe r[J].J o u r n a l o fV i b r a t i o na n dS h o c k,2020,39(11):232-238.(i nC h i n e s e)[7]王震林,刘占生,张广辉,等.基于厚板的弹性环式挤压油膜阻尼器建模及动力学特性系数识别[J].航空动力学报,2019,34(3):635-642.WA N GZL,L I U ZS,Z HA N G G H,e ta l.N uGm e r i c a lm o d e l l i n g o f e l a s t i c r i n g s q u e e z e f i l md a m p e rb a s e do nt h ic k p l a t ea n df o r c ec o e f f i c i e n t ide n t if i c aGt i o n[J].J o u r n a l o fA e r o s p a c eP o w e r,2019,34(3):635-642.(i nC h i n e s e)[8]江志敏,高雄兵,张鹏.弹性环式挤压油膜阻尼器流固耦合计算[J].航空发动机,2019,45(5):26-30.J I A N GZ M,G A OXB,Z HA N GP.F l u i dGs t r u c t u r ei n t e r a c t i o n c a l c u l a t i o n o fe l a s t i cr i n g s q u e e z ef i l md a m pe r[J].A e r o e n g i n e,2019,45(5):26-30.(i nC h i n e s e)[9]C H E N W T,C H E NSY,HU Z H,e t a l.An o v e ld y n a m i cm o de lf o r t h e s p i r a l b e v e lg e a r d r i v ew i th eGl a s t i c r i n g s q u e e z e f i l m d a m p e r s[J].N o n l i n e a rD yGn a m i c s,2019,98(2):1081-1105.[10]罗忠,王晋雯,韩清凯,等.组合支承转子系统动力学的研究进展[J].机械工程学报,2021,57(7):44-60.L U OZ,WA N GJW,HA N Q K,e t a l.R e v i e wo nd y n a m i c s o f t he c o m b i n e d s u p p o r tGr o t o r s y s t e m[J].J o u r n a l o fM e c h a n i c a l E n g i n e e r i n g,2021,57(7):44-60.(i nC h i n e s e)[11]P A N G GY,C A OSQ,C H E N YS,e t a l.S t u d y o n v i b r a t i o na n db i f u r c a t i o no f a na e r o e n g i n e r o t o r s y sGt e m w i t h e l a s t i c r i n g s q u e e z e f i l md a m p e r[J].S h o c ka n dV ib r a t i o n,2021,2021:4651339.[12]何洪,王世琥,王连群,等.弹性环阻尼器对涡轮增压器转子动力性能影响研究[J].车用发动机,2016(4):70-74+81.H E H,WA N GS H,WA N G L Q,e t a l.I n f l u e n c eo f e l a s t i c r i n g d a m p e r o n p o w e r p e r f o r m a n c eo f t u rGb oc h a r g e r r o t o r[J].V e h i c l eE n g i n e,2016(4):70-74+81.(i nC h i n e s e)[13]HA NZF,MAZS,Z HA N G W,e t a l.D y n a m i c aGn a l y s i so fa ne l a s t i cr i n g s q u e e z ef i l m d a m p e rs u pGp o r t e d r o t o r u s i n g a s e m iGa n a l y t i cm e t h o d[J].E n g iGn e e r i n g A p p l i c a t i o n s o f C o m p u t a t i o n a l F l u i d M eGc h a n i c s,2020,14(1):1263-1278.[14]杨洋,曹登庆,王德友,等.双盘悬臂转子的不平衡-定点碰摩耦合故障研究[J].航空动力学报,2016,31(2):307-316.Y A N G Y,C A O D Q,WA N GD Y,e t a l.S t u d y o ni m b a l a n c eGf i x e d p o i n t r u b b i n g c o u p l i n g f a u l t so f d uGa lGd i s cc a n t i l e v e rr o t o r[J].J o u r n a lo f A e r o s p a c eP o w e r,2016,31(2):307-316.(i nC h i n e s e) [15]曹磊,高德平,江和甫.弹性环挤压油膜阻尼器-转子系统临界转速特性[J].推进技术,2008,29(2):235-239.C A O L,G A OD P,J I A N G H F.I n v e s t i g a t i o no nc r i t i c a l s p e ed c h a r a c te r i s t i c s of e l a s t i c r i ng S F DGr o t o rs y s t e m[J].J o u r n a l o f P r o p u l s i o n T e c h n o l o g y,2008,29(2):235-239.(i nC h i n e s e)[16]李兵,程定春,江志敏.弹性环式挤压油膜阻尼器-转子系统动力特性试验研究[J].燃气涡轮试验与研究,2015,28(4):19-22.L I B,C H E N GDC,J I A N GZ M.E x p e r i m e n t s t u d yo n d y n a m i cc h a r a c t e r i s t i c s o fe l a s t i cr i n g s q u e e z ef i l md a m p e r r o t o r s y s t e m[J].G a sT u r b i n eE x p e r iGm e n t a n dR e s e a r c h,2015,28(4):19-22.(i nC h iGn e s e)[17]张蕊华,姜洪源,夏宇宏,等.金属橡胶挤压油膜阻尼器刚度分析[J].湖南科技大学学报(自然科学版),2009,24(1):28-31.Z HA N G R H,J I A N G H Y,X I A Y H,e t a l.R eGs e a r c ho n s t i f f n e s s o f s q u e e z e f i l md a m p e rw i t hm e tGa l r ub b e r[J].J o u r n a lo fH u n a n U n i v e r s i t y o fSc iGe n c e&T e c h n o l o g y(N a t u r a l S c i e n c e E d i t i o n),2009,24(1):28-31.(i nC h i n e s e)[18]熊万里,侯志泉,吕浪,等.基于动网格模型的液体动静压轴承刚度阻尼计算方法[J].机械工程学报,2012,48(23):118-126.X I O N G W L,HO UZQ,L V L,e t a l.M e t h o d f o rc a l c u l a t i n g s t i f f n e s sa n dd a m p i n g c oef f i c i e n t so fh yGb r i db e a r i n g sb a s e do n d y n a m ic m e s h m ode l[J].J o u r n a l o f M e c h a n i c a lE n g i n e e r i n g,2012,48(23):118-126.(i nC h i n e s e)15。
折返式可控弹支干摩擦阻尼器设计及减振试验研究宋明波; 廖明夫; 王四季【期刊名称】《《振动与冲击》》【年(卷),期】2019(038)014【总页数】5页(P18-22)【关键词】干摩擦阻尼器; 折返式弹支; 转子; 振动控制【作者】宋明波; 廖明夫; 王四季【作者单位】中国航发湖南动力机械研究所湖南株洲412002; 西北工业大学动力与能源学院西安710072【正文语种】中文【中图分类】V231.96干摩擦作为一种阻尼耗能形式在众多工程领域获得了成功运用[1-2],如航空发动机、汽轮机转子叶片的减振[3-4]。
弹支干摩擦阻尼器是一种将干摩擦阻尼施加于转子弹性支承处的新型转子减振装置[5-6],用它作为转子的振动主动控制装置在试验室获得了良好的减振效果[7-10]。
然而其面临的一些问题也一直制约着弹支干摩擦阻尼器进一步工程发展,例如电磁作动器结构庞大,需要独立支承等。
近年来智能材料的发展为结构减振设计提供了崭新思路,如半主动控制阻尼基座在发动机上的应用[11],有阻尼智能弹簧在直升机旋翼上的应用等[12],而压电智能结构更是获得了广泛应用,Trindade等[13-14]等介绍了压电-黏弹性材料混合阻尼器的应用与设计,白亮等[15]对压电智能结构振动的控制进行了研究等等。
作者利用压电陶瓷体积小、重量轻、响应快的特点,设计了一种智能材料弹支干摩擦阻尼器,获得了较好的阻尼效果,但结构上仍然保留了作动装置的独立支座[16-17]。
本文在此基础上,将折返式弹性支承与压电陶瓷相结合,设计了一种折返式可控弹支干摩擦阻尼器,该阻尼器彻底取消作动装置的独立支座,结构紧凑,尺寸大大缩小,并通过试验验证了其减振效果。
1 弹支干摩擦阻尼器减振机理带弹支干摩擦阻尼器的转子系统模型如图1所示。
转子通过弹性支承安装,动摩擦片固连于弹性支承,静摩擦片可由作动力推动压紧动摩擦片。
当动摩擦片随弹支一起振动时,动、静摩擦片之间产生相对运动,从而利用摩擦消耗转子系统振动能量。
转子叶盘结构减振方法研究
张洋溢;林蓬成;周春燕
【期刊名称】《上海航天(中英文)》
【年(卷),期】2024(41)1
【摘要】转子叶盘结构在高速和超高速的运行状况下,可能因为失稳而剧烈振动,进而引发严重的安全事故。
增大叶盘结构阻尼是减轻其振动的有效方法之一。
国内外学者针对叶盘结构,开展了大量的研究,为了充分了解叶盘结构减振方法的研究进展,推动相关问题的深入研究,提出了将叶盘结构减振分为干摩擦、内摩擦和其他能量转换方式。
对叶盘结构减振方法的相关研究进展进行了总结,并展望了叶盘结构减振的未来研究方向。
【总页数】12页(P152-163)
【作者】张洋溢;林蓬成;周春燕
【作者单位】北京理工大学宇航学院;北京航天动力研究所
【正文语种】中文
【中图分类】V231.1
【相关文献】
1.轴向柱塞泵配流盘减振结构对压力流量的影响
2.一种改进型的汽车离合器从动盘减振弹簧结构的振动研究
3.轴向柱塞泵配流盘减振结构对压力特性的影响
4.用于含阻尼薄板结构减振的分布式动力吸振器的优化方法研究
5.汽车离合器从动盘减振弹簧的结构改进
因版权原因,仅展示原文概要,查看原文内容请购买。
转子动力学的平衡和稳定性转子动力学是研究旋转机械系统的运动平衡和稳定性的学科。
在工程领域中,转子动力学的研究对于提高转子系统的运行可靠性和性能至关重要。
本文将从转子动力学平衡和稳定性两个方面展开论述。
1. 转子动力学的平衡转子动力学平衡是指转子在旋转过程中各部分的力和力矩之和为零的状态。
转子平衡的主要目标是消除不平衡力和不平衡力矩,以减小振动和噪声,并提高转子系统的工作效率和寿命。
1.1 静不平衡静不平衡是指转子在其自然运行速度下,由于质量分布不均匀而产生的力和力矩不平衡。
产生静不平衡的原因可能是转子制造过程中的质量分布不均匀或者装配过程中的安装偏差等。
通过在转子上增加补偿质量,可以减小或消除静不平衡。
1.2 动不平衡动不平衡是指转子在旋转过程中由于质心与转轴中心线之间有径向距离而产生的力和力矩不平衡。
动不平衡主要是由于转子密度分布不均匀或者转轴弯曲引起的。
通过动平衡技术,可以通过在转子上添加动平衡质量来消除动不平衡。
2. 转子动力学的稳定性转子动力学稳定性是指在特定的工作条件下,转子系统的运动是否保持平衡、稳定并趋向于原始位置。
转子动力学稳定性的研究对于预防转子系统的不稳定振动和失稳现象具有重要意义。
2.1 刚性转子的稳定性刚性转子是指转子在旋转过程中不发生弯曲、挠曲和撞击等现象。
刚性转子的稳定性分析主要涉及到转子的临界转速、共振、失稳等问题。
通过对刚性转子进行固有频率和模态分析,可以预测和避免转子系统的失稳现象。
2.2 弹性转子的稳定性弹性转子是指转子在旋转过程中会发生弯曲、挠曲和撞击等现象。
弹性转子的稳定性分析需要考虑转子的刚度、扭转刚度、挠曲刚度和阻尼等因素。
通过弹性转子的模态分析和振动响应分析,可以评估和改善转子系统的稳定性。
3. 转子动力学的优化为了提高转子系统的平衡和稳定性,有必要进行转子动力学的优化设计。
3.1 材料优化选择适当的材料和加工工艺对于提高转子的平衡和稳定性至关重要。
专利名称:用于切削颤振控制的弹性支承干摩擦调谐质量阻尼器
专利类型:实用新型专利
发明人:王民,昝涛
申请号:CN201020211202.8
申请日:20100521
公开号:CN201739422U
公开日:
20110209
专利内容由知识产权出版社提供
摘要:用于切削颤振控制的弹性支承干摩擦调谐质量阻尼器属于机械技术领域,涉及一种抑制切削加工颤振的阻尼器结构。
阻尼器振子(3)悬臂弹性梁(2)固定于被控对象上,并且位置可调;基座(1)上还设置有悬臂形的双层弹性摩擦片(5),双层弹性摩擦片(5)的一端通过柔性铰链结构(7)与基座(1)连接,另一端与阻尼器振子(3)上表面相接触,设有可调节两层弹性片之间距离的调整螺钉(6),通过调整螺钉(6)可调双层弹性摩擦片(5)整施加在阻尼器振子上的接触压力。
本实用新型通过阻尼器振子阻尼振动和滑动摩擦两种方式进行振动抑制;并使被控机械结构的频率响应函数最大负实部最小,从而最大限度地提高切削系统最大稳定极限切削深度。
在最大限度地提高切削效率的同时,避免切削颤振的发生。
申请人:北京工业大学
地址:100124 北京市朝阳区平乐园100号
国籍:CN
代理机构:北京思海天达知识产权代理有限公司
代理人:吴荫芳
更多信息请下载全文后查看。
转子失稳振动及转子失稳振动镇定器
于潇;廖明夫;杨伸记
【期刊名称】《机械科学与技术》
【年(卷),期】2003(022)005
【摘要】分析了阻尼和支承刚度各向异性对失稳振动的抑制作用, 并提出了一种治理转子失稳振动的简单措施,即在转子系统中引入附加的装置--蜂窝式橡胶镇定器,用以改变转子系统的阻尼和刚度,从而寻求解决转子失稳振动的有效途径.实验结果表明,蜂窝式橡胶镇定器能够对转子系统提供足够的阻尼,进而会起到很好的镇定效果.
【总页数】3页(P758-760)
【作者】于潇;廖明夫;杨伸记
【作者单位】西北工业大学,旋转机械与风能装置测控研究所,西安,710072;西北工业大学,旋转机械与风能装置测控研究所,西安,710072;西北工业大学,旋转机械与风能装置测控研究所,西安,710072
【正文语种】中文
【中图分类】TH703.62
【相关文献】
1.密封激起的转子失稳振动 [J], 廖明夫;杨俐骏;金科
2.圆柱面配合激起的转子失稳振动研究 [J], 谭大力;陈进;廖明夫;王四季
3.300MW机组低压转子-轴承系统振动失稳的分析诊断与处理 [J], 李汝祥;陆颂元
4.转子系统油膜失稳故障的振动实验分析 [J], 韩清凯;任云鹏;刘柯;闻邦椿
5.转子/密封系统失稳振动抑制的动力吸振方法研究 [J], 许琦;牛俊开;姚红良;赵立超;闻邦椿
因版权原因,仅展示原文概要,查看原文内容请购买。