约数与倍数练习29
- 格式:pdf
- 大小:151.52 KB
- 文档页数:3
一.选择题(共31小题)1.在1,2,3,…,99,100这100个自然数中,不是2的倍数,不是3的倍数,且不是5的倍数的数共有k个,则k=()A.25 B.26 C.27 D.282.若非零自然数a,b的最大公约数与最小公倍数之和恰等于a,b的乘积,则()10=()A.1 B.1024 C.2104 D.20163.从1,2,3,…,1000中找n个数,使其中任两个数的和是36的倍数,则n的最大值为()A.25 B.26 C.27 D.284.将2,6,10,14,…中3或5的倍数删去后,剩下的数列(串)中,第90个是()A.354 B.674 C.866 D.9345.13个不同的正整数的和为1615,则它们的公约数的最大值是()A.25 B.21 C.17 D.136.2012的所有正约数的和是()A.3528 B.2607 C.2521 D.20127.1998的不同约数的个数是()A.20 B.16 C.14 D.128.已知自然数a,b,c的最小公倍数为48,而a和b的最大公约数为4,b和的c最大公约数为3,则a+b+c的最小值是()A.55 B.35 C.31 D.309.已知自然数a、b、c满足:①a和b的最小公倍数为24;②a和b的最大公约数为6;③c 和a的最小公倍数为36,则满足上述条件的(a,b,c)共有()组.A.4 B.3 C.2 D.110.在正整数范围内,方程组(x,y)=60,(y,z)=90,[z,x]=360,y≤1000有多少组解其中()、[]分别表示最大公约数和最小公倍数.A.3 B.6 C.12 D.2411.把1,2,3,…,19分成几个组,每组至少1个数,使得有2个数以上的各组中任意2个数的最小公倍数不在同一组,则至少要分多少组()A.9 B.7 C.6 D.512.已知两个自然数a<b,a+b=78,a、b的最小公倍数是[a、b]=252,则b﹣a=()A.50 B.22 C.14 D.613.已知x和y都是自然数,x和y的最大公约数是2,最小公倍数是100,则x2+y2=()A.2516 B.10004C.2516或10004 D.无法计算14.两个失准的时钟上,一昼夜第一个钟快8分钟,第二个钟慢4分钟,当两个时钟都指向标准时间中午12点时,经过T个昼夜之后,它们又同时指向中午12点钟,则T的最小值为()个昼夜.A.120 B.180 C.240 D.36015.某班学生不足50人,在一次数学测验中,有的学生得优,的学生得良,的学生得及格,则不及格的学生有()A.0人B.1人C.3人D.8人16.古人用天干和地支记序,其中天干有10个;甲乙丙丁戊己庚辛壬癸,地支有12个;子丑寅卯辰巳午未申酉戌亥,将天干的10个汉字和地支的12个汉字对应排列成如下两行;甲乙丙丁戊己庚辛壬癸甲乙丙丁戊己庚辛壬癸甲乙丙丁…子丑寅卯辰巳午未申酉戌亥子丑寅卯辰巳午未申酉戌亥…从左向右数,第1列是甲子,第2列是乙丑,第3列是丙寅…,我国的农历纪年就是按这个顺序得来的,如公历2007年是农历丁亥年,那么从今年往后,农历纪年为甲亥年的那一年在公历中()A.是2019年B.是2031年C.是2043年D.没有对应的年号17.用(a,b)表示a,b两数的最大公约数,[a,b]表示a,b两数的最小公倍数,例如(4,6)=2,(4,4)=4.[4,6]=12,[4,4]=4,设a,b,c,d是不相等的自然数,(a,b)=P,(c,d)=Q,[P,Q]=X;[2,6]=M,[c,d]=N,(M,N)=Y.则()A.X是Y的倍数,但X不是Y的约数B.X是Y的倍数或约数都有可能,但X≠YC.X是Y的倍数、约数或X=Y三者必居其一D.以上结论都不对18.2003和3002的最大公约数是()A.1 B.7 C.11 D.1319.360×473和172×361这两个积的最大公约数是()A.43 B.86 C.172 D.420.在正整数1,2,3,…,100中,能被2整除但不能被3整除的数的个数是()A.33 B.34 C.35 D.3721.用长为45cm,宽为30cm的一批砖,铺成一块正方形,至少需要()块.A.6 B.8 C.12 D.1622.2001的正约数的个数是()A.3 B.4 C.6 D.823.所有形如的六位数(a,b,c分别是0~9这十个数之一,可以相同,但a≠0)的最大公约数是()A.1001 B.101 C.13 D.1124.设a与b是正整数,且a+b=33,最小公倍数[a,b]=90,则最大公约数(a,b)=()A.1 B.3 C.11 D.925.三角形三边长a,b,c都是整数,且[a,b,c]=60,(a,b)=4,(b,c)=3(注:[a,b,c]表示a,b,c的最小公倍数,(a,b)表示a,b的最大公约数),则a+b+c的最小值()A.30 B.31 C.32 D.3326.若三个连续自然数的最小公倍数为660,则这三个数分别是()A.9,10,11 B.10,11,12 C.11,12,13 D.12,13,14 27.105的负约数的和等于()A.﹣105 B.﹣87 C.﹣86 D.﹣19228.设a、b为正整数(a>b),p是a、b的最大公约数,q是a、b的最小公倍数,则p,q,a,b的大小关系是()A.p≥q≥a>b B.q≥a>b≥p C.q≥p≥a>b D.p≥a>b≥q 29.两个正数的和是60,它们的最小公倍数是273,则它们的乘积是()A.273 B.819 C.1199 D.191130.下面的四句话中正确的是()A.正整数a和b的最大公约数大于等于aB.正整数a和b的最小公倍数大于等于abC.正整数a和b的最大公约数小于等于aD.正整数a和b的公倍数大于等于ab31.祖孙两人的年龄都是合数,明年他们的岁数相乘是1610,那么祖孙两人今年的年龄分别是()A.70岁、23岁B.69岁、22岁C.115岁、14岁D.114岁、13岁二.填空题(共10小题)32.记20162的所有正约数为d1,d2,…,d m,则++…+=.33.清溪汽车站开设三条线路的公共汽车,①路车每4分钟开出一趟,③路车每6分钟开出一趟,⑦路车每9分钟开出一趟,如果他们是上午7点在汽车站同时开出,则他们下次同时开出的时间是.34.锐角三角形ABC的三边长BC=a,CA=b,AB=c.a、b、c均为整数,且满足如下条件:a、b的最大公约数为2,a+b+c=,则△ABC的周长为.35.记者向五羊初级中学校长询问学生人数,校长回答说不足5000人,其中初一、初二、初三分别占,,,余下的是特别设立的“奥林匹克班”的学生,学校在学生中成立了数学爱好者协会,会员包含了初一学生的,初二学生的,初三学生的,而会员的是“奥林匹克班”的学生,则数学爱好者协会总人数为.36.以()、[]分别表示最大公约数和最小公倍数,则([[(24,60,84),1,20],7,5,3],19)=.37.(+,1994×1995)=.38.设m和n为大于0的整数,且3m+2n=225,如果m和n的最大公约数为15,m+n=.39.用若干条长为1的线段围成一个长方形,长方形的长和宽的最大公约数是7,最小公倍数是7×20.则围成这个长方形最少需要条长为1的线段,它的面积是.40.已知a、b和9的最大公约数为1,最小公倍数为72,则a+b的最大值是41.已知m,n,l都是两位正整数,且它们不全相等,它们的最小公倍数是385,则m+n+l 的最大值是,最小值是.参考答案与试题解析一.选择题(共31小题)1.在1,2,3,…,99,100这100个自然数中,不是2的倍数,不是3的倍数,且不是5的倍数的数共有k个,则k=()A.25 B.26 C.27 D.28【分析】首先求出在1~100的自然数中,2、3、5的倍数分别有多少个,然后求出2和3的公倍数、2和5的公倍数、3和5的公倍数、2、3和5的公倍数分别有多少个,再求出1~100中既不是2的倍数又不是3的倍数也不是5的倍数共有多少个即可.【解答】解:在1~100的自然数中,2的倍数有:100÷2=50(个),3的倍数有:100÷3=33(个)…1,5的倍数有:100÷5=20(个),2和3的公倍数有:100÷6=16(个)…4,2和5的公倍数有:100÷10=10(个),3和5的公倍数有:100÷15=6(个)…10,2、3和5的公倍数有:100÷30=3(个)…10,所以1~100中既不是2的倍数又不是3的倍数也不是5的倍数共有:100﹣(50+33+20)+(16+10+6)﹣3=100﹣103+32﹣3=26(个),即k=26.故选:B.【点评】此题主要考查了约数与倍数,数的整除的特征问题的应用,解答此题的关键是熟练掌握是2、3、5的倍数的特征.2.若非零自然数a,b的最大公约数与最小公倍数之和恰等于a,b的乘积,则()10=()A.1 B.1024 C.2104 D.2016【分析】此题设这两个非零自然数a,b为mx,nx(其中m,n,x都是正整数,且m,n 互质),然后根据题意可得mx•nx=mnx+x,再变形为x=1+,再根据x是正整数进行分析论证得出答案.【解答】解:设这两个非零自然数a,b为mx,nx(其中m,n,x都是正整数,且m,n 互质),所以mx•nx=mnx+x,所以x=1+,∵m,n,x都是正整数,且m,n互质,∴m=n=1,∴x=1+1=2,∴a=b=2,∴()10=()10=210=1024.故选:B.【点评】此题主要考查了学生对最大公约数与最小公倍数之和的理解和掌握.要求学生能正确运用其解答问题.此题较难,是好题.3.从1,2,3,…,1000中找n个数,使其中任两个数的和是36的倍数,则n的最大值为()A.25 B.26 C.27 D.28【分析】不妨设找出的任意三个数为a、b、c,根据条件可推出a、b、c都是18的倍数,进而可得到找出的n个数都是18的倍数.由于找出的任意两个数的和是36的倍数,因此找出的n个数都是18的奇数倍或都是18的偶数倍.然后分别讨论就可解决问题.【解答】解:不妨设找出的任意三个数为a、b、c,由题可得:a+b=36n1①,a+c=36n2②,b+c=36n3③,其中n1、n2、n3是正整数.由①+②﹣③得:2a=36(n1+n2﹣n3),即a=18(n1+n2﹣n3).则a是18的倍数.同理可得:b、c都是18的倍数.由于a、b、c表示任意的三个数,因此找出的n个数都是18的倍数.由于找出的任意两个数的和是36的倍数,因此找出的n个数都是18的奇数倍或都是18的偶数倍.①若找出的n个数都是18的奇数倍,则找出的最大的数可表示为18(2n﹣1).解18(2n﹣1)≤1000得:n≤.所以n取到最大值,为28.②若找出的n个数都是18的偶数倍,则找出的最大的数可表示为18×2n即36n.解36n≤1000得:n≤.所以n取到最大值,为27.综上所述:n的最大值为28.故选:D.【点评】本题注重对推理能力的考查,而证到找出的n个数都是18的倍数是解决本题的关键.4.将2,6,10,14,…中3或5的倍数删去后,剩下的数列(串)中,第90个是()A.354 B.674 C.866 D.934【分析】在数列2,6,10,14,…中3的倍数是3个一循环,5的倍数是5个一循环,3和5的倍数是15个一循环,依此可知15个一循环中3或5的倍数删去后,剩下8个,由于90÷8=11…2,可知是第11个循环的第4个,依此即可求解.【解答】解:观察数列2,6,10,14,…中3的倍数是3个一循环,5的倍数是5个一循环,3和5的倍数是15个一循环,依此可知15个一循环中3或5的倍数删去后,剩下8个,由于90÷8=11…2,是第11个循环的第4个,15×11+4=165+4=169,则第90个是169×4﹣2=676﹣2=674.故选:B.【点评】考查了约数与倍数,本题关键是熟悉3或5的倍数的特点,难点是得到第90个是第11个循环的第4个.5.13个不同的正整数的和为1615,则它们的公约数的最大值是()A.25 B.21 C.17 D.13【分析】应先把1615分解,找到约数可能的数.再设出最大公约数,找出13个数最小值,进而求得最大公约数.【解答】解:设13个不同的正整数的最大公约数为d,则,13个不同的正整数为:da1、da2、…、da13为互不相同正整数,1615=da1+da2+…+da13=d(a1+a2+…+a13)a1+a2+…+a13最小为1+2+…+13=(13+1)×13÷2=91,1615=5×17×19,1615的约数中,大于91的最小约数是5×19=95,即:a1+a2+…+a23最小为95,故最大公约数d可能达到的最大值=1615÷95=17.故选:C.【点评】解决本题的关键是先得到1615可能的约数,再求得13个数除去约数外最小的和.6.2012的所有正约数的和是()A.3528 B.2607 C.2521 D.2012【分析】将2012表示成几个数相乘的形式,然后得出2012的所有约数,继而求和即可得出答案.【解答】解:2012=1×2012=2×1006=4×503,因为503是质数,∴2012的约数有:1、2012、2、1006、4、503,∴2012的所有正约数的和是1+2+4+503+1006+2012=3528.故选:A.【点评】此题考查了最大公约数和最小公倍数的知识,解答本题的关键是将2012表示成几个因数相乘的形式,得出2012的约数,难度一般.7.1998的不同约数的个数是()A.20 B.16 C.14 D.12【分析】由于1998=2×33×37,于是可以分别求出单个质因数组成的约数、有两个质因数的约数、有三个质因数组成的约数个数,然后求和即可.【解答】解:1998=2×33×37,单个质因数组成的约数有:2、3、9、27、37,有两个质因数的约数有:6、18、54、74、111、333、999,有三个质因数组成的约数有:222、666、1998,再加上约数1,共有16个约数,故选:B.【点评】本题主要考查最大公约数与最小公倍数的知识点,解答本题的关键是熟练掌握质因数的知识,此题难度不大.8.已知自然数a,b,c的最小公倍数为48,而a和b的最大公约数为4,b和的c最大公约数为3,则a+b+c的最小值是()A.55 B.35 C.31 D.30【分析】根据a,b,c的最小公倍数为48确定a,b,c的取值范围,然后根据3和4分别是b的约数得出b的最小值,继而可分别得出c及a的最小值,代入计算即可得出答案.【解答】解:a,b,c最小公倍数是48,所以它们都是48的约数,则a,b,c只能在1,2,3,4,6,8,12,16,24,48中取值,又∵a,b最大公约数是4;b,c最大公约数是3;∴b的最小值是12,c最小值为3,a的最小值是16,则a+b+c的最小值=12+3+16=31.故选:C.【点评】本题考查了最大公约数及最小公倍数的知识,关键是先求出a,b,c的取值范围,根据3和4分别是b的约数得出b的最小值,难度一般.9.已知自然数a、b、c满足:①a和b的最小公倍数为24;②a和b的最大公约数为6;③c 和a的最小公倍数为36,则满足上述条件的(a,b,c)共有()组.A.4 B.3 C.2 D.1【分析】根据a和b的最小公倍数为24,a和b的最大公约数为6可得出a、b只能在6,12,24中取值,再由c和a的最小公倍数为36,可确定符合题意的a,b,c的组合,进而得出答案.【解答】解:∵a和b的最小公倍数为24,∴a、b可取1,2,3,4,6,8,12,24,又∵a和b的最大公约数为6,∴a、b只在6,12,24中取值,若要满足c和a的最小公倍数为36,则只有a=6,c=36,b=24时成立.故(a,b,c)=(6,24,36),共一组.故选:D.【点评】本题考查了最大公约数及最小公倍数的知识,难度一般,解答本题的关键是根据①②的条件得出a、b的取值范围.10.在正整数范围内,方程组(x,y)=60,(y,z)=90,[z,x]=360,y≤1000有多少组解其中()、[]分别表示最大公约数和最小公倍数.A.3 B.6 C.12 D.24【分析】根据60、90分别是y的约数可得出y=180k(k取正整数),结合y≤1000讨论k的值,然后每一个y值可得出符合题意的x、z的组合,继而可得出答案.【解答】解:由题意得,60、90都是y的约数,∴y=180k(k取正整数),又∵y≤1000,则k≤5;①当k=1时,y=180,∵(x,y)=60,(y,z)=90,[z,x]=360,∴可得x=120,z=90,则(x,z)=(120,90),此时有1组解.②当k=2时,y=360,∵(x,y)=60,(y,z)=90,[z,x]=360,没有符合题意的x和z,此时没有解.③当k=3时,y=540,∵(x,y)=60,(y,z)=90,[z,x]=360,则(x,z)=(120,90),此时有1组解.④当k=4时,y=720,∵(x,y)=60,(y,z)=90,∴可得x=60,z=90,又∵[z,x]=360,∴没有符合题意的x和z,此时没有解.⑤当k=5时,y=900,∵(x,y)=60,(y,z)=90,∴可得x=60或120或360,z=90或360,又∵[z,x]=360,则(x,z)=(120,90),此时有1组解.综上可得共有3组解.故选:A.【点评】本题考查了最大公约数及最小公倍数,根据题意得出y=180k是解答本题的关键,难点在于分类讨论k的值时,判断符合题意的x、z的组合,难度较大,要求细心解答.11.把1,2,3,…,19分成几个组,每组至少1个数,使得有2个数以上的各组中任意2个数的最小公倍数不在同一组,则至少要分多少组()A.9 B.7 C.6 D.5【分析】首先1不能和任何一个数一组,然后根据2、4、8、16不能在一组,故以这四个数自立一组,先尽量往2所在的组填数,依次填写4、8、16,如果有不兼容的就再另行分组,由此可得出答案.【解答】解:①1不能和任何一个数一组,故1自立一组;②第二组可为:2,3,5,7,11,13,17,19;③第三组为:4,6,9,10,14,15,④第四组为:8,12,18,19;⑤第五组为:16;以上分组中的数在符合题意的基础上可以不固定,但是1、2、4、8、16需要各自一组,即至少分5组.故选:D.【点评】本题考查了最大公约数及最小公倍数的知识,解答本题的关键是得出2、4、8、16不能在一组,难点在于往这四个数所在的组瑱数.12.已知两个自然数a<b,a+b=78,a、b的最小公倍数是[a、b]=252,则b﹣a=()A.50 B.22 C.14 D.6【分析】此题为选择题,可利用排除法进行求解.【解答】解:A、若b﹣a=50,b=64,a=14,a,b的最小公倍数是[a、b]=448,故本B、若b﹣a=22,b=50,a=28,a,b的最小公倍数是[a、b]=700,故本选项错误;C、若b﹣a=14,b=46,a=32,a,b的最小公倍数是[a、b]=736,故本选项错误;D、若b﹣a=6,b=42,a=36,a,b的最小公倍数是[a、b]=252,故本选项正确.故选:D.【点评】本题考查最小公倍数的知识,注意对这一概念的熟练掌握,同时要注意排除法在选择题中的灵活运用.13.已知x和y都是自然数,x和y的最大公约数是2,最小公倍数是100,则x2+y2=()A.2516 B.10004C.2516或10004 D.无法计算【分析】根据题意可得x和y的乘积是200,又因为x和y的最大公约数是2,可知200=2×100=4×50,所以分情况讨论即可.【解答】解:∵最小公倍数是100,∴x和y的乘积是200,∵200=2×100=4×50(因有最大公约数2,两者均为偶数),∴①x=4,y=50,或②x=2,y=100,∴①x2+y2=2516;②x2+y2=10004.故选:C.【点评】此题主要考查了最大公约数和最小公倍数的知识,解题的关键是认真审题,弄清题意.14.两个失准的时钟上,一昼夜第一个钟快8分钟,第二个钟慢4分钟,当两个时钟都指向标准时间中午12点时,经过T个昼夜之后,它们又同时指向中午12点钟,则T的最小值为()个昼夜.A.120 B.180 C.240 D.360【分析】分别得到快钟和慢钟在标准时间里回到12点的时间,求出其最小公倍数即可.【解答】解:24×60÷8=180(个);﹣﹣﹣﹣快钟每隔180个昼夜在标准时间里回到12点;24×60÷4=360(个);﹣﹣﹣﹣慢钟每隔360个昼夜在标准时间里回到12点;180和360的最小公倍数为360.【点评】本题通过实际问题考查了最小公倍数,得到两个失准的时钟再次回到标准时间的时间是解题的关键.15.某班学生不足50人,在一次数学测验中,有的学生得优,的学生得良,的学生得及格,则不及格的学生有()A.0人B.1人C.3人D.8人【分析】在一次数学测验中有的学生得优,的学生得良,的学生得及格,则总人数一定能被2、3、7整除,求出2、3、7的最小公倍数,再找出小于50的即可解答.【解答】解:2、3、7的最小公倍数为42,42的倍数中小于50的只有42,故全班有42人,42×(1﹣)=1人.故选:B.【点评】本题主要考查3个数的最小公倍数的求法,熟练掌握求最小公倍数的方法是解题的关键.16.古人用天干和地支记序,其中天干有10个;甲乙丙丁戊己庚辛壬癸,地支有12个;子丑寅卯辰巳午未申酉戌亥,将天干的10个汉字和地支的12个汉字对应排列成如下两行;甲乙丙丁戊己庚辛壬癸甲乙丙丁戊己庚辛壬癸甲乙丙丁…子丑寅卯辰巳午未申酉戌亥子丑寅卯辰巳午未申酉戌亥…从左向右数,第1列是甲子,第2列是乙丑,第3列是丙寅…,我国的农历纪年就是按这个顺序得来的,如公历2007年是农历丁亥年,那么从今年往后,农历纪年为甲亥年的那一年在公历中()A.是2019年B.是2031年C.是2043年D.没有对应的年号【分析】首先求得10与12的最小公倍数60.因而从丁亥年开始算,即可判定是否有甲亥年,具体是哪年.【解答】解:∵10与12的最小公倍数为60,∴按照天干与地支组合循环60次后又开始循环.故只要检测这60年即可.可知没有甲亥年.故选:D.【点评】本题考查最小公倍数.解决本题的关键是理解题意,天干地支循环是60年(天干10年与地支的最小公倍数),再重新循环.17.用(a,b)表示a,b两数的最大公约数,[a,b]表示a,b两数的最小公倍数,例如(4,6)=2,(4,4)=4.[4,6]=12,[4,4]=4,设a,b,c,d是不相等的自然数,(a,b)=P,(c,d)=Q,[P,Q]=X;[2,6]=M,[c,d]=N,(M,N)=Y.则()A.X是Y的倍数,但X不是Y的约数B.X是Y的倍数或约数都有可能,但X≠YC.X是Y的倍数、约数或X=Y三者必居其一D.以上结论都不对【分析】根据题意和最大公约数和最小公倍数的相关知识依次判断即可.【解答】解:A、取a,b,c,d为4,3,2,1,则X=1,y=2,X是y的约数,取a,b,c,d为4,2,3,1,则X=2,y=1,X是y的倍数,故本选项错误;B、再取a,b,c,d为5,3,2,1,则X=y=1,故本选项错误;C、再取a,b,c,d为6,3,2,1,则X=3,y=2,X既不是y的倍数也不是y的约数,故本选项错误;故选:D.【点评】本题考查了最大公约数和最小公倍数,牢记概念是关键.18.2003和3002的最大公约数是()A.1 B.7 C.11 D.13【分析】先把两数的公约数找出来,再找出最大公约数即可.【解答】解:∵2003和3002的公约数是1,∴2003和3002的最大公约数是1.故选:A.【点评】本题考查了最大公约数的概念以及两个数最大公约数的求法,牢记概念是解题的关键.19.360×473和172×361这两个积的最大公约数是()A.43 B.86 C.172 D.4【分析】解决此类问题一般需要将这两个式子分解质因数,但由于361是一个质数,我们只要将172分解,再看一看前面的式子中有没有这几个质因数就不难得出答案.【解答】解:∵361是质数且不能被473整除,172=2×2×43,473=43×11,360=4×90,∴360×473和172×361这两个积的最大公约数是4×43=172.故选:C.【点评】此题主要考查最大公约数的求法,熟练掌握特殊的最大公约数的求法是解题的关键.20.在正整数1,2,3,…,100中,能被2整除但不能被3整除的数的个数是()A.33 B.34 C.35 D.37【分析】在1﹣n之间,能被2整除的数有个,能被3整除的数有个,同时能被2和3整除的数有个.【解答】解:在正整数1,2,3,…,100中,能被2整除的数有100÷2=50(个);能被2整除又能被3整除,即能被6整除的数有100÷6≈16(个),所以,能被2整除但不能被3整除的数的个数是50﹣16=34(个).故选:B.【点评】本题主要考查了有关于最大公约数与最小倍数的一道题.最小公倍数:①6及6的倍数能同时被2和3整除;②10及10的倍数能同时被2和5整除;③15及15的倍数能同时被3和5整除;④30及30的倍数能同时被2、3和5整除.21.用长为45cm,宽为30cm的一批砖,铺成一块正方形,至少需要()块.A.6 B.8 C.12 D.16【分析】45与30的最小公倍数90就是所求正方形的边长,然后用该正方形的面积除以每一块砖的面积即为所求.【解答】解:∵[45,30]=90(cm),∴所求正方形的面积是:90×90=8100(cm)2,∴铺成该正方形所需的砖的块数为:8100÷(45×30)=6(块);故选:A.【点评】本题主要考查了最小公倍数在实际生活中的应用.22.2001的正约数的个数是()A.3 B.4 C.6 D.8【分析】先分解质因数2001=3×23×29,然后根据约数个数定理来解答.【解答】解:∵2001=3×23×29,∴2001的约数应为8个:1,3,23,29,3×23,3×29,23×29,2001.故选:D.【点评】本题考查了最大公约数与最小公倍数的知识点,在解答此题时,用到了约数个数定理:对于一个数a可以分解质因数:a=a1•a22a33…则a的约数的个数就是(r1+1)(r2+1)(r3+1)…需要指出来的是,a1,a2,a3…都是a的质因数.r1,r2,r3…是a1,a2,a3…的指数.比如,360=23×32×5,所以360约数的个数是(3+1)×(2+1)×(1+1)=24个.23.所有形如的六位数(a,b,c分别是0~9这十个数之一,可以相同,但a≠0)的最大公约数是()A.1001 B.101 C.13 D.11【分析】首先表示出这个六位数,100000a+10000b+1000c+100a+10b+c,再进行分解因数,得出它们的最大公约数.【解答】解:∵100000a+10000b+1000c+100a+10b+c=100100a+10010b+1001c=1001(100a+10b+c)1001是四位数,比100a+10b+c大,∴最大公约数一定是1001.故选:A.【点评】此题主要考查了最大公约数,以及正确表示一个六位数,将这个六位数正确分解成两个因数是解决问题的关键.24.设a与b是正整数,且a+b=33,最小公倍数[a,b]=90,则最大公约数(a,b)=()A.1 B.3 C.11 D.9【分析】假设出(a,b)=x,得出x是a,b,a+b及[a,b]的公约数,得出x的值是x =1或x=3,进一步利用数的整除性知识进行分析,得出符合要求的答案.【解答】解:令(a,b)=x,则x是a,b,a+b及[a,b]的公约数,故x是33和90的公约数,知x=1或x=3.当x=1时,a与b互质,而a+b=33,当a不能被3整除,则b不能被3整除,而[a,b]=90,说明a、b至少有一个能被3整除.当a能被3整除,由a+b=33,则b也能被3整除,故(a,b)≠1,即x≠1.当x=3时,即有(a,b)=3,∴ab=x[a,b],ab=3×90=32×5×6,而a+b=33,∴a=15,b=18,(a,b)=3.故选:B.【点评】此题主要考查了数的整除性以及最大公约数和互质等知识,利用整除性得出a,b的关系是解决问题的关键.25.三角形三边长a,b,c都是整数,且[a,b,c]=60,(a,b)=4,(b,c)=3(注:[a,b,c]表示a,b,c的最小公倍数,(a,b)表示a,b的最大公约数),则a+b+c的最小值()A.30 B.31 C.32 D.33【分析】首先分解60=3×4×5,得出a,b,c中含的因数有4,3,5,由(a,b)=4,(b,c)=3得出a的最小值是4,b的最小值是3×4,进而得出c的最小值是3×5,从得出a+b+c的最小值.【解答】解:∵60=2×2×3×5,∵(a,b)=4,(b,c)=3,∴a与b是4的倍数,b,c是3的倍数,∵[a,b,c]=60,即a,b,c的最小公倍数是60,∴a,b,c中含的因数有4,3,5,∴当a=4,b=4×3=12,c=3×5=15时,a+b+c的最小值是:4+4×3+3×5=31.故选:B.【点评】此题主要考查了最大公约数与最小公倍数,得出a,b,c的最小值,是解决问题的关键.26.若三个连续自然数的最小公倍数为660,则这三个数分别是()A.9,10,11 B.10,11,12 C.11,12,13 D.12,13,14【分析】设这三个数为x,x+1,x+2,根据三个连续自然数的最小公倍数为660,可得x|660,(x+1)|660,(x+2)|660,又由660=2×2×3×5×11,即可得出答案.【解答】解:设这三个数为x,x+1,x+2,∵三个连续自然数的最小公倍数为660,∴x|660,(x+1)|660,(x+2)|660,又∵660=2×2×3×5×11,∴这三个数分别10,11,12,故选:B.【点评】本题考查了最小公倍数,难度一般,关键是把660分解成几个质数的乘积,然后根据题意求解.27.105的负约数的和等于()A.﹣105 B.﹣87 C.﹣86 D.﹣192【分析】只要考虑105的负约数肯定有﹣1和﹣105,两个加起来就﹣106,所以A、B、C 肯定不符合答案.【解答】解:∵105=(﹣1)×(﹣105),=(﹣3)×(﹣35),=(﹣5)×(﹣21),=(﹣7)×(﹣15),∴105的负约数有﹣1、﹣105、﹣3、﹣35、﹣5、﹣21、﹣7、﹣15,∴﹣1﹣105﹣3﹣35﹣5﹣21﹣7﹣15=﹣192.故选:D.【点评】本题考查了一个数的公约数,即将这个数写成几个数的积的形式,这几个数为它的因数.28.设a、b为正整数(a>b),p是a、b的最大公约数,q是a、b的最小公倍数,则p,q,a,b的大小关系是()A.p≥q≥a>b B.q≥a>b≥p C.q≥p≥a>b D.p≥a>b≥q【分析】根据两个数的最大公约数与最小公倍数的关系判定即可.【解答】解:∵(a,b)=p且[a,b]=q,∴p|a且p|b,即a|q且b|q.∴q≥a>b≥p.故选B.【点评】本题主要考查最大公约数与最小公倍数,两个数的最大公约数最小是一,最大是其中较小的数,两个数的最小公倍数最大是他们的积,最小是其中较大的数.29.两个正数的和是60,它们的最小公倍数是273,则它们的乘积是()A.273 B.819 C.1199 D.1911【分析】先对273分解质因数273=3×7×13,所以,两个数为3,7,13中的任意两数的乘积.【解答】解:∵273=3×7×13,∴这两个数为3,7,13中的任意两个数的乘积,∴有3,7,13,21,39,91,273这七个数,又∵两数和为60,∴这两个数为21,39,所以乘积为21×39=819.故选:B.【点评】本题主要考查了有关于最大公约数与最小公倍数的题目,解答此题时,先用273分解质因数,然后利用“凑项法”解答.30.下面的四句话中正确的是()A.正整数a和b的最大公约数大于等于aB.正整数a和b的最小公倍数大于等于abC.正整数a和b的最大公约数小于等于aD.正整数a和b的公倍数大于等于ab【分析】运用特殊值法进行排除,例如3是6和9的公约数,小于6,所以正整数a和b 的最大公约数大于等于a,同理可得出符合要求的答案.【解答】解:A、3是6和9的公约数,小于6,所以排除A;B、6和9的最小公倍数是18,小于54,所以排除B;C、正整数a与b的最大公约数小于等于a是成立的;故C正确;D、6和9的最小公倍数是18,小于54,所以排除D;故选:C.【点评】此题主要考查了最大公约数与最小公倍数,利用特殊值法进行排除,是解决问题的最简捷办法.31.祖孙两人的年龄都是合数,明年他们的岁数相乘是1610,那么祖孙两人今年的年龄分别是()A.70岁、23岁B.69岁、22岁C.115岁、14岁D.114岁、13岁【分析】首先先了解下合数质数的概念质数:除了1和它本身外,没有别的因数的数是质数.合数:除了1和它本身外,还有别的因数的数是合数.再据题意把1610写成几个质数的及的形式,然后确定其答案.【解答】解:1610/2=805,805/5=161,161/7=23,所以由明年他们的岁数相乘是1610,可得1610=2×5×7×23.这里可以确定孙子的年龄和爷爷的年龄不能分别是(1)2和805,(2)5和322,(3)7和230,(4)35和46.假设孙子明年的年龄是2×7=14,那么今年孙子明年的年龄是14﹣1=13(质数)与已知矛盾,不成立.如果由1610=2×5×7×23,设孙子明年的年龄是23,那么爷爷明年的年龄是2×5×7=70.又23﹣1=22,70﹣1=69,22、69都是合数符合题意.故选:B.【点评】此题主要考查了学生对质数、合数意义的理解和掌握.此题关键是把1610写成几个质数的积的形式.二.填空题(共10小题)32.记20162的所有正约数为d1,d2,…,d m,则++…+=.【分析】先针对于22的3个正约数,对于32的3个正约数,对于42的5个正约数,对于52的3个正约数,对于62的9个正约数分别计算,找出n2的正约数的个数的规律(如果n2分解质因数为a e×b f×c h,那么正约数的个数为(e+1)(f+1)(h+1),和所求结论的规律则+++…+=,规律,即可得出结论.【解答】解:对于22的(2+1)=3个正约数1,2,22,有++=;对于32的(2+1)=3个正约数1,3,32,有++==;对于42=24的(4+1)﹣5个正约数1,2,22,23,24,有++++=.对于52的(2+1)=3个正约数1,5,52,有++=,对于62=22×32的(2+1)(2+1)=9个正约数1,2,22,3,32,2×3,22×3,2×32,22×32,有++++++++=,……即:若n2的所有正约数为d1,d2,d3,d4,…,d m,则+++…+=∵20162=210×34×72∴m=(10+1)(4+1)(2+1)=m=165,∴当n=2016时,++…+==,故答案为.【点评】此题是约数与倍数,主要考查了一个正整数的平方的正约数的确定,以及正约数的个数的确定,找出规律是解本题的关键,也是难点.是一道比较难度比较大的规律题.33.清溪汽车站开设三条线路的公共汽车,①路车每4分钟开出一趟,③路车每6分钟开出一趟,⑦路车每9分钟开出一趟,如果他们是上午7点在汽车站同时开出,则他们下次。
倍数与约数之练习题计算倍数和约数倍数与约数是初中数学中的重要概念,对于提升学生的数学运算能力和逻辑思维能力有着重要意义。
本文将以练习题的形式,帮助读者加深对倍数与约数的理解,并通过解题过程加强对相关知识点的掌握。
一、倍数的计算1. 若正整数a能被正整数b整除,我们就称a是b的倍数,记作a|b或b/a。
2. 倍数的计算可以通过以下练习题进行加强:练习题一:计算下列数的倍数1)11的倍数2)25的倍数3)98的倍数4)72的倍数解答:1)11的倍数:11、22、33、44、55、66、77、88、99、110、121……2)25的倍数:25、50、75、100、125、150、175、200、225、250、275……3)98的倍数:98、196、294、392、490、588、686、784、882、980、1078……4)72的倍数:72、144、216、288、360、432、504、576、648、720、792……二、约数的计算1. 若正整数a能被正整数b整除,我们就称b是a的约数,记作b|a 或a/b。
2. 约数的计算可以通过以下练习题进行加强:练习题二:计算下列数的约数1)12的约数2)37的约数3)60的约数4)92的约数解答:1)12的约数:1、2、3、4、6、122)37的约数:1、373)60的约数:1、2、3、4、5、6、10、12、15、20、30、604)92的约数:1、2、4、23、46、92三、倍数与约数之间的关系1. 若正整数a既是b的倍数,又是c的倍数,那么a是b与c的公倍数。
2. 若正整数a既是b的约数,又是c的约数,那么a是b与c的公约数。
3. 设a、b是两个正整数,且a≠0,b≠0,那么a与b的最小公倍数,记作[a,b],是同时是a的倍数也是b的倍数的最小正整数;a与b的最大公约数,记作(a,b),是同时是a的约数也是b的约数的最大正整数。
练习题三:计算下列数的最小公倍数与最大公约数1)4与6的最小公倍数与最大公约数2)15与20的最小公倍数与最大公约数3)24与32的最小公倍数与最大公约数4)45与60的最小公倍数与最大公约数解答:1)4与6的最小公倍数为12,最大公约数为2。
约数和倍数练习题[1](总9页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--一、填空题20%1、20以内质数共有(7 )个,是偶数又是质数的数是( 2 )。
2、连续三个奇数的和一定是(奇数)数,任意两个奇的和一定是(偶数)数。
3、一个数能被9整除,这个数一定也能被(3 )整除,一个数有约数2,这个数也一定是( 2 )的倍数。
4、18÷6=3 18是6的(倍)数,6是18的(因)数。
5、一个两位数同时能被2、5、3整除,这个两位数最大是(60 ),最小的是( 30 )。
6、一个数最大的约数是(它本身),最小的倍数是(它本身)。
7、在1998□后添上( 0 )能被3整除,添上( 0 )同时能3和9整除。
8、自然数按约数的个数多少来分有(…. ),按能被2整除特征来分有(…)。
9、18、24、和36最大公约数是(9 ),最小公倍数是( 72 )。
10、30、60、和120最小公倍数是( 120 ),最大公约数是( 10 )。
二、判断1、18÷9=2我们就说18是倍数,9是约数。
(对)2、16和24 的公约数有8、4、3、1、。
(错)3、如果a是个质数,那么a一定也是奇数。
(错)4、一个数中有2 ,这个数就一定能被2整除。
(错)5、如果两个数是互质数这两个数的约数只有1 。
(错)三、选择题10%(把正确的答案的序号填在括号里)1、如果a能被b整除,那么a与 b比较-----------------(4 )①a大② b大③a大或同样大④不能确定2、一个数既是奇数又是合数,在自然数中最小的是-(3)①1②2③9④43、把18分解质因数,下面正确的写法是-------------( 2 )①18=3×6②18=2×3×3×1③2×3×3=18④18=2×3×34、如果a与b是互质数,那么a与b最大公约数是---( 4 )①b②a③a×b④15、两个质数的和是30,共有( 3 )组。
倍数与约数练习题
1. 10的倍数
a) 最小的10的倍数是多少?
b) 下一个大于100的10的倍数是多少?
c) 找到一个大于1000的10的倍数。
2. 奇数与偶数
a) 请列举出前5个奇数。
b) 写出前3个偶数。
c) 请问,一个奇数与一个偶数相加的结果是奇数还是偶数?
3. 约数
a) 20的约数有哪些?
b) 15的约数是什么?
c) 找到一个有 6 个约数的数。
4. 公倍数
a) 6和8的公倍数有哪些?
b) 12和15的公倍数是什么?
c) 找到一个大于60的同时是3和5的公倍数。
5. 最大公约数
a) 12和18的最大公约数是多少?
b) 21和28的最大公约数是什么?
c) 找到一个大于50的两个数的最大公约数。
6. 互质数
a) 13和16是否互质?
b) 9和10是否互质?
c) 找到两个互质数的例子。
7. 题目综合
a) 找到一个大于100的同时是 4、6和9的倍数的数。
b) 27和45的最大公约数是多少?
c) 两个相邻奇数的最小公倍数是多少?
8. 挑战题
a) 找到一个大于10000的同时是 3、5、7和11的倍数的数。
b) 36和60的最大公约数是什么?
c) 两个互质奇数的最小公倍数是多少?
注意:上述题目已经按照题号进行分节,不需要再进行小节的划分。
请按照题目要求进行回答。
约数和倍数应用题
1.24、20和36的最小公倍数是它们最大公约数的多少倍?
2.某学校同学们做操,把学生分为10人一组,14人一组,18人一组,都恰好分完,这个学校至少有多少个学生?
3.五(1)班学生数不超过50人,小组合作学习时,根据教学内容不同可以分为每组3人,每组4人,每组6人,每组8人,各种办法都刚好分完。
这个班有学生多少人?
4.一个长方形的面积是24平方厘米,它的长和宽都是整厘米数,这样的长方形有多少种?
5.有三根绳子,分别长12米、18米和21米,要剪成同样长的小段,并且没有剩余。
每一段最长多少米?一共可以剪成多少段?
6.1路长与8路车10分同时从总站发车,1路车每隔5分钟发一次车,6路车每隔8分钟发一次车,他们一次同时发车是什么时候呢?
7.猴子们分桃子,每只猴子分10个,9个,8个都正好分完,如果桃子的数量是一个接近700的数目,每个猴子又至少分8个,则最多有多少只猴子能够参与分桃子?8.有一张长20厘米,宽12厘米的长方形硬纸片,要把它剪成若干大小相同的正方形,正方形的边长最大是多少厘米?可以剪成这样的正方形多少个?
9.猴子们分桃子,每只猴子分10个、9个、8个都多出2个,那么桃子至少有多少个呢?
10.工地上有两捆铁丝,分别长44米和56米。
现在因为施工需要,要把他们分成同样长的小段运走,不能有剩余,每小段可以是多少米?可以分成多少小段?
11.一块长方形的布,长6分米,宽40厘米,把他截成正方形的小块,要求没有剩余并且尽可能大,能截成几个正方形?。
约数与倍数综合练习题
在数学学习中,我们经常会遇到约数与倍数的概念。
约数是指一个
数可以整除的所有数,而倍数则是指某个数相对于另一个数的倍数关系。
掌握约数与倍数的概念对于学好数学非常重要。
为了帮助大家更
好地理解和应用约数与倍数,本文将提供一些综合练习题供大家练习。
练习题一:约数问题
1. 求出 36 的所有约数。
2. 一个数的所有约数之和等于这个数本身,那么这个数是多少?
3. 一个数除了 1 和它本身之外,没有其他约数,那么这个数是什么?
练习题二:倍数问题
1. 36 是 6 的倍数,它还是其他哪些自然数的倍数?
2. 一个数如果是 12 的倍数,那么它一定是 6 的倍数吗?为什么?
3. 一个数的所有倍数中,有且只有一个数可以被这个数整除,那么
这个数是什么?
练习题三:约数与倍数综合问题
1. 一个两位数,它的个位数与十位数的和是它的约数之和的两倍,
那么这个两位数是多少?
2. 一个数的所有自然数倍数的总和是 4950,那么这个数是多少?
3. 一个数的所有约数加起来等于这个数的 5 倍,那么这个数是多少?
练习题四:应用题
1. 小明想买一些糖果分给同学们吃,他将糖果分成若干堆,每一堆的个数相同,共分成了 5 堆。
问他至少有多少个糖果?
2. 小红家养了一些鸡和兔子,一共有 21 只头,58 只脚。
问她家至少有多少只鸡和兔子各多少只?
以上是一些关于约数与倍数的综合练习题,希望能够帮助大家更好地掌握约数与倍数的概念和应用。
通过解答这些练习题,可以提升自己的数学思维和解题能力。
祝大家学习进步,取得好成绩!。
约数与倍数知识点拨:a、b是两个任意整数,其中b≠0,如果存在整数q,使得a=bq成立(或者说,如果a除以b能得到整数商q),我们就说a能被b整除,或者b整除a,记作b∣a.当a能被b 整除时,我们就说a是b的倍数,或者说b是a的约数(也叫因数).如果满足条件a=bq的整数q不存在,我们就说b不能整除a,或者a不能被b整除,记作b a.整除的概念是在整数范围内讨论的,即只有当被除数、除数和商都是整数(除数不能是零)时,才能叫做整除.因为自然数a的约数不会大于a,a的约数的个数也就不会多于a,所以自然数a的约数的个数是有限的.因为自然数集是无限的,所以一个自然数的倍数的个数是无限的.零可以被任何自然数整除,所以零是任何自然数的倍数,任何自然数都是零的约数.任何整数都能被1整除,所以任何整数都是1的倍数,1是任何整数的约数.约数和倍数表达的是两个数之间的关系,所以它们只具有相对的意义.15=3×5,只能说“15是3的倍数”,“3是15的约数“,不能说“15是倍数”或“3是约数”.将自然数N分解质因数后,N= (a1、a2、a3、a4、…a n为不相同的质因数;r1、r2、r3、r4、…r m为a1…a n的指数);N所有约数个数:=(r1+1)×(r2+1)×(r3+1)×(r4+1)×…×(r m+1)N所有约数个数的和:约数与倍数中的一个结论:完全平方数的约数个数是奇数。
【约数问题】例1 用1155个同样大小的正方形拼成一个长方形,有______种不同的拼法。
(上海市第五届小学数学竞赛试题)【分析】不论拼成怎样的长方形,它们的面积都是1155。
而长方形的面积等于长乘以宽。
所以,只要将1155分成两个整数的积,看看有多少种方法。
一般来说,约数都是成对地出现。
1155的约数共有16个。
16÷2=8(对)。
所以,有8种不同的拼法。
LX1、用105个大小相同的正方形拼成一个长方形,有_____种不同的拼法.【分析】4。
约数与倍数例题1题一个数有8个约数.这个数最小是.正确答案:24详解:24有8个约数:1,2,3,4,6,8,12,24.比24小的数都没有8个约数(12,18,20各有6个约数,其余的数约数个数少于6).例题2题边长1米的正方体2100个,堆成一个实心的长方体.它的高是10米,长、宽都大于高.那么长方体长与宽的和是米.正确答案:29提示:由于长方体是用2100个边长为1米的正方体堆成的,就是说,这个长方体的体积应是2100立方米,但长方体的体积=长×宽×高,现在知道高=10米,故长×宽=210米,又,长、宽都大于高,所以此题就是找出210的两个都大于10的约数,使它们的积为210.详解:2100÷10=210, 210=2×3×5×7=(2×7)×(3×5)=14×15.由于14与15都是210的大于10的约数,且其积=210,又只有这一组数据满足题目的要求.∴长方体的长与宽分别为15与14,其和为29.例题3题数360的约数有个.这些约数的和是.正确答案:24;1170详解:360分解质因数:;360的约数可以且只能是,(其中a,b,c均是整数,且a为0~3,b为0~2,c为0~1).因为a、b、c的取值是相互独立的,由计数问题的乘法原理知,约数的个数为(3+1)×(2+1)×(1+1)=24.我们先只改动关于质因数3的约数,可以是1,3,,它们的和为,所以所有360约数的和为;我们再来确定关于质因数2的约数,可以是它们的和为,所以所有360约数的和为;最后确定关于质因数5的约数,可以是1,5,它们的和为(1+5),所以所有360的约数的和为.于是,我们计算出值:13×15×6=1170.所以,360所有约数的和为1170.评注:我们在此题中分析了约数个数、约数和的求法.下面我们给出一般结论:Ⅰ.一个合数的约数的个数是在严格分解质因数之后,将每个质因数的指数(次数)加1后所得的乘积.如:1400严格分解质因数后为,所以它的约数有(3+1)×(2+1)×(1+1)=4×3×2=24个.(包括1和它自身)Ⅱ.约数的和是在严格分解质因数后,将M的每个质因数最高次幂的所有约数的和相乘所得到的积.如:,所以21000所有约数的和为.例题4题从360到630的自然数中有奇数个约数的数有个.正确答案:7详解:一个合数的约数的个数是在严格分解质因数之后,将每个质因数的指数(次数)加1后所得的乘积.如:1400严格分解质因数后为,所以它的约数有(3+1)×(2+1)×(1+1)=4×3×2=24个.(包括1和它自身)如果某个自然数有奇数个约数,那么这个数的所有质因子的个数均为偶数个,这样它们加1后均是奇数,所得的乘积才能是奇数.而所有质因数的个数均是偶数个的数为完全平方数.即完全平方数(除0外)有奇数个约数,反过来,有奇数个约数的数一定是完全平方数.由以上分析知,我们所求的为360~630之间有多少个完全平方数.18×18=324,19×19=361,25×25=625,26×26=676,所以在360~630之间的完全平方数为即360到630的自然数中有奇数个约数的数为361,400,441,484,529,576,625,共7个.例题5题1112111的约数共有个.正确答案:24详解:一般的,一个自然数N可能惟一地表示成一些质因数的乘积:其中是不一样的质数,,那么N的约数的个数公式:∴1112111的约数的个数是:(1+1)×(2+1)×(1+1)×(1+1)=24∴1112111有24个约数例题6题在正好有60个约数的自然数中,1万以内最大的数是.正确答案:9360详解:因为,所以所求数分解质因数后,任何质因数的幂小于14.将60分解为约数小于14的乘积,60=5×12=6×10=2×3×10=2×5×6=3×4×5=2×2×3×5.根据自然数的约数个数的公式,恰有60个约数的小于10000的合数应具有以下形式之一:其中a、b、c、d均为质数.因为都大于10000,所以所求数只能是的形式,所求数是9360 .例题7题有甲、乙、丙3人,甲每分钟行走120米,乙每分钟行走100米,丙每分钟行走70米.如果3个人同时同向,从同地出发,沿周长是300米的圆形跑道行走,那么分钟之后,3人又可以相聚。
“0”大约1500年前,欧洲的数学家们是不知道用“0”的。
他们使用罗马数字。
罗马数字是用几个表示数的符号,按照一定规则,把它们组合起来表示不同的数目。
在这种数字的运用里,不需要“0”这个数字。
而在当时,罗马帝国有一位学者从印度记数法里发现了“0”这个符号。
他发现,有了“0”,进行数学运算方便极了,他非常高兴,还把印度人使用“0”的方法向大家做了介绍。
过了一段时间,这件事被当时的罗马教皇知道了。
当时是欧洲的中世纪,教会的势力非常大,罗马教皇的权利更是远远超过皇帝。
教皇非常恼怒,他斥责说,神圣的数是上帝创造的,在上帝创造的数里没有“0”这个怪物,如今谁要把它给引进来,谁就是亵渎上帝!于是,教皇就下令,把这位学者抓了起来,并对他施加了酷刑,用夹子把他的十个手指头紧紧夹注,使他两手残废,让他再也不能握笔写字。
就这样,“0”被那个愚昧、残忍的罗马教皇明令禁止了。
但是,虽然“0”被禁止使用,然而罗马的数学家们还是不管禁令,在数学的研究中仍然秘密地使用“0”,仍然用“0”做出了很多数学上的贡献。
后来“0”终于在欧洲被广泛使用,而罗马数字却逐渐被淘汰了。
一、常见数字的整除判定方法:1. 一个数的末位能被2或5整除,这个数就能被2或5整除;2. 一个数的末两位能被4或25整除,这个数就能被4或25整除;3. 一个数的末三位能被8或125整除,这个数就能被8或125整除;4. 一各位数数字和能被3整除,这个数就能比9整除;5. 一个数各位数数字和能被9整除,这个数就能被9整除;6. 如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除.7. 1001特征(家有三子7、11、13)课前预习知识框架数的整除、约数倍数一个数除以7的余数,其末三位与前面隔开,等于末三位与前面隔出数的差除以7的余数;一个数除以11的余数,其末三位与前面隔开,等于末三位与前面隔出数的差除以11的余数;或者,其奇数位数字之和(从个位往高位数,个位为第1位,即为奇数位)减去偶数位数字之和所得的差除以11的余数;一个数除以13的余数,其末三位与前面隔开,等于末三位与前面隔出数的差(大减小)能被13整除;【备注】(以上规律仅在十进制数中成立.)二、整除性质性质1 如果数a和数b都能被数c整除,那么它们的和或差也能被c整除.即如果c︱a,c︱b,那么c︱(a±b).性质2 如果数a能被数b整除,b又能被数c整除,那么a也能被c整除.即如果b∣a,c∣b,那么c∣a.用同样的方法,我们还可以得出:性质3 如果数a能被数b与数c的积整除,那么a也能被b或c整除.即如果bc∣a,那么b∣a,c∣a.性质4 如果数a能被数b整除,也能被数c整除,且数b和数c互质,那么a一定能被b与c的乘积整除.即如果b∣a,c∣a,且(b,c)=1,那么bc∣a.例如:如果3∣12,4∣12,且(3,4)=1,那么(3×4) ∣12.性质5 如果数a能被数b整除,那么am也能被bm整除.如果b|a,那么bm|am(m为非0整数);性质6 如果数a能被数b整除,且数c能被数d整除,那么bd也能被ac整除.如果b|a ,且d|c ,那么ac|bd;三、质数与合数一个数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数).一个数除了1和它本身,还有别的约数,这个数叫做合数.要特别记住:0和1不是质数,也不是合数.常用的100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97,共计25个;除了2其余的质数都是奇数;除了2和5,其余的质数个位数字只能是1,3,7或9.考点:⑴值得注意的是很多题都会以质数2的特殊性为考点.⑵除了2和5,其余质数个位数字只能是1,3,7或9.这也是很多题解题思路,需要大家注意.四、质因数与分解质因数1.质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数.互质数:公约数只有1的两个自然数,叫做互质数.分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数.例如:30235=⨯⨯.其中2、3、5叫做30的质因数.又如21222323=⨯⨯=⨯,2、3都叫做12的质因数,其中后一个式子叫做分解质因数的标准式,在求一个数约数的个数和约数的和的时候都要用到这个标准式.分解质因数往往是解数论题目的突破口,因为这样可以帮助我们分析数字的特征.2. 唯一分解定理任何一个大于1的自然数n 都可以写成质数的连乘积,即:312123ka a a a k n p p p p =⨯⨯⨯⨯其中为质数,12k a a a <<<为自然数,并且这种表示是唯一的.该式称为n 的质因子分解式.例如:三个连续自然数的乘积是210,求这三个数. 分析:∵210=2×3×5×7,∴可知这三个数是5、6和7.3. 部分特殊数的分解111337=⨯;100171113=⨯⨯;1111141271=⨯;1000173137=⨯;199535719=⨯⨯⨯;1998233337=⨯⨯⨯⨯;200733223=⨯⨯;2008222251=⨯⨯⨯;10101371337=⨯⨯⨯.4. 判断一个数是否为质数的方法根据定义如果能够找到一个小于p 的质数q(均为整数),使得q 能够整除p ,那么p 就不是质数,所以我们只要拿所有小于p 的质数去除p 就可以了;但是这样的计算量很大,对于不太大的p ,我们可以先找一个大于且接近p 的平方数2K ,再列出所有不大于K 的质数,用这些质数去除p ,如没有能够除尽的那么p 就为质数.例如:149很接近1441212=⨯,根据整除的性质149不能被2、3、5、7、11整除,所以149是质数.五、约数的概念与最大公约数0被排除在约数与倍数之外 1. 求最大公约数的方法①分解质因数法:先分解质因数,然后把相同的因数连乘起来. 例如:2313711=⨯⨯,22252237=⨯⨯,所以(231,252)3721=⨯=;②短除法:先找出所有共有的约数,然后相乘.例如:2181239632,所以(12,18)236=⨯=;③辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数.用辗转相除法求两个数的最大公约数的步骤如下:先用小的一个数除大的一个数,得第一个余数;再用第一个余数除小的一个数,得第二个余数;又用第二个余数除第一个余数,得第三个余数;这样逐次用后一个余数去除前一个余数,直到余数是0为止.那么,最后一个除数就是所求的最大公约数.(如果最后的除数是1,那么原来的两个数是互质的).例如,求600和1515的最大公约数:151********÷=;6003151285÷=;315285130÷=;28530915÷=;301520÷=;所以1515和600的最大公约数是15.2. 最大公约数的性质①几个数都除以它们的最大公约数,所得的几个商是互质数; ②几个数的公约数,都是这几个数的最大公约数的约数;③几个数都乘以一个自然数n ,所得的积的最大公约数等于这几个数的最大公约数乘以n . 3. 求一组分数的最大公约数先把带分数化成假分数,其他分数不变;求出各个分数的分母的最小公倍数a ;求出各个分数的分子的最大公约数b ;ba即为所求. 六、倍数的概念与最小公倍数 1. 求最小公倍数的方法①分解质因数的方法;例如:2313711=⨯⨯,22252237=⨯⨯,所以[]22231,252237112772=⨯⨯⨯=; ②短除法求最小公倍数;例如:2181239632,所以[]18,12233236=⨯⨯⨯=;③[,](,)a ba b a b ⨯=. 2. 最小公倍数的性质①两个数的任意公倍数都是它们最小公倍数的倍数. ②两个互质的数的最小公倍数是这两个数的乘积.③两个数具有倍数关系,则它们的最大公约数是其中较小的数,最小公倍数是较大的数.3. 求一组分数的最小公倍数方法步骤先将各个分数化为假分数;求出各个分数分子的最小公倍数a ;求出各个分数分母的最大公约数b ;ba 即为所求.例如:35[3,5]15[,]412(4,12)4== 注意:两个最简分数的最大公约数不能是整数,最小公倍数可以是整数.例如:[]()1,414,4232,3⎡⎤==⎢⎥⎣⎦ 七、最大公约数与最小公倍数的常用性质1.两个自然数分别除以它们的最大公约数,所得的商互质。
约数与倍数约数和倍数:若整数a能够被b整除,a叫做b的倍数,b就叫做a的约数。
公约数:几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。
最大公约数的性质:1、几个数都除以它们的最大公约数,所得的几个商是互质数。
2、几个数的最大公约数都是这几个数的约数。
3、几个数的公约数,都是这几个数的最大公约数的约数。
4、几个数都乘以一个自然数m,所得的积的最大公约数等于这几个数的最大公约数乘以m。
例如:12的约数有1、2、3、4、6、12;18的约数有:1、2、3、6、9、18;那么12和18的公约数有:1、2、3、6;那么12和18最大的公约数是:6,记作(12,18)=6;求最大公约数基本方法:1、分解质因数法:先分解质因数,然后把相同的因数连乘起来。
2、短除法:先找公有的约数,然后相乘。
3、辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数。
公倍数:几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。
12的倍数有:12、24、36、48……;18的倍数有:18、36、54、72……;那么12和18的公倍数有:36、72、108……;那么12和18最小的公倍数是36,记作[12,18]=36;最小公倍数的性质:1、两个数的任意公倍数都是它们最小公倍数的倍数。
2、两个数最大公约数与最小公倍数的乘积等于这两个数的乘积。
求最小公倍数基本方法:1、短除法求最小公倍数;2、分解质因数的方法17.数的整除一、基本概念和符号:1、整除:如果一个整数a,除以一个自然数b,得到一个整数商c,而且没有余数,那么叫做a能被b整除或b能整除a,记作b|a。
2、常用符号:整除符号“|”,不能整除符号“”;因为符号“∵”,所以的符号“∴”;二、整除判断方法:1. 能被2、5整除:末位上的数字能被2、5整除。
2. 能被4、25整除:末两位的数字所组成的数能被4、25整除。
约数与倍数练习28
1、用、、分别去除某一个分数,所得的商都是整数。
这个分数最小是几?
2、有15位同学,每位同学都有编号,他们是1号到15号,1号同学写了一个自然数,2号说:“这个数能被2整除”,3号说:“这个数能被他的编号数整除.1号作了检验:只有编号连续的二位同学说得不对,其余同学都对,问:
(1)说的不对的两位同学,他们的编号是哪两个连续自然数?
(2)如果告诉你,1号写的数是五位数,请找出这个数。
3、28的所有约数之和是_____。
4、用105个大小相同的正方形拼成一个长方形,有_____种不同的拼法。
5、一个两位数,十位数字减个位数字的差是28的约数,十位数字与个位数字的积是24。
这个两位数是_____。
6、李老师带领一班学生去种树,学生恰好被平均分成四个小组,总共种树667棵,如果师生每人种的棵数一样多,那幺这个班共有学生_____人。