河南省洛阳市第一中学2020-2021学年高一上学期第一次月考数学试题及答案
- 格式:doc
- 大小:151.00 KB
- 文档页数:6
专题10压轴题题型汇总压轴题型一、保值函数型“保值函数”,又称为“k 倍值函数”,“和谐函数”,“美好区间”等等。
1、现阶段主要是一元二次函数为主的。
核心思路是转化为“根的分布”。
2、函数单调性是解决问题的入口之一。
3、方程和函数思想。
特别是通过两个端点值构造对应的方程,再提炼出对应的方程的根的关系。
如第1题1.(江苏省连云港市市区三星普通高中2020-2021学年高一上学期期中联考)对于区间[,]a b 和函数()y f x =,若同时满足:①()f x 在[,]a b 上是单调函数;②函数(),[,]y f x x a b =∈的值域还是[,]a b ,则称区间[,]a b 为函数()f x 的“不变”区间.(1)求函数2(0)y x x =≥的所有“不变”区间;(2)函数2(0)y x m x =+≥是否存在“不变”区间?若存在,求出实数m 的取值范围;若不存在,请说明理由.2.(北京市昌平区2020-2021学年高一上学期期中质量抽测)已知函数2()f x x k =-.若存在实数,m n ,使得函数()f x 在区间上的值域为,则实数k 的取值范围为()A .(1,0]-B .(1,)-+∞C .2,0]D .(2,)-+∞3.(广东省广州市第一中学2020-2021学年高一上学期11月考试)已知函数221()x f x x-=.(1)判断函数()f x 的奇偶性并证明;(2)若不等式23()1x f x kx x +-≥在1,14x ⎡⎤∈⎢⎥⎣⎦上恒成立,求实数k 的取值范围;(3)当11,(0,0)x m n m n ⎡⎤∈>>⎢⎥⎣⎦时,函数()()1(0)g x tf x t =+>的值域为[23,23]m n --,求实数t 的取值范围.4.(江苏省盐城市实验高级中学2020-2021学年高一上学期期中)一般地,若()f x 的定义域为[],a b ,值域为[],ka kb ,则称[],a b 为()f x 的“k 倍跟随区间”;特别地,若()f x 的定义域为[],a b ,值域也为[],a b ,则称[],a b 为()f x 的“跟随区间”,(1)若[]1,b 为2()22f x x x =-+的跟随区间,则b =______;(2)若函数()f x m =m的取值范围是______.压轴题型二、方程根的个数1.一元二次型“根的分布”是期中考试的一个难点和热点。
洛阳三中2020级高一数学月考试卷 满分:150时间:120分钟出题人,罗晓辉审题人:高一数学组选择题(本大题共12小题,共60.0分)1、己知集合}02|{2≤-=x x x A ,函数B =⎭⎬⎫⎩⎨⎧≤--031|x x x ,则=⋂B A ( ) A. [2.3] B.(2,3) C. [1.2] D.(1.2)2.下列从集合A 到集合B 的对应关系中不可以确定y 是x 的函数的是()A. A= {x| - 1 ≤ x ≤ l,x ∈R}. B = {0},对应法则f :x → y = 0B. A = Z, B = R ;对应关系f :x → y =3xC. A = {x ∈R\x > 0}. B= R ;对应关系f :x → y 2 = 3rD.A= R, B = R ;对应关系f :x → y=x 23、三个数0.76, 60.7, log 0.76大小关系正确的是()A. 0.76 < log 0.,6 < 60 .7B. log o.76 <0.76 <60.7C. log 0.76 < 60.7 < 0.76D. 0.76 < 60 .7 < log 0 764.已知函数⎪⎩⎪⎨⎧≥⎪⎭⎫ ⎝⎛<+=2,312),4()(x x x f x f x 则=+-)5log 3(3f A.151B.35C .15 D.325. 已知函数⎩⎨⎧<-≥+-=0,50,44)(2x x x x x x f ,9)(=a f ,则a 的取值集合() A.{-4,-1,5} B.{-1,5} C.{-4,5} D.{-4,-1}6.设函数f(x)为定义在R 上的奇函数,当X ≥0。
时,f(x) = 2x + 2x + b(b 为常数), 则当x<0时,f(x)=()A. 2-x 4- 2x + 1B. -2-x + 2x+1C. 2-x - 2x - 1D. -2 -x -2x-1 7、定义在[-7,7]上的奇函数f(x),当70≤<x 时,f(x) = 2x +x-6,则不等式f(x)>0的解集A.(2,7]B.(-2,0]⋃(2,7]C.(-2,0]⋃(2,+∞)D.(-7,-2]⋃(2,7] 8、己知关于X 的不等式012≥+-ax x 在区间[1,2]上有解,则实数a 的取值范围A.2≤a 2.≥a B C.25≥a D.25≤a 9、函数,f(x)= ⎩⎨⎧+∞∈-+--∞∈),0();1()12()0,(;x a x a x a x 在R 是减函数, 则a 的取值范围是 A.(0,21) B.[0,21) c.(-∞,21] D.(21,+∞) 10、己知函数f(x) = |x | +x 1 则函数y =f (x)的大致图像为11.己知函数|1|)21()(-=x x f ,则函数)(x f 的单调递增区间是 A. [1, +∞)B. (-∞, 1] .C. (-∞,-1]D.[-1,+∞) 12、己知函数⎩⎨⎧>≤+=0;10;1)(2x x x x f ,f (x-4)> f (2x-3),则实数x 的取值范围A. (-1, +∞)B. (-∞, -1] .C. (-1,4)D.[-∞,1)13、log 28-32273ln 001.0lg e +-=14、函数222)21(--=x x y 的单调增区间15、某产品的总成本y (万元)与产量x (台)之间的函数关系式为x y x 525.02+⨯=+,若每台产品的售价为8万元,则当产量为7台时,生产者可获得的利润为 16,若函数,0;30;12)(2⎪⎩⎪⎨⎧≤>++-=x x x x x f x 方程f (x )=m 小有两解,则实数m 的取值范围三、解答题(本大题共6小题,共70.0分)17、(1)233102125.027102--32-972+)(π)()( (2)2log 3lg -1log 32324log 2⋅+18、己知函数f(x) = |x-1| + |x- 2|.(1)用分段函数的形式表示该函数,并在所给的坐标系中画出该函数的图象;(2)写出该函数的值域,单调区间,(不需要证明)(3)求不等式f(x)≤3的解集1+1, 19、己知函数f(x)是定义在R上的奇函数,当x>0时,,f(x) = x +x⑴求函数f(x)的解析式:(2)判断并证明函数f(x)在(0,1)上的单调性.20、己知集合4 = {x|x2 - 2x-a2 - 2a < 0}, B = {y\y = 3x - 2a,x ≤2). (1)若a= 3,求AUB;(2)若A⋂B =A,求a的取值范围21,已知二次函数f(x)满足,f(0) = f(2) = 2, f(1)=1(1)求函数f(x)的解析式:(2)当x ∈ [-1,2]时,求y = f(x)的值域;(3)设h(x)=f(x)-mx 在[1,3]上是单调函数,求实数m 的取值范围22.己知定义域为R 的函数f(x)=)12(222a x x +-⋅,满足f(0) = 0. (1)求a,f (-2)得值,判断函数f(x)的奇偶性并说明理由;(2)判断该函数在R 上的单调性(不要求证明),解不等式,f(x 2+x)<53。
洛阳一高2020-2021学年第一学期高三年级10月月考理科数学试卷一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{|||2,}M x x x Z =≤∈,2{|230}N x xx =--<,则MN =.(1,2]A -.[1,2]B - .{0,2}C .{0,1,2}D2.下列命题中错误的是.A 命题“若x y =,则sin sin x y =”的逆否命题是真命题.B 命题“()0000,,ln 1x x x ∃∈+∞=-”的否定是“()0,,ln 1x x x ∀∈+∞≠-” .C 若p q ∨为真命题,则p q ∧为真命题.D 00,x ∃>使“00x x a b >”是“0a b >>”的必要不充分条件3。
函数()f x 在0x x =处导数存在,若0:'()0p f x =;0:q x x =是()f x 的极值点,则.A p 是q 的充分必要条件.B p 是q 的充分条件,但不是q 的必要条件.C p 是q 的必要条件,但不是q 的充分条件.D p 既不是q 的充分条件,也不是q 的必要条件4. 若α,β为锐角,且2cos()sin()63ππαβ-=+,则A 。
3παβ+=B .6παβ+=C .3παβ-=D .6παβ-=5。
若O 为ABC ∆内一点,且20OA OB OC ++=,AD t AC =,若D O B ,,三点共线,则t 的值为.A 41.B 31 .C 21 .D 32 6.由2,1,===x xy x y 及x 轴所围成的平面图形的面积是.A 12ln +.B 2ln 2-.C 212ln -.D 212ln +7.已知非零实数,a b 满足||||a a b b >,则下列不等式一定成立的是3322112211. . . .log ||log ||A a b B a b C D a b a b >><<8。
2020-2021学年度洛阳外国语学校10月月考卷高一数学一、单选题1. 巳知集合A={1,2,3,4}, B={2,4,6,8},则A ∩B 中元素的个数为A. 1B. 2C. 3D. 42.己知集合M={1,m+2,m 2+4},且5W",则m 的值为A. 1或一1B. 1 或 3C. -1 或 3D. 1,-1 或 33.aa 3的分数指数常表示为A. 21a B.23aC. 43aD. 都不对4.函数14)(2--=x x x f 的定义域是A.[-2,2]B.(-2,2)C. [-2,1)∪(1,2]D.(-2,1)∪(1,2)5.下列各组函数是同一函数的是A.1||==y xx y 与B. x y xx y ==与2C. x y x xx y =++=与123 D. 1)1(2-=-=x y x y 与6.函数||x a y =(a >1)的图像是7.设函数f (x), g(x)的定义域都为R ,且f(X)是奇函数,g(x)是偶函数,则下列结论正确的是A.f(x)∙ g(x)是偶函数B.|f(x)|∙ g(x)是奇函数C.f(x)∙ |g(x)|是奇函数 D.|f(x)∙ g(x)|是奇函数8.若函数)0(1)21(22≠-=-x x x x f ,那么)21(f =A.1B.3C.15D.309..函数x x x f +-=12)(的值域是A.⎪⎭⎫⎢⎣⎡+∞,21B.⎪⎭⎫⎢⎣⎡∞-21, C.(0,+∞) D.[1,+∞)10、若定义在R 上的奇函数f(x)(-∞,0)单调递减,且f (2)=0,则满足0)1(≥-x xf 的x 的取值范围是( )A. [-1,1]U[3,+∞)B. [-3,-1]U[0,1]C. [-1,0]U [1,+∞)D.[-1,0]U [1,3]11.若函数,⎪⎩⎪⎨⎧<+-≥=1,2)24(1;)(x x ax a x f x ,如且满足对任意的实数21x x ≠都有0)()(2121>--x x x f x f 成立,则实数a 的取值范围是 A.(1,+∞)B.(1,8)C.(4,8)D. [4,8)12.已知x ∈(0, +∞)时,不等式9x -m-3x +m+ 1>0恒成立,则m 的収值范围是A.222222+<<-mB.2<mC.222+<mD.222+≥m二、填空题 13.已知集合A=⎭⎬⎫⎩⎨⎧1,,x y x ,B={}0,,2y x x +,,若A=B ,则20182017y x+=14.函数⎩⎨⎧≥-<≤--=3);4(31;12)(x x f x x x f ,则)9(f = 15.设)(x f 为定义在R 上的奇函数,当0≥x 时,m x x f x ++=22)(,则)1(-f =16.已知函数,3||)(x x x x f +=,若0)2()(2<-+a f a f 则实数a 的取值范围是三、解答题17、已知集合A={22|≤≤-x x },集合B={}1|>x x(1)求A B C R ⋂)((2)设集合M=}6|{+<<a x a x 且A B ⋃=M 求实数a 的取值范围18、已知函数⎩⎨⎧>+≤=2,22;2)(2x x x x x f(1)若8)(0=x f ,求0x 的值(2)解不等式8)(>x f19、计算(1)()1-03221313-22416271π++⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-(2)已知41=+-x x ,其中10<<x ,求xx x x 122+--的值20. 己知函数a x f x x +-=212)(的图像经过⎪⎭⎫ ⎝⎛--31,1(1)求a 的值(2)求函数)(x f 的定义域和值域(3)判断函数)(x f 的奇偶性并证明21. 己知函数34231)(+-⎪⎭⎫ ⎝⎛=x ax x f(1)若a =1,求)(x f 的单调区间(2)若)(x f 的最大值为3,求实数a 的值22.已知定义域R 的函数ae be xf x x +-=+1)(是奇函数(1)求b a ,的值 (2)对若对任意的[]1,0∈t ,不等式0)2()2(22<-+-k t f t t f <0怛成立,求k 的取值范围试卷答案一、选择题1-5 BBACC 6-10 BCAAD 11-12 DC二、填空题13、-1 14、1 15、-3 16、(-2,1)三、解答题17、18、19、(1)-1(2)-4220、21、22、。
专题19 椭 圆(客观题)一、单选题1.如图,椭圆22221(0)x y a b a b+=>>的右焦点为,,F A B 分别为椭圆的上、下顶点,P 是椭圆上一点,//,||||AP BF AF PB =,记椭圆的离心率为e ,则2e =A .2BC .12D 【试题来源】2021年1月浙江省普通高中学业水平考试 【答案】B【解析】()()0,,,0B b F c -,则BF b k c=,所以直线:bAP y x b c =+,与椭圆方程联立()222220a c x a cx ++=,所以点P 的横坐标是2222a c x a c =-+,322b y a c=-+,即2322222,a c b P a c a c ⎛⎫-- ⎪++⎝⎭,222322222222a c b PB a b a a c a c ⎛⎫⎛⎫=⇒+-+= ⎪ ⎪++⎝⎭⎝⎭, 整理为6244264321c a c a c a --+=,两边同时除以6a 得64243210e e e --+=,()()2421410ee e -+-=,210e -≠,所以42410e e +-=,得2e =或2e =(舍).故选B . 2.已知椭圆()222210x y a b a b+=>>,点M 在椭圆上,以M 为圆心的圆与x 轴相切与椭圆的焦点,与y 轴相交于P ,Q ,若MPQ 为正三角形,则椭圆的离心率为A .12B .13C .2D .3【试题来源】浙江省金华市义乌市2020-2021学年高三上学期第一次模拟考试 【答案】D【解析】不妨设()00,M x y 在第一象限,以M 为圆心的圆与x 轴相切于椭圆右焦点,则0x c =,又M 在椭圆上,则20b y a =,∴圆M 的半径2br a =,MPQ 为正三角形,c r ∴==2220ac +=220e +=,解得3e =.故选D . 【名师点睛】本题考查椭圆离心率的求解问题,求解离心率的关键是能够通过图形中的长度关系构造出关于,a c 的齐次方程,利用齐次方程配凑出离心率e ,解方程求得结果.3.已知椭圆()222210x y a b a b+=>>上一点A 关于原点的对称点为点B ,F 为其右焦点,若AF BF ⊥,设ABF α∠=,且,64ππα⎡⎤∈⎢⎥⎣⎦,则该椭圆的离心率e 的取值范围是A .,12⎤⎢⎥⎣⎦B .12⎤⎥⎣⎦C .,22⎣⎦D .33⎣⎦【试题来源】河北省衡水中学2021届高三上学期期中(理) 【答案】B【解析】设椭圆()222210x y a b a b+=>>的左焦点为1F ,因为AF BF ⊥,所以四边形为1AF BF 为矩形,所以12AB FF c == 因为ABF α∠=,所以2sin ,2cos ,AF c BF c αα==由椭圆的定义得22sin 2cos a c c αα=+,所以11sin cos 4c e a πααα===+⎛⎫+ ⎪⎝⎭, 因为,64ππα⎡⎤∈⎢⎥⎣⎦,所以5,4122πππα⎡⎤+∈⎢⎥⎣⎦,所以sin 4πα⎤⎛⎫+∈⎥ ⎪⎝⎭⎣⎦,4πα⎛⎫+∈ ⎪⎝⎭⎣,所以1e ⎤∈⎥⎣⎦,故选B. 【名师点睛】椭圆定义的应用主要有两个方面:一是确认平面内与两定点有关的轨迹是否为椭圆;二是当P 在椭圆上时,与椭圆的两焦点F 1,F 2组成的三角形通常称为“焦点三角形”,利用定义可求其周长;利用定义和余弦定理可求|PF 1|·|PF 2|;通过整体代入可求其面积等.4.已知F 是椭圆22221(0)x y a b a b+=>>的一个焦点,若直线y kx =与椭圆相交于A ,B 两点,且120AFB ∠=︒,则椭圆离心率的取值范围是A.⎫⎪⎪⎣⎭B.⎛ ⎝⎦C .1,12⎡⎫⎪⎢⎣⎭D .10,2⎛⎤ ⎥⎝⎦【试题来源】湖北省黄冈市部分普通高中2020-2021学年高三上学期12月联考 【答案】C【解析】连接A ,B 与左右焦点F ,F '的连线,由120AFB ∠=︒,由椭圆及直线的对称性可得四边形AFBF '为平行四边形,60FAF '∠=︒,在三角形AFF '中,()22222cos 3FF AF AF AF AF FAF AF AF AF AF ''''=+-⋅∠=+-⋅,所以()222332AF AF AF AF FF AF AF '+⎛⎫''+-=⋅≤ ⎪⎝⎭,即()2214AF AF FF ''+≤即221444a c ⋅≤,可得1 2c e a =≥,所以椭圆的离心率1,12e ⎡⎫∈⎪⎢⎣⎭,故选C . 【名师点睛】该题考查的是有关椭圆离心率的取值范围的求解问题,解题方法如下: (1)根据题意,结合椭圆的对称性,连接相应点,得到平行四边形; (2)根据平行四边形的性质,得到角的大小;(3)根据余弦定理,列出相应等式,结合椭圆定义以及基本不等式求得结果.5.已知P 是椭圆22221x y a b+=(0a b >>)上一点,过原点的直线交椭圆于A ,B 两点,且34PA PB k k ⋅=-,则椭圆的离心率为 A .12B .13C .14D.2【试题来源】安徽省六安市第一中学2020-2021学年高三上学期第四次月考(文) 【答案】A【解析】由题可设(),P x y ,()11,A x y ,11,B x y ,则2211122111PA PBy y y y y y k k x x x x x x -+-⋅=⋅=-+-,22221x y a b +=,2211221x y a b+=,两式相减可得222211220x x y y a b --+=,即22212221y y b x x a -=--,2234b a ∴-=-,22234a c a -∴=,12c a ∴=,故选A.【名师点睛】(1)该题来自椭圆的一个小结论:若椭圆方程为()222210x y a b a b+=>>,,A B是该椭圆上关于原点对称的两点,P 为椭圆上异于,A B 的任意一点,则PA PB k k ⋅为定值,为22b a-.(2)椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式ce a=;②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=a 2-c 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).6.已知椭圆22:195x y E +=的左、右焦点分别为1F ,2F ,P 为椭圆上一个动点,Q 为圆22:108400M x y x y +--+=上一个动点,则1PF PQ +的最大值为 A .12 B 1+ C .11D .18【试题来源】江苏省苏州市常熟市2020-2021学年高三上学期阶段性抽测二 【答案】A【解析】由题意得12(2,0),(2,0)F F -,根据椭圆的定义可得1226PF PF a +==,所以126PF PF =-,又圆22:108400M x y x y +--+=,变形可得22(5)(4)1x y -+-=,即圆心(5,4)M ,半径1r =,所求1PF PQ +的最大值,即求1PF PM r ++的最大值,126PF PM PF PM +=-+,如图所示:当2,,P F M 共线时,2PM PF -有最大值,且为25F M ==, 所以126PF PM PF PM +=-+的最大值为5611+=,所以1PF PQ +的最大值,即1PF PM r ++的最大值为11+1=12,故选A7.已知A 、B 分别为椭圆C :2214x y +=的左、右顶点,P 为椭圆C 上一动点,PA ,PB与直线3x =交于M ,N 两点,PMN 与PAB △的外接圆的周长分别为1L ,2L ,则12L L 的最小值为 ABCD .14【试题来源】湖南省长郡中学、湖南师大附中、长沙市一中联合体2020-2021学年高三上学期12月联考【答案】A【解析】由已知得(2,0)A -、(2,0)B ,设椭圆C 上动点(,)P x y , 则利用两点连线的斜率公式可知02-=+PA y k x ,02-=-PA y k x , ()()22222100142222444---∴⋅=⋅====-+-+---PA PBx y y y y k k x x x x x x 设直线PA 方程为()2y k x =+,则直线PB 方程为()124y x k=--,根据对称性设0k >, 令3x =得5M y k =,14N y k =-,即()3,5M k ,13,4-⎛⎫ ⎪⎝⎭k N ,则154MN k k =+ 设PMN 与PAB △的外接圆的半径分别为1r ,2r , 由正弦定理得1sin 2N P r M M N =∠,22sin ABr APB=∠,又180∠+∠=︒MPN APB ,sin sin ∴∠=∠MPN APB111222152424+∴====≥=k L r r MNk L r r ABππ,当且仅当154=k k ,即=k 等号成立,即12L LA 8.若点M 到两定点()10,1-F ,()20,1F 的距离之和为2,则点M 的轨迹是 A .椭圆B .直线C .线段D .线段的中垂线.【试题来源】四川省绵阳市绵阳南山中学2020-2021学年高三上学期11月月考(文) 【答案】C【分析】根据M 到12,F F 的距离之和正好等于12F F ,可得M 的轨迹.【解析】()10,1-F ,()20,1F ,122F F ∴=,因为点M 到两定点()10,1-F ,()20,1F 的距离之和为2,M ∴的轨迹是线段12F F ,故选C .9.已知椭圆C 经过点()()5004A B -,,,,则椭圆C 的标准方程为 A .22154x y +=B .2212516x y +=C .2211625x y +=D .221259x y +=【试题来源】西藏日喀则市拉孜县中学2021届高三上学期第二次月考(理) 【答案】B【分析】由所给的椭圆上的点为顶点,即可求出椭圆的方程.【解析】因为椭圆C 经过点()()5004A B -,,,,所以5,4a b ==,且焦点在x 轴上, 所以椭圆的方程为2212516x y +=,故选B. 10.关于x ,y 的方程()22211ax a y +-=表示的曲线为椭圆的一个充分不必要条件为A .12a >B .1a >C .12a >且1a ≠D .12a >或0a < 【试题来源】百师联盟2021届一轮复习(二) 全国卷III 理数试题 【答案】B【分析】根据椭圆的方程可得021021a a a a >⎧⎪->⎨⎪≠-⎩,求出a 的取值,再根据充分条件、必要条件的定义即可求解.【解析】若方程()22211ax a y +-=表示的曲线为椭圆,则有021021a a a a >⎧⎪->⎨⎪≠-⎩,所以12a >且1a ≠,故选项A 和D 非充分条件,选项C 为充要条件,选项B 为充分不必要条件,故选B .11.已知实数1,,9m 成等比数列,则椭圆221x y m+=的离心率为AB .2 C或2D.2【试题来源】宁夏石嘴山市2020届高三适应性测试(理) 【答案】A【分析】由1,m ,9构成一个等比数列,得到m=±3.当m=3时,圆锥曲线是椭圆;当m=﹣3时,圆锥曲线是双曲线,(舍)由此即可求出离心率.【解析】因为1,m ,9构成一个等比数列,所以m 2=1×9,则m=±3.当m=3时,圆锥曲线2xm +y 2=13;当m=﹣3时,圆锥曲线2x m +y 2=1是双曲线,故舍去,则离心率为3.故选A . 12.椭圆()2222101x y m m m+=>+的焦点为1F 、2F ,上顶点为A ,若123F AF π∠=,则m =A .1 BCD .2【试题来源】2021年普通高等学校招生全国统一考试模拟演练数学 【答案】C【解析】在椭圆()2222101x y m m m+=>+中,a ,b m =,1c ==,如下图所示:因为椭圆()2222101x y m m m +=>+的上顶点为点A ,焦点为1F 、2F ,所以12AF AF a ==,123F AF π∠=,12F AF ∴△为等边三角形,则112AF F F =22a c ===,因此,m .故选C .13.已知椭圆C :()222210x y a b a b+=>>的左、右焦点分别为1F 、2F ,B 是椭圆C 的上顶点,直线13x c =与直线2BF 交于点A ,若124AF F π∠=,则椭圆C 的离心率为ABC.2D.2【试题来源】江西省吉安市2021届高三大联考数学(理)(3-2)试题 【答案】A【解析】由题设知,()0,B b ,()2,0F c ,所以直线2BF 的方程为1x y c b +=,联立131x c x y c b⎧=⎪⎪⎨⎪+=⎪⎩得,12,33A c b ⎛⎫ ⎪⎝⎭,设直线13x c =与x 轴交于点M ,则143F M c =,23MA b =, 因为124AF F π∠=,所以14233F M MA c b =⇒=,即2b c =, 所以2224a c c -=,即225a c =,所以2155e e =⇒=,故选A. 14.已知ABCDEF 为正六边形,若A 、D 为椭圆W 的焦点,且B 、C 、E 、F 都在椭圆W 上,则椭圆W 的离心率为 A1B1 C.12D.12【试题来源】湖南省株洲市2020-2021学年高三上学期第一次教学质量统一检测 【答案】A【分析】设正六边形ABCDEF 的边长为1,则1c OA ==,由21AF FD a +==可得a ,从而可得椭圆的离心率.【解析】设正六边形ABCDEF 的边长为1,如图由A 、D 为椭圆W 的焦点,则在椭圆中,1c OA ==,由B 、C 、E 、F 都在椭圆W 上,则在直角三角形ADF中,DF ===由椭圆的定义可得21AF FD a +==+a =,所以12c e a ===,故选A.15.椭圆22221(0)y x a b a b +=>>的上、下焦点分别为1F 、2F ,过椭圆上的点M 作向量MN使得12MN F F =,且12 F F N 为正三角形,则该椭圆的离心率为 A.2B.12CD【试题来源】2021届高三湘豫名校联考(2020年11月)(文) 【答案】D【分析】根据12 F F N 为正三角形得到点N 必在x 轴上,即可求出ON ,再根据12MN F F =,即可求出M 点的坐标,代入椭圆方程,根据离心率的公式即可求出离心率.【解析】12F F N 为正三角形,∴点N 必在x 轴上,且1260NF F ∠=︒,1tan60ON OF ∴=︒⋅=,又12MN F F =,),2Mc ∴,又点M在椭圆上,)2222(2)1c ab ∴+=,化简得424810e e -+=,解得2e ==,又01e <<,e ∴=.故选D . 16.已知曲线Γ:22123x y λλ+=-,则以下判断错误的是A .0λ<或3λ>时,曲线Γ一定表示双曲线B .03λ<<时,曲线Γ一定表示椭圆C .当3λ=-时,曲线Γ表示等轴双曲线D .曲线Γ不能表示抛物线【试题来源】云南省西南名校联盟2021届高三12月高考适应性月考卷(理) 【答案】B【解析】对Γ:22123x y λλ+=-,当2(3)0λλ-<,即0λ<或3λ>时,曲线Γ表示双曲线,当3λ=-时,Γ:22166y x -=表示等轴双曲线,因为无论λ取何值,曲线方程均只含2x ,2y 项与常数项,因此A ,C ,D 正确;当1λ=时,Γ:222x y +=表示圆,B 错误.选B .17.已知点P 是椭圆C :22110064x y +=上一点,M ,N 分别是圆()2261x y -+=和圆()2261x y ++=上的点,那么PM PN +的最小值为A .15B .16C .17D .18【试题来源】安徽省六安市第一中学2020-2021学年高三上学期第四次月考(理) 【答案】D【解析】如图,椭圆C :22110064x y +=的108a b ==,,所以6c =,故圆()2261x y -+=和圆()2261x y ++=的圆心为椭圆的两个焦点,则当M ,N 为如图所示位置时,PM PN +最小, 值为12122218PF PF MF MF a +--=-=,故选D .18.椭圆C :2221(0)3x y a a +=>的焦点在x 轴上,其离心率为12,则A .椭圆CB .椭圆C 的长轴长为4 C .椭圆C 的焦距为4D .4a =【试题来源】辽宁省葫芦岛市协作校2020-2021学年高三12月联考 【答案】B【分析】由离心率可求出2a =,结合椭圆的性质可求出椭圆的短轴长,长轴长,焦距.【解析】由椭圆的性质可知,椭圆C 的短轴长为12e ==,则24a =,即2a =,2231c a =-=,所以椭圆C 的长轴长24a =,椭圆C 的焦距22c =,故选B .19.已知1F ,2F 是椭圆2212516x y +=的左、右焦点,P 是椭圆上任意一点,过1F 引12F PF ∠的外角平分线的垂线,垂足为Q ,则Q 与短轴端点的最近距离为 A .1 B .2 C .4D .5【试题来源】河南省洛阳市2021届高三上学期第一次统一考试(文) 【答案】A【分析】根据角平分线的性质和椭圆的定义可得OQ 是12F F M △的中位线, ||5OQ a ==,可得Q 点的轨迹是以O 为圆心,以5为半径的圆,由此可得选项.【解析】因为P 是焦点为1F ,2F 的椭圆2212516x y +=上的一点,PQ 为12F PF ∠的外角平分线,1QF PQ ⊥,设1F Q 的延长线交2F P 的延长线于点M ,所以1||||PM PF =,12212210,PF PF a MF PF PF +==∴=+,所以由题意得OQ 是12F F M △的中位线,所以||5OQ a ==,所以Q 点的轨迹是以O 为圆心,以5为半径的圆,所以当点Q 与y 轴重合时, Q 与短轴端点取最近距离54 1.d =-=故选A .20.已知椭圆()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,过1F 且与x 轴垂直的直线交椭圆于A ,B 两点,直线2AF 与椭圆的另一个交点为C ,若23ABCBCF S S=,则椭圆的离心率为A BC .3D .10【试题来源】云南省昆明市第一中学2021届高三第三次双基检测(理) 【答案】A【解析】设椭圆的左、右焦点分别为()1,0F c -,()2,0F c ,由x c =-,代入椭圆方程得2by a =±,设2,b A c a ⎛⎫- ⎪⎝⎭,(),C x y ,由23ABCBCF SS=,可得222AF F C =,即22,2(,)b c x c y a ⎛⎫-=- ⎪⎝⎭,即222c x c =-,22b y a -=,所以2x c =,22b y a =-,代入椭圆得,2222414c b a a+=,由222b a c =-得2153e =,解得e =,由01e <<,所以e =.故选A .21.已知抛物线()220y px p =>的准线与椭圆22194x y +=相交的弦长为p =A .1B .2C .3D .4【试题来源】云南师大附中2020届高三(下)月考(理)(七) 【答案】C【解析】抛物线的准线方程为2px =-,设其与椭圆相交于A ,B两点,AB = 不妨设0A y >,根据对称知A y =32A x =-或32A x =(舍去),3p =,故选C .22.椭圆()2222:10x y C a b a b+=>>的左、右焦点为1F ,2F ,过2F 垂直于x 轴的直线交C于A ,B 两点,若1AF B △为等边三角形,则椭圆C 的离心率为 A .12B.2C .13D.3【试题来源】天津市第一中学2020-2021学年高三上学期第二次月考 【答案】D【分析】利用椭圆方程,求出焦点坐标,通过三角形是等边三角形求解椭圆的离心率即可.【解析】椭圆()2222:10x y C a b a b+=>>的左、右焦点为1F ,2F ,过2F 垂直于x 轴的直线交C 于A ,B 两点,若1AF B △为等边三角形,可得222b c a=,所以:)222ac a c =-,即220e +=, 因为()01e ∈,,解得3e =,故选D . 23.椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为F 1,F 2,点P (x 1,y 1),Q (-x 1,-y 1)在椭圆C 上,其中x 1>0,y 1>0,若|PQ |=2|OF 2|,11||||QF PF ≥ A.10,2⎛⎤ ⎥⎝⎦B.2]C.12⎛⎤ ⎥⎝⎦D.1]【试题来源】江苏省镇江市丹阳市吕叔湘中学2020-2021学年高三上学期11月教学调研 【答案】C【分析】根据2||2PQ OF =,可得四边形12PF QF 为矩形,设12,PF n PF m ==,根据椭圆的定义以及勾股定理可得()22242c m n n m a c =+-,再分析18m t n m=+的取值范围, 进而求得()222422c a c <≤-,再求离心率的范围即可 【解析】设12,PF n PF m ==,由210,0x y >>,知m n <, 因为()()1111,,,P x y Q x y --,在椭圆C 上,222PQ OP OF ==, 所以,四边形12PFQF 为矩形,12=QFPF;由113QF PF ≥1mn≤<, 由椭圆定义可得2222,4m n a m n c +=+=①;平方相减可得()222mn a c=-②;由①②得()2222242c m n m nmn n m a c +==+-; 令=+m nt n m,令m v n ⎫=∈⎪⎪⎣⎭,所以,1t v v ⎛=+∈ ⎝⎦, 即()2224232c a c <≤-,所以,()222223a c c a c -<≤-,所以,()22211e e e-<≤-,所以,2142e <≤-解得12e <≤,故选C. 24.已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1F 、2F ,点A 是椭圆短轴的一个顶点,且123cos 4F AF ∠=,则椭圆的离心率e = A .12B.2 C .14D.4【试题来源】江苏省泰州市姜堰中学、南通市如东中学、宿迁市沭阳如东中学2020-2021学年高三上学期联考 【答案】D【分析】依题意,不妨设点A 的坐标为()0b ,,在12F AF 中,由余弦定理得22142a c =,再根据离心率公式计算即可.【解析】设椭圆22221(0)x y a b a b+=>>的焦距为2(0)c c >,则椭圆22221(0)x y a b a b+=>>的左焦点1F 的坐标为()0c -,,右焦点2F 的坐标为()0c ,, 依题意,不妨设点A 的坐标为()0b ,,在12F AF 中,由余弦定理得 22212121212||||2cos F F AF AF AF AF F AF ∠=+-⋅⋅,123cos 4F AF ∠=,22223142242c a a a ∴=-⨯=,22218c e a ∴==,解得4e =.故选D . 25.已知A 、B 为椭圆的左、右顶点,F 为左焦点,点P 为椭圆上一点,且PF ⊥x 轴,过点A 的直线与线段PF 交于M 点,与y 轴交于E 点,若直线BM 经过OE 中点,则椭圆的离心率为A .12BC .13D 【试题来源】黑龙江省哈尔滨市道里区第三中学校2020-2021学年高三上学期期末 【答案】C【分析】根据已知条件求出,,B H M 三点坐标,再由三点共线可得斜率相等,从而得出3a c =可得答案.【解析】由题意可设(,0),(,0),(,0)F c A a B a --,设直线AE 的方程(由题知斜率存在)为()y k x a =+,令x c =-,可得(),()M c k a c --,令0x =,可得(0,)E ka ,设OE 的中点为H ,可得0,2ka H ⎛⎫⎪⎝⎭,由,,B H M 三点共线,可得BH BM k k =,即()2kak a c a c a-=---,即为3a c =,可得13c e a ==,故选C .26.已知命题p :22x my =表示焦点在y 轴的正半轴上的抛物线,命题q:22162x y m m +=-+表示椭圆,若命题“p q ∧”为真命题,则实数m 的取值范围是 A .26m -<< B .06m <<C .06m <<且2m ≠D .26m -<<且2m ≠【试题来源】安徽省皖江名校联盟2021届高三第二次联考(理) 【答案】C【解析】对于命题2:2p x my =表示焦点在y 轴的正半轴上的抛物线,所以0m >,对于命题22:162x yq m m +=-+表示椭圆,所以602062m m m m ->⎧⎪+>⎨⎪-≠+⎩,解得26m -<<且2m ≠, 因为命题“p q ∧”为真命题,所以命题p 和命题q 均为真命题, 所以实数m 的取值范围是06m <<且2m ≠.故选C .27.已知()11,0F -,21,0F ,M 是第一象限内的点,且满足124MF MF +=,若I 是12MF F △的内心,G 是12MF F △的重心,记12IF F △与1GF M △的面积分别为1S ,2S ,则A .12S S >B .12S SC .12S S <D .1S 与2S 大小不确定【试题来源】浙江省十校联盟2020-2021学年高三上学期10月联考 【答案】B【分析】作出图示,根据,I G 的特点分别表示出1S ,2S ,即可判断出12,S S 的大小关系.【解析】因为121242MF MF F F +=>=,所以M 的轨迹是椭圆22143x y +=在第一象限内的部分,如图所示:因为I 是12MF F △的内心,设内切圆的半径为r ,所以()12121222MMFMF F F rF F y ++⋅⋅=,所以3M y r =,所以12121223I MF F y F F r y S ⋅⋅===,因为G 是12MF F △的重心,所以:1:2OG GM =, 所以12112221133323M M MOF F OF F F yy S S S ⋅===⋅=,所以12S S ,故选B . 28.已知1F 、2F 为椭圆和双曲线的公共焦点,P 为其一个公共点,且123F PF π∠=,则椭圆和双曲线的离心率的倒数之和的最大值为A .BCD .【试题来源】【新东方】【2020】【高三上】【期中】【HD -LP367】【数学】 【答案】C【解析】设椭圆的长半轴长为1a ,双曲线的实半轴长为2a 12()a a >,半焦距为c , 椭圆和双曲线的离心率分别为1e 和2e ,11||PF r =,22||PF r =, 由椭圆和双曲线的定义可知,1212r r a +=,1222r r a -=±, 因为123F PF π∠=,由余弦定理得222121242cos3c r r r r π=+-221212r r r r =+-,所以22212121124()343c r r r r a r r =+-=-,且22212122124()4c r r r r a r r =-+=+,所以222212443(44)a c c a -=-,即2221234a a c +=,则2221314e e +=,由柯西不等式得22212121131(1)()(13e e e e ++≥⨯+,所以12113e e +≤=,当且仅当13e =,2e =时,等号成立.故选C 29.如图,设1F 、2F 分别是椭圆的左、右焦点,点P 是以12F F 为直径的圆与椭圆在第一象限内的一个交点,延长2PF 与椭圆交于点Q ,若124PF QF =,则直线2PF 的斜率为A .2-B .1-C .12-D .1【试题来源】浙江省宁波十校2020-2021学年高三上学期期中联考 【答案】A【解析】如下图,连接11,PF QF ,设()20QF x x =>,则14PF x =,因为122PF PF a +=,122QF QF a +=,所以224PF a x =-,12QF a x =-,在△1PF Q 中,1290F PF ︒∠=,所以22211+=PF PQ QF ,即()()()2224242x a x x a x +-+=-,整理得3a x =, 所以121244tan 22464PF x xPF F PF a x x x∠====--,所以直线2PF 的斜率为()21tan 1802k PF F ︒=-∠=-.故选A .30.已知P 是椭圆()2222:10x y C a b a b+=>>上的点,1F ,2F 分别是C 的左,右焦点,O是坐标原点,若212OP OF OF +=且1260F PF ∠=︒,则椭圆的离心率为 A .12BCD 【试题来源】福建省莆田第一中学2021届高三上学期期中考试 【答案】A【解析】如图所示,设M 是2PF 中点,则22OP OF OM +=,1||2||PF OM =, 因为212OP OF OF +=,所以1||||OM OF =,所以112||||2PF F F c ==,因为1260F PF ∠=︒,所以1122||||||2PF F F PF c ===.由椭圆的定义得12||||2PF PF a +=, 所以11222,,22c c c a e a +=∴=∴=.故选A 二、多选题1.已知椭圆()2222:10x y M a b a b+=>>的左、右焦点分别为1F ,2F ,若椭圆M 与坐标轴分别交于A ,B ,C ,D 四点,且从1F ,2F ,A ,B ,C ,D 这六点中,可以找到三点构成一个直角三角形,则椭圆M 的离心率的可能取值为A .3 B .2 C .512- D .312- 【试题来源】湘鄂部分重点学校2020-2021学年高三上学期11月联考(理) 【答案】BC【分析】结合椭圆的对称性,只需要考虑三种情况,即以D 、C ,2F 作为三角形的三个顶点;以C 、1F 、2F 作为三角形的三个顶点或以C 、A 、2F 作为三角形的三个顶点,分别根据图形列出关于以a 、b 、c 的齐次式,化简求离心率.【解析】①如图,若以D 、C ,2F 作为三角形的三个顶点,则2DC CF ⊥, 由勾股定理可得,()()2222a ba a c ++=+,由222b ac =-,可得220c ac a +-=,即210e e +-=,因为01e <<,解得512e =;②如图,若以C 、1F 、2F 作为三角形的三个顶点, 则12CF CF ⊥,故245OCF ∠=︒,则2c e a ==;③如图,若以C 、A 、2F 作为三角形的三个顶点, 则22CF AF ⊥,245CF O ∠=︒,则22c e a ==;故选BC .2.已知F 是椭圆2212516x y +=的右焦点,M 为左焦点,P 为椭圆上的动点,且椭圆上至少有21个不同的点()1,2,3,i P i =,1FP ,2FP ,3FP ,…组成公差为d 的等差数列,则A .FPM 的面积最大时,24tan 7FPM ∠= B .1FP 的最大值为8 C .d 的值可以为310D .椭圆上存在点P ,使2FPM π∠=【试题来源】湖北省十一校考试联盟2020-2021学年高三上学期12月联考 【答案】ABC【解析】由椭圆2212516x y +=,当点P 为短轴顶点时,FPM ∠最大,FPM 的面积最大,此时24tan 7FPM ∠=,此时角为锐角,故A 正确、D 错误; 椭圆上的动点P ,1a c PF a c -≤≤+,即有128PF ≤≤,又椭圆上至少有21个不同的点()1,2,3,i P i =,1FP ,2FP ,3FP ,…组成公差为d 的等差数列,所以1FP 最大值8,B 正确;设1FP ,2FP ,3FP ,…组成的等差数列为{}n a ,公差0d >,则12a ≥,8n a ≤,又11n a a d n -=-,所以663121110d n ≤≤=--,所以3010d <≤,所以d 的最大值是310,故C 正确.故选ABC【名师点睛】由椭圆性质知在椭圆上的点中,与焦点构成的三角形面积、以该点为顶点的角最大时,点在短轴端点上;且2||8FP ≤≤,进而可得d 的范围.3.椭圆2222:1(0)x y C a b a b+=>>,1F ,2F 分别为左、右焦点,1A ,2A 分别为左、右顶点,P 为椭圆上的动点,且12120PF PF PA PA ⋅+⋅≥恒成立,则椭圆C 的离心率可能为A .12BC D .2【试题来源】云南省楚雄州2021届高三上学期期中教学质量检测(理) 【答案】AC【解析】设()00,P x y ,1(,0)F c -,2(,0)F c ,则()100,PF c x y =---,()200,PF c x y =--, ()100,PA a x y =---,()200,PA a x y =--.因为22221212022PF PF PA PA x y a c ⋅+⋅=+--2222220222b x b x a c a ⎛⎫=+--- ⎪⎝⎭222222022330c x a c a c a =+-≥-≥恒成立,所以离心率3c e a =≤.故选AC 【名师点睛】此题考查椭圆的几何性质的应用,考查的离心率的求法,解题的关键是由12120PF PF PA PA ⋅+⋅≥转化为坐标的关系,进而可得到,a c 的关系,考查计算能力,属于中档题4.设椭圆22193x y +=的右焦点为F ,直线(0y m m =<<与椭圆交于A , B 两点,则下述结论正确的是 A .AF +BF 为定值 B .△ABF 的周长的取值范围是[6,12]C .当m =时,△ABF 为直角三角形D .当m =1时,△ABF【试题来源】海南省2020届高三高考数学五模试题 【答案】AD【解析】设椭圆的左焦点为F ',则AF BF '= 所以=6AF BF AF AF '+=+为定值,A 正确;ABF 的周长为AB AF BF ++,因为AF BF +为定值6,所以AB 的范围是()0,6, 所以ABF 的周长的范围是()6,12,B 错误;将y =(A ,B,因为)F,所以(?60BA BF ⋅=-=-<,所以ABF 不是直角三角形,C 不正确;将1y =与椭圆方程联立,解得()A -,)B ,所以112ABFS=⨯=D 正确.故选AD. 5.已知椭圆22:163x y C +=的左、右两个焦点分别为12,F F ,直线(0)y kx k =≠与C 交于A ,B 两点,AE x ⊥轴,垂足为E ,直线BE 与C 的另一个交点为P ,则下列结论正确的是A .四边形12AF BF 为平行四边形B .1290F PF ︒∠<C .直线BE 的斜率为12k D .90PAB ︒∠>【试题来源】重庆市第八中学2021届高三上学期高考适应性月考(二) 【答案】ABC 【解析】A 选项:根据对称性,如上图有2112,,OA OB BOF AOF OF OF =∠=∠=,所以21BOF AOF ≅,即12OAF OBF ∠=∠,则12//AF BF ,12AF BF =,所以四边形12AF BF 为平行四边形;A 正确.B 选项:由余弦定理222121212122cos F F PF PF PF PF F PF =+-⋅⋅∠,12F F =,12,PF x PF x ==,由直线(0)y kx k =≠中k 存在故x ≠所以212cos F PF ∠=,令t x <=,则x t =+,所以212226cos 166t F PF t t∠==---,203t ≤<, 120cos 1F PF ≤∠<,即1290F PF ∠<︒;B 正确.C 选项:若(,)A m km ,则(,)B m km --,(m,0)E ,所以直线BE 的斜率为22km km =;C 正确.D 选项:由上可设:()2k PB y x m =-,联立椭圆方程22:163x y C +=,整理得22222(2)2120k x mk x m k +-+-=,若(,)p p P x y ,则2222p mkx m k -=+,即2222p mk x m k =++,322p mk y k =+,所以直线PA 的斜率为32221222mk km k mk k k -+=-+,故AB AP ⊥,即90PAB ∠=︒,故D 错误.故选ABC . 三、填空题1.点P 是椭圆22:1167x y C +=上的一点,12,F F 是椭圆的两个焦点,且12PF F △的内切圆半径为1.当点P 在第一象限时,它的纵坐标为__________.【试题来源】云南省昆明市第一中学2021届高三第五次复习检测(理) 【答案】73【分析】椭圆的焦点三角形问题,充分利用椭圆的定义,从两个角度表示出12PF F S ,建立关于p y 的关系式求解.【解析】因为128PF PF +=,126F F =,所以()1212121172PF F S PF PF F F =++⨯=;因为12121372PF F p p SF F y y =⋅==,所以73p y =.故答案为73【名师点睛】椭圆上一点与两焦点构成的三角形,称为椭圆的焦点三角形,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理、|PF 1|+|PF 2|=2a 等.2.已知椭圆221164x y +=上的一点P 到椭圆一个焦点的距离为6,则点P 到另一个焦点的距离为__________.【试题来源】上海市奉贤区2021届高三上学期一模 【答案】2【解析】利用椭圆定义122PF PF a +=,4a =,可知268PF +=,即22PF =.3.已知F 1,F 2是椭圆C :22221(0)x y a b a b+=>>的左、右焦点,过左焦点F 1的直线与椭圆C 交于A ,B 两点,且|AF 1|=3|BF 1|,|AB |=|BF 2|,则椭圆C 的离心率为__________. 【试题来源】广西北海市北海中学2021届高三12月考试(理)【答案】5【解析】设1BF k =,则13AF k =,24BF k =,由12122BF BF AF AF a +=+=, 得25a k =,22AF k =,在2ABF 中,21cos 4BAF ∠=, 又在12F AF 中,22212(3)(2)(2)1cos 2324k k c F AF k k +-∠==⨯⨯,得2c =故离心率5c e a ==.故答案为54.已知椭圆22221(0)x y a b a b+=>>,点F 为左焦点,点P 为下顶点,平行于FP 的直线l交椭圆于A B ,两点,且A B ,的中点为112M ⎛⎫⎪⎝⎭,,则椭圆的离心率为__________. 【试题来源】吉林省梅河口市第五中学2021届高三上学期第三次月考(文)【答案】2【解析】由题意知(),0F c -,()0,P b -,所以直线FP 的斜率为00()b bc c--=---,设()11,A x y ,()22,B x y ,则2211221x y a b +=①,2222221x y a b+=②,①-②得2222121222x x y y a b --=-,即()()()()1112221222x x y y y y a x x b =-+--+, 因为112M ⎛⎫ ⎪⎝⎭,是A B ,的中点,所以122x x +=,121y y +=,所以()()2112222x y y a b x =---,所以2122122ABy y b k x x a-==--, 因为//AB FE ,所以222b b c a-=-,即22a bc =,所以222b c bc +=,所以b c =,所以22222a b c c =+=,所以c e a ==【名师点睛】本题的关键点是利用点差法设设()11,A x y ,()22,B x y ,则2211221x y a b +=,2222221x y a b+=,两式相减得2222121222x x y y a b --=-,112M ⎛⎫ ⎪⎝⎭,是A B ,的中点,所以 122x x +=,121y y +=,可得2122122ABy y b k x x a-==--,再计算00()FP b b k c c --==---, 利用AB FP k k =结合222a b c =+即可求离心率.5.已知椭圆()222210x y a b a b+=>>的焦距等于其过焦点且与长轴垂直的弦长,则该椭圆的离心率为__________.【试题来源】北京市中国人民大学附属中学2021届高三上学期数学统练5试题【解析】如下图所示,设椭圆()222210x y a b a b+=>>的左、右焦点分别为1F 、2F ,设过椭圆右焦点2F 且垂直于长轴的弦为AB ,则2AB c =,212AF AB c ==,由勾股定理可得1AF ==,由椭圆的定义可得122AF AF a +=2c a +=,所以,该椭圆的离心率为21cea====.6.已知椭圆22221(0)x ya ba b+=>>,左焦点(,0)F c-,右顶点(,0)A a,上顶点(0,)B b,满足0FB AB=,则椭圆的离心率为__________.【试题来源】四川省成都市第七中学2020-2021学年高三期中(文)【解析】由0FB AB=可得,()(),,0c b a b⋅-=,即222ac b a c==-,则210e e+-=,解得e=(舍)7.已知椭圆1C:()222210x ya ba b+=>>和双曲线2C:22221(0,0)x ym nm n-=>>的焦点相同,1F,2F分别为左、右焦点,P是椭圆和双曲线在第一象限的交点,PM x⊥轴,M为垂足,若223OM OF=(O为坐标原点),则椭圆和双曲线的离心率之积为__________.【试题来源】浙江省台州市六校2020-2021学年高三上学期期中联考【答案】32【分析】设椭圆和双曲线的半焦距为c,根据223OM OF=,得到P的横坐标为23c,设12,PF s PF t==,分别利用椭圆和双曲线的定义求得,s t,然后再利用椭圆和双曲线的第二定义求解.【解析】设椭圆和双曲线的半焦距为c,所以22233OM OF c==,即P的横坐标为23c,设12,PF s PF t==,由椭圆的定义得2s t a+=,由双曲线的定义得2s t m-=,联立解得,s a m t a m=+=-,设椭圆和双曲线的离心率分别为12,e e,由椭圆的第二定义得22223pPF t ca a ax cc c==--,解得123t a e c=-,由双曲线的第二定义得22223p PF t cm m m x c c c==--,解得223t e c m =-,又t a m =-,则223a e c =,1232e e =,所以12232c e e e a ==,故答案为328.已知F 为椭圆22:143x y C +=的左焦点,定点()3,3A --,点P 为椭圆C 上的一个动点,则PA PF +的最大值为__________.【试题来源】湖南省长沙市广益实验中学2020-2021学年高三上学期第一次新高考适应性考试 【答案】9【分析】设椭圆的右焦点为1(1,0)F ,再利用数形结合分析求解. 【解析】设椭圆的右焦点为1(1,0)F ,111=||24||4||49PA PF PA a PF PA PF AF ++-=+-≤+==.【名师点睛】圆锥曲线中的最值问题常用的解题方法有:(1)函数法;(2)数形结合法;(3)导数法;(4)基本不等式法.要根据已知条件,灵活选择方法求解.9.椭圆C :22221x y a b+=()0a b >>,以原点为圆心,半径为椭圆C 的半焦距的圆恰与椭圆四个项点围成的四边形的四边都相切,则椭圆C 的离心率为__________. 【试题来源】江苏省镇江市2020-2021学年高三上学期期中【分析】由题意画出图形,利用等面积法可得关于a ,b ,c 的等式,结合隐含条件即可求得椭圆的离心率.【解析】如图所示,过点O 作22OM A B ⊥,则290OMA ∠=︒,由题意可得,22221122OB OA A B OM ⋅=⋅,即a b c ⋅=,又由222a b c =+可得,()()2222222a a c a a c c -=+-,整理可得442230a c a c +-=,因为c e a =,所以42310e e -+=,解得2e =,因为01e <<,所以12e =.故答案为12. 10.如图,过原点O 的直线AB 交椭圆C :22221x y a b+=(a >b >0)于A ,B 两点,过点A分别作x 轴、AB 的垂线AP ,AQ 分别交椭圆C 于点P ,Q ,连接BQ 交AP 于一点M ,若34AM AP =,则椭圆C 的离心率是__________.【试题来源】重庆市第八中学2021届高三上学期高考适应性月考(三)【分析】设11(,)A x y ,22(,)Q x y ,根据已知条件得B 、P 、M 的坐标,AB AQ ⊥、B ,M ,Q 三点共线,211211y y x x x y -=--以及1212y y x x +=+114y x ,由A ,Q 在椭圆上有2221222212y y b x x a-=--,联立所得方程即可求离心率.【解析】设11(,)A x y ,22(,)Q x y ,则11(,)B x y --,11(,)P x y -,11,2y M x ⎛⎫- ⎪⎝⎭,由AB AQ ⊥,则1212111212111y y y y y xx x x x x y --=-⇒=--- ①, 由B ,M ,Q 三点共线,则BQ BM k k =,即1212y y x x +=+114yx ②.因为2211221x y a b +=,2222221x y a b +=,即22221212220x x y y a b--+=,2221222212y y b x x a -=--③, 将①②代入③得2214b e a =⇒=.11.已知椭圆2222:1(0)x y E a b a b+=>>的左焦点为F ,经过原点O 的直线l 与椭圆E 交于P,Q 两点,若||3||PF QF =,且120PFQ ∠=,则椭圆E 的离心率为__________.【试题来源】四川省眉山市仁寿第二中学2020-2021学年高三上学期第四次诊断(理) 【答案】4【解析】取椭圆的右焦点F ',连接QF ',PF ',由椭圆的对称性,可得四边形PFQF '为平行四边形,则PF QF '=,180********FPF PFQ ∠='=-∠-=,||3||PF QF =3||PF '=,而||||2PF PF a '+=,所以2a PF '=,所以32a PF =, 在PFF '中,2222222914||||58144cos 32332222a a c PF PF FF FPF e a PF PF a +-+-∠===-''''=⨯⨯,解得4e =,故答案为4. 【名师点睛】本题考查求椭圆的离心率,解题关键是找到关于,,a b c 的等量关系.本题中,由椭圆的对称性以及椭圆的定义得到2a PF '=,所以32aPF =,然后在PFF '中,根据余弦定理得到所要求的等量关系.考查了学生的运算求解能力,逻辑推理能力.属于中档题.12.椭圆22221(0)x y a b a b +=>>的左、右焦点分别为12,F F ,椭圆上的点M 满足:1223F MF π∠=且122MF MF →→⋅=-,则b =__________.【试题来源】河北省保定市2021届高三上学期10月摸底考试 【答案】1【分析】先根据数量积运算得124MF MF =,再结合椭圆的定义与余弦定理即可得1b =. 【解析】因为1223F MF π∠=且122MF MF →→⋅=-,所以124MF MF =, 由椭圆的定义得122MF MF a +=,故222121224MF MF MF MF a++= 所以在12F MF △中,由余弦定理得1222212124cos 2MF M F M F c M F F MF =+-∠,代入数据得222144848288a cb ----==,解得1b =.故答案为1. 【名师点睛】解题的关键在于应用定义122MF MF a +=与余弦定理1222212124cos 2MF M F M F c M F F MF =+-∠列方程求解得1b =.13.已知椭圆的方程为222116x y m+=,焦点在x 轴上,m 的取值范围是__________.【试题来源】江西省贵溪市实验中学2021届高三上学期第二次月考数学(三校生)试题。
大同四中联盟学校2020—2021学年第一学期10月月考试题高一年级数学学科命题人:本试卷共4 页 满分:150分 考试用时:120分钟第Ⅰ卷(选择题 共60分)一 .选择题(本题包括12小题、每小题5分、共60分) 1.下列各选项中,不能组成集合的是( )。
A.所有的整数 B.所有大于0的数C.所有的偶数D.高一(1)班所有长得帅的同学2.已知集合M ={x |—3< x ≤ 5},N ={x |x <—5或x > 5},则M ∪N =( )。
A.{x |x <—5或x >—3} B.{x |—5<x < 5} C.{x |—3< x < 5} D.{x |x <—3或x > 5}3.已知3 ∈ {1,a , a -2 },则实数a 的值为( )。
A.3 B.5 C.3或5 D.无解4.“1<x <2”是“x <2”成立的( )。
A. 充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.集合P ={x |x ≥ —1},集合Q ={x |x ≥0 },则P 与Q 的关系是( )。
A.P =QB.P QC.P QD.P ∩Q =⌀6.已知集合M ={x |—3< x ≤ 5 },N ={x | x > 3 },则M N =( )。
A.{x |x >—3}B.{x |—3< x ≤ 5}C.{x |3 < x ≤ 5 }D.{x |x ≤ 5}7.设全集U ={x ∈N |x ≥2},集合A ={x ∈N |x ≥},则∁U A =( )。
A.⌀B.{2}C.{1,4,6}D.{2,3,5}8.设全集U =A ∪B ,定义:A —B ={x |x ∈A 且x ∉B },集合A ,B 分别用圆表示,则图1-3-2-3中阴影部分表示A -B 的是( )。
图1-3-2-39.已知a ,b ,c ,d ∈R,则下列命题中必成立的是( )。
河南省洛阳市第一中学2024-2025学年高一生物上学期第一次月考试题一、单项选择题(1-40题,每题1分,41-45题,每题2分,共50分)1.以下关于今年给武汉带来灾难的新冠病毒的描述正确的是()A.该病毒体内只有核糖体一种细胞器B.该病毒的遗传物质集中于无核膜的核区C.该病毒的DNA袒露不与蛋白质结合形成染色D.该病毒寄生在人体细胞中并具有传染性2.下列关于原核生物和真核生物的叙述正确的是()A.大肠杆菌有线粒体,也有核糖体B.在电子显微镜下,颤藻和水绵细胞中都能被视察到的细胞器是核糖体C.真核生物以DNA为遗传物质,部分原核生物以RNA为遗传物质D.要视察硝化细菌的染色体可以先将其染色3.下列叙述正确的是()A.没有细胞核的细胞肯定是原核细胞B.单细胞生物不肯定是原核生物C.水绵、蓝藻、黑藻都属于自养型的原核生物D.酵母菌、霉菌、乳酸菌都是细菌4.下图是油菜种子在发育和萌发过程中,糖类和脂肪的变更曲线。
下列分析正确的是()A.种子形成过程中,脂肪水解酶的活性很高B.种子形成过程中,种子须要的氮元素增加C.等质量的可溶性糖和脂肪中,所贮存的能量脂肪多于糖D.种子萌发时,脂肪转变为可溶性糖,说明脂肪是主要能源物质5.细胞学说的建立过程,是一个在科学探究中开拓、继承、修正和发展的过程。
以下有关细胞学说的说法错误的是()A.细胞学说的内容包括:一切动植物都是由细胞构成的,细胞的作用既有独立性又有整体性,新细胞可以从老细胞中产生B.细胞学说揭示了生物界和非生物界的统一性C.细胞学说在修正中前进,魏尔肖指出的“细胞通过分裂产生新细胞”至今仍未被推翻D.细胞学说的建立过程离不开众多科学家的参加、推动以及技术手段的不断发展和支持6.试验中用同一显微镜视察了同一装片4次,得到清楚的四个物像如图。
有关该试验的说法正确的是()A.换用高倍物镜前应先提升镜筒,以免镜头破坏玻片标本B.试验者若选用目镜15×和物镜40×组合视察,则物像的面积是实物的600倍C.若每次操作都未调整目镜,看到清楚物像时物镜离装片最近的是④D.若视野中有异物,转动物镜发觉异物不动,移动装片也不动,则异物可能在目镜和反光镜上7.下列关于艾滋病病毒(HIV)的叙述正确的是()A.HIV虽没有细胞结构,但仍归属于生物界,主要缘由是其能使人体致病B.由于HIV体内只有一种细胞器,所以其营寄生生活C.获得大量HIV的方法是将其接种在养分物质齐全的培育基上培育D.HIV不参加构成种群、群落、生态系统、生物圈这些生命系统的结构层次8.下列有关生命系统的叙述中,正确的是()A.生命系统的每个层次都是“系统”,能完整表现生命活动的最基本的“生命系统”是“细胞”。
河南省洛阳市第一高级中学2020-2021学年高一语文12月月考试题一、语言基础知识运用(每小题3分,共24分)1.下列加点字注音正确的一项是()A.倩.(qiān)影媛.(yuàn)女鹢.(yì)首袅.娜(nuó)愆.期(xiān)B.羞涩.(sè)蟋蟀.(shuai)啼.(tí)唱婆娑.(shuō)修姱.(kuā)C.陪衬.(chèn)瞥.(piē)见肋.(lèi )骨澄.(dēng)清采薇(wēi)D.宛.(wǎn)然颤.(zhàn)栗氛.(fēn)围创.(chuāng)伤伶俜.(pīng)2.下列词语书写没有错别字的一组是()A. 哽咽葳蕤遗施蒲纬B.娥眉公姥扶将窈窕C。
思量誓违许和怅然D。
婀娜芨荷嗟叹煎迫3.下列各句没有错别字的一项是()A.今晚在院子里坐着乘凉,忽然想起日日走过的荷塘,在这满月的光里,总该另有一翻样子吧.B.秋蝉的衰弱的残声,更是北国的特产;因为北平处处全长着树,屋子又低,所以无论在什么地方,都听得见它们的啼唱. C.我开始了解度越沙漠者望见绿洲的欢喜,我开始了解航海的冒险家望见海面飘来花草的茎叶的欢喜。
D.于是我尽可能地轻轻静静,泛舟湖上,而船尾击起的微弱水波还一直延伸到我的视野之外,湖上的倒影也就曲折不已了。
4.下列各句标点符号使用正确的一项是()A.这一片天地好像是我的,我也像超出了平常的自己,到了另一世界里.我爱热闹,也爱冷静,爱群居,也爱独处.B.秋之于人,何尝有别?更何尝有人种阶级之分呢?C.绿色是多宝贵的啊!它是生命,它是希望,它是慰安,它是快乐。
我怀念着绿色把我的心等焦了。
D.“行啊,”小王停了一会儿说:“叫我干什么我就干什么。
" 5.依次填入下列各句中横线处的词语,最恰当的一组是()(1)中华文明源流长,经过传统文化和民间艺术的,我们精神上才有了华夏儿女的文化印记.(2)度过了一个月,两个月,我于这片绿色。
考点17 分组求和法一、单选题1.若数列{}n a 的通项公式是()()131nn a n =--,则1210···+a a a ++= A .15 B .12 C .12-D .15-【试题来源】吉林省蛟河市第一中学校2020-2021学年第一学期11月阶段性检测高二(理) 【答案】A【解析】因为()()131nn a n =--,所以12253a a +=-+=,348113a a +=-+=,5614173a a +=-+=,7820233a a +=-+=,91026293a a +=-+=, 因此1210···+3515a a a ++=⨯=.故选A . 2.已知数列{}n a 满足11n n a a λ+=+,且11a =,23a =,则数列{}n a 前6项的和为 A .115 B .118 C .120D .128【试题来源】河南省豫北名校2020-2021学年高二上学期12月质量检测(文) 【答案】C【分析】由题干条件求得2λ=,得到121n n a a +=+,构造等比数列可得数列{}n a 的通项公式,再结合等比数列求和公式即可求得数列{}n a 前6项的和. 【解析】21113a a λλ=+=+=,则2λ=,可得121n n a a +=+,可化为()1121n n a a ++=+,有12nn a +=,得21n n a =-,则数列{}n a 前6项的和为()()6262122226612012⨯-+++-=-=-.故选C .3.设数列{a n }的前n 项和为S n ,且a 1=2,a n +a n +1=2n (n ∈N *),则S 2020=A .2020223-B .202022 3+C .202122 3-D .202122 3+【试题来源】河南省濮阳市2019-2020学年高二下学期升级考试(期末)(文) 【答案】C【分析】根据递推公式a n +a n +1 =2n (n ∈N *)的特点在求S 2020时可采用分组求和法,然后根据等比数列的求和公式即可得到正确选项. 【解析】由题意,可知2020122020123420192020()()()S a a a a a a a a a =+++=++++++132019222=+++2021223-=.故选C . 4.定义:在数列{}n a 中,0n a >,且1n a ≠,若1n an a +为定值,则称数列{}n a 为“等幂数列”.已知数列{}n a 为“等幂数列”,且122,4,n a a S ==为数列{}n a 的前n 项和,则2009S 为 A .6026 B .6024 C .2D .4【试题来源】山西省长治市第二中学2019-2020学年高一下学期期末(文) 【答案】A【分析】根据数列新定义求出数列的前几项,得出规律,然后求和.【解析】因为122,4a a ==,所以334242a a a ==,32a =,4216a =,44a =,所以212n a -=,24n a =,*n N ∈,2009(24)100426026S =+⨯+=.故选A . 【名师点睛】本题考查数列的新定义,解题关键是根据新定义计算出数列的项,然后寻找出规律,解决问题. 5.数列111111,2,3,4,,248162n n +++++的前n 项和等于 A .21122n n n +-++B .2122n n n++C .2122n n n +-+D .【试题来源】四川省三台中学实验学校2019-2020学年高一6月月考(期末适应性) 【答案】A 【解析】因,故,故选A .6.已知一组整数1a ,2a ,3a ,4a ,…满足130m m a a +++=,其中m 为正整数,若12a =,则这组数前50项的和为 A .-50 B .-73 C .-75D .-77【试题来源】四川省自贡市旭川中学2020-2021学年高一上学期开学考试 【答案】C【分析】先利用已知条件写出整数列的前五项,得到其周期性,再计算这组数前50项的和即可.【解析】因为130m m a a +++=,12a =,所以2130a a ++=,得25a =-;3230a a ++=,得32a =-;4330a a ++=,得41a =-;5430a a ++=,得52a =-,由此可知,该组整数从第3项开始,以-2,-1,-2,-1,…的规律循环, 故这组数的前50项和为()()25212475+-+--⨯=-.故选C .7.已知n S 为数列{}n a 的前n 项和,且满足11a =,23a =,23n n a a +=,则2020S = A .1010232⨯-B .101023⨯C .2020312-D .1010312+【试题来源】山西省孝义市第二中学校2019-2020学年高一下学期期末 【答案】A【分析】利用递推关系得出数列的奇数项与偶数项分别成等比数列,对2020S 进行分组求和. 【解析】因为11a =,23a =,23n n a a +=,所以数列{}n a 的奇数项成等比数列,偶数项也成等比数列,且仅比均为3,所以101010102020132019242020133(13)()()1313S a a a a a a --=+++++++=+--1010232=⨯-.故选A .【名师点睛】本题考查等比数列的判定,等比数列的前n 项和公式,考查分组求和法,解题时注意对递推式23n n a a +=的认识,它确定数列的奇数项与偶数项分别成等比数列,而不是数列{}n a 成等比数列.8.已知数列{(1)(21)}n n -+的前n 项和为n S ,*N n ∈,则11S = A .13- B .12- C .11-D .10-【试题来源】山东省青岛胶州市2019-2020学年高二下学期期末考试 【答案】A【分析】本题根据数列通项公式的特点可先求出相邻奇偶项的和,然后运用分组求和法可计算出11S 的值,得到正确选项.【解析】由题意,令(1)(21)nn a n =-+,则当n 为奇数时,1n +为偶数, 1(21)[2(1)1]2n n a a n n ++=-++++=,111211S a a a ∴=++⋯+ 123491011()()()a a a a a a a =++++⋯+++222(2111)=++⋯+-⨯+2523=⨯-13=-.故选A .【名师点睛】本题主要考查正负交错数列的求和问题,考查了转化与化归思想,整体思想,分组求和法,以及逻辑推理能力和数学运算能力.本题属中档题.9.已知数列{}n a 的前n 项和为n S ,且11a =,13nn n a a +=,那么100S 的值为A .()50231-B .5031-C .5032-D .50342-【试题来源】吉林省四平市公主岭范家屯镇第一中学2019-2020学年高一下学期期末考试 【答案】A【分析】根据题中条件,得到23n na a +=,推出数列{}n a 的奇数项和偶数项都是成等比数列,由等比数列的求和公式,分别计算奇数项与偶数项的和,即可得出结果.【解析】因为11a =,13nn n a a +=,所以23a =,1123n n n a a +++=,所以1213n n n n a a a a +++=,即23n na a +=,所以135,,,a a a ⋅⋅⋅成以1为首项、3为公比的等比数列,246,,,a a a ⋅⋅⋅也成以3为首项、3为公比的等比数列,所以()()()5050100139924100313131313Sa a a a a a --=++⋅⋅⋅++++⋅⋅⋅+=+--505050313532322-+⋅-==⋅-.故选A .【名师点睛】本题主要考查等比数列求和公式的基本量运算,考查分组求和,熟记公式即可,属于常考题型.10.已知数列{}n a 满足12321111222n n a a a a n -++++=,记数列{2}n a n -的前n 项和为n S ,则n S =A .2222nn n--B .22122nn n---C .212222n n n +--- D .2222nn n--【试题来源】河北省秦皇岛市第一中学2020-2021学年高二上学期第一次月考 【答案】C【分析】利用递推关系求出数列{}n a 的通项公式,然后利用等差数列和等比数列的前n 项和公式进行求解即可.【解析】因为12321111(1)222n n a a a a n -++++=,所以有11a =, 当2,n n N *≥∈时,有1231221111(2)222n n a a a a n --++++=-,(1)(2)-得,111122n n n n a a --=⇒=,显然当1n =时,也适合,所以12()n n a n N -*=∈,令 2n n a n b -=,所以2n n b n =-,因此有:2323(21)(22)(23)(2)(2222)(123)n n n n S n =-+-+-++-=++++-++++22112(12)(1)222 2.1222222n n n n n n n n n ++-+=-=---=----故选C.【名师点睛】本题考查了由递推关系求数列的通项公式,考查了等差数列和等比数列的前n 项和公式,考查了数学运算能力.11.已知数列{}n a 的前n 项和为n S ,且(),n P n a 为函数221x y x =+-图象上的一点,则n S =A .2122n n ++-B .212n n ++C .22n -D .22n n +【试题来源】四川省仁寿第二中学2020-2021学年高三9月月考(理) 【答案】A【分析】根据已知条件求得n a ,利用分组求和法求得n S【解析】因为(),n P n a 为函数221x y x =+-图象上的一点,所以()212nn a n =-+,则()()121212322121321222nnn S n n =++++⋅⋅⋅+-+=++⋅⋅⋅+-+++⋅⋅⋅+()()212121212nn n -+-=+-1222n n +=+-.故选A .12.数列112、134、158、1716、的前n 项和n S 为A .21112n n -+-B .2122n n +-C .2112n n +-D .21122n n -+-【试题来源】安徽省亳州市涡阳县第四中学2019-2020学年高一下学期线上学习质量检测 【答案】C【分析】归纳出数列的通项公式为1212nn a n ⎛⎫=-+ ⎪⎝⎭,然后利用分组求和法可求得n S . 【解析】数列112、134、158、1716、的通项公式为1212nn a n ⎛⎫=-+ ⎪⎝⎭,所以,2341111113572122222n n S n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++++++++-+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()()231111211111221352112222212n n n n n ⎛⎫- ⎪+-⎛⎫⎝⎭=++++-+++++=+⎡⎤ ⎪⎣⎦⎝⎭-2112n n =+-.故选C .13.若数列{}n a 的通项公式是1(1)(32)n n a n +=-⋅-,则122020a a a ++⋯+=A .-3027B .3027C .-3030D .3030【试题来源】江苏省扬州市宝应中学2020-2021学年高二上学期阶段考试 【答案】C【分析】分组求和,结合等差数列求和公式即可求出122020a a a ++⋯+. 【解析】12202014710...60556058a a a ++⋯+=-+-++-()()101010091010100917...6055410...60551010610104622⨯⨯⎛⎫=+++-+++=+⨯-⨯+⨯ ⎪⎝⎭3030=-.故选C .14.在数列{}n a 中,129a =-,()*13n n a a n +=+∈N ,则1220a a a +++=A .10B .145C .300D .320【试题来源】山西省太原市2021届高三上学期期中 【答案】C【分析】由等差数列的性质可得332n a n =-,结合分组求和法即可得解.【解析】因为129a =-,()*13n n a a n N +=+∈,所以数列{}n a 是以29-为首项,公差为3的等差数列,所以()11332n a a n d n =+-=-,所以当10n ≤时,0n a <;当11n ≥时,0n a >;所以()()12201210111220a a a a a a a a a +++=-++⋅⋅⋅++++⋅⋅⋅+1101120292128101010103002222a a a a ++--+=-⨯+⨯=-⨯+⨯=.故选C . 15.数列{}n a 的通项公式为2π1sin 2n n a n =+,前n 项和为n S ,则100S = A .50 B .-2400 C .4900-D .9900-【试题来源】河南省焦作市2020—2021学年高三年级第一次模拟考试(理) 【答案】C【分析】由πsin2n y =的周期为4,可得22222210010013579799S =+-+-+⋅⋅⋅+-,利用并项求和可得解.【解析】2111a =+,21a =,2313a =-,41a =,…,考虑到πsin2n y =的周期为4, 所以()222222100100135797991002135799S =+-+-+⋅⋅⋅+-=-⨯++++⋅⋅⋅+(199)50100249002+⨯=-⨯=-.故选C .16.已知{}n a 的前n 项和为n S ,11a =,当2n ≥时,12n n a S n -+=,则2019S 的值为 A .1008 B .1009 C .1010D .1011【试题来源】广东省广州市增城区增城中学2020-2021学年高二上学期第一次段考 【答案】C【分析】由2n ≥时,可得1n n n S S a -=-,结合题设条件,推得11n n a a -+=,进而求得2019S 的值,得到答案.【解析】由题意,当2n ≥时,可得1n n n S S a -=-,因为12n n a S n -+=,所以2()n n n S a a n +-=,即2n n S a n =+,当2n ≥时,1121n n S a n --=+-,两式相减,可得121n n n a a a -=-+,即11n n a a -+=, 所以2345671,1,1,a a a a a a +=+=+=,所以()()()12345201820120991201911110102a a a a a a a S -=+++++++=+⨯=.故选C . 17.冬春季节是流感多发期,某地医院近30天每天入院治疗流感的人数依次构成数列{}n a ,已知11a =,22a =,且满足()211+-=+-nn n a a (n *∈N ),则该医院30天入院治疗流感的共有( )人 A .225 B .255 C .365D .465【试题来源】山东省烟台市2020-2021学年高二上学期期末月考 【答案】B【分析】直接利用分类讨论思想的应用求出数列的通项公式,进一步利用分组法求出数列的和【解析】当n 为奇数时,2n n a a +=,当n 为偶数时,22n n a a +-=,所以13291a a a ==⋅⋅⋅==, 2430,,,a a a ⋅⋅⋅是以2为首项,2为公差的等差数列,所以30132924301514()()1515222552S a a a a a a ⨯=++⋅⋅⋅++++⋅⋅⋅+=+⨯+⨯=,故选B 18.意大利数学家斐波那契以兔子繁殖为例,引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,…即()()121F F ==,()()()12F n F n F n =-+- (3n ≥,n *∈N ),此数列在现代物理、化学等方面都有着广泛的应用,若此数列的每一项被2除后的余数构成一个新数列{}n a ,则数列{}n a 的前2020项的和为 A .1348 B .1358 C .1347D .1357【试题来源】江苏省镇江市八校2020-2021学年高三上学期期中联考 【答案】C【分析】由题意可知,得数列{}n a 是周期为3的周期数列,前3项和为1102++=,又202067331=⨯+,由此可得答案.【解析】由数列1,1,2,3,5,8,13,21,34,55,…,各项除以2的余数,可得数列{}n a 为1,1,0,1,1,0,1,1,0,⋅⋅⋅,所以数列{}n a 是周期为3的周期数列,前3项和为1102++=, 因为202067331=⨯+,所以数列{}n a 的前2020项的和为673211347⨯+=,故选C. 19.已知数列{}n a 的前n 项和为n S ,11a =,当2n ≥时,12n n a S n -+=,,则S 2019的值为 A .1008 B .1009 C .1010D .1011【试题来源】江苏省南通市2020-2021学年高三上学期期中考前热身 【答案】C【分析】由2n ≥时,12n n a S n -+=,得到121n n a S n ++=+,两式相减,整理得()112n n a a n ++=≥,结合并项求和,即可求解.【解析】当2n ≥时,12n n a S n -+=,①,可得121n n a S n ++=+,②, 由②-①得,112()1n n n n a a S S +--+-=,整理得()112n n a a n ++=≥, 又由11a =,所以20191234520182019()()()1010S a a a a a a a =+++++++=.故选C .20.已知数列{}n a 的前n 项和为n S ,且()11213n n n n S S a n +++=+-+,现有如下说法:①541a a =;②222121n n a a n ++=-;③401220S =. 则正确的个数为 A .0 B .1 C .2D .3【试题来源】百校联盟2021届普通高中教育教学质量监测考试(全国卷11月)(文)试卷 【答案】D【分析】由()11213n n n n S S a n +++=+-+得到()11132n n n a a n ++=-+-,再分n 为奇数和偶数得到21262k k a a k +=-+-,22165k k a a k -=+-,然后再联立递推逐项判断. 【解析】因为()11213n n n n S S a n +++=+-+,所以()11132n n n a a n ++=-+-,所以()212621k k a a k +=-+-,()221652k k a a k -=+-,联立得()212133k k a a +-+=, 所以()232134k k a a +++=,故2321k k a a +-=,从而15941a a a a ===⋅⋅⋅=,22162k k a a k ++=-,222161k k a a k ++=++,则222121k k a a k ++=-,故()()()4012345383940...S a a a a a a a a =++++++++()()()()234538394041...a a a a a a a a =++++++++()()201411820622k k =+⨯=-==∑1220,故①②③正确.故选D.21.已知正项数列{}n a 中,11a =,前n 项和为n S ,且当*2,n n N ≥∈时,2n a =,数列()1cos 12n n n a π⎧⎫-⋅+⎨⎬⎩⎭的前64项和为 A .240 B .256 C .300D .320【试题来源】重庆市第一中学2019-2020学年高一下学期期末【答案】D【分析】由题意结合数列n a 与n S 2-=,由等差数列的性质即可得21n =-,进而可得当2n ≥时,88n a n =-,结合余弦函数的性质、分组求和法可得()()()642664648264T a a a a a a --=+++⋅⋅⋅+-,即可得解.【解析】由题意,当*2,n n N ≥∈时,12n n n S a S -==-,即2=,由0n S >2=,所以数列1=,公差为2的等差数列,()12121n n =+-=-,所以当2n ≥时,()222121188n a n n n ==-+--=-⎡⎤⎣⎦,设数列()1cos12nn n a π⎧⎫-⋅+⎨⎬⎩⎭的前n 项和为数列n T ,所以该数列前64项的和为 164234234cos 1cos 1cos 1cos 12222T a a a a ππππ⎛⎫⎛⎫⎛⎫⎛⎫=-⋅++⋅++-⋅++⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭6464cos 12a π⎛⎫+⋅⋅⋅+⋅+ ⎪⎝⎭ ()()()262642664624486464a a a a a a a a a a =-+-⋅⋅⋅-+=+++⋅⋅⋅--+-641616320=+⨯=.故选D .【名师点睛】本题考查了数列n a 与n S 的关系、等差数列的判断及性质的应用,考查了分组求和法求数列前n 项和的应用,属于中档题. 22.数列{}n a 的前n 项和为n S ,项n a 由下列方式给出1121231234,,,,,,,,,,2334445555⋅⋅⋅⋅⋅⋅.若100k S ≥,则k 的最小值为 A .200 B .202 C .204D .205【试题来源】福建省莆田市第二中学2020-2021学年高二10月阶段性检测 【答案】C【分析】首先观察数列中项的特征,先分组求和,之后应用等差数列求和公式,结合题中所给的条件,建立不等关系式,之后再找其满足的条件即可求得结果. 【解析】11212312112312334442222n n S n nn --⎛⎫⎛⎫⎛⎫=+++++++++⋅⋅⋅+=+++⋅⋅⋅+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (1)1004n n -=≥.所以(1)400n n -≥,21n ≥.而当20n =时,95S =,只需要125212121m++⋅⋅⋅+≥,解得14m ≥. 所以总需要的项数为1231914204+++⋅⋅⋅++=,故选C .【名师点睛】该题考查的是有关数列的问题,涉及到的知识点有等差数列求和公式,分组求和法,属于中档题目.23.已知数列{} n a 中,10a =,21a =,且当n 为奇数时,22n n a a +-=;当n 为偶数时,23n n a a +=,则此数列的前20项的和为A .10311102-+B .1131902-+C .1031902-+D .11311102-+【试题来源】福建省莆田市第二中学2020-2021学年高二10月阶段性检测 【答案】C【分析】根据n 为奇数时,22n n a a +-=;n 为偶数时,23n n a a +=,得到数列{}n a 中所有奇数项构成以0为首项,以2为公差的等差数列;所有偶数项构成以1为首项,以3为公比的等比数列;然后分别利用等差数列和等比数列前n 项和求解.【解析】因为10a =,21a =,且当n 为奇数时,22n n a a +-=;当n 为偶数时,23n n a a +=,则此数列的前20项的和:数列{}n a 中所有奇数项构成以0为首项,以2为公差的等差数列; 数列{}n a 中所有偶数项构成以1为首项,以3为公比的等比数列; 所有()()2013192420......S a a a a a a =+++++++()()10113101012100213⨯-+=⨯++-1031902-=+,故选C . 24.已知数列{}n a 的通项公式为2(1)n n a n =-,设1n n n c a a +=+,则数列{}n c 的前200项和为 A .200- B .0 C .200D .10000【试题来源】安徽省六安市第一中学2019-2020学年高一下学期期中(理)【答案】A【分析】利用分组求和法及等差数列求和公式求解. 【解析】记数列{}n c 的前200项和为n T ,122001223199200200201n T c c c a a a a a a a a =++=++++++++123419920012012[()()()]a a a a a a a a =++++++-+()()()2222[41169200199]1201=-+-++-+-22[3711399]1201=⨯+++++-()2100339921201402004040112002+=⨯+-=-+=-.故选A .25.已知等差数列{}n a 的首项为1a ,公差0d ≠,记n S 为数列(){}1nn a -⋅的前n 项和,且存在*k N ∈,使得10k S +=成立,则 A .10a d > B .10a d < C .1a d >D .1a d <【试题来源】浙江省浙考交流联盟2020-2021学年高三上学期8月线上考试 【答案】B【分析】由题意按照k 为奇数、k 为偶数讨论,利用并项求和法可得1k S +,转化条件得存在*k N ∈且k 为偶数时,102ka d --=,即可得解.【解析】因为等差数列{}n a 的首项为1a ,公差0d ≠,n S 为数列(){}1nn a -⋅的前n 项和,所以当*k N ∈且k 为奇数时,112341k k k S a a a a a a ++=-+-++⋅⋅⋅-+()()()12341102k k k a a a a a a d ++=-++-++⋅⋅⋅+-+=≠; 当*k N ∈且k 为偶数时,1123411k k k k S a a a a a a a +-+=-+-++⋅⋅⋅-+-()()()()1234111122k k k k ka a a a a a a d a kd a d -+=-++-++⋅⋅⋅+-+-=-+=--; 所以存在*k N ∈且k 为偶数时,102k a d --=即102ka d =-≠,当2k =时,1a d =-,此时1a d =,故排除C 、D ;所以1a 与d 异号即10a d <,故A 错误,B 正确.故选B . 26.已知函数()2*()sin2n f n n n N π=∈,且()(1)n a f n f n =++,则1232020a a a a ++++的值为A .4040B .4040-C .2020D .2020-【试题来源】四川省宜宾市叙州区第一中学校2020-2021学年高二上学期开学考试(文) 【答案】A【分析】由题意得2222(1)sin(1)sin sin (1)cos 2222n n n n n a n n n n ππππ+=++=++,从而可求出11a =,222232018201920203,,2019,2021a a a a a ==-⋅⋅⋅==-=,然后通过分组求和可得答案.【解析】因为()2*()sin2n f n n n N π=∈,且()(1)n a f n f n =++, 所以2222(1)sin (1)sin sin (1)cos 2222n n n n n a n n n n ππππ+=++=++, 所以11a =,222223452018201920203,5,,2019,2021a a a a a a a ==-==⋅⋅⋅==-=,所以1232020a a a a ++++13520192462020()()a a a a a a a a =+++++++++22222222222[(13)(57)(20172019)][(35)(79)(20192021)]=-+-+⋅⋅⋅+-+-++-++⋅⋅⋅+-+2(135720172019)2(35720192021)=-++++⋅⋅⋅++++++⋅⋅⋅++10102020101020242222⨯⨯=-⨯+⨯1010202010102024=-⨯+⨯4040=,故选A.27.已知数列{}n a 中,11a =,23a =,*122(3,)n n n a a a n n N --=+≥∈,设211(2)(2)n n n b a a n n --=-≥,则数列{}n b 的前40项的和为A .860B .820C .820-D .860-【试题来源】河南省开封市河南大学附属中学2020-2021学年高二9月质检 【答案】A【分析】本题先对数列{}n a 的递推公式进行转化可发现数列{}12n n a a --是以1为首项,1-为公比的等比数列,通过计算出数列{}12n n a a --的通项公式可得1n b -的表达式,进一步可得数列{}n b 的通项公式,最后在求和时进行转化并应用平方差公式和等差数列的求和公式即可得到前40项的和.【解析】由题意,可知当3n ≥时,122n n n a a a --=+,两边同时减去12n a -,可得112112222(2)n n n n n n n a a a a a a a -------=+-=--,2123211a a -=-⨯=,∴数列{}12n n a a --是以1为首项,1-为公比的等比数列, 11121(1)(1)n n n n a a ---∴-=⋅-=-,*(2,)n n ≥∈N ,21211(2)(1)n n n n b a a n n ---∴==-⋅-,故2(1)(1)n n b n ⋅=-+,令数列{}n b 的前n 项和为n T ,则4012343940T b b b b b b =++++⋯++22222223454041=-+-+-⋯-+222222[(23)(45)(4041)]=--+-+⋯+-[(23)(45)(4041)]=--+-+-⋯-+23454041=++++⋯++40(241)2⨯+=860=.故选A .【名师点睛】本题主要考查数列由递推公式推导出通项公式,以及数列求和问题.考查了转化与化归思想,整体思想,定义法,平方差公式,以及逻辑推理能力和数学运算能力.本题属中档题.28.在数列{}n a 中,122,2a a ==,且11(1)(*),nn n a a n N +-=+-∈则100S =A .5100B .2600C .2800D .3100【试题来源】河南省洛阳市第一中学2020-2021学年高二上学期10月月考 【答案】A【分析】转化条件为22n n a a +-=,进而可得21k a -,2k a ,由分组求和法结合等差数列的前n 项和公式即可得解.【解析】因为11(1)(*)n n n a a n N +-=+-∈,所以1211(1)n n n a a +++-=+-,所以()()122121n n n n a a ++-=+--+=,因为122,2a a ==,所以()211212k a a k k -=+-=,()22212k k a k a =+-=,*k N ∈,所以()()100123499100139924100S a a a a a a a a a a a a =++++⋅⋅⋅++=++⋅⋅⋅++++⋅⋅⋅+()()2100241002410025051002+=++⋅⋅⋅++++⋅⋅⋅+=⨯⨯=.故选A . 【名师点睛】本题考查了等差数列通项公式及前n 项和公式的应用,考查了分组求和法的应用及转化化归思想,属于中档题.29.正项数列{}n a 的前n 项和为n S ,且()2*2n n n S a a n N =+∈,设()2112nn n na c s +=-,则数列{}n c 的前2020项的和为A .20192020-B .20202019-C .20202021-D .20212020-【试题来源】2020届广东省华南师范大学附属中学高三年级月考(三)(理) 【答案】C【分析】先根据和项与通项关系得11n n a a --=,再根据等差数列定义与通项公式、求和公式得,n n a S ,代入化简n c ,最后利用分组求和法求结果. 【解析】因为()2*2,0n n n nS a a n Na=+∈>,所以当1n =时,21112a a a =+,解得11a =,当2n ≥时,()()2211122n n n n n n n a S S a a a a ---=-=+-+,所以 ()()1110n n n n a a a a --+--=, 因为0n a >,所以11n n a a --=,所以数列{}n a 是等差数列,公差为1,首项为1, 所以()()111,2n n n n a n n S +=+-==,所以()()21111121n n n n na c s n n +⎛⎫=-=-+ ⎪+⎝⎭,则数列{}n c 的前2020项的和11111111202011223342020202120212021⎛⎫⎛⎫⎛⎫⎛⎫=-+++-++++=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故选C . 30.若数列{}n a 的通项公式为21nn a =-,在一个n 行n 列的数表中,第i 行第j 列的元素为()1,2,,,1,2,,ij i j i j c a a a a i n j n =⋅++=⋅⋅⋅=⋅⋅⋅,则满足11222021nn c c c ++⋅⋅⋅+<的n 的最大值是 A .4B .5C .6D .7【试题来源】山西省运城市2021届高三(上)期中(理) 【答案】B【分析】求得1122nn c c c ++⋅⋅⋅+关于n 的表达式,利用数列的单调性可求得满足11222021nn c c c ++⋅⋅⋅+<的n 的最大值.【解析】数列{}n a 的通项公式为21nn a =-,在一个n 行n 列的数表中,第i 行第j 列的元素为()1,2,,,1,2,,ij i j i j c a a a a i n j n =⋅++=⋅⋅⋅=⋅⋅⋅, 所以()()2121212121iji j i jij i j i j c a a a a +=⋅++=--+-+-=-.令1122n nn S c c c =+++,则()102,n n nn S S c n n N *--=>≥∈,所以,数列{}n S 为递增数列,当11222021nn c c c +++<时,所有的元素之和为246212121212021n n n S +=-+-+-++-<,当4n =时,24684222243362021S =+++-=<, 当5n =时,246810522222513592021S =++++-=<, 当6n =时,246810126222222654542021S =+++++-=>, 故n 的最大值为5,故选B .【点评】关键点【名师点睛】本题考查数列不等式的求解,解题的关键在于求出1122nn c c c ++⋅⋅⋅+关于n 的表达式,在求解数列不等式时,要充分结合数列的单调性求解.31.公元1202年列昂那多·斐波那契(意大利著名数学家)以兔子繁殖为例,引入“兔子数列”{}n a :1,1,2,3,5,8,13,21,34,55,……,即11a =,21a =,()*12,2n n n a a a n n --=+∈>N ,此数列在现代物理、化学等学科都有着十分广泛的应用.若将此数列{}n a 的各项除以2后的余数构成一个新数列{}n b ,设数列{}n b 的前n 项的和为n T ;若数列{}n a 满足:212n n n n c a a a ++=-,设数列{}n c 的前n 项的和为n S ,则20202020T S +=A .1348B .1347C .674D .673【试题来源】浙江省宁波市慈溪市2020-2021学年高三上学期期中 【答案】B【分析】根据题意写出数列{}n a 的前若干项,观察发现此数列是以3为周期的周期数列,可得2020T ,再计算1n nc c +,结合等比数列的通项公式和求和公式,可得2020S ,进而得到所求和. 【解析】“兔子数列”的各项为1,1,2,3,5,8,13,21,34,55,⋯,∴此数列被2除后的余数依次为1,1,0,1,1,0,1,1,0,⋯⋯,即11b =,21b =,30b =,41b =,51b =,60b =,⋯⋯, ∴数列{}n b 是以3为周期的周期数列,20201231673()673211347T b b b b ∴=+++=⨯+=,由题意知22212112221121222121212()()1n n n n n n n n n n n n n n n n n n n n n n c a a a a a a a a a a a c a a a a a a a a a +++++++++++++++++-+---====----, 由于212131c a a a =-=-,所以(1)n n c =-,所以2020(11)(11)(11)0S =-++-++⋯+-+=. 则202020201347T S +=.故选B.【名师点睛】确定数列数列{}n b 是以3为周期的周期数列,利用周期性求出数列的和,摆动数列(1)n n c =-可以利用分组求和,是解决问题的关键,属于中档题. 32.已知函数()()()22,,n n f n n n ⎧⎪=⎨-⎪⎩当为奇数时当为偶数时且()(1)n a f n f n =++,则121100a a a a ++++等于A .0B .100C .-100D .10200【试题来源】广东省普宁市2020-2021学年高二上学期期中质量测试 【答案】B【分析】先求出通项公式n a ,然后两项一组,即可求解数列的前100项的和【解析】()(1)n a f n f n =++,∴由已知条件知,2222(1),(1),n n n n a n n n ⎧-+=⎨-++⎩为奇数为偶数,即()21,21,n n n a n n ⎧-+=⎨+⎩为奇数为偶数,(1)(21)n n a n ∴=-+,12(n n a a n +∴+=是奇数),123100123499100()()()2222100a a a a a a a a a a ∴+++⋯+=++++⋯++=+++⋯+=故选B .【名师点睛】解答本题的关键是求出数列{}n a 的通项(1)(21)n n a n =-+,即得到12(n n a a n ++=是奇数).33.已知数列{}n a 为等差数列,首项为2,公差为3,数列{}n b 为等比数列,首项为2,公比为2,设n n b c a =,n T 为数列{}n c 的前n 项和,则当2020n T <时,n 的最大值是 A .8 B .9 C .10D .11【试题来源】山东省菏泽市2021届高三上学期期中考试(A ) 【答案】A【分析】由已知分别写出等差数列与等比数列的通项公式,求得数列{}n c 的通项公式,利用数列的分组求和法可得数列{}n c 的前n 项和n T ,验证得答案.【解析】由题意得323(1)1n a n n ⨯-=+-=,2nn b =,2321n n n n b c a a ==⨯-=,123n T c c c ∴=+++…n c +123321321321=⨯-+⨯-+⨯-+…321n +⨯-(1233222=⨯+++…)2nn +-()212312n n ⨯-=⨯-- 1326n n +=⨯--,当8n =时,98326815222020T =⨯--=<;当9n =时,109326930572020T =⨯--=>,n ∴的最大值为8.故选A .【名师点睛】本题解题的关键是求出数列{}n c 的通项公式,利用分组求和求出数列{}n c 的前n 项和n T .34.已知数列{}n a 满足11a =,1(1)(1)n n na n a n n +=+++,*n N ∈,且23n n b π=,记n S 为数列{}n b 的前n 项和,则2020S =A .1B .12C .12-D .-1【试题来源】山西省孝义市第二中学校2019-2020学年高一下学期期末 【答案】C【分析】由题设条件以及等差数列的性质得出2n a n =,进而得出2cos3n n b n π=,利用诱导公式求出32313,,k k k b b b --,即可求得2020S . 【解析】1(1)(1)n n na n a n n +=+++,111n na a n n+∴-=+, ∴数列n a n ⎧⎫⎨⎬⎩⎭是等差数列,公差与首项都为1,21(1)n n a n a n n ∴=+-⇒=,2cos3n n b n π∴=,3241(32)cos 2(32)32k b k k k ππ-⎛⎫=--=-- ⎪⎝⎭, 3121(31)cos 2(31)32k b k k k ππ-⎛⎫=--=-- ⎪⎝⎭,33cos 23k b k k k π==, 3231332k k k b b b --+∴=+,20203674212020(36742)101022b b ⨯-=-⨯-=-=-=, ()()()1234562017201820192020202031673101022b b b b b b b b b S b ++++++++++==⨯-=-故选C .35.设()f n ()*n ∈N 的整数, 如()()()()()11,21,324252f f f f f =====,,,若正整数m 满足()()()()11114034123f f f f m ++++=,则m = A .20162017⨯ B .20172018⨯ C .20182019⨯D .20192020⨯【试题来源】陕西省西安市高新一中2018-2019学年高二上学期期末(理) 【答案】B【解析】设()f x j =,,*x j N ∈,n 是整数,则221124n n n ⎛⎫+=++ ⎪⎝⎭不是整数,因此任意正整数的正的平方根不可能是1()2n n Z +∈形式,所以1122j j -<<+,221144j j x j j -+<<++, 因为,*x j N ∈,所以221j j x j j -+≤≤+,故()f x j =时,2221,2,,x j j j j j j =-+-++共2j 个,设222111(1)(2)()p a f j j f j j f j j =+++-+-++,则22p ja j==,*p N ∈, 由题意()()()()11114034123f f f f m ++++=,403422017=⨯, 所以()()()()1111111111123(1)(2)(3)(4)(5)(6)f f f f m f f f f f f ⎡⎤⎡⎤++++=+++++++⎢⎥⎢⎥⎣⎦⎣⎦1114034(220171)(220172)()f m f m f m ⎡⎤+++=⎢⎥-⨯+-⨯+⎣⎦, 故()2017f m =,m 为方程2017f =的最大整数解, 所以22017201720172018m =+=⨯.故选B .【名师点睛】本题主要考查数列与函数的关系、数列的应用,解题关键是设()f x j =,,*x j N ∈,确定x 的范围,得出x 的个数,然后计算出满足()f x j =的所有1()f x 的和为2. 二、多选题1.将2n 个数排成n 行n 列的一个数阵,如下图:111213212223231323331312n n n n n n nna a a a a a a a a a a a a a a a ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中0m >).已知112a =,13611a a =+,记这2n 个数的和为S .下列结论正确的有A .3m =B .767173a =⨯C .1(31)3j ij a i -=-⨯D .()1(31)314n S n n =+- 【试题来源】湖南省长沙市第一中学2020-2021学年高三上学期月考(三) 【答案】ACD【解析】由题意,该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列,且112a =,13611a a =+,可得2213112a a m m ==,6111525a a d m =+=+,所以22251m m =++,解得3m =或12m =-(舍去),所以选项A 是正确的; 又由6666761(253)3173a a m ==+⨯⨯=⨯,所以选项B 不正确;又由1111111(3[((1)][2(1)3]31)3j j j j ij i a ma i m m i i a ----==+-⨯⨯==-⨯+-⨯⨯,所以选项C 是正确的;又由这2n 个数的和为S , 则111212122212()()()n n n n nn S a a a a a a a a a =++++++++++++11121(13)(13)(13)131313n n n n a a a ---=+++---1(231)(31)22nn n +-=-⋅ 1(31)(31)4n n n =+-,所以选项D 是正确的,故选ACD . 【名师点睛】本题主要考查了数表、数阵数列的求解,以及等比数列及其前n 项和公式的应用,其中解答中合理利用等比数列的通项公式和前n 项和公式,准确计算是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.2.将n 2个数排成n 行n 列的一个数阵,如图:该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中m >0).已知a 11=2,a 13=a 61+1,记这n 2个数的和为S .下列结论正确的有A .m =3B .767173a =⨯C .()1313j ij a i -=-⨯D .()()131314n S n n =+- 【试题来源】江苏省扬州市仪征中学2020-2021学年高二上学期期中模拟(2) 【答案】ACD【分析】根据第一列成等差,第一行成等比可求出1361,a a ,列式即可求出m ,从而求出通项ij a ,再按照分组求和法,每一行求和可得S ,由此可以判断各选项的真假. 【解析】因为a 11=2,a 13=a 61+1,所以2m 2=2+5m +1,解得m =3或m 12=-(舍去), 所以a ij =a i 1•3j ﹣1=[2+(i ﹣1)×m ]•3j ﹣1=(3i ﹣1)•3j ﹣1,所以a 67=17×36,所以S =(a 11+a 12+a 13+……+a 1n )+(a 21+a 22+a 23+……+a 2n )+……+(a n 1+a n2+a n 3+……+a nn )11121131313131313nn n n a a a ---=+++---()()()12=(3n ﹣1)•2312n n +-() 14=n (3n +1)(3n ﹣1),故选ACD . 【名师点睛】本题主要考查等差数列,等比数列的通项公式的求法,分组求和法,等差数列,等比数列前n 项和公式的应用,属于中档题. 三、填空题1.已知数列{}n a 的前n 项和为n S ,满足112a =-,且()1222n n a a n N n n *++=∈+,则10S =__________.【试题来源】广西桂林市第十八中学2021届高三上学期第二次月考(理) 【答案】1011【分析】根据题中条件,由裂项的方法得到1112n n a a n n ++=-+,根据裂项相消与并项求和的方法,即可得出结果. 【解析】因为()122211222n n a a n n n n n n ++===-+++,则()()()()()1012345678910S a a a a a a a a a a =+++++++++11111111113355779911⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭11011111=-=.2.设n S 为数列{}n a 的前n 项和,10a =,若11(1)(2)n n n na a +⎡⎤=+-+-⎣⎦(*n N ∈),则100S =__________.【试题来源】江苏省徐州市沛县2020-2021学年高三上学期第一次学情调研【答案】101223- 【分析】分n 为奇数、n 为偶数两种情况讨论,可得数列{}n a 的特点,然后可算出答案. 【解析】当n 为奇数时,()12nn a +=-,则()122a =-,()342a =-,,()991002a =-,当n 为偶数时,()12222nn n n n a a a +=+-=+,则232220a a =+=,454220a a =+=,,989998220a a =+=,又10a =,所以10110024100223S a a a -=+++=. 3.已知数列{}n a 满足:11a =,12n n n a a a +=+,则数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n S =__________. 【试题来源】安徽省亳州市涡阳县第四中学2019-2020学年高一下学期第二次质量检测(理) 【答案】122n n +--【分析】根据题中条件,得到11211221n n n a a a +⎛⎫+=+=+ ⎪⎝⎭,判定数列11n a ⎧⎫+⎨⎬⎩⎭是以2为公比的等比数列,求出121n na =-,由分组求和的方法,即可求出结果. 【解析】由12n n n a a a +=+得12121n n n n a a a a ++==+,所以11211221n n n a a a +⎛⎫+=+=+ ⎪⎝⎭, 因此数列11n a ⎧⎫+⎨⎬⎩⎭是以2为公比的等比数列,又11a =,所以1112a +=,因此111222n n n a -+=⨯=,所以121n n a =-,因此()()2121222 (22212)n nn n n n S n +-=+++-=-=---.故答案为122n n +--.【名师点睛】求解本题的关键在于,根据12n n n a a a +=+,由构造法,得到111121n n a a +⎛⎫+=+ ⎪⎝⎭,再根据等比数列的求和公式,以及分组求和的方法求解即可. 4.数列{}n a 的通项公式22cos4n n a n n π=-,其前n 项和为n S ,则2021S =__________. 【试题来源】甘肃省永昌县第一中学2020-2021学年高三上学期第一次月考数学理试题 【答案】1010.【分析】由于22cos(1cos )cos 422n n n n a n n n n n πππ=-=+-=,可得数列{}n a 的所有奇数项为0,前2021项的所有偶数项共有202010102=项,从而可求得其结果 【解析】因为22cos (1cos )cos 422n n n n a n n n n n πππ=-=+-=,所以数列{}n a 的所有奇数项为0,前2021项的所有偶数项共有202010102=项, 所以2021246820182020S a a a a a a =++++⋅⋅⋅++246820182020=-+-+-⋅⋅⋅-+(24)(68)(20182020)=-++-++⋅⋅⋅+-+1010210102=⨯=.故答案为1010 5.2020年疫情期间,某医院30天每天因患新冠肺炎而入院就诊的人数依次构成数列{}n a ,已知11a =,22a =,且满足21(1)nn n a a +-=--,则该医院30天内因患新冠肺炎就诊的人数共有__________.【试题来源】山东省聊城市2020-2021学年高三上学期期中 【答案】255【分析】根据题目所给递推关系式,求得数列{}n a 项的规律,由此进行分组求和,求得数列前30项的和.【解析】由于()211nn n a a +-=--,当n 为偶数时,20n na a +-=,因此前30项中的偶数项构成常数列,各项都等于22a =,共有15项,和为15230⨯=;当n 为奇数时,22n n a a +-=;又11a =,所以前30项中的奇数项构成首项为1,公差为2的等差数列,共有15项,和为151415122252⨯⨯+⨯=. 故30天的总人数为30225255+=.故答案为255. 6.数列{}n a 的前n 项和为n S ,若()*1cos2n n a n n N π=+⋅∈,则2020S =__________.【试题来源】上海市复兴高级中学2021届高三上学期期中 【答案】3030【分析】根据题意,先确定cos2n π的周期,再求出一个周期的和,即可得出结果. 【解析】由()4coscos 2cos 222n n n ππππ+⎛⎫=+= ⎪⎝⎭,知cos 2n π的周期为4,又11cos12a π=+=,212cos 12a π=+=-, 3313cos12a π=+=, 414cos 214a π=+=+,则1234426a a a a +++=+=,所以20202020630304S =⨯=.故答案为3030.7.已知数列{}n a 的前n 项和为n S ,且21n n S a =-.则数列{}n S 的前n 项和n T =__________. 【试题来源】重庆市巴蜀中学2021届高三上学期适应性月考(四) 【答案】122n n +--【分析】通过前n 项和n S 与n a 的关系式以及等比数列的定义得出{}n a 及{}n S 的表达式,进而利用分组求和即可.【解析】由21n n S a =-,得111211a a a =-⇒=,由21n n S a =-,有1121(2)n n S a n --=-≥,两式相减,11222(2)n n n n n a a a a a n --=-⇒=, 故数列{}n a 是首项为1,公比为2的等比数列,12n na ,122112nn n S -==--,()12122212n n n T n n +-∴=-=---.8.设函数()f x 的定义域为R ,满足()()12f x f x +=,且当[)0,1x ∈时,()sin f x x π=,当[)0,x ∈+∞时,函数()f x 的极大值点从小到大依次记为1a 、2a 、3a 、、n a 、,并记相应的极大值为1b 、2b 、3b 、、n b 、,则数列{}n n a b +前9项的和为__________.【试题来源】湖北省荆州中学2020-2021学年高三上学期8月月考 【答案】11032【分析】求出函数()y f x =在区间[)()1,n n n N*-∈上的解析式,利用导数求出函数()y f x =在区间[)()1,n n n N *-∈上的极大值点与极大值,可得出数列{}n n a b +的通项公式,再利用分组求和法可求得数列{}n n a b +的前9项的和. 【解析】函数()f x 的定义域为R ,满足()()12f x f x +=,则()()21=-f x f x ,且当[)0,1x ∈时,()sin f x x π=,则当[)()1,x n n n N *∈-∈,()[)10,1x n --∈,()()()()()2112122212sin 1n n f x f x f x f x n x n ππ--=-=-==--=--⎡⎤⎡⎤⎣⎦⎣⎦,()()12cos 1n f x x n πππ-'=--⎡⎤⎣⎦,当[)()1,x n n n N*∈-∈时,()[)10,1x n --∈,则()[)10,x n πππ--∈⎡⎤⎣⎦,令()0f x '=,可得()12x n πππ--=,解得12x n =-, 当112n x n -<<-时,()0f x '>,当12n x n -<<时,()0f x '<. 所以,函数()y f x =在12x n =-处取得极大值,即1122n n b f n -⎛⎫=-= ⎪⎝⎭,又12n a n =-,1122n n n a b n -∴+=-+,因此,数列{}n n a b +的前9项的和991199121103222122S ⎛⎫+-⨯ ⎪-⎝⎭=+=-. 【名师点睛】本题考查了数列的分组求和,同时也考查了利用导数求函数的极值点和极值,考查计算能力,属于中等题.9.在数列{}n a 中,若121,(1)2nn n a a a +=+-=,记n S 是数列{}n a 的前n 项和,则100S =__________.【试题来源】江苏省盐城市响水中学2020-2021学年高二上学期期中 【答案】2550【分析】当n 为奇数时,可得数列{}n a 的奇数项为公差为2的等差数列,当n 为偶数时,可得偶数项的特征,将所求问题转化为奇数项和偶数项求和即可.【解析】因为121,(1)2nn n a a a +=+-=,所以当n 为奇数时,22n n a a +-=,即数列{}n a 的奇数项为公差为2的等差数列,当n 为偶数时,22n n a a ++=,所以135995049501225002a a a a ⨯++++=⨯+⨯=, ()()()()24681012485022550a a a a a a a a ++++++++=⨯=,所以1002500502550S =+=,故答案为2550.【名师点睛】(1)得到数列{}n a 的奇数项为公差是2的等差数列; (2)得到数列{}n a 的偶数项满足22n n a a ++=.10.已知数列{}n a 的前n 项和为n S ,21122n n a a a =+,=+,则5S 的值为__________. 【试题来源】河南省豫南九校2020-2021学年高二第一学期第二次联考试题 (理) 【答案】732【解析】122n n a a +=+,()1222n n a a +∴+=+,故数列{}2n a +是以2为公比,以223a +=为第二项的等比数列, 故2232n n a -+=⋅,故2322n n a -=⋅-,()5531273225122S -∴=-⨯=-,故答案为732. 【名师点睛】1n n a pa q +=+(1,0p q ≠≠的常数)递推关系求通项,构造等比数列是解题关键,属于基础题. 11.设数列{}n a 是以4为首项,12为公比的等比数列,其前n 项和为{}n S ,则{}n S 的前n 项和为__________.【试题来源】江苏省宿迁中学2020-2021学年高三上学期期中巩固测试 【答案】3288n n -+-【分析】先根据题意得382nn S -=-,由于数列{}32n-是以4为首项,12为公比的等比数列,进而利用分组求和法求和即可得答案.【解析】由等比数列的前n 项和公式得()1314112821112n nn na q S q -⎡⎤⎛⎫-⎢⎥ ⎪-⎝⎭⎢⎥⎣⎦===---, 由于数列{}32n-是以4为首项,12为公比的等比数列,。
高一上学期第一次月考数学试题一、单选题1.已知集合,若,则由实数的所有可能的取值组成的集合为{}{}1,2,1A B x ax =-==B A ⊆a ( ) A .B .11,2⎧⎫⎨⎬⎩⎭11,2⎧⎫-⎨⎬⎩⎭C .D .10,1,2⎧⎫⎨⎬⎩⎭11,0,2⎧⎫-⎨⎬⎩⎭【答案】D【分析】分类讨论,当时满足题意,当,解出,由,解得或0a =B A =∅⊆0a ≠B B A ⊆1a =- 12a =【详解】当时,,满足题意. 0a =B A =∅⊆当时,,0a ≠1B a ⎧⎫=⎨⎩⎭若,则或,即或B A ⊆11a =-12a =1a =-12a =综上所述,的所有取值为a 10,1,2-故选:D2.集合的元素个数为( )16N ,N A x x n n ⎧⎫=∈=∈⎨⎬⎩⎭A .3 B .4 C .5 D .6【答案】C 【分析】利用,讨论, 可得答案. 16116n≤≤N n ∈N x ∈【详解】因为,,,所以 16116n≤≤N n ∈N x ∈时;时;时;时;时,1n =16x =2n =8x =4n =4x =8n =2x =16n =1x =共有5个元素, 故选:C.3.已知集合是实数集的子集,定义,若集合,A B R {}|,A B x x A x B -=∈∉,则( ){}211|,1,|1,123A y y x B y y x x x ⎧⎫==≤≤==--≤≤⎨⎬⎩⎭B A -=A . B . {}|11x x -≤≤{}|11x x -≤<C .D .{}|01x x ≤≤{}|01x x ≤<【答案】B【分析】由函数的值域求得,由此求得. ,A B B A -【详解】由题知,在上递减,所以, 1y x =113x x ⎧⎫≤≤⎨⎬⎩⎭{}|13A y y =≤≤的对称轴为轴,因为,所以, 21y x =-y 12x -≤≤{}13B y y =-≤≤所以, {}11B A y y -=-≤<故选:B.4.若不等式成立的必要条件是,则实数的取值范围是 ||1x t -<14x <≤t A . B . C . D .[2,3](2,3][2,3)(2,3)【答案】A【详解】由得:,∵不等式成立的必要条件是, 1x t -<11t x t -+<<+1x t -<14x <≤∴,故,故选A. {}{}|11|14x t x t x x -+<<+⊆<≤11{2314t t t -+≥⇒≤≤+≤5.若,设,则( ) x y <222221M x y N xy y =+=+-,A . B .C .D .M N >M N <M N …M N …【答案】A【分析】做差整理得两个完全平方式,可判断答案. 【详解】222221M N x y xy y -=+--+ 222221x xy y y y =-++-+22()(1)x y y =-+- 22()0,(1)0x y x y y <∴->-≥M N ∴>故选:A6.如果不等式对任意实数都成立,则实数的取值范围是( ) 210mx mx m +++>x m A .B . 0m ≥403m -<≤C .D .或43m <-43m <-0m ≥【分析】对和分别讨论,列出不等关系后求解即可 0m =0m ≠【详解】由题,当时,不等式为,满足题意;0m =10>当时,则需满足,即 0m ≠()2410m m m m >⎧⎨∆=-+<⎩0m >综上, 0m ≥故选A【点睛】本题考查不等式恒成立问题,考查运算能力,考查分类讨论思想 7.若正实数满足,则( ) ,a b 1a b +=A .有最大值 B .有最大值4 ab 1411a b+C .有最小值 D .有最小值2 ab 1411a b+【答案】A【分析】结合基本不等式及其变形形式分别检验各选项的结论是否成立即可. 【详解】因为正实数满足,a b 1a b +=所以,当且仅当,,即取等号,故A 正确、C 错误. 2124a b ab +⎛⎫≤= ⎪⎝⎭1a b +=a b =12a b ==,当且仅当,,即取等号,故B 、D 错误. 2111142+=≥=⎛⎫+ ⎪⎝⎭a b ab a b 1a b +=a b =12a b ==故选:A8.已知正实数满足,则的最小值为( ) ,a b 4111a b b +=++2+a b A .6 B .8C .10D .12【答案】B【分析】令,用分别乘两边再用均值不等式求解即211a b a b b +=+++-1a b b +++4111a b b +=++可.【详解】因为,且为正实数 4111a b b +=++,a b 所以 1(414(1)41111)(a b b a b b a b b a bb a bb +++=++++++++=+++++,当且仅当即时等号成立. 59≥+=4(1)1a b b b a b ++=++2a b =+所以.219,28a b a b ++≥+≥二、多选题9.集合,则下列关系错误的是( ) 11,Z ,Z 3663n n M xx n N x x n ⎧⎫⎧⎫==+∈==+∈⎨⎬⎨⎬⎩⎭⎩⎭∣,∣A . B . C . D .M N ⊆M N =N M ⊆M N 【答案】ABD【分析】将两个集合中式子通分化成同一形式,对比可得答案.【详解】 12(1)1,Z ,Z 3666n n n M x x n x x n ⎧⎫⎧⎫+++==+∈===∈⎨⎬⎨⎬⎩⎭⎩⎭121,Z ,Z 636n n N x x n x x n ⎧⎫⎧⎫+==+∈==∈⎨⎬⎨⎬⎩⎭⎩⎭,所以C 正确.M N ∴⊇故选:ABD10.已知,则下列说法错误的是( ) ,,a b c ∈R A .若,则 B .若,则 a b >22am bm >a bc c>a b >C .若,则D .若,则,0a b ab >>11a b <22,0a b ab >>11a b<【答案】ABD【分析】对于AB 特殊值检验即可;对于C ,分,讨论即可;对于D ,由0a b >>0b a <<知同号,当时即可解决.0ab >,a b ,0a b <【详解】对于A ,当时,不成立,故A 错误; 0m =对于B ,当时,不成立,故B 错误; 0c <对于C ,由知同号, 0ab >,a b 当时,,0a b >>11a b<当时,,故C 正确; 0b a <<11a b<对于D ,由知同号, 0ab >,a b 当时,等价于, ,0a b <22a b >0a b <<所以,故D 错误. 11a b>故选:ABD11.若,则下列选项成立的是( ) ,(0,)a b ∈+∞A .B .若,则 (6)9a a -≤3ab a b =++9ab ≥C .的最小值为D .若,则2243a a ++12a b +=1232ab +≥【答案】ABD【解析】A. 利用怍差法判断;B.由判断;C.利用对勾函数的性质判断;D.33ab a b =++≥由,利用“1”的代换结合基本不等式判断.2a b +=【详解】A. 因为,故正确; ()229(6)6930aa a a a --=-+=-≥B.因为,所以,所以,当且仅当33ab a b =++≥+230-≥3≥9ab ≥取等号,故正确;3a b ==C. 因为,,则由对勾函数的性质得在2222443333a a a a +=++-++233a +>224333t a a =++-+上递增,所以其最小值为,故错误; ()3,+∞43D.因为,则,当且仅当2a b +=()121122333221122b a a b a b a b a b ⎛⎛⎫⎛⎫+=+++≥+=⎪ ⎪ ⎝⎭⎝⎭⎝+=,即时,取等号,故正确;22a b b a a b +=⎧⎪⎨=⎪⎩)(21,22a b =-=故选:ABD12.设所有被4除余数为,,,的整数组成的集合为,即,(0k k =123)k A {}4,Z k A x x n k n ==+∈则下列结论中正确的是( ) A .22022A ∈B .若,则, 3a b A +∈1a A ∈2b A ∈C .31A -∈D .若,,则 k a A ∈k b A ∈0a b A -∈【答案】ACD【分析】根据题目给的定义,逐一分析即可.【详解】解:,所以,故A 正确;202245052=⨯+22022A ∈若,则,或,或,或,,故B 错误;3a b A +∈1a A ∈2b A ∈2a A ∈1b A ∈0a A ∈3b A ∈3a A ∈0b A ∈,所以,故C 正确;()1413-=⨯-+31A -∈令,,,则,,故,故D 正确. 4a n k =+4b m k =+,m n ∈Z ()40a b n m -=-+Z n m -∈0a b A -∈故选:ACD .三、填空题13.若集合有且仅有两个子集,则实数的值是__________.(){}21420A x a x x =-+-=a 【答案】1±【分析】通过集合有且仅有两个子集,可知集合中只有一个元素,根据二次项系数是否为分类讨0论.【详解】由集合有且仅有两个子集,得中只有一个元素.(){}21420A x a x x =-+-=A 当即时,,符合题意.10a -=1a =12A ⎧⎫=⎨⎬⎩⎭当即时, 解得.10a -≠1a ≠()()2Δ44120,a =--⨯-=1a =-故答案为:1±14.已知集合集合,集合,若,{}21,A x a x a =<<-{}0B y y =>{}1C x x =≥R (C )B C A ⋃⋂=∅则实数的取值范围是__________. a 【答案】{}|1a a ≤【分析】通过集合运算得出,对集合进行分类讨论,时显然成立,时无R (C )B C ⋃A A =∅A ≠∅解.【详解】 {}{}00B y y x x =>=> {}R C 0B x x ∴=≤{}R (C )01B C x x x ∴⋃=≤≥或R (C )B C A ⋃⋂=∅当时,,满足题意.21≥-a a 1a ≤A =∅当时,时,解得21a a <-1a >0211a a ≥⎧⎨-≤⎩a ∈∅综上所述,. 1a ≤故答案为:{}|1a a ≤15.已知关于的不等式的解集为,若且,则实数的取值范围x 2(1)(2)0mx x m --<A 2A ∉1A -∈m是________. 【答案】122m ≤<【分析】,则代回不等式让其不成立,,则代回不等式让其成立,求两者范围得2A ∉21A -∈1-交集即可.【详解】依题意得,, 212(21)(22)082A m m m ∉⇔-⨯-≥⇔≤≤,综上, 2(1)(2(1))0121A m m m ∈⇔--⨯--<⇔-<<-122m ≤<故答案为:. 122m ≤<16.已知为实数,则__________(填 “”、“”、“”或“”).,a b 221214a b ++2ab a +><≥≤【答案】≥【分析】作差法解决即可. 【详解】由题知,,()()22222221112110422412a a a b b b a a ab a a b a ⎛⎫+=-+-+⎛⎫++-++-≥ ⎪⎝⎭⎭=- ⎪⎝当且仅当时,取等号. 1,2a b ==故答案为:.≥四、解答题17.已知 .{}{}14,11P x x S x m x m =≤≤=-≤≤+(1)是否存在实数,使是的充要条件?若存在,求出的取值范围;若不存在,请说明理m x P ∈x S ∈m 由;(2)是否存在实数,使是的必要条件?若存在,求出的取值范围;若不存在,请说明理m x P ∈x S ∈m 由.【答案】(1)不存在 (2) {}0m m ≤【分析】(1)根据两集合相等,形成方程组,无解,可判断不存在满足题意的实数. m (2)要使是的必要条件,则,根据集合关系可求得实数的范围. x P ∈x S ∈S P ⊆m 【详解】(1)要使是的充要条件,则x P ∈x S ∈P S =即,此方程组无解.1114m m -=⎧⎨+=⎩所以不存在实数,使是的充要条件. m x P ∈x S ∈(2)要使是的必要条件,则, x P ∈x S ∈S P ⊆当时,,解得 S =∅11m m ->+0m <当时,,解得S ≠∅11m m -≤+0m ≥要使,则有,解得,所以S P ⊆1114m m -≥⎧⎨+≤⎩0m ≤0m =综上可得,当时,是的必要条件.0m ≤x P ∈x S ∈18.已知集合.{}{}{}2222|130,|560,|430A x x ax a B x x x C x x x =-+-==-+==-+=(1)求;B C ⋃(2)若,求的值. ,A B A C =∅≠∅ a 【答案】(1) {}1,2,3(2) 3-【分析】(1)解一元二次方程求得集合,根据集合并集计算即可;(2)根据题意得,即,B C 1A ∈可得到方程求出的值,验证即可. a 【详解】(1)由题知,由,解得或,所以, 2560x x -+=2x =3x ={}2,3B =由,解得或,所以, 2430x x -+=1x =3x ={}1,3C =所以.{}1,2,3B C ⋃=(2)因为, ,A B A C =∅≠∅ 所以,1A ∈所以,解得或, 21130a a -+-=4a =3a =-当时,,与矛盾, 4a ={}1,3A C ==A B ⋂=∅当时,,满足题意, 3a =-{}1,4A =-综上可得,, 3a =-所以的值.a 3-19.如图,某小区拟在空地上建一个占地面积为2400平方米的矩形休闲广场,按照设计要求,休闲广场中间有两个完全相同的矩形绿化区域,周边及绿化区域之间是道路(图中阴影部分),道路的宽度均为2米.怎样设计矩形休闲广场的长和宽,才能使绿化区域的总面积最大?并求出其最大面积.【答案】当休闲广场的长为米,宽为米时,绿化区域总面积最大值,最大面积为平方米. 60401944【详解】试题分析:先将休闲广场的长度设为米,并将宽度也用进行表示,并将绿化区域的面x x 积表示成的函数表达式,利用基本不等式来求出绿化区域面积的最大值,但是要注意基本不等S x 式适用的三个条件.试题解析:设休闲广场的长为米,则宽为米,绿化区域的总面积为平方米, x 2400xS 6分()240064S x x ⎛⎫=-- ⎪⎝⎭2400242446x x ⎛⎫=-+⨯ ⎪⎝⎭, 8分360024244x x ⎛⎫=-+ ⎪⎝⎭()6,600x ∈因为,所以, ()6,600x ∈3600120x x +≥=当且仅当,即时取等号 12分 3600x x=60x =此时取得最大值,最大值为.S 1944答:当休闲广场的长为米,宽为米时,绿化区域总面积最大值,最大面积为平方米. 60401944 14分【解析】矩形的面积、基本不等式 20.已知,且. 0a >0b >1ab =(1)求的最小值;2+a b (2)若不等式恒成立,求实数的取值范围. 21924x x a b-<+x【答案】(1)2)()1,3-【解析】(1)根据条件“,且”,直接应用基本不等式得到0a >0b >1ab =2a b +≥得结果;(2)将恒成立问题转化为最值处理,利用基本不等式求得,从而得到不等式1934a b +≥=,求解得答案.2230x x --<【详解】(1),且, 0a > 0b >1ab =2a b ∴+≥=当且仅当的最小值为 2a b ==2+a b (2),且, 0a > 0b >1ab =,当且仅当,且,即,时,取等号, 1934a b ∴+≥=194a b =1ab =16a =6b =即的最小值为, 194a b+3,即,解得,223x x ∴-<2230x x --<13x -<<即实数的取值范围是.x ()1,3-【点睛】该题考查的是有关不等式的问题,涉及到的知识点有利用基本不等式求和的最小值,将恒成立问题向最值转化,一元二次不等式的解法,属于简单题目.。
2020-2021学年河南省洛阳市第一中学高一上学期第一次月考数学试题一、单选题1.若集合()(){}326A x N x x =∈--<,则A 中的元素个数为( ) A .3 B .4C .5D .6【答案】B【分析】先解集合中的不等式得x 的范围,再由x ∈N 可得结论【详解】由(3)(2)6x x --<得250x x -<,解得05x <<,又x N ∈,所以{1,2,3,4}A =,所以A 中有4个元素.故选:B .【点睛】本题考查集合的概念,考查解一元二次不等式,掌握一元二次不等式的求解方法是解题关键.2.函数f (x )121x =-的定义域为( ) A .[﹣1,1] B .[﹣1,12)12⋃(,1] C .[12-,12) D .(12,1] 【答案】B【分析】根据二次根式被开方数不小于零、分母不等于零,列不等式求解即可 【详解】要使函数有意义, 则需1﹣x 2≥0且2x ﹣1≠0, 即11x -≤≤且x 12≠, 则定义域为[﹣1,12)12⋃(,1]. 故选:B【点睛】本题主要考查函数的定义域,属于基础题. 求函数的定义域,其实质就是以函数解析式有意义为准则,列出不等式或不等式组,然后求出它们的解集即可. 3.若函数()|2|f x x a =+的单调递减区间是(,3]-∞,则a 的值为( ) A .3- B .3C .6-D .6【答案】C【分析】去绝对值符号可知()f x 单调递减区间为,2a ⎛⎤-∞- ⎥⎝⎦,由此构造方程求得结果. 【详解】当2a x ≤-时,()2f x a x =-,()f x ∴单调递减区间为,2a ⎛⎤-∞- ⎥⎝⎦,32a∴-=,解得:6a =-. 故选:C .【点睛】本题考查根据函数的单调区间求解参数值的问题,属于基础题.4.函数()f x = )A .(,1]-∞B .[3,)+∞C .(,1]-∞-D .[1,)+∞【答案】B【分析】求出()f x 的定义域,进而结合复合函数的单调性,求出()f x 的单调递增区间即可.【详解】由题意,可得2230x x --≥,解得1x ≤-或3x ≥,所以函数()f x =(][),13,-∞-⋃+∞,二次函数223y x x =--的对称轴为1x =,且在(][),13,-∞-⋃+∞上的单调递增区间为[3,)+∞,根据复合函数的单调性,可知函数()f x =[3,)+∞.故选:B.【点睛】本题考查函数的单调区间,函数的单调区间是函数定义域的子集,所以求解函数的单调区间时,必须先求出函数的定义域.5.若对任意实数x 不等式213x x m m +++>+恒成立,则实数m 的取值范围是( ) A .()2,1- B .[]2,1-C .()1,2-D .[]1,2-【答案】A【分析】由条件利用绝对值的意义求得|1||3|x x +++的最小值为2,从而求得实数m 的取值范围.【详解】解:|1||3|x x +++表示数轴上的x 对应点到1-、3-对应点的距离之和,故|1||3|x x +++的最小值为2.再根据213x x m m +++>+对任意实数x 恒成立,可得22m m >+, 解得21m -<<, 故选:A .【点睛】本题主要考查绝对值的意义,绝对值不等式的解法,函数的恒成立问题,属于基础题.6.已知()()231f x f x x +-=+,则()f x =( ) A .133x -+B .﹣3xC .﹣3x +1D .13x -+【答案】A【分析】采用方程组法,将x 替换为x -再写一组,联立两个方程消去()f x -即可求解 【详解】因为()()231f x f x x +-=+①,所以()()231f x f x x -+=-+②,联立①②解得()133f x x =-+. 故选:A【点睛】本题考查方程组法求解析式,属于基础题7.已知函数()f x 的定义域为[0,2],则函数(21)f x +的定义域为( )A .[0,2]B .11,22⎡⎤-⎢⎥⎣⎦ C .[1,5] D .[1,3]【答案】B【分析】由()f x 的定义域为[]0,2,可知()21f x +满足[]210,2x +∈,进而可求出()21f x +的定义域.【详解】因为函数()f x 的定义域为[]0,2,所以02x ≤≤, 由()21f x +有意义可知,0212x ≤+≤,解得1122x -≤≤, 所以函数()21f x +的定义域为11,22⎡⎤-⎢⎥⎣⎦. 故选:B.【点睛】本题考查了抽象函数的定义域的求法,属于基础题.8.已知,(1)()42,(1)2x a x f x a x x ⎧>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的单调递增函数,则实数a 的取值范围是( )A .(1,8)B .[4,8)C .(4,8)D .(1,4]【答案】B【分析】只需使原函数在1,和(],1-∞上都递增,且端点处的函数值符合要求即可.【详解】因为函数(),142,12x a x f x a x x ⎧>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩在R 上单调递增,所以只需满足1402422a aa a ⎧⎪>⎪⎪->⎨⎪⎪⎛⎫≥-+ ⎪⎪⎝⎭⎩, 解得48a ≤<. 故选:B.【点睛】本题考查根据分段函数的单调性求参数的取值范围,考查学生的计算求解能力,属于基础题.9.已知函数()f x 是定义在R 上的偶函数,当0x ≥时,2()4f x x x =-,则不等式(2)5f x +<的解集为( )A .(3,7)-B .()4,5-C .(7,3)-D .()2,6-【答案】C【分析】首先求出当0x ≥时不等式的解集,在根据偶函数的对称性求出当0x <时不等式的解集,从而求出()5f x <的解集,则525x -<+<,即可得解.【详解】当0x ≥时,2()45f x x x =-<的解为05x <;当0x <时,根据偶函数图像的对称性知不等式()5f x <的解为5x 0-<<,所以不等式()5f x <的解集为{55}xx -<<∣, 所以不等式(2)5f x +<的解集为{525}{73}xx x x -<+<=-<<∣∣. 故选:C【点睛】本题考查偶函数的性质及其应用,考查一元二次不等式的解法,意在考查学生对这些知识点理解掌握水平.10.已知函数()32()()12f x a x a x bx =+-+-是定义在3,1[]a a -+上的奇函数,则()f a b +=( )A .2-B .1-C .2D .5【答案】B【分析】由函数()f x ,则其定义域关于原点对称且()f x ()f x =--,再求解即可. 【详解】解:由函数()32()()12f x a x a x bx =+-+-是定义在3,1[]a a -+上的奇函数,则其定义域关于原点对称且()f x ()f x =--,得3100a a b -++=⎧⎨-=⎩,所以10a b =⎧⎨=⎩, 即3()23f x x x =-, 则()(1)1f a b f +==-, 故选:B.【点睛】本题考查了函数的奇偶性,重点考查了求值问题,属基础题. 11.化简2531433(2)(3)(4)a b a b a b -----⋅-÷(,0)a b >得( )A .232b -B .232bC .7332b -D .7332b【答案】A【分析】利用指数运算公式,化简所求表达式.【详解】依题意,原式()()25131423323342a b b -++----⋅-=⋅⋅=-.故选:A【点睛】本小题主要考查指数运算,属于基础题. 12.函数2212x x y -⎛⎫=⎪⎝⎭的值域为( )A .1,2⎡⎫+∞⎪⎢⎣⎭B .1,2⎛⎤-∞ ⎥⎝⎦ C .10,2⎛⎤⎥⎝⎦D .(0,2]【答案】A【分析】利用二次函数的性质求出22x x -的范围,再根据指数函数的单调性即可求出函数值域. 【详解】()222111x x x -=--+≤,221111222x x -⎛⎫⎛⎫∴≥= ⎪ ⎪⎝⎭⎝⎭, 故2212x x y -⎛⎫= ⎪⎝⎭的值域为1,2⎡⎫+∞⎪⎢⎣⎭.故选:A.【点睛】本题考查指数型函数值域的求法,属于基础题.二、填空题13.已知2()(2)2f x x m x =-++在[1,3]上是单调函数,则实数m 的取值范围为_________. 【答案】m ≤0或m ≥4【分析】求出二次函数的对称轴,利用二次函数的单调性质,可以得到两个不等式,解不等式即可求出实数m 的取值范围.【详解】根据题意,2()(2)2f x x m x =-++为二次函数,其对称轴为x 22m +=,若f (x )在[1,3]上是单调函数,则有22m +≤1或22m +≥3,解可得m ≤0或m ≥4,即m 的取值范围为m ≤0或m ≥4,故答案为m ≤0或m ≥4.【点睛】本题考查了二次函数的单调性质,考查了数学运算能力.14.已知1,1()1,1x f x x ≥⎧=⎨-<⎩则不等式(1)(1)3x f x x +++≤的解集是______.【答案】(,1]-∞【分析】根据分段函数的解析式,分11x +≥和11x +<两种情况讨论求解.【详解】当11x +≥,即0x ≥时,()11f x +=,不等式化为(1)3x x ++≤,解得1x ≤,01x ∴≤≤;当11x +<,即0x <时,()11f x +=-,不等式化为(1)3x x -++≤恒成立,0x ∴<,综上,不等式的解集为(,1]-∞. 故答案为:(,1]-∞.【点睛】本题考查解分段函数对应的解析式,属于基础题.15.函数()f x 为定义在R 上的奇函数,且满足()(2)f x f x =-,若(1)3f =,则(1)(2)(50)f f f +++=__________.【答案】3【分析】首先由函数的奇偶性和对称性,分析函数的周期性,再求值. 【详解】()(2)f x f x =-,(2)()f x f x ∴+=-,又()f x 为奇函数,(2)()(),(4)(2)()f x f x f x f x f x f x ∴+=-=-+=-+=()f x ∴是周期为4的周期函数,()f x 是定义在R 上的奇函数,(0)0,(4)(0)0f f f ∴=∴==,(2)(0)0,(3)(1)(1)3f f f f f ===-=-=-(1)(2)(3)(4)0f f f f ∴+++=,()()()()()12...50012123f f f f f ∴+++=⨯++=.故答案为:3.【点睛】本题考查利用函数的奇偶性、对称性和周期性求解函数值的问题,属于中档题型,本题关键是能够通过对称性与周期性的关系确定函数的周期,进而确定函数值的变化特点.16.已知定义域为R 上的偶函数()f x 在[0,)+∞上单调递增,且102f ⎛⎫=⎪⎝⎭,则不等式(2)0f x ->的解集是_________.【答案】32x x ⎧<⎨⎩或52x ⎫>⎬⎭【分析】由题可得不等式等价于1(2)2f x f ⎛⎫->⎪⎝⎭,根据单调性即可解出.【详解】()f x 是偶函数且102f ⎛⎫= ⎪⎝⎭,∴不等式(2)0f x ->等价于1(2)2f x f ⎛⎫-> ⎪⎝⎭,又()f x 在[0,)+∞上单调递增,122x ∴->,解得32x <或52x >,故不等式的解集为32x x ⎧<⎨⎩或52x ⎫>⎬⎭. 故答案为:32x x ⎧<⎨⎩或52x ⎫>⎬⎭. 【点睛】本题考查根据函数的奇偶性和单调性解不等式,属于基础题.三、解答题17.设非空集合{12,}A xa x a a =-<<∈R ∣,不等式2280x x --<的解集为B . (1)当0a =时,求集合A ,B ; (2)当A B ⊆时,求实数a 的取值范围.【答案】(1){10}A x x =-<<∣,{24}∣=-<<B x x ;(2)(1,2]-.【分析】(1)代入0a =可求出A ,解出不等式可得出B ;(2)列出不等式组211224a a a a >-⎧⎪-≥-⎨⎪≤⎩即可求解.【详解】解:(1)当0a =时,{10}A xx =-<<∣, 解不等式2280x x --<得:24x -<<,即{24}∣=-<<B xx . (2)若A B ⊆,则有:由于A ≠∅,有211224a a a a >-⎧⎪-≥-⎨⎪≤⎩,解得:12a -<≤, a 的取值范围为:(1,2]-.18.已知函数()f x(1)若()f x 的定义域为2[,1]3-,求实数a 的值;(2)若()f x 的定义域为R ,求实数a 的取值范围. 【答案】(1)2a =;(2)7[,1]9a ∈-.【分析】(1)根据题意,由二次型不等式的解集,即可求得参数a 的取值; (2)根据题意,不等式22(1)(1)20a x a x ---+在R 上恒成立,即可求得参数范围. 【详解】(1)()f x 的定义域为2[,1]3-,即22(1)(1)20a x a x ---+的解集为2[,1]3-,故()()()()22210421120931120a a a a a ⎧-<⎪⎪⎛⎫-⨯---+=⎨ ⎪⎝⎭⎪⎪---+=⎩,解得2a =;(2)()f x 的定义域为R ,即22(1)(1)20a x a x ---+恒成立, 当210a -=时,1a =±,经检验1a =满足条件;当210a -≠时,22210(1)8(1)0a a a ⎧->⎨---⎩解得7[,1)9a ∈-, 综上,7[,1]9a ∈-.【点睛】本题考查由函数的定义域求参数范围,涉及由一元二次不等式的解集求参数值,以及一元二次不等式在R 上恒成立问题的处理,属综合基础题. 19.已知函数()f x 的定义域为()0,∞+,且对一切0x >,0y >都有()()()f xy f x f y =+,当1x >时,()0f x >.(1)判断()f x 的单调性并加以证明;(2)若()42f =,解不等式()()211f x f x >-+.【答案】(1)()f x 在()0,∞+上为增函数,证明见解析;(2)1223xx ⎧⎫<<⎨⎬⎩⎭.【分析】(1)利用定义即可证明()f x 在()0,∞+上为增函数;(2)由题意可得()21f =,进而将不等式转化为()()42f x f x >-,再利用(1)解得即可.【详解】(1)()f x 在()0,∞+上为增函数, 证明如下:任取1x ,()20,x ∈+∞且12x x <, 则()()()()()222211111111x x x f x f x f x f x f x f f x f x x x ⎛⎫⎛⎫⎛⎫-=⋅-=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 又因为当1x >时,()0f x >,而211x x >, 所以()()22110x f x f x f x ⎛⎫-=>⎪⎝⎭,所以()()21f x f x >, 所以()f x 在()0,∞+上为增函数.(2)由定义域可得0210x x >⎧⎨->⎩,解得12x >,由已知可得()()()4222f f f =+=,所以()21f =,()()()()21121242f x f x f f x -+=-+=-, 所求不等式可转化为()()42f x f x >-. 由单调性可得42x x >-,解得23x <, 综上,不等式解集为1223xx ⎧⎫<<⎨⎬⎩⎭.【点睛】本题考查了函数奇偶性的判定以及应用问题,考查抽象函数解不等式问题,属于基础题.20.已知函数22()222f x x ax a =-++. (1)若1a =,求函数()f x 的单调区间; (2)求函数()f x 在区间33,22⎡⎤-⎢⎥⎣⎦的最小值; (3)关于x 的方程2()2f x a =有解,求实数a 的取值范围. 【答案】(1)()f x 在区间(,1]-∞上单调递减,在区间1,上单调递增;(2)答案见解析;(3)(,[2,)-∞+∞【分析】(1)当1a =时,2()(1)3f x x =-+,求出单调性区间即可;(2)二次函数()f x 的对称轴为x a =,分32a ≤-,3322a -<<和32a ≥三种情况,分别讨论函数的单调性,即可求出()f x 的最小值;(3)由方程2()2f x a =有解,可得2220x ax -+=有解,只需0∆≥,求解即可.【详解】(1)当1a =时,2()(1)3f x x =-+,∴()f x 关于直线1x =对称,∴()f x 在区间(,1]-∞上单调递减,在区间1,上单调递增.(2)由题意,22()()2f x x a a =-++,对称轴为x a =, 当32a ≤-时,()f x 在区间33,22⎡⎤-⎢⎥⎣⎦上单调递增,则2min 317()2324f x f a a ⎛⎫=-=++ ⎪⎝⎭; 当3322a -<<时,()f x 在区间3,2a ⎡⎫-⎪⎢⎣⎭上单调递减,在3,2a ⎡⎤⎢⎥⎣⎦上单调递增,则2min ()2f x a =+; 当32a ≥时,()f x 在区间33,22⎡⎤-⎢⎥⎣⎦上单调递减,则2min 317()2324f x f a a ⎛⎫==-+ ⎪⎝⎭. (3)方程2()2f x a =有解,即方程2220x ax -+=有解,∴2480a ∆=-≥,解得a ≥a ≤∴a 的取值范围是(,[2,)-∞+∞.21.设函数2()1(,)f x ax bx a b =++∈R .(1)若(1)0f -=,且()2f x y x=-为奇函数,求()f x 的解析式; (2)在(1)的条件下,当[2,2]x ∈-时,()()g x f x kx =-是单调函数,求实数k 的取值范围.【答案】(1)2(1)2f x x x =++;(2)(,2][6,)-∞-+∞.【分析】(1)根据(1)0f -=可得1b a =+,根据()2f x y x=-是奇函数可得1a =,即可得出b ,求出解析式;(2)求出2()(21)g x x k x =+-+,对称轴为22k x -=,开口向上,根据题意可得222k -≤-或222k -≥,解出即可. 【详解】解:(1)∵(1)0f -=,∴10a b -+=,得1b a =+,()11221f x y ax b ax a x x x=-=++-=+-+, 若()2f x y x =-为奇函数,则10a -=,得1a =, 2b ∴=,则()221f x x x =++.(2)在(1)的条件下,2(1)2f x x x =++,则2()()1()2g x f x kx x k x =-=+-+,对称轴为22k x -=,开口向上, 当[2,2]x ∈-时,()()g x f x kx =-是单调函数, 则对称轴满足222k -≤-或222k -≥, 解得6k ≥或2k ≤-.即实数k 的取值范围是(,2][6,)-∞-+∞.【点睛】本题考查二次函数解析式的求解,考查二次函数的单调性问题,属于基础题. 22.若二次函数满足()()12f x f x x +-=且()01f =.(1)求()f x 的解析式;(2)是否存在实数λ,使函数()()()[]212,1,2g x f x x x λ=--+∈-的最小值为2?若存在,求出λ的值;若不存在,说明理由.【答案】(1)()21f x x x =-+;(2)=1λ±. 【分析】(1)设()()20f x ax bx c a =++≠,由()01f =得1c =,即()21f x ax bx =++,代入()()12f x f x x +-=中,化简整理即可得到a b ,值,从而得到函数解析式.(2)由(1)可得()[]223,1,2g x x x x λ=-+∈-,讨论对称轴和区间的关系,利用函数单调性求得最值,即可得到所求λ的值.【详解】(1)设()()20f x ax bx c a =++≠,由()01f =, ∴1c =,∴()21f x ax bx =++, ∵()()12f x f x x +-=,∴22ax a b x ++=,∴220a a b =⎧⎨+=⎩∴11a b =⎧⎨=-⎩, ∴()21f x x x =-+. (2)由(1)可得()()[]22121223,1,2g x x x x x x x λλ=-+--+=-+∈- ①当1λ≤-时,()g x 在[1,2]-上单增,()()min 1422g x g λ=-=+=,解得=1λ-; ②当12λ-<<时,()g x 在[1,]λ-上单减,在[,2]λ上单增,()()22min 232g x g λλλ==-+=,解得=1λ±,又12λ-<<,故=1λ. ③当2λ≥时,()g x 在[1,2]-上单减,()()min 24432gx g λ==-+=,, 解得5=24λ<,不合题意. 综上,存在实数=1λ±符合题意.【点睛】本题考查利用待定系数法求函数解析式,考查已知二次函数在区间的最值求参数问题,考查分析能力和计算能力,属于基础题.。
洛阳市!"!" !"!#学年第一学期期中考试高一数学试卷参考答案一 选择题#.'+)*,+##(.#"***)+####.#!),二 填空题#%!!##!"####&!#%####'!)!')!'(#####(! 三 解答题#3!解)!#"由已知得"#%'+)#'''%&#,2%#%'+1)!'''1(!&#//!分5#"!,2%#%'+"'''%#1)!#"#1(!+%%#即1#!#1+#%!6#1#!!//'分!!"5#""%#%#6#".%!//(分6#1)!$%或1(!&)##//2分6#1$'或1&)%!即实数1的取值范围为%1+1$'或1&)%&!//#"分#2!解)!#"原式#!!%"#&3!#&(!!%"#%3!&4"#%(!%#!(!%(!%##"%!//(分!!"原式#!-/!"!)&-/!(槡&)#!-/!)%!-/'#!)-/!)#!-/!)%!-/'#!)%!-/!)%!-/'#!)%!##!!//#!分#4!解)!#"5#,'(#%"的解集是 #6#&!'"的定义域是 !//#分又5#&!'"是奇函数##6#&!""#"!#6&!""#$)##"#即$##!//%分经检验知#当$##时#&!)'"#)&!'"#符合题意!//&分!!"由!#"知&!'"##)!,'(##经判断可知&!'"在 上是增函数!//'分任取'##'!- #且'#&'!#则&!'#")&!'!"##)!,'#(#)#(!,'!(##!!,'#),'!"!,'#(#"!,'!(#"#//(分5#/#,'为增函数#'#&'!##6#"&,'#&,'!!高一数学答案#第#页#!共%页"#!!"!"$##"6#,'#(#$"#,'!(#$"#,'#),'!&"!6#&!'#")&!'!"&"#即&!'#"&&!'!"!//3分6#&!'"在 上是增函数!//2分!%"由&!'"##)!,'(##可得&!-1'"##)!,-1'(###)!'(##')#'(##//4分6#')#'(#$"#'$"()*!//##分解得'$##6#原不等式的解集为!##(0"!//#!分!"!解)!#"若存在一正$一负两个零点#则$!)!&"#解得)槡!&$&槡!!6#$的取值范围为!)槡!#槡!"!//'分!!"若&!'"在区间!)0#!(上是减函数#则函数图象的对称轴'#$)#+!#解得$+%#//3分当'-'##$)#(时#函数&!'"单调递减#当'-'$)##$(时#函数&!'"单调递增#//2分且&!#"#$!)!$(##&!$"#!!$)#"#//4分6#&!#")&!$"#!$!)!$(#")!!$)#"#$!)&$(%#!$)!"!)#!5#$+%##6#&!#")&!$"+"!//##分故&!'"在'##$(上的最大值为$!)!$(#!//#!分!#!解)!#"由函数/#的图象过点!"#""#!'##"得!1($#"%1($#%##所以1##$#)%!*//!分由函数/!的图象过点!"#""#!'##"得'-###所以-##'!//%分所以/##'(槡&)!#/!##''!//'分!!"设投资甲产品为'百万元#则投资乙产品为!')'"百万元#"''''#则总利润/#/#(/!#'(槡&)!(#'!')'"#'(槡&)#'')######//3分设'(槡#!!'5'%"#则/#5)#'!5!)&")##)#'5!(5)#'#)#'!5)'!"!(!#!"#所以5#'!即'#4&时#/最大为!#!"!//##分即投资甲产品!!'万元#投资乙产品!3'万元#获得最大利润为#"'万元!###//#!分高一数学答案#第!页#!共%页"#!!"!"$##"!!!解)!#"&!'"#!')#(&!')#)&#令!')##1##5##'''%##6##'1''!//#分则&!'"#6!1"#1(&1)&!由对勾函数的性质#可得6!1"在'##!(上单调递减#在!!#'(上单调递增#//!分6#&!'"在'##%!(上是减函数#在!%!#%(上是增函数!//&分&!#"###&!%!"#"#&!%"#4'!//'分综上可得#&!'"的单调递减区间为'##%!(#单调递增区间为!%!#%(#值域为'"#4'(!//(分!!"由!#"知&!'#"-'"#4'(#若存在'!-'##%(#使得*!'!"&&!'#"成立#只需*!'"#'!)1'(&&"在'-'##%(上有解即可#//2分即1$!'(&'"最小值#令7!'"#'(&'#7!'"在'##!(上是减函数#在'!#%(上是增函数#//#"分7!'"最小值#7!!"#&#//##分6#1$&!即实数1的取值范围为!&#(0"!//#!分高一数学答案#第%页#!共%页"#!!"!"$##"。
2020-2021学年河南省洛阳市第一初级中学高三数学文月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知,奇函数的定义域为,在区间上单调递减且>0,则在区间上A.>0且| |单调递减B.>0且| |单调递增C.<0且| |单调递减 D.<0且| |单调递增参考答案:D略2. 下列四个几何体中,每个几何体的三视图有且仅有两个视图相同的是().A.①②B.①③C.①④D.②④参考答案:D3. 设全集U=Z,集合M=,P=,则P=()A.B.C. D.参考答案:C .集合P=,M=,=,P=.故选C.4. 在不等式组,所表示的平面区域内随机地取一点M,则点M恰好落在第二象限的概率为()A.B.C.D.参考答案:B【考点】简单线性规划.【专题】不等式的解法及应用.【分析】先画出满足条件的平面区域,分别求出满足条件的三角形的面积,从而求出其概率.【解答】解:画出满足条件的平面区域,如图示:,由,解得:P(,),不等式组所表示的平面区域为RT△,其面积为×3×=,点M恰好落在第二象限表示的平面区域为一直角三角形,其面积是×1×1=,∴点M恰好落在第二象限的概率为P=,故选:B.【点评】本题考查了简单的线性规划问题,考查几何概型,是一道中档题.5. 如图,在长方体ABCD-A1B1C1D1中,,而对角线A1B上存在一点P,使得取得最小值,则此最小值为A. B. 3 C. D. 2参考答案:A【分析】把面绕旋转至面使其与对角面在同一平面上,连接并求出,就是最小值.【详解】把面绕旋转至面使其与对角面在同一平面上,连接.就是的最小值,,,.所以故选:.【点睛】本题考查棱柱的结构特征,考查计算能力,空间想象能力,解决此类问题常通过转化,转化为在同一平面内两点之间的距离问题,是中档题.6. 如图所示,两个不共线向量,的夹角为,分别为与的中点,点在直线上,且,则的最小值为参考答案:B7. 已知双曲线,过其右焦点且垂直于实轴的直线与双曲线交于两点,为坐标原点.若,则双曲线的离心率为(A)(B)(C)(D)参考答案:D由题意知三角形为等腰直角三角形,所以,所以点,代入双曲线方程,当时,,得,所以由,的,即,所以,解得离心率,选D.8. 已知集合,,则集合为()A. B.C. D.参考答案:C试题分析:因,故,应选C.考点:集合的交集运算.9. 若函数y=f(2x)的图象有对称轴x=1,则函数y=f(x+1)图象的对称轴方程是( )A.x=0 B.C.x=1 D.x=2参考答案:C考点:函数的图象.专题:计算题.分析:已知函数y=f(2x)的图象有对称轴x=1,可得f(2x)的图象横坐标增大2倍得到f(x)的图象,从而求出f(x)的对称轴为x=2,根据平移法则求出函数y=f(x+1)图象的对称轴方程.解答:解:∵函数y=f(2x)的图象有对称轴x=1,由f(2x)的图象变为f(x)图象时,f(2x)的图象横坐标增大2倍得到f(x)的图象,∴f(x)的对称轴为x=2,把f(x)的图象想坐平移1个单位得到函数y=f(x+1)图象,∴函数y=f(x+1)图象的对称轴方程是:x=2﹣1=1,故选C.点评:此题主要考查函数的图象和图象平移的知识,此题出的非常好,间接考查函数的对称轴问题,是一道好题.10. 已知集合,函数的定义域为集合B,则A∩B=()A.[-2,1]B. [-2,1)C. [1,3]D. (1,3]参考答案:B【分析】求出集合,再利用交集运算得解【详解】由得:,所以集合,又所以.故选:B【点睛】本题主要考查了集合的交集运算,属于基础题。
⎩ ,,,, )B 、( ,+ ∞)C 、( , )D 、(- 洛阳市第一高级中学高一月考数学试卷9.若函数 y = f (x ) 的定义域是[0,2],则函数 g (x ) = f (2x ) x - 1的定义域( )一.选择题(本大题共 12 小题,每小题 5 分,共 60 分)A 、[0,1]B 、(0,1)C 、(0,1]D 、[0,1)1.若全集U = {1,2,3,4,5,6}, M = {2,3}, N = {1,4},则集合{5,6}等于( )10.已知 f (x ) = x 3+ 3x ,且 f (3a - 2) > f (a -1) ,则实数a 的取值范围为()A 、(-∞ 111 1 1 A 、M N B 、M NC 、(C U M ) (C U N )D 、(C U M ) (C U N )2 23 2 2⎧ 2x , ( x > 0) 4 411.设定义在[- 2,2]上的偶函数 f (x ) 在区间[0,2]上单调递减,若 f (1 - m ) < f (m ) ,则实数2.已知 f (x ) = ⎨ f (x + 1),,则 f ( ) + f (- ) 的值等于 ( )( x ≤ 0) 3 3 m 的取值范围是( )A 、- 2B 、4xC 、2D 、- 4A 、(-1 1) 2B 、[-1 1) 2C 、[-1,2]D 、(-1 1] 23.若函数 f (x ) =为奇函数,则a =( )(2x + 3)(x - a )12. f (x ) = 在[1,3] 为增函数,则a 的范围为()B 1 3 A 、a . > 0B 、a . > 2C 、a . ≥ 2D 、a . ≥ 0A 、1、 C 、 2 2D 、- 1二、填空题(本大题共 4 小题,每小题 5 分,共 20 分)4.已知M = {x x - a = 0}, N = {x ax - 1 = 0},若 M N = N ,则实数a 的 13.已知 f (x ) 为奇函数, g (x ) = f (x ) + 9 , g (-2) = 3 ,则 f (2) =值为( )A 、1B 、- 1C 、1或-1D 、0或1或 -114.若 有意义,则函数 y = x 2 + 3x - 5 的值域为5.已知函数 f (x ) 为 R 上的减函数,则满足 f ( x ) < f (1) 的实数 x 的取值范围是( )15.已知 f (x ) 是定义在 (-3,3) 上的奇函数,当 0 < x < 3 时A 、(1,-1)B 、(0,1)C 、(-1,0) (0,1)D 、(-∞,-1) (1,+ ∞)f (x ) 的图象如图所示, 则不等式 x ⋅ f (x ) ≥ 0 的解集为6.已知集合 A = {y y = - x 2- 2x }, B = {x y = 为( )x - a }且 A B = R ,则实数 a 的最大值3x 3A 、1B 、- 1C 、0D 、216.函数 f (x ) =- 1在定义域内的最大值,最小x 4+ 3x 2+ 1⎧ x 2 + bx + c , 7.函数 f (x ) = ⎨ ⎩2, (x ≤ 0) ( x > 0), 若 f (-4) = f (0) , f (-2) = -2 则关于 x 的方程值分别为M , N ,则M + N =三.解答题(本大题共 6 小题,17 题 10 分,其余每道 12 分,共 70 分)f ( x ) = x 的解的个数为 ( )17.设全集U = {1,2,3,4,5,6,7,8,9}, C U ( A B ) = {1,3}, A (C U B ) = {2,4},求集合 B 。
洛一高高一月考数学试卷(2020年10月 )
一.选择题(共12小题)
1.若集合A ={x ∈N |(x ﹣3)(x ﹣2)<6},则A 中的元素个数为
A .3
B .4
C .5
D .6
2.函数f (x )=+的定义域为 A .[﹣1,1]
B .[﹣1,)∪(,1]
C .[﹣,)
D .(,1] 3.若函数f (x )=|2x +a |的单调递减区间是(﹣∞,3],则a 的值为
A .﹣3
B .3
C .﹣6
D .6 4.函数()322--=
x x x f 的单调递增区间是 A .(﹣∞,1] B .[3,+∞) C .(﹣∞,﹣1] D .[1,+∞)
5.若对任意实数x 不等式|x +1|+|x +3|>m 2+m 恒成立,则实数m 的取值范围是
A .(﹣2,1)
B .[﹣2,1]
C .(﹣1,2)
D .[﹣1,2]
6.已知f (x )+2f (﹣x )=3x +1,则f (x )=
A .
B .﹣3x
C .﹣3x +1
D .
7.已知函数()x f 的定义域为[]2,0,则函数()12+x f 的定义域为
A .[]2,0
B .⎥⎦⎤⎢⎣⎡-21,21
C .[]5,1
D .[]3,1
8.已知f (x )=是R 上的单调递增函数,求实数a 的取值范围是
A.(1,8)
B.[4,8)
C.(4,8)
D.(1,4]
9.已知函数f (x )是定义在R 上的偶函数,当x ≥0时,f (x )=x 2﹣4x ,则不等式f (x +2)<5的解集为
A .(﹣3,7)
B .(﹣4,5)
C .(﹣7,3)
D .(﹣2,6)
10.已知函数f (x )=(a +1)x 3﹣(a +2)x ﹣bx 2是定义在[a ﹣3,a +1]上的奇函数,则f (a +b )=
A .﹣2
B .﹣1
C .2
D .5
11.化简(2a﹣3)•(﹣3a﹣1b)÷(4a﹣4)(a,b>0)得
A.﹣b2B.b2C.﹣D.
12.函数的值域为
A.B.C.(0,]D.(0,2]
二.填空题(共4小题)
13.已知f(x)=x2﹣(m+2)x+2在[1,3]上是单调函数,则实数m的取值范围为.14.已知f(x)=,则不等式(x+1)f(x+1)+x≤3的解集是.
15.函数f(x)为定义在R上的奇函数,且满足f(x)=f(2﹣x),若f(1)=3,则f(1)+f(2)+…+f(50)=.
16.已知定义域为R上的偶函数f(x)在[0,+∞)上单调递增,且f()=0,则不等式f(x﹣2)>0的解集是.
三.解答题(共7小题,第17题满分10分,第18—22题每题满分12分)
17.设非空集合A={x|a﹣1<x<2a,a∈R},不等式x2﹣2x﹣8<0的解集为B.(1)当a=0时,求集合A,B;
(2)当A⊆B时,求实数a的取值范围.
18.已知函数.
(1)若f(x)的定义域为,求实数a的值;
(2)若f(x)的定义域为R,求实数a的取值范围.
19.已知函数f(x)的定义域为(0,+∞),且对一切x>0,y>0都有f(xy)=f(x)+f(y),当x >1时,f(x)>0.
(1)判断f(x)的单调性并加以证明;
(2)若f(4)=2,解不等式f(x)>f(2x﹣1)+1.
20.已知函数f(x)=x2﹣2ax+2a2+2.
(1)若a=1,求函数f(x)的单调区间;
(2)求函数f(x)在区间的最小值;
(3)关于x的方程f(x)=2a2有解,求实数a的取值范围.
21.设函数f(x)=ax2+bx+1(a,b∈R).
(1)若f(﹣1)=0,且y=﹣2为奇函数,求f(x)的解析式;
(2)在(Ⅰ)的条件下,当x∈[﹣2,2]时,g(x)=f(x)﹣kx是单调函数,求实数k的取值范围.
22.若二次函数满足f(x+1)﹣f(x)=2x且f(0)=1.
(1)求f(x)的解析式;
(2)是否存在实数λ,使函数g(x)=f(x)﹣(2λ﹣1)x+2,x∈[﹣1,2]的最小值为2?若存在,求出λ的值;若不存在,说明理由.
洛一高高一月考数学试卷(2020年10月)
参考答案
一.选择题BBCBA ABBCB AA
二.填空题13.{m|m≤0或m≥4} 14.(﹣∞,1] 15.3 16.{x|x>或x<}三.解答题(共7小题)
17.解:(1)当a=0时,A={x|﹣1<x<0},
解不等式x2﹣2x﹣8<0得:﹣2<x<4,即B={x|﹣2<x<4},
(2)若A⊆B,则有:由于A≠∅,有,解得:﹣1<a≤2,
a的取值范围为:(﹣1,2].
18.解:(1)f(x)的定义域为,即(1﹣a2)x2﹣(1﹣a)x+2≥0的解集为,故,解得a=2;
(2)f(x)的定义域为R,即(1﹣a2)x2﹣(1﹣a)x+2≥0恒成立,
当1﹣a2=0时,a=±1,经检验a=1满足条件;
当1﹣a2≠0时,解得,
综上,.
19.解:(1)f(x)在(0,+∞)上为增函数,
证明如下:任取x1,x2∈(0,+∞)且x1<x2,
则.
又因为当x>1时,f(x)>0,而,
所以,所以f(x2)>f(x1),
所以f(x)在(0,+∞)上为增函数.
(2)由定义域可得,解得,
由已知可得f(4)=f(2)+f(2)=2,
所以f(2)=1,f(2x﹣1)+1=f(2x﹣1)+f(2)=f(4x﹣2),
所求不等式可转化为f(x)>f(4x﹣2).
由单调性可得x>4x﹣2,解得,
综上,不等式解集为.
20.解:(1)f(x)=(x﹣a)2+a2+2,∴f(x)关于直线x=a对称,
当a=1时,f(x)在区间(﹣∞,1]单调递减,在区间[1,+∞)单调递增.(2)当时,f(x)在区间递增,
;
当时,f(x)在区间[﹣)递减,在(a,]递增,
;
当时,f(x)在区间递减,
.
(3)方程f(x)=2a2有解,
即方程x2﹣2ax+2=0有解.
∴△=4a2﹣8≥0,
∴a的取值范围是.
21.解:(1)∵f(﹣1)=0,∴a﹣b+1=0,得b=a+1,
y=﹣2=ax+b+﹣2=ax+a﹣1+,
若y=﹣2为奇函数,则a﹣1=0,得a=1.
(2)在(Ⅰ)的条件下,a=1,b=2,则f(x)=x2+2x+1,
则g(x)=f(x)﹣kx=x2+(2﹣k)x+1,
当x∈[﹣2,2]时,g(x)=f(x)﹣kx是单调函数,
则对称轴≤﹣2或≥2,
得k≥6或k≤﹣2.
即实数k的取值范围是(﹣∞,﹣2]∪[6,+∞).
22.解:(1)根据题意,设f(x)=ax2+bx+c(a≠0),由f(0)=1,
∴c=1,∴f(x)=ax2+bx+1
∵f(x+1)﹣f(x)=2ax+a+b=2x,必有,解可得;
∴f(x)=x2﹣x+1
(2)由(1)可得g(x)=x2﹣x+1﹣(2λ﹣1)x+2=x2﹣2λx+3,x∈[﹣1,2]
①当λ≤﹣1时,g(x)在[﹣1,2]上单增,g(x)min=g(﹣1)=4+2λ=2⇒λ=﹣1;
②当﹣1<λ<2时,g(x)在[﹣1,λ]上单减,在[λ,2]上单增,,解得λ±1,
又﹣1<λ<2,故λ=1
③当λ≥2时,g(x)在[﹣1,2]上单减,g(x)min=g(2)=4﹣4λ+3=2,
解得,不合题意.
综上,存在实数λ=±1符合题意.。