当前位置:文档之家› 立体几何证明方法总结及经典3例(可编辑修改word版)

立体几何证明方法总结及经典3例(可编辑修改word版)

立体几何证明方法总结及经典3例(可编辑修改word版)
立体几何证明方法总结及经典3例(可编辑修改word版)

立体几何证明方法总结及典例

例1:平行类证明

【平行类证明方法总结】

线线平行的证明方法:

三线间平行的传递性,三角形中位线,平行四边形对边平行且相等,梯形的上下底平行,棱

柱圆柱的侧棱平行且相等,两平行面被第三面所截交线平行,成比例(相似)证平行等等。

线面平行的证明方法:

面外线与面内线平行,两面平行则面内一线与另面平行等等

面面平行的证明方法:

面内相交线与另面平行则面面平行,三面间平行的传递性等等。

【例】正方形ABCD与正方形ABEF所在平面相交于AB,在AE、BD上各有一点P、Q,且AP=DQ. 求证:PQ∥面BCE.

证法一:

如图(1),作PM∥AB交BE于M,

作QN∥AB交BC于N,连接MN,

因为面ABCD∩面ABEF=AB,

则AE=DB.

又∵AP=DQ,

∴PE=QB.

又∵PM∥AB∥QN,

∴ PM =PE , QN =BQ .

AB AE DC BD

∴ PM =QN .

AB DC

∴PM∥QN.

四边形PMNQ为平行四边形.

∴PQ∥MN.

又∵MN ?面BCE,PQ ?面BCE,

∴PQ∥面BCE.

证法二:

如图(2),连结AQ并延长交BC或BC的延长线于点K,连结EK.

∵AD∥BC,

∴ DQ =AQ .

QB QK

又∵正方形ABCD与正方形ABEF有公共边AB,且AP=DQ,

∴ AQ =AP .则PQ∥EK.

QK PE

∴EK ?面BCE,PQ ?面BCE.

∴PQ∥面BCE.

例2:垂直类证明

【垂直类证明方法总结】

证垂直的几种方法:勾股定理、等腰(边)三角形三线合一、菱形对角线、矩形(含正方形)、90o、相似三角形(与直角三角形)、圆直径对的圆周角、平行线、射影定理(三垂线定理)、线面垂直、面面垂直等

【例】如图所示,ABCD 为正方形,SA ⊥平面ABCD,过A 且垂直于SC 的平面分别交SB,SC,SD于E,F,G .

求证:AE ⊥SB ,AG ⊥SD .

证明:∵ SA ⊥平面ABCD,

∴ SA ⊥BC .

∵ AB ⊥BC ,

x 2 + y 2 + z 2 2 2 2 ∴ BC ⊥ 平 面

SAB . 又∵ AE ? 平面

SAB ,

∴ BC ⊥ AE .

∵ SC ⊥ 平面 AEFG ,

∴ SC ⊥ AE .

∴ AE ⊥ 平面 SBC .

∴ AE ⊥ SB .

同理证 AG ⊥

SD . 例3:向量法解立

体几何类

【量法解立体几何类公式总结】

基本公式

若 a = (x 1 , y 1 , z 1

), b = (x 2 , y 2 , z 2 ) ,则 ① a ? = x x + y y + z z ; b 1 2 1 2 1 2

②| a |=

x 2 + y 2 + z 2 ,| b |= ;

1 1 1 ③ a ? = x x + y y + z z b 1

2 1 2 1 2

④ cos < a , b >=

夹角公式: cos

= -

n 1 ? n 2 . 1 2 距离公式:

d =| CD |= | AB ? n |

| n | 【例】已知两个正四棱锥 P -ABCD

与 Q -ABCD 的高都为 2,AB =4.

(1) 证明:PQ ⊥平面 ABCD ;

x 1 x 2 + y 1 y 2 + z 1 z 2 x 2 + y 2 + z 2 ? x 2 + y 2 + z 2 1 1 1 2 2 2

?? 得 2x 2 AD PQ ?n (2) 求异面直线 AQ 与 PB 所成的角;

(3) 求点 P 到面 QAD 的距离.

简解:(1)略;

(2)由题设知,ABCD 是正方形,且 AC ⊥BD .由(1),PQ ⊥平面 ABCD ,故可分别以直 线CA , DB , QP 为 x ,y ,z 轴建立空间直角坐标系(如图 1),易得

AQ = (-2 2, 0, - 2), PB = (0, 2 2, - 2) , cos < AQ , PB >= AQ PB = 1 .

所求异面直线所成的角是arccos 1

. 3

AQ PB (3)由(2)知,点 D (0, - 2 2,0), = (-2 2, - 2 2,0),

= (0,0, - 4) 设 n =(x ,y ,z )是平 面 QAD 的一个法向量,则 ?n = 0, ? + z = 0, x + y = 0, 取 x =1,得 n = (1, -1, - 2) . 点 P ?? AD

?? 到平面 QAD 的距离 d = = 2 .

3

PQ n n

6 立体几何证明经典习题

平行题目

1、P是平行四边形ABCD所在平面外一点,Q是PA的中点.

求证:PC∥面BDQ.

2、如图(1),在直角梯形 P1DCB 中,P1D//BC,CD⊥P1D,且 P1D=8,BC=4,DC=4 ,A 是 P1D 的中点,沿 AB 把平面 P1AB 折起到平面 PAB 的位置(如图(2)),使二面角P—CD—B 成45°,设 E、F 分别是线段 AB、PD 的中点.

求证:AF//平面 PEC;

垂直题目

3、如图 2,P 是△ABC 所在平面外的一点,且PA⊥平面ABC,平面PAC⊥平面

PBC.求证:BC⊥平面PAC.

4、如图 2,在三棱锥A-BCD 中,BC=AC,AD=BD,作BE⊥CD,E为垂足,作AH⊥BE 于H.

求证:AH⊥平面 BCD

向量法解立体几何题目

5、在三棱柱ABC-A1B1C1中,AB⊥侧面BB1C1C,E为棱CC1上异于C、C1的一点,EA⊥

EB1.已知

AB =

正切值.

,BB1=2,BC=1,∠BCC1=

π

.求二面角A-EB1-

A1的平面角的

3

2

立体几何证明经典习题答案

1、证明:如图,连结AC交BD于点O.

∵ABCD是平行四边形,

∴A O=O C.连结O Q,则O Q在平面BDQ内,

且O Q是△APC的中位线,

∴PC∥O Q.

∵PC在平面BDQ外,

∴PC∥平面BDQ.

2、证明:如图,设 PC 中点为 G,连结 FG,

1

CD=AE,

则 FG//CD//AE,且 FG=

2

∴四边形 AEGF 是平行四边形

∴AF//EG,

又∵AF ?平面 PEC,EG ?平面 PEC,

∴AF//平面 PEC

3、证明:在平面PAC 内作AD⊥PC 交PC 于D.

∵平面PAC⊥平面PBC,且两平面交

于PC,AD ?平面PAC,且AD⊥PC,

∴AD⊥平面PBC.

又∵ BC ?平面PBC,

∴AD⊥BC.

∵PA⊥平面ABC,BC ?平面ABC,

∴PA⊥BC.

∵AD∩PA=A,

∴BC⊥平面PAC.

4、证明:取AB 的中点F,连结CF,DF.

∵ AC =BC ,

∴ CF ⊥AB .

∵ AD =BD ,(等腰三角形三线合一)

2 2

3 3 ∴ DF ⊥ AB .

又CF DF = F ,

∴ AB ⊥ 平面 CDF . ∵ CD ? 平面 CDF ,

∴ CD ⊥ AB .

又CD ⊥ BE , BE AB = B ,

∴ CD ⊥ 平面 ABE , CD ⊥ AH .

∵ AH ⊥ CD , AH ⊥ BE ,

CD BE = E ,

∴ AH ⊥ 平 面 BCD .

5、以 B 为原点,分别以 BB 1、BA 所在直线为 y 轴、z 轴,过 B 点垂直于平面 AB 1 的直线为 x

轴建立空间直角坐标系.

由于 BC =1,BB 1=2,AB = ,∠BCC 1= π

, 3

∴在三棱柱 ABC -A 1B 1C 1 中,有 B (0,0,0)、A (0,0,

)、

B 1(0,2,0)、 ? 3 1 ? ? 3 ? ? 3 ? 1 3 2 ,- 2 ,0 ? 、

C 1 , ,0 ? .设 E 2 ,a ,0 ? 且- 2 < a < 2 , ? ? ? 2 2 ? ? ?

由 EA ⊥EB 1,得 EA EB 1 = 0 ,

? 即 - 3 ? ? 2 ,- a ,2 ? - 3 ? 2 ,2 - a ,0 ? ? ? ? ?

= 3 + a (a - 2) = a 2 - 2a + 3 = 0 ,∴ ? a - 1 ? ? a - 3 ? = 0 , 4 4 2 ? 2 ? ? ? ? ?

1 3

? 1 ? 即 a = 2 或 a = 2 (舍去).故 E , ,0 ? . ? 2 2 ?

由已知有 EA ⊥ EB 1 , B 1 A 1 ⊥ EB 1 ,故二面角 A -EB 1-A 1 的平面角的大小为向量

B 1A 1 与 EA 的夹角.

c

? 3 1 ? 因 B 1 A 1 = BA = (0,0,2) , EA = - 2 ,- 2 ,2 ? ? ?

故cos = 1 1 =,即tan = 2 2 2 3 EA B 1 A 1

高中立体几何证明线面平行的常见方法

E D C B A 高中立体几何证明线面平行问题(数学作业十七) (1) 通过“平移”再利用平行四边形的性质 1.如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分别为棱AB 、 PD 的中点.求证:AF ∥平面PCE ; 2、已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB 的中点, M 为BE 的中点, AC⊥BE . 求证: (Ⅰ)C 1D⊥BC; (Ⅱ)C 1D∥平面B 1FM. 3、如图所示, 四棱锥P -ABCD 底面是直角梯形, ,,AD CD AD BA ⊥⊥CD=2AB, E 为PC 的中点, 证明: //EB PAD 平面; (2) 利用三角形中位线的性质 4、如图,已知E 、F 、G 、M 分别是四面体的棱AD 、CD 、BD 、BC 的中点,求证:AM ∥平面EFG 。 5、如图,ABCD 是正方形,O 是正方形的中心,E 是PC 的中点。 求证: PA ∥平面BDE 6.如图,三棱柱ABC —A 1B 1C 1中, D 为AC 的中点. 求证:AB 12 1 中点为PD E 求证:AE ∥平面PBC ; (第1题图) A B C D E F G M

(4)利用对应线段成比例 9、如图:S 是平行四边形ABCD 平面外一点,M 、N 分别是SA 、BD 上的点,且 SM AM =ND BN , 求证:MN ∥平面SDC (5)利用面面平行 10、如图,三棱锥中,底面,,PB=BC=CA , 为的中点,为的中点,点在上,且. (1)求证:平面; (2)求证:平面;

立体几何证明方法汇总

① 中位线定理 例题:已知如图:平行四边形ABCD 中,6BC =,正方形ADEF 所在平面与平面ABCD 垂直,G ,H 分别是DF ,BE 的中点. (1)求证:GH ∥平面CDE ; (2)若2,CD DB ==,求四棱锥F-ABCD 的体积. 练习:1、如下图所示:在直三棱柱ABC —A 1B 1C 1中,AC=3,BC=4,AB=5,AA 1=4,点D 是AB 的中点。 求证:AC 1∥平面CDB 1; 2. 如图,1111D C B A ABCD -是正四棱柱侧棱长为1,底面边长为2,E 是棱BC 的中点。(1)求证: //1BD 平面DE C 1;(2)求三棱锥BC D D 1-的体积. 3、如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,4,3PD DC ==,E 是PC 的中点。 (1)证明://PA BDE 平面; (2)求PAD ?以PA 为轴旋转所围成的几何体体积。 A 1 C _ H _ G _ D _ A _ B _ C E F

G P A B C D F E A B C D E F 例2、 如图, 在矩形ABCD 中,2AB BC = , ,P Q 分别为线段,AB CD 的中点, EP ⊥平面ABCD .求证: AQ ∥平面CEP ;(利用平行四边形) 练习:①如图,PA 垂直于矩形ABCD 所在的平面,E 、F 分别是AB 、PD 的中点。求证:AF ∥平面PCE ; ②如图,已知P 是矩形ABCD 所在平面外一点,ABCD 平面PD ⊥,M ,N 分别是AB ,PC 中点。求证://PAD MN 平面 P A B C D M N ③ 如图,已知AB 平面ACD ,DE//AB ,△ACD 是正三角形,AD = DE = 2AB ,且F 是CD 的中点.⑴求证:AF//平面BCE ; 的交点.求证://1O C 面 ④、已知正方体ABCD-1111D C B A ,O 是底ABCD 对角线11 AB D . D 1C 1 B 1 A 1

立体几何解题方法总结

1.判定两个平面平行的方法: (1)根据定义——证明两平面没有公共点; (2)判定定理——证明一个平面内的两条相交直线都平行于另一个平面; (3)证明两平面同垂直于一条直线。 2.两个平面平行的主要性质: ⑴由定义知:“两平行平面没有公共点”。 ⑵由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。 ⑶两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交,那么它们的交线平行”。 ⑷一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 ⑸夹在两个平行平面间的平行线段相等。 ⑹经过平面外一点只有一个平面和已知平面平行。 3.空间的角和距离是空间图形中最基本的数量关系,空间的角主要研究射影以及与射影有关的定理、空间两直线所成的角、直线和平面所成的角、以及二面角和二面角的平面角等.解这类问题的基本思路是把空间问题转化为平面问题去解决. 空间的角,是对由点、直线、平面所组成的空间图形中各种元素间的位置关系进行定量 分析的一个重要概念,由它们的定义,可得其取值范围,如两异面直线所成的角θ∈(0,2 π ], 直线与平面所成的角θ∈0,2π?? ????,二面角的大小,可用它们的平面角来度量,其平面角θ∈[0, π ]. 对于空间角的计算,总是通过一定的手段将其转化为一个平面内的角,并把它置于一个平面图形,而且是一个三角形的内角来解决,而这种转化就是利用直线与平面的平行与垂直来实现的, 如求异面直线所成的角常用平移法(转化为相交直线)与向量法;求直线与平面所成的角常利用射影转化为相交直线所成的角;而求二面角-l -的平面角(记作)通常有以 下几种方法: (1) 根据定义; (2) 过棱l 上任一点O 作棱l 的垂面 ,设 ∩ =OA , ∩ =OB ,则∠AOB = ; (3) 利用三垂线定理或逆定理,过一个半平面内一点A ,分别作另一个平面的垂线 AB (垂足为B ),或棱l 的垂线AC (垂足为C ),连结AC ,则∠ACB = 或∠ACB =-; (4) 设A 为平面外任一点,AB ⊥ ,垂足为B ,AC ⊥ ,垂足为C ,则∠BAC = 或 ∠BAC =-; (5) 利用面积射影定理,设平面 内的平面图形F 的面积为S ,F 在平面 内的射影图形

精选高中立体几何证明方法及例题

由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。 1. 线线、线面、面面平行关系的转化: αβ αγβγ //,// ==???? a b a b 面面平行性质 ??? ? ? 面面平行性质 αγβγαβ //////?? ?? 2. 线线、线面、面面垂直关系的转化: a a OA a PO a PO a AO ?⊥?⊥⊥?⊥αα 在内射影则 面面垂直判定 线面垂直定义 l a l a ⊥??⊥? ??α α 面面垂直性质,推论2 αβ αββα⊥=?⊥?⊥??? ? ? b a a b a , αγβγαβ γ⊥⊥=?⊥? ?? ? ? a a 面面垂直定义 αβαβαβ =--?⊥? ?? l l ,且二面角成直二面角

面面∥面面平行判定2 线面垂直性质2a b a b //⊥?⊥??? α α a b a b ⊥ ⊥???? αα// a a ⊥⊥?? ?? αβα β // αβα β//a a ⊥⊥? ?? a 4. 应用以上“转化”的基本思路——“由求证想判定,由已知想性质。” 5. 唯一性结论: 1. 三类角的定义: (1)异面直线所成的角θ:0°<θ≤90 ° (2)直线与平面所成的角:0°≤θ≤90° (3)二面角:二面角的平面角θ,0°<θ≤180° 2. 三类角的求法:转化为平面角“一找、二作、三算” 即:(1)找出或作出有关的角;(2)证明其符合定义; (3)指出所求作的角; (4)计算大小。

高中立体几何证明方法及例题

1. 空间角与空间距离 在高考的立体几何试题中,求角与距离是必考查的问题,其中最主要的是求线线角、线面角、面面角、点到面的距离,求角或距离的步骤是“一作、二证、三算”,即在添置必要的辅助线或辅助面后,通过推理论证某个角或线段就是所求空间角或空间距离的相关量,最后再计算。 2. 立体几体的探索性问题 立体几何的探索性问题在近年高考命题中经常出现,这种题型有利于考查学生归纳、判断等方面的能力,也有利于创新意识的培养。近几年立体几何探索题考查的类型主要有:(1)探索条件,即探索能使结论成立的条件是什么?(2)探索结论,即在给定的条件下命题的结论是什么。 对命题条件的探索常采用以下三种方法:(1)先观察,尝试给出条件再证明;(2)先通过命题成立的必要条件探索出命题成立的条件,再证明充分性;(3)把几何问题转化为代数问题,探索出命题成立的条件。 对命题结论的探索,常从条件出发,再根据所学知识,探索出要求的结论是什么,另外还有探索结论是否存在,常假设结论存在,再寻找与条件相容还是矛盾。 (一)平行与垂直关系的论证 由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。 1. 线线、线面、面面平行关系的转化: ?a c //) αβ αγβγ //,// ==???? a b a b 面面平行性质 线面平行性质 a a b a b ////αβαβ?=???? ? ? 面面平行性质1 αβαβ ////a a ??? ? ? 面面平行性质 αγβγαβ //////?? ?? 2. 线线、线面、面面垂直关系的转化:

高中立体几何证明方法及例题

1. 空间角与空间距离 在高考的立体几何试题中,求角与距离是必考查的问题,其中最主要的是求线线角、线面角、面面角、点到面的距离,求角或距离的步骤是“一作、二证、三算”,即在添置必要的辅助线或辅助面后,通过推理论证某个角或线段就是所求空间角或空间距离的相关量,最后再计算。 2. 立体几体的探索性问题 立体几何的探索性问题在近年高考命题中经常出现,这种题型有利于考查学生归纳、判断等方面的能力,也有利于创新意识的培养。近几年立体几何探索题考查的类型主要有:(1)探索条件,即探索能使结论成立的条件是什么(2)探索结论,即在给定的条件下命题的结论是什么。 对命题条件的探索常采用以下三种方法:(1)先观察,尝试给出条件再证明;(2)先通过命题成立的必要条件探索出命题成立的条件,再证明充分性;(3)把几何问题转化为代数问题,探索出命题成立的条件。 对命题结论的探索,常从条件出发,再根据所学知识,探索出要求的结论是什么,另外还有探索结论是否存在,常假设结论存在,再寻找与条件相容还是矛盾。

(一)平行与垂直关系的论证 由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。 1. 线线、线面、面面平行关系的转化: αβ αγβγ //,// ==?? ?? a b a b 面面平行性质 ??? ? ? 面面平行性质 αγβγαβ //////?? ?? 2. 线线、线面、面面垂直关系的转化:

a a OA a PO a PO a AO ?⊥?⊥⊥?⊥αα 在内射影则 面面垂直判定 线面垂直定义 l a l a ⊥??⊥? ??α α 面面垂直性质,推论2 αβ αββα⊥=?⊥?⊥??? ? ? b a a b a , αγβγαβ γ⊥⊥=?⊥? ?? ? ? a a 面面垂直定义 αβαβαβ =--?⊥? ?? l l ,且二面角成直二面角 3. 平行与垂直关系的转化: 面面∥面面平行判定2 面面平行性质3 a b a b //⊥?⊥??? α α a b a b ⊥⊥???? αα// a a ⊥⊥?? ?? αβα β // αβα β//a a ⊥⊥? ?? a 4. 应用以上“转化”的基本思路——“由求证想判定,由已知想性质。” 5. 唯一性结论:

立体几何常见证明方法

立体几何方法归纳小结 一、线线平行的证明方法 1、根据公理4,证明两直线都与第三条直线平行。 2、根据线面平行的性质定理,若直线a平行于平面A ,过a的平面B与平面A相交于b ,则a//b。 3、根据线面垂直的性质定理,若直线a与直线b都与平面A垂直,则a//b 。 4、根据面面平行的性质定理,若平面A//平面B,平面C与平面A和平面B的交线分别为直线a与直线b,则a//b 。 二、线面平行的证明方法 1、根据线面平行的定义,证直线与平面没有公共点。 2、根据线面平行的判定定理,若平面A内存在一条直线b与平面外的直线a平行,则a//A 。(用相似三角形或平行四边形) 3、根据平面与平面平行的性质定理,若两平面平行,则一个平面内的任一直线与另一个平面平行。 三、面面平行的证明方法 1、根据定义,若两平面没有公共点,则两平面平行。 2、根据两平面平行的判定定理,一个平面内有两相交直线与另一平面平行,则两平面平行。 或根据两平面平行的判定定理的推论,一平面内有两相交直线与另一平面内两相交直线平行,则两平面平行。 3、垂直同一直线的两平面平行。 4、平行同一平面的两平面平行。 四、两直线垂直的证明方法 1、根据定义,证明两直线所成的角为90° 2、一直线垂直于两平行直线中的一条,也垂直于另一条. 3、一直线垂直于一个平面,则它垂直于平面内的所有直线. 4、根据三垂线定理及逆定理,若平面内的直线垂直于平面的一条斜线(或斜线在平面内的射影),则它垂直于斜线在平面内的射影(或平面的斜线). 五、线面垂直的证明方法 1、根据定义,证明一直线与平面内的任一(所有)直线垂直,则直线垂直于平面. 2、根据判定定理,一直线垂直于平面内的两相交直线,则直线垂直于平面. 3、一直线垂直于两平行平面中的一个,也垂直于另一个. 4、两平行直线中的一条垂直于一个平面,另一条也垂直于这个平面. 5、根据两平面垂直的性质定理,两平面垂直,则一个平面内垂直于它们交线的直线垂直于另一个平面. 六、面面垂直的证明方法 1、根据面面垂直的定义,两平面相交所成的二面角为直二面角,则两平面垂直。 2、根据面面垂直的判定定理,一平面经过另一平面的一条垂线,则两平面垂直。 3、一平面垂直于两平行平面中的一个,也垂直于另一个。 七、两异面直线所成角的求法 1、根据定义,平移其中一条和另一条相交,然后在三角形中求角。

立体几何证明方法总结

一、线线平行的证明方法: 1、利用平行四边形。 2、利用三角形或梯形的中位线。 3、如果一条直线与一个平面平行,经过这条直线的平面与这个平面相交,那么这条直线就与交线平行。 (线面平行的性质定理) 4、如果两个平行平面同时与第三个平面相交,那么它们的交线平行。(面面平行的性质定理) 5、如果两条直线垂直于同一个平面,那么这两条直线平行。(线面垂直的性质定理) 6、平行于同一条直线的两条直线平行。 7、夹在两个平行平面之间的平行线段相等。(需证明) 二、线面平行的证明方法: 1、定义法:直线与平面没有公共点。 2、如果平面外一条直线与这个平面内的一条直线平行,那么这条直线与这个平面平行。(线面平行的判定定理) 3、两个平面平行,其中一个平面内的任何一条直线必平行于另一个平面。 三、面面平行的证明方法: 1、定义法:两平面没有公共点。 2、如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。(面面平行的判定定理) 3、平行于同一平面的两个平面平行。 4、经过平面外一点,有且只有一个平面与已知平面平行。 5、垂直于同一直线的两个平面平行。 四、线线垂直的证明方法: 1、勾股定理。 2、等腰三角形。 3、菱形对角线。

4、圆所对的圆周角就是直角。 5、点在线上的射影。 6、如果一条直线与一个平面垂直,那么这条直线就与这个平面内任意的直线都垂直。 7、在平面内的一条直线,如果与这个平面一条斜线的射影垂直,那么它也与这条斜线垂直。(三垂线定理,需证明) 8、在平面内的一条直线,如果与这个平面一条斜线垂直,那么它也与这条斜线的射影垂直。(三垂线逆定理,需证明) 9、如果两条平行线中的一条垂直于一条直线,则另一条也垂直于这条直线。 五、线面垂直的证明方法: 1、定义法:直线与平面内任意直线都垂直。 2、点在面内的射影。 3、如果一条直线与一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面。(线面垂直的判定定理) 4、如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。(面面垂直的性质定理) 5、两条平行直线中的一条垂直于平面,则另一条也垂直于这个平面。 6、一条直线垂直于两平行平面中的一个平面,则必垂直于另一个平面。 7、两相交平面同时垂直于第三个平面,那么两平面交线垂直于第三个平面。 8、过一点,有且只有一条直线与已知平面垂直。 9、过一点,有且只有一个平面与已知直线垂直。 六、面面垂直的证明方法: 1、定义法:两个平面的二面角就是直二面角。 2、如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。(面面垂直的判定定理) 3、如果一个平面与另一个平面的垂线平行,那么这两个平面互相垂直。 4、如果一个平面与另一个平面的垂面平行,那么这两个平面互相垂直。

立体几何证明方法大全

(二)立体几何证明方法汇总 1、线线平行判定定理 一个平面 点 平行于同一条直线的两条直线的 两条直线平行 线面平行性质如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交, 面面平行的性一个平面与两个平行平面相交 则交线平行 线面垂直的性垂直于同 行

两条直线所成的角是 线面垂直的性质一条直线垂直于一个平面任何一条直线 一条直线垂直三角形两边则垂直一条直线垂直于三角形的两条边 第三边 三垂线定理 个平面的一条斜线的射影垂直,那么它和这条斜线垂直 三垂线定理逆定三垂线逆定理 这个平面的一条斜线垂直,那么它和这条斜线的射影垂直

一条直线与平面没有交点 线面平行判两个平面平行, 平行于另一个平面 如果一条直线垂直于平面内的任何一条 直线,则直线与平面垂直。 的一条直线垂直于平面内两条相交直线, 则平行于这个平面。 的推一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面 的若二平面垂直,那么在一个平面内垂直 于它们的交线的直线垂直于另一个平面

如果两个平面没有公共点,则两个平面平行。 面面平行的如果一个平面内有两条相交直线平行于另一 个平面,那么这两个平面平行 面面平行的判定定理推如果两个平面内两条相交直线平行于另一个平面内两条相交直线,则两个平面平行。 线面垂直的 垂直于同一直线的两个平面平行 两个平面相交, 这两个平面垂直。 面面垂直的判如果平面经过另一个平面的一条垂线, 面垂直。

公理 么这条直线上的所有点都在这个平面内。( ( 公理 它公共点,这些公共点的集合是一条直线( ( 公理 个平面。 干个点共面的依据 推论 有一个平面。 ( ( 推论 推论

立体几何证明方法汇总

E B C D A P ① 中位线定理 例题:已知如图:平行四边形ABCD 中,6BC =,正方形ADEF 所在平面与平面ABCD 垂直,G ,H 分别是DF ,BE 的中点. (1)求证:GH ∥平面CDE ; (2)若2,42CD DB ==,求四棱锥F-ABCD 的体积. 练习:1、如下图所示:在直三棱柱ABC —A 1B 1C 1中,AC=3,BC=4,AB=5,AA 1=4,点D 是AB 的中点。 求证:AC 1∥平面CDB 1; 2. 如图,1111D C B A ABCD -是正四棱柱侧棱长为1,底面边长为2,E 是棱BC 的中点。(1)求证://1BD 平面 DE C 1;(2)求三棱锥BC D D 1-的体积. 3、如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,4,3PD DC ==,E 是PC 的中点。 (1)证明://PA BDE 平面; (2)求PAD ?以PA 为轴旋转所围成的几何体体积。 E A 1 B 1 C 1 D 1D C B A _ H _ G _ D _ A _ B _ C E F

G P A B C D F E A B C D E F 例2、 如图, 在矩形ABCD 中,2AB BC = , ,P Q 分别为线段,AB CD 的中点, EP ⊥平面ABCD .求证: AQ ∥平面CEP ;(利用平行四边形) 练习:①如图,PA 垂直于矩形ABCD 所在的平面,E 、F 分别是AB 、PD 的中点。求证:AF ∥平面PCE ; ②如图,已知P 是矩形ABCD 所在平面外一点,ABCD 平面PD ⊥,M ,N 分别是AB ,PC 中点。求证://PAD MN 平面 P A B C D M N ③ 如图,已知AB ⊥平面ACD ,DE//AB ,△ACD 是正三角形,AD = DE = 2AB ,且F 是CD 的中点.⑴求证:AF//平面BCE ; ④、已知正方体ABCD-1111D C B A ,O 是底ABCD 对角线的交点.求证://1O C 面11 AB D . D 1 C 1B 1A 1

立体几何证明方法总结及经典3例(可编辑修改word版)

立体几何证明方法总结及典例 例1:平行类证明 【平行类证明方法总结】 线线平行的证明方法: 三线间平行的传递性,三角形中位线,平行四边形对边平行且相等,梯形的上下底平行,棱 柱圆柱的侧棱平行且相等,两平行面被第三面所截交线平行,成比例(相似)证平行等等。 线面平行的证明方法: 面外线与面内线平行,两面平行则面内一线与另面平行等等 面面平行的证明方法: 面内相交线与另面平行则面面平行,三面间平行的传递性等等。 【例】正方形ABCD与正方形ABEF所在平面相交于AB,在AE、BD上各有一点P、Q,且AP=DQ. 求证:PQ∥面BCE. 证法一: 如图(1),作PM∥AB交BE于M, 作QN∥AB交BC于N,连接MN, 因为面ABCD∩面ABEF=AB, 则AE=DB. 又∵AP=DQ, ∴PE=QB. 又∵PM∥AB∥QN, ∴ PM =PE , QN =BQ . AB AE DC BD ∴ PM =QN . AB DC ∴PM∥QN.

四边形PMNQ为平行四边形. ∴PQ∥MN. 又∵MN ?面BCE,PQ ?面BCE, ∴PQ∥面BCE. 证法二: 如图(2),连结AQ并延长交BC或BC的延长线于点K,连结EK. ∵AD∥BC, ∴ DQ =AQ . QB QK 又∵正方形ABCD与正方形ABEF有公共边AB,且AP=DQ, ∴ AQ =AP .则PQ∥EK. QK PE ∴EK ?面BCE,PQ ?面BCE. ∴PQ∥面BCE. 例2:垂直类证明 【垂直类证明方法总结】 证垂直的几种方法:勾股定理、等腰(边)三角形三线合一、菱形对角线、矩形(含正方形)、90o、相似三角形(与直角三角形)、圆直径对的圆周角、平行线、射影定理(三垂线定理)、线面垂直、面面垂直等 【例】如图所示,ABCD 为正方形,SA ⊥平面ABCD,过A 且垂直于SC 的平面分别交SB,SC,SD于E,F,G . 求证:AE ⊥SB ,AG ⊥SD . 证明:∵ SA ⊥平面ABCD, ∴ SA ⊥BC . ∵ AB ⊥BC ,

立体几何平行证明题常见模型及方法

__________________________________________________ 立体几何平行证明题常见模型及方法 证明空间线面平行需注意以下几点: ①由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。 ②立体几何论证题的解答中,利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。 ③明确何时应用判定定理,何时应用性质定理,用定理时要先申明条件再由定理得出相应结论。 平行转化:线线平行 线面平行 面面平行; 类型一:线面平行证明(中位线法,构造平行四边形法,面面平行法) (1) 方法一:中位线法 以锥体为载体 例1:如图,在底面为平行四边形的四棱锥P ABCD -中, 点E 是PD 的中点. 求证:PB ∥平面AEC ; 变式1:若点M 是PC 的中点,求证:PA||平面BDM ; 变式2:若点M 是PA 的中点,求证:PC||平面BDM 。 变式3如图,在四棱锥S ABCD -中,底面ABCD 是菱形, , 点M 是SD 的中点,求证://SB 平面ACM _ B _ C S P A B C D E

__________________________________________________ (2)以柱体为载体 例2 在直三棱柱111ABC A B C -,D 为BC 的中点,求证:1A C ||平面1AB D 变式1 在正方体1111ABCD A B C D -中,若E 是CD 的中点,求证:1B D ||平面1BC E 变式2在正方体1111ABCD A B C D -中,若E 是CD 的中点,求证:1B D ||平面1BC E 变式 3 如图,在直三棱柱ABC —A 1B 1C 1中,AA 1=5,AC=BC=2,∠C=90°,点D 是A 1C 1的中点. 求证:BC 1//平面AB 1D ; 方法2:构造平行四边形法 例1如图,在四棱锥S ABCD -中,底面ABCD 为正方形,E 、F 分别为AB SC ,的中点.证明○1EF ∥平面SAD ○2BF ∥平面SDE 变式1:若E 、F 分别为AD SB ,的中点.证明EF ∥平面SCD 变式2 若E 、F 分别为SD B ,A 的中点.证明EF ∥平面SCB 例2 如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB//CD ,AB=4, F E S A B C D E C E 1 A 1 B 1 C 1 D 1 D

立体几何证明方法总结(教师)

、线线平行的证明方法: 1、利用平行四边形。 2、利用三角形或梯形的中位线。 3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。 线面平行的性质定理) 4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行。 6、平行于同一条直线的两条直线平行。 二、线面平行的证明方法: 1、定义法:直线与平面没有公共点。 2、如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。 3、两个平面平行,其中一个平面内的任何一条直线必平行于另一个平面。 三、面面平行的证明方法: 1、定义法:两平面没有公共点。 2、如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。 3、平行于同一平面的两个平面平行。 面面平行的性质定理) 5、如果两条直线垂直于同一个平面,那么这两条直线 平行。(线面垂直的性质定理) 7、夹在两个平行平面之间的平行线段相等。 需证明) 线面平行的判定定理) 面面平行的判定定理)

4、经过平面外一点,有且只有一个平面和已知平面平行。 5、垂直于同一直线的两个平面平行。 四、线线垂直的证明方法: 1、勾股定理。 2、等腰三角形。 3、菱形对角线。 4、圆所对的圆周角是直角。 5、点在线上的射影。 6、如果一条直线和一个平面垂直,那么这条直线就和这个平面内任意的直线都垂直。 7、在平面内的一条直线,如果和这个平面一条斜线的射影垂直,那么它也和这条斜线垂直。证明) 8、在平面内的一条直线,如果和这个平面一条斜线垂直,那么它也和这条斜线的射影垂直。需证明) 9、如果两条平行线中的一条垂直于一条直线,则另一条也垂直于这条直线。 五、线面垂直的证明方法: 1、定义法:直线与平面内任意直线都垂直。三垂线定理,需三垂线逆定理,

高中立体几何证明垂直的专题训练

高中立体几何证明垂直的专题训练 深圳龙岗区东升学校—— 罗虎胜 立体几何中证明线面垂直或面面垂直都可转化为 线线垂直,而证明线线垂直一般有以下的一些方法: (1) 通过“平移”。 (2) 利用等腰三角形底边上的中线的性质。 (3) 利用勾股定理。 (4) 利用三角形全等或三角行相似。 (5) 利用直径所对的圆周角是直角,等等。 (1) 通过“平移”,根据若αα平面则平面且⊥⊥a b b a ,,// 1.在四棱锥P-ABCD 中,△PBC 为正三角形,AB ⊥平面PBC ,AB ∥CD ,AB= 2 1 DC ,中点为PD E .求证:AE ⊥平面PDC. 分析:取PC 的中点F ,易证AE//BF ,易证 B F ⊥平面PDC 2.如图,四棱锥P -ABCD ABCD ,∠PDA=45°,点E 为棱AB 的中点. 求证:平面PCE ⊥平面PCD ; 分析:取PC 的中点G ,易证EG//AF ,又易证A F 于是E G ⊥平面PCD,则平面PCE ⊥平面PCD 3 、如图所示,在四棱锥P ABCD -中, (第2题图)

AB PAD ⊥平面,//AB CD ,PD AD =,E 是PB 的中点,F 是CD 上的点,且 1 2 DF AB = ,PH 为PAD ?中AD 边上的高。 (1)证明:PH ABCD ⊥平面; (2)若121PH AD FC ===,,,求三棱锥E BCF -的体积; (3)证明:EF PAB ⊥平面. 分析:要证EF PAB ⊥平面,只要把FE 平移到DG ,也即是取AP 的中点G ,易证EF//GD, 易证D G ⊥平面PAB 4.如图所示, 四棱锥P -ABCD 底面是直角梯形 ,,2,BA AD CD AD CD AB PA ⊥⊥=⊥底面ABCD , E 为PC 的中点, P A =AD 。 证明: BE PDC ⊥平面; 分析:取PD 的中点F ,易证AF//BE, 易证A F ⊥平面PDC (2)利用等腰三角形底边上的中线的性质 5、在三棱锥P ABC -中,2AC BC ==,90ACB ∠=,AP BP AB ==, PC AC ⊥. (Ⅰ)求证:PC AB ⊥; (Ⅱ)求二面角B AP C --的大小; 6、如图,在三棱锥P ABC -中,⊿PAB 是等边三角形,∠P AC =∠PBC =90 o A C B P

立体几何证明方法汇总 (1)

G P A B C D F E A B C D E F ① 中位线定理 例题:已知如图:平行四边形ABCD 中,6BC =,正方形 ADEF 所在平面与平面ABCD 垂直,G ,H 分别是 DF ,BE 的中点. (1)求证:GH ∥平面CDE ; (2)若2,CD DB ==,求四棱锥F-ABCD 的体积. 练习:1、如下图所示:在直三棱柱ABC —A 1B 1C 1中,AC=3,BC=4,AB=5,AA 1=4,点D 是AB 的中点。 求证:AC 1∥平面CDB 1; 2. 如图,1111D C B A ABCD -是正四棱柱侧棱长为1,底面边长为2,E 是棱BC 的中点。(1)求证://1BD 平面DE C 1;(2)求三棱锥BC D D 1-的体积. 3、如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,4,3PD DC ==,E 是PC 的中点。 (1)证明://PA BDE 平面; (2)求PAD ?以PA 为轴旋转所围成的几何体体积。 例2、 如图, 在矩形ABCD 中,2AB BC = , ,P Q 分别为线段,AB CD 的中点, EP ⊥平面ABCD .求证: AQ ∥平面CEP ; (利用平行四边形) 练习:①如图,PA 垂直于矩形ABCD 所在的平面,E 、F 分别是AB 、PD 的 中点。求证:AF ∥平面PCE ; ②如图,已知P 是矩形ABCD 所在平面外一点,ABCD 平面PD ⊥,M ,N 分别是AB ,PC 中点。求证://PAD MN 平面 ③ 如图,已知AB ?平面ACD ,DE 求证:AF 1 1 1 1 D C B A O ABCD 证://1 O C 面 11 AB D . A 1 C _ H _ G _ D _ A _ B _ C E F

立体几何证明方法总结

一、线线平行的证明方法: 1、利用平行四边形。 2、利用三角形或梯形的中位线。 3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。 (线面平行的性质定理) 4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行。(面面平行的性质定理) 5、如果两条直线垂直于同一个平面,那么这两条直线平行。(线面垂直的性质定理) 6、平行于同一条直线的两条直线平行。 7、夹在两个平行平面之间的平行线段相等。(需证明) 二、线面平行的证明方法: 1、定义法:直线与平面没有公共点。 2、如果平面外一条直线和这个平面内的一条直线平

行,那么这条直线和这个平面平行。(线面平行的判定定理) 3、两个平面平行,其中一个平面内的任何一条直线必平行于另一个平面。 三、面面平行的证明方法: 1、定义法:两平面没有公共点。 2、如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。(面面平行的判定定理) 3、平行于同一平面的两个平面平行。 4、经过平面外一点,有且只有一个平面和已知平面平行。 5、垂直于同一直线的两个平面平行。 四、线线垂直的证明方法: 1、勾股定理。 2、等腰三角形。

3、菱形对角线。 4、圆所对的圆周角是直角。 5、点在线上的射影。 6、如果一条直线和一个平面垂直,那么这条直线就和这个平面内任意的直线都垂直。 7、在平面内的一条直线,如果和这个平面一条斜线的射影垂直,那么它也和这条斜线垂直。(三垂线定理,需证明) 8、在平面内的一条直线,如果和这个平面一条斜线垂直,那么它也和这条斜线的射影垂直。(三垂线逆定理,需证明) 9、如果两条平行线中的一条垂直于一条直线,则另一条也垂直于这条直线。 五、线面垂直的证明方法: 1、定义法:直线与平面内任意直线都垂直。 2、点在面内的射影。

高中数学-立体几何证明方法总结及经典3例

高中数学-立体几何证明方法总结及典例 例1:平行类证明 【平行类证明方法总结】 线线平行的证明方法: 三线间平行的传递性,三角形中位线,平行四边形对边平行且相等,梯形的上下底平行,棱柱圆柱的侧棱平行且相等,两平行面被第三面所截交线平行,成比例(相似)证平行等等。 线面平行的证明方法: 面外线与面内线平行,两面平行则面内一线与另面平行等等 面面平行的证明方法: 面内相交线与另面平行则面面平行,三面间平行的传递性等等。 【例】正方形ABCD 与正方形ABEF 所在平面相交于AB ,在AE 、BD 上各有一点P 、Q ,且AP=DQ.求证:PQ ∥面BCE. 证法一: 如图(1),作PM ∥AB 交BE 于M , 作QN ∥AB 交BC 于N,连接MN, 因为面ABCD ∩面ABEF=AB, 则AE=DB. 又∵AP=DQ, ∴PE=QB. 又∵PM ∥AB ∥QN, ∴AE PE AB PM =,BD BQ DC QN = . ∴ DC QN AB PM = . ∴PM ∥QN.

四边形PMNQ 为平行四边形. ∴PQ ∥MN. 又∵MN ?面BCE ,PQ ?面BCE , ∴PQ ∥面BCE. 证法二: 如图(2),连结AQ 并延长交BC 或BC 的延长线于点K ,连结EK. ∵AD ∥BC, ∴ QK AQ QB DQ =. 又∵正方形ABCD 与正方形ABEF 有公共边AB ,且AP=DQ , ∴ PE AP QK AQ =.则PQ ∥EK. ∴EK ?面BCE ,PQ ?面BCE. ∴PQ ∥面BCE. 例2:垂直类证明 【垂直类证明方法总结】 证垂直的几种方法:勾股定理、等腰(边)三角形三线合一、菱形对角线、矩形(含正方形)、90o 、相似三角形(与直角三角形)、圆直径对的圆周角、平行线、射影定理(三垂线定理)、线面垂直、面面垂直等 【例】如图所示,ABCD 为正方形,SA ⊥平面ABCD ,过A 且垂直于SC 的平面分别交 SB SC SD ,,于E F G ,,. 求证:AE SB ⊥,AG SD ⊥. 证明:∵SA ⊥平面ABCD , ∴SA BC ⊥. ∵AB BC ⊥,

高考数学-立体几何证明方法总结及经典3例

高考数学-立体几何证明方法总结及经典3例 例1:平行类证明 【平行类证明方法总结】 线线平行的证明方法: 三线间平行的传递性,三角形中位线,平行四边形对边平行且相等,梯形的上下底平行,棱柱圆柱的侧棱平行且相等,两平行面被第三面所截交线平行,成比例(相似)证平行等等。 线面平行的证明方法: 面外线与面内线平行,两面平行则面内一线与另面平行等等 面面平行的证明方法: 面内相交线与另面平行则面面平行,三面间平行的传递性等等。 【例】正方形ABCD与正方形ABEF所在平面相交于AB,在AE、BD上各有一点P、Q,且AP=DQ.求证:PQ∥面BCE. 证法一: 如图(1),作PM∥AB交BE于M, 作QN∥AB交BC于N,连接MN, 因为面ABCD∩面ABEF=AB,

则AE=DB. 又∵AP=DQ, ∴PE=QB. 又∵PM ∥AB ∥QN, ∴AE PE AB PM =,BD BQ DC QN = . ∴ DC QN AB PM = . ∴PM ∥QN. 四边形PMNQ 为平行四边形. ∴PQ ∥MN. 又∵MN ?面BCE ,PQ ?面BCE , ∴PQ ∥面BCE. 证法二: 如图(2),连结AQ 并延长交BC 或BC 的延长线于点K ,连结EK. ∵AD ∥BC, ∴ QK AQ QB DQ =. 又∵正方形ABCD 与正方形ABEF 有公共边AB ,且AP=DQ , ∴ PE AP QK AQ =.则PQ ∥EK. ∴EK ?面BCE ,PQ ?面BCE. ∴PQ ∥面BCE. 例2:垂直类证明 【垂直类证明方法总结】

证垂直的几种方法:勾股定理、等腰(边)三角形三线合一、菱形对角线、矩形(含正方形)、90o、相似三角形(与直角三角形)、圆直径对的圆周角、平行线、射影定理(三垂线定理)、线面垂直、面面垂直等 【例】如图所示,ABCD为正方形,SA⊥平面ABCD,过A且垂直于SC的平面分别交SB SC SD ,,于E F G ,,. 求证:AE SB ⊥,AG SD ⊥. 证明:∵SA⊥平面ABCD, ∴SA BC ⊥. ∵AB BC ⊥, ∴BC⊥平面SAB. 又∵AE?平面SAB, ∴BC AE ⊥. ∵SC⊥平面AEFG, ∴SC AE ⊥. ∴AE⊥平面SBC. ∴AE SB ⊥.

立体几何证明题专题(教师版)分析

立体几何证明题 考点1:点线面的位置关系及平面的性质 例1.下列命题: ①空间不同三点确定一个平面; ②有三个公共点的两个平面必重合; ③空间两两相交的三条直线确定一个平面; ④三角形是平面图形; ⑤平行四边形、梯形、四边形都是平面图形; ⑥垂直于同一直线的两直线平行; ⑦一条直线和两平行线中的一条相交,也必和另一条相交; ⑧两组对边相等的四边形是平行四边形. 其中正确的命题是________. 【解析】由公理3知,不共线的三点才能确定一个平面,所以知命题①错,②中有可能出现两平面只有一条公共线(当这三个公共点共线时),②错.③空间两两相交的三条直线有三个交点或一个交点,若为三个交点,则这三线共面,若只有一个交点,则可能确定一个平面或三个平面.⑤中平行四边形及梯形由公理2可得必为平面图形,而四边形有可能是空间四边形,如图(1)所示. 在正方体ABCD—A′B′C′D′中,直线BB′⊥AB,BB′⊥CB,但AB与CB不平行,∴⑥错.AB∥CD,BB′∩AB=B,但BB′与CD不相交,∴⑦错.如图(2)所示,AB=CD,BC=AD,四边形ABCD不是平行四边形,故⑧也错. 【答案】④ 2.若P是两条异面直线l、m外的任意一点,则( ) A.过点P有且仅有一条直线与l、m都平行 B.过点P有且仅有一条直线与l、m都垂直 C.过点P有且仅有一条直线与l、m都相交 D.过点P有且仅有一条直线与l、m都异面 答案 B 解析对于选项A,若过点P有直线n与l,m都平行,则l∥m,这与l,m异面矛盾. 对于选项B,过点P与l、m都垂直的直线,即过P且与l、m的公垂线段平行的那一条直线. 对于选项C,过点P与l、m都相交的直线有一条或零条. 对于选项D,过点P与l、m都异面的直线可能有无数条. 1 / 21

立体几何平行证明题常见模型及方法

证明空间线面平行需注意以下几点: ①由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。 ②立体几何论证题的解答中,利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。 ③明确何时应用判定定理,何时应用性质定理,用定理时要先申明条件再由定理得出相应结论。 平行转化:线线平行 线面平行 面面平行; 类型一:线面平行证明(中位线法,构造平行四边形法,面面平行法) (1) 方法一:中位线法 以锥体为载体 例1:如图,在底面为平行四边形的四棱锥P ABCD 中, 点E 是PD 的中点. 求证:PB ∥平面AEC ; 变式1:若点是PC 的中点, 求证:PA||平面BDM ; 变式2:若点M 是PA 的中点,求证:PC||平面BDM 。 变式3如图,在四棱锥中,底面是菱形, P A B C D E

例2 在直三棱柱111ABC A B C -,D 为BC 的中点,求证:1A C ||平面1AB D 变式1 在正方体1111ABCD A B C D -中,若E 是CD 的中点,求证:1B D ||平面1BC E 变式2在正方体1111ABCD A B C D -中,若E 是CD 的中点,求证:1B D ||平面1BC E 变式 3 如图,在直三棱柱ABC —A 1B 1C 1中,AA 1=,AC=BC=2,∠C=90°,点D 是A 1C 1的中点. 求证:BC 1S ABCD -ABCD E F AB SC ,EF ∥SAD BF ∥SDE E F AD SB ,EF ∥SCD E F SD B ,A EF ∥SCB 1111111 设F 是棱AB 的中点,证明:直 线EE 11AB ⊥ACD DE ⊥ACD ACD 2AD DE AB ==F CD (1) 求证://AF 平面BCE ; (2) 求证:平面BCE ⊥平面CDE ; 2 如图是某直三棱柱(侧棱与底面垂直)被削去上底后的直观图与三视图中的侧(左)视图、俯视图,在直观图中,M 是BD 的中点,侧(左)视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示. (1)求出该几何体的体积; (2)若N 是BC 的中点,求证:AN ∥平面CME ; (3)求证:平面BDE ⊥平面BCD. 3直四棱柱ABCD -A1B1C1D1中,底面ABCD 是等腰梯形,AB ∥DC ,AB =2AD =2DC =2,E 为BD1的中点,F 为AB 中点. F E S A B C D E A B C F E 1 A 1 B 1 C 1 D 1 D A B C D E F

高考立体几何题证明方法

立体几何讲义 第一部分:空间几何体知识点 一、关键字: 1.左视图面积(效果图) 侧视图面积(效果图) 2.左侧面积(真实面积) 侧面积(真实面积) 表面积、全面积(真实面积) 3.斜棱柱、直四棱柱、正四棱柱、长方体、正方体、正六面体、正三棱锥、正四面体 二、几个基本概念 1.棱柱:有两个面相互平行,其余各面都是四边形,且相邻的两个四边形公共边都相互平行 2.直棱柱:侧棱与底面垂直 3.斜棱柱:侧棱与底面不垂直 4.正棱柱:底面为正多边形的直棱柱 5.平行六面体:底面是平行四边形的四棱柱 6.长方体:底面是矩形的直平行六面体 7.棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形 8.正棱锥:底面是正多边形,且顶点又在过底面中心且与底面垂直的直线上 9.棱台:棱锥被平行于底面的平面所截,截面与底面间的部分 三、基本公式 V Sh =柱体(S 是柱体的底面积,h 是柱体的高) 1 3V Sh = 锥体(S 是锥体的底面积,h 是锥体的高) 3 34r V ?=π球 () 1 3=?V h S S S S 下下 台体上上 ch S =柱侧(c 是柱体的底面周长,h 是柱体的高) 24r S ?=π球 ()()l r r l r r πππ'+='+= 2221 S 圆台侧 n S S ?=1侧 ( × ) h C S ?=侧 ( √ ) 四、重要结论 1.长方体的外接球的直径是长方体的体对角线长. 2.正方体内切球直径是正方体棱长, 正方体棱切球直径是正方体面对角线

3.正三角形与正四面体 边长 h r R () V S 正三角形 a a 23 a 63 a 33 243a 正四面体 a a 36 a 126 a 46 3122a 4.直六面体 (1)体对角线与三条侧棱夹角分别为γβα,,,则:1cos cos cos 2 22=++γβα (2)体对角线与三条侧面夹角分别为?φθ,,,则:2cos cos cos 2 22=++?φθ 5.三棱锥ABC P —的顶点P 在地面ABC 内的射影的位置 (1)外心?三条侧棱长相等,PC PB PA == ?侧棱与底面所成线面角相等 (2)内心?三条侧面斜高相等,C C B B A A '='=' ?侧面与底面所成线面角相等 (3)垂心?相对棱相互垂直 ?三条侧棱两两垂直,PC PB PA ⊥⊥ (4)P 点射影为AB 中点?PC PB PA ==,?=∠90ACB 第二部分:点、直线、平面之间的位置关系 一、线面平行: ①定义:直线与平面无公共点. ②判定定理:////a b a a b ααα? ? ??????(线线平行?线面平行) ③性质定理:////a a a b b α βαβ? ? ????=? (线面平行?线线平行) ④判定或证明线面平行的依据:(i )定义法(反证)://l l αα=??(用于判断); (ii )判定定理:////a b a a b ααα? ? ?????? “线线平行?面面平行”(用于证明);(iii ) ////a a αββα????? “面面平行?线面平行” (用于证明);(4)//b a b a a ααα⊥? ? ⊥????? (用于判

相关主题
文本预览
相关文档 最新文档