小学奥数—数的整除之四大判断法综合运用(二)
- 格式:pdf
- 大小:575.32 KB
- 文档页数:6
小学奥数—数的整除之四大判断法综合运用小学奥数是培养学生数学思维能力、观察能力和逻辑推理能力的重要方式之一、在小学奥数中,数的整除是一个重要的概念和技巧。
数的整除是指一个数能够整除另一个数,即一个数可以被另一个数整除,这在小学中学习,通常会讲解四大判断法,即整除的特征判断法、整除的除数判断法、整除的因子判断法和整除的位数判断法。
本文将综合运用这四大判断法,解决一些与数的整除相关的问题。
首先,整除的特征判断法是指整数n能够被整数m整除的充要条件是n的特征之积能够被m的特征之积整除。
这个特征指的是数的各位数字之和。
例如,对于一个数234,它的特征就是2+3+4=9、如果一个数的特征之积能够被另一个数的特征之积整除,那么这个数就能被另一个数整除。
例如,对于一个数36,它的特征之积是3×6=18,而另一个数9的特征之积是9,18能够被9整除,所以36能够被9整除。
其次,整除的除数判断法是指一个整数n是否能够被一个整数m整除的充要条件是n能够被m的约数整除。
这个方法利用了约数的概念。
约数是指一个数能够整除另一个数的整数。
例如,对于一个数15,它的约数有1、3、5、15,这些数都能够整除15,所以15能够被1、3、5、15整除。
如果一个数能够被另一个数的约数整除,那么这个数就能被另一个数整除。
再次,整除的因子判断法是指整数n是否能够被一个整数m整除的充要条件是m是n的因子。
这个方法利用了因子的概念。
因子是指一个数能够整除另一个数的整数。
例如,对于一个数21,它的因子有1、3、7、21,这些数都能够整除21,所以21能够被1、3、7、21整除。
如果一个数是另一个数的因子,那么这个数就能被另一个数整除。
最后,整除的位数判断法是指一个整数n是否能够被一个整数m整除的充要条件是n的位数能够被m的位数整除。
这个方法利用了位数的概念。
位数是指一个数的十进制表示中,不含小数点的位数。
例如,对于一个数5678,它的位数是4,而另一个数28的位数是2,4能够被2整除,所以5678能够被28整除。
5-2-1.数的整除之四大判断法综合运用教学目标1.了解整除的性质;2.运用整除的性质解题;3.整除性质的综合运用.知识点拨一、常见数字的整除判定方法1. 一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;2. 一个位数数字和能被3整除,这个数就能被3整除;一个数各位数数字和能被9整除,这个数就能被9整除;3. 如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除.4. 如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除.5.如果一个数能被99整除,这个数从后两位开始两位一截所得的所有数(如果有偶数位则拆出的数都有两个数字,如果是奇数位则拆出的数中若干个有两个数字还有一个是一位数)的和是99的倍数,这个数一定是99的倍数。
【备注】(以上规律仅在十进制数中成立.)二、整除性质性质1 如果数a和数b都能被数c整除,那么它们的和或差也能被c整除.即如果c︱a,c︱b,那么c︱(a±b).性质2 如果数a能被数b整除,b又能被数c整除,那么a也能被c整除.即如果b∣a,c∣b,那么c∣a.用同样的方法,我们还可以得出:性质3如果数a能被数b与数c的积整除,那么a也能被b或c整除.即如果bc∣a,那么b∣a,c∣a.性质4如果数a能被数b整除,也能被数c整除,且数b和数c互质,那么a一定能被b与c的乘积整除.即如果b∣a,c∣a,且(b,c)=1,那么bc∣a.例如:如果3∣12,4∣12,且(3,4)=1,那么(3×4) ∣12.性质5 如果数a能被数b整除,那么am也能被bm整除.如果b|a,那么bm|am(m为非0整数);性质6如果数a能被数b整除,且数c能被数d整除,那么ac也能被bd整除.如果b|a,且d|c,那么bd|ac;例题精讲综合系列【例 1】甲、乙两个三位数的乘积是一个五位数,这个五位数的后四位为1031.如果甲数的数字和为10,乙数的数字和为8,那么甲乙两数之和是_________.【例 2】有5个不同的正整数,它们中任意两数的乘积都是12的倍数,那么这5个数之和的最小值是________.【例 3】173□是个四位数字。
5-2-1.数的整除之四大判断法综合运用教学目标1.五年级奥数数的整除之四大判断法综合运用(三)学生版2.运用整除的性质解题;3.整除性质的综合运用.知识点拨一、常见数字的整除判定方法1. 一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;2. 一个位数数字和能被3整除,这个数就能被3整除;一个数各位数数字和能被9整除,这个数就能被9整除;3. 如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除.4. 如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除.5.如果一个数能被99整除,这个数从后两位开始两位一截所得的所有数(如果有偶数位则拆出的数都有两个数字,如果是奇数位则拆出的数中若干个有两个数字还有一个是一位数)的和是99的倍数,这个数一定是99的倍数。
【备注】(以上规律仅在十进制数中成立.)二、整除性质性质1 如果数a和数b都能被数c整除,那么它们的和或差也能被c整除.即如果c︱a,c︱b,那么c︱(a±b).性质2 如果数a能被数b整除,b又能被数c整除,那么a也能被c整除.即如果b∣a, c∣b,那么c∣a.用同样的方法,我们还可以得出:性质3如果数a能被数b与数c的积整除,那么a也能被b或c整除.即如果bc∣a,那么b∣a,c∣a.性质4 如果数a 能被数b 整除,也能被数c 整除,且数b 和数c 互质,那么a 一定能被b与c 的乘积整除.即如果b ∣a ,c ∣a ,且(b ,c )=1,那么bc ∣a .例如:如果3∣12,4∣12,且(3,4)=1,那么(3×4) ∣12.性质5 如果数a 能被数b 整除,那么am 也能被bm 整除.如果 b |a ,那么bm |am (m 为非0整数);性质6 如果数a 能被数b 整除,且数c 能被数d 整除,那么ac 也能被bd 整除.如果 b |a ,且d |c ,那么bd |ac ;综合系列【例 1】 甲、乙两个三位数的乘积是一个五位数,这个五位数的后四位为1031.如果甲数的数字和为10,乙数的数字和为8,那么甲乙两数之和是_________.【例 2】 有5个不同的正整数,它们中任意两数的乘积都是12的倍数,那么这5个数之和的最小值是________.【例 3】 173□是个四位数字。
5-2-2.數的整除之四大判斷法綜合運用(二)教學目標1.瞭解整除的性質;2.運用整除的性質解題;3.整除性質的綜合運用.知識點撥一、常見數字的整除判定方法1. 一個數的末位能被2或5整除,這個數就能被2或5整除;一個數的末兩位能被4或25整除,這個數就能被4或25整除;一個數的末三位能被8或125整除,這個數就能被8或125整除;2. 一個位數數字和能被3整除,這個數就能被3整除;一個數各位數數字和能被9整除,這個數就能被9整除;3. 如果一個整數的奇數位上的數字之和與偶數位上的數字之和的差能被11整除,那麼這個數能被11整除.4. 如果一個整數的末三位與末三位以前的數字組成的數之差能被7、11或13整除,那麼這個數能被7、11或13整除.5.如果一個數能被99整除,這個數從後兩位開始兩位一截所得的所有數(如果有偶數位則拆出的數都有兩個數字,如果是奇數位則拆出的數中若干個有兩個數字還有一個是一位數)的和是99的倍數,這個數一定是99的倍數。
【備註】(以上規律僅在十進位數中成立.)二、整除性質性質1 如果數a和數b都能被數c整除,那麼它們的和或差也能被c整除.即如果c︱a,c︱b,那麼c︱(a±b).性質2 如果數a能被數b整除,b又能被數c整除,那麼a也能被c整除.即如果b∣a,c∣b,那麼c∣a.用同樣的方法,我們還可以得出:性質3如果數a能被數b與數c的積整除,那麼a也能被b或c整除.即如果bc∣a,那麼b∣a,c∣a.性質4如果數a能被數b整除,也能被數c整除,且數b和數c互質,那麼a 一定能被b與c的乘積整除.即如果b∣a,c∣a,且(b,c)=1,那麼bc∣a.例如:如果3∣12,4∣12,且(3,4)=1,那麼(3×4) ∣12.性質5 如果數a能被數b整除,那麼am也能被bm整除.如果b|a,那麼bm|am(m為非0整數);性質6如果數a能被數b整除,且數c能被數d整除,那麼ac也能被bd整除.如果b|a,且d|c,那麼bd|ac;例題精講模組一、11系列【例 1】以多位數142857為例,說明被11整除的另一規律就是看奇數位數字之和與偶數位數字之和的差能否被11整除.【考點】整除之11系列【難度】2星【題型】解答【解析】略【答案】142857110000041000021000810051071=⨯+⨯+⨯+⨯+⨯+⨯110000114199992100118199511171()()()()()=⨯-+⨯++⨯-+⨯++⨯-+⨯()()11000014999921001899511418275=⨯+⨯+⨯+⨯+⨯+-+-+-因為根據整除性質1和鋪墊知,等式右邊第一個括弧內的數能被11整除,再根據整除性質1,要判斷142857能否被11整除,只需判斷()()能否被11整除,因此結論得到說明.418275487125-+-+-=++-++【例 2】試說明一個4位數,原序數與反序數的和一定是11的倍數(如:1236為原序數,那麼它對應的反序數為6321,它們的和7557是11的倍數.【考點】整除之11系列【難度】2星【題型】解答【解析】略【答案】設原序數為abcd,則反序數為dcba,則abcd+dcba100010010100010010()()=+++++++a b c d d c b a=+++10011101101001a b c d=+++(),因為等式的右邊能被11整除,所以abcd+dcba能被11a b c d1191101091整除【例 3】一個4位數,把它的千位數字移到右端構成一個新的4位數.已知這兩個4位數的和是以下5個數的一個:①9865;②9866;③9867;④9868;⑤9869.這兩個4位數的和到底是多少?【考點】整除之11系列【難度】2星【題型】解答【解析】設這個4位數是abcd,則新的4位數是bcda.兩個數的和為+=+++,是11的倍數.在所給的5個數中只有9867 abcd bcda a b c d1001110011011是11的倍數,故正確的答案為9867.【答案】9867模組二、7、11、13系列【例 4】 以多位數142857314275為例,說明被7、11、13整除的規律.【考點】整除之7、11、13系列 【難度】3星 【題型】解答【解析】 略【答案】142857314275142100000000085710000003141000275=⨯+⨯+⨯+142(10000000011)857(9999991)314(10011)275=⨯-+⨯++⨯-+14210000000011428579999998573141001314275=⨯-+⨯++⨯-+ (14210000000018579999993141001)(857142275314)=⨯+⨯+⨯+-+-因為根據整除性質1和鋪墊知,等式右邊第一個括弧內的數能被7、11、13整除,再根據整除性質1,要判斷142857314275能否被7、11、13整除,只需判斷857142275314-+-能否被7、11、13整除,因此結論得到說明.【例 5】 已知道六位數20279□是13的倍數,求□中的數字是幾?【考點】整除之7、11、13系列 【難度】2星 【題型】填空 【解析】 根據一個整數的末三位與末三位以前的數字組成的數之差能被7、11或13整除,那麼這個數能被7、11或13整除的特點知道:27920=7-□□,7□是13的倍數,□是8的時候是13倍數,所以知道方格中填1。
5-2-2.数的整除之四大判断法综合运用(二)教学目标1.了解整除的性质;2.运用整除的性质解题;3.整除性质的综合运用.知识点拨一、常见数字的整除判定方法1. 一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;2. 一个位数数字和能被3整除,这个数就能被3整除;一个数各位数数字和能被9整除,这个数就能被9整除;3. 如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除.4. 如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除.5.如果一个数能被99整除,这个数从后两位开始两位一截所得的所有数(如果有偶数位则拆出的数都有两个数字,如果是奇数位则拆出的数中若干个有两个数字还有一个是一位数)的和是99的倍数,这个数一定是99的倍数。
【备注】(以上规律仅在十进制数中成立.)二、整除性质性质1 如果数a和数b都能被数c整除,那么它们的和或差也能被c整除.即如果c︱a,c︱b,那么c︱(a±b).性质2 如果数a能被数b整除,b又能被数c整除,那么a也能被c整除.即如果b∣a,c∣b,那么c∣a.用同样的方法,我们还可以得出:性质3如果数a能被数b与数c的积整除,那么a也能被b或c整除.即如果bc∣a,那么b∣a,c∣a.性质4如果数a能被数b整除,也能被数c整除,且数b和数c互质,那么a一定能被b 与c的乘积整除.即如果b∣a,c∣a,且(b,c)=1,那么bc∣a.例如:如果3∣12,4∣12,且(3,4)=1,那么(3×4) ∣12.性质5 如果数a能被数b整除,那么am也能被bm整除.如果b|a,那么bm|am(m为非0整数);性质6如果数a能被数b整除,且数c能被数d整除,那么ac也能被bd整除.如果b|a,且d|c,那么bd|ac;例题精讲模块一、11系列【例 1】以多位数142857为例,说明被11整除的另一规律就是看奇数位数字之和与偶数位数字之和的差能否被11整除.【考点】整除之11系列【难度】2星【题型】解答【解析】略【答案】142857110000041000021000810051071=⨯+⨯+⨯+⨯+⨯+⨯()()()()()=⨯-+⨯++⨯-+⨯++⨯-+⨯110000114199992100118199511171()()=⨯+⨯+⨯+⨯+⨯+-+-+-11000014999921001899511418275因为根据整除性质1和铺垫知,等式右边第一个括号内的数能被11整除,再根据整除性质1,要判断142857能否被11整除,只需判断418275487125-+-+-=++-++()()能否被11整除,因此结论得到说明.【例 2】试说明一个4位数,原序数与反序数的和一定是11的倍数(如:1236为原序数,那么它对应的反序数为6321,它们的和7557是11的倍数.【考点】整除之11系列【难度】2星【题型】解答【解析】略【答案】设原序数为abcd,则反序数为dcba,则abcd+dcba100010010100010010()()a b c d d c b a=+++++++=+++a b c d10011101101001=+++(),因为等式的右边能被11整除,所以abcd+dcba能被11整1191101091a b c d除【例 3】一个4位数,把它的千位数字移到右端构成一个新的4位数.已知这两个4位数的和是以下5个数的一个:①9865;②9866;③9867;④9868;⑤9869.这两个4位数的和到底是多少?【考点】整除之11系列【难度】2星【题型】解答【解析】设这个4位数是abcd,则新的4位数是bcda.两个数的和为+=+++,是11的倍数.在所给的5个数中只有9867是11的1001110011011abcd bcda a b c d倍数,故正确的答案为9867.【答案】9867模块二、7、11、13系列【例 4】以多位数142857314275为例,说明被7、11、13整除的规律.【考点】整除之7、11、13系列【难度】3星【题型】解答【解析】略【答案】142857314275142100000000085710000003141000275=⨯+⨯+⨯+142(10000000011)857(9999991)314(10011)275=⨯-+⨯++⨯-+ 14210000000011428579999998573141001314275=⨯-+⨯++⨯-+(14210000000018579999993141001)(857142275314)=⨯+⨯+⨯+-+-因为根据整除性质1和铺垫知,等式右边第一个括号内的数能被7、11、13整除,再根据整除性质1,要判断142857314275能否被7、11、13整除,只需判断857142275314-+-能否被7、11、13整除,因此结论得到说明.【例 5】 已知道六位数20279□是13的倍数,求□中的数字是几?【考点】整除之7、11、13系列 【难度】2星 【题型】填空【解析】 根据一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除的特点知道:27920=7-□□,7□是13的倍数,□是8的时候是13倍数,所以知道方格中填1。
第4讲数的整除性(二)(1)能被7 整除的数的数字特性能被7 整除的数,其末一位的两倍与剩下的数之差为7的倍数。
能被7 整除的数,其末三位数与剩下的数之差,能被7 整除。
(2)能被11 整除的数的数字特性能被11 整除的数,奇数位的和与偶数位的和之差,能被11 整除。
能被11 整除的数,其末三位数与剩下的数之差,能被11 整除。
(3)能被13 整除的数的数字特性能被13 整除的数,其末三位数与剩下的数之差,能被13 整除。
补充:(4)若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。
如果差太大或心算不易看出是否17的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。
(5)若一个整数的个位数字截去,再从余下的数中,加上个位数的2倍,如果差是19的倍数,则原数能被19整除。
如果差太大或心算不易看出是否19的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。
(6)若一个整数的末三位与3倍的前面的隔出数的差能被17整除,则这个数能被17整除。
(7)若一个整数的末三位与7倍的前面的隔出数的差能被19整除,则这个数能被19整除。
(8)若一个整数的末四位与前面5倍的隔出数的差能被23(或29)整除,则这个数能被23整除一个特殊的数——1001。
因为1001=7×11×13,所以凡是1001的整数倍的数都能被7,11和13整除。
例1 判断306371能否被7整除?能否被13整除?练习:1.下列各数哪些能被7整除?哪些能被13整除?88205, 167128, 250894, 396500,675696, 796842, 805532, 75778885。
例2已知10□8971能被13整除,求□中的数。
练习:1.六位数175□62是13的倍数。
□中的数字是几?2.已知七位数138679A是7的倍数,求A。
5-2-1.数的整除之四大判断法综合运用教学目标1.了解整除的性质;2.运用整除的性质解题;3.整除性质的综合运用.知识点拨一、常见数字的整除判定方法1. 一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;2. 一个位数数字和能被3整除,这个数就能被3整除;一个数各位数数字和能被9整除,这个数就能被9整除;3. 如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除.4. 如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除.5.如果一个数能被99整除,这个数从后两位开始两位一截所得的所有数(如果有偶数位则拆出的数都有两个数字,如果是奇数位则拆出的数中若干个有两个数字还有一个是一位数)的和是99的倍数,这个数一定是99的倍数。
【备注】(以上规律仅在十进制数中成立.)二、整除性质性质1 如果数a和数b都能被数c整除,那么它们的和或差也能被c整除.即如果c︱a,c︱b,那么c︱(a±b).性质2 如果数a能被数b整除,b又能被数c整除,那么a也能被c整除.即如果b∣a,c∣b,那么c∣a.用同样的方法,我们还可以得出:性质3如果数a能被数b与数c的积整除,那么a也能被b或c整除.即如果bc∣a,那么b∣a,c∣a.性质4如果数a能被数b整除,也能被数c整除,且数b和数c互质,那么a一定能被b 与c的乘积整除.即如果b∣a,c∣a,且(b,c)=1,那么bc∣a.例如:如果3∣12,4∣12,且(3,4)=1,那么(3×4) ∣12.性质5 如果数a能被数b整除,那么am也能被bm整除.如果b|a,那么bm|am(m为非0整数);性质6如果数a能被数b整除,且数c能被数d整除,那么ac也能被bd整除.如果b|a,且d|c,那么bd|ac;例题精讲综合系列【例 1】甲、乙两个三位数的乘积是一个五位数,这个五位数的后四位为1031.如果甲数的数字和为10,乙数的数字和为8,那么甲乙两数之和是_________.【例 2】有5个不同的正整数,它们中任意两数的乘积都是12的倍数,那么这5个数之和的最小值是________.【例 3】173□是个四位数字。
5-2-1.数的整除之四大判断法综合运用(一)教学目标1.了解整除的性质;2.运用整除的性质解题;3.整除性质的综合运用.知识点拨一、常见数字的整除判定方法1. 一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;2. 一个位数数字和能被3整除,这个数就能被3整除;一个数各位数数字和能被9整除,这个数就能被9整除;3. 如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除.4. 如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除.5.如果一个数能被99整除,这个数从后两位开始两位一截所得的所有数(如果有偶数位则拆出的数都有两个数字,如果是奇数位则拆出的数中若干个有两个数字还有一个是一位数)的和是99的倍数,这个数一定是99的倍数。
【备注】(以上规律仅在十进制数中成立.)二、整除性质性质1 如果数a和数b都能被数c整除,那么它们的和或差也能被c整除.即如果c︱a,c︱b,那么c︱(a±b).性质2 如果数a能被数b整除,b又能被数c整除,那么a也能被c整除.即如果b∣a,c∣b,那么c∣a.用同样的方法,我们还可以得出:性质3如果数a能被数b与数c的积整除,那么a也能被b或c整除.即如果bc∣a,那么b∣a,c∣a.性质4如果数a能被数b整除,也能被数c整除,且数b和数c互质,那么a一定能被b 与c的乘积整除.即如果b∣a,c∣a,且(b,c)=1,那么bc∣a.例如:如果3∣12,4∣12,且(3,4)=1,那么(3×4) ∣12.性质5 如果数a能被数b整除,那么am也能被bm整除.如果b|a,那么bm|am(m为非0整数);性质6如果数a能被数b整除,且数c能被数d整除,那么ac也能被bd整除.如果b|a,且d|c,那么bd|ac;例题精讲5-2-1.数的整除之四大判断法综合运用(一).题库教师版模块一、2、5系列【例 1】975935972⨯⨯⨯□,要使这个连乘积的最后4个数字都是0,那么在方框内最小应填什么数?【考点】整除之2、5系列【难度】2星【题型】填空【解析】积的最后4个数字都是0,说明乘数里至少有4个因数2和4个因数5.9755539=⨯⨯,共有3个5,2个2,所以方=⨯⨯,9355187=⨯,97222243框内至少是22520⨯⨯=.【答案】22520⨯⨯=【例 2】从50到100的这51个自然数的乘积的末尾有多少个连续的0?【考点】整除之2、5系列【难度】4星【题型】解答【解析】首先,50、60、70、80、90、100中共有7个0.其次,55、65、85、95和任意偶数相乘都可以产生一个0,而75乘以偶数可以产生2个0,50中的因数5乘以偶数又可以产生1个0,所以一共有742114+++=个0.【答案】14个连续的0【例 3】把若干个自然数1、2、3、……连乘到一起,如果已知这个乘积的最末十三位恰好都是零,那么最后出现的自然数最小应该是多少?【考点】整除之2、5系列【难度】4星【题型】解答【解析】乘积末尾的零的个数是由乘数中因数2和5的个数决定的,有一对2和5乘积末尾就有一个零.由于相邻两个自然数中必定有一个是2的倍数,而相邻5个数中才有一个5的倍数,所以我们只要观察因数5的个数就可以了.551=⨯,=⨯,1052=⨯,3056=⨯,……,发现只有25、50、75、100、……=⨯,20541553=⨯,2555这样的数中才会出现多个因数5,乘到55时共出现11213+=个因数5,所以至少应当写到55。
奥数题解析“数的整除”解题方法奥数题解析“数的整除”解题方法本文将要教各位同学小学奥数题目中“数的整除”这一问题的解析思路和技巧,提供给各位同学学习。
把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么,原来这个数就一定能被11整除.例如:判断491678能不能被11整除.—→奇位数字的和9+6+8=23—→偶位数位的和4+1+7=12 23-12=11因此,491678能被11整除.这种方法叫"奇偶位差法".除上述方法外,还可以用割减法进行判断.即:从一个数里减去11的10倍,20倍,30倍……到余下一个100以内的数为止.如果余数能被11整除,那么,原来这个数就一定能被11整除.又如:判断583能不能被11整除.用583减去11的50倍(583-11×50=33)余数是33, 33能被11整除,583也一定能被11整除.11与0的特性:1是任何整数的约数,即对于任何整数a,总有1|a.0是任何非零整数的倍数,a≠0,a为整数,则a|0.2若一个整数的末位是0、2、4、6或8,则这个数能被2整除。
3若一个整数的数字和能被3整除,则这个整数能被3整除。
4若一个整数的末尾两位数能被4整除,则这个数能被4整除。
5若一个整数的末位是0或5,则这个数能被5整除。
6若一个整数能被2和3整除,则这个数能被6整除。
7若一个整数的个位数字截去,再从余下的.数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。
如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。
例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。
1. 了解整除的性质;2. 运用整除的性质解题;3. 整除性质的综合运用.一、常见数字的整除判定方法 1. 一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;2. 一个位数数字和能被3整除,这个数就能被3整除;一个数各位数数字和能被9整除,这个数就能被9整除;3. 如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除.4. 如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除.5.如果一个数能被99整除,这个数从后两位开始两位一截所得的所有数(如果有偶数位则拆出的数都有两个数字,如果是奇数位则拆出的数中若干个有两个数字还有一个是一位数)的和是99的倍数,这个数一定是99的倍数。
【备注】(以上规律仅在十进制数中成立.)二、整除性质性质1 如果数a 和数b 都能被数c 整除,那么它们的和或差也能被c 整除.即如果c ︱a ,c ︱b ,那么c ︱(a ±b ).性质2 如果数a 能被数b 整除,b 又能被数c 整除,那么a 也能被c 整除.即如果b ∣a , c ∣b ,那么c ∣a .用同样的方法,我们还可以得出:性质3 如果数a 能被数b 与数c 的积整除,那么a 也能被b 或c 整除.即如果bc ∣a ,那 么b ∣a ,c ∣a .性质4 如果数a 能被数b 整除,也能被数c 整除,且数b 和数c 互质,那么a 一定能被b 与c 的乘积整除.即如果b ∣a ,c ∣a ,且(b ,c )=1,那么bc ∣a .例如:如果3∣12,4∣12,且(3,4)=1,那么(3×4) ∣12.性质5 如果数a 能被数b 整除,那么am 也能被bm 整除.如果 b |a ,那么bm |am (m 为非0整数);性质6 如果数a 能被数b 整除,且数c 能被数d 整除,那么ac 也能被bd 整除.如果 b |a ,且d |c ,那么bd |ac ;知识点拨教学目标5-2-1.数的整除之四大判断法综合运用(一)例题精讲模块一、2、5系列【例 1】975935972⨯⨯⨯□,要使这个连乘积的最后4个数字都是0,那么在方框内最小应填什么数?【考点】整除之2、5系列【难度】2星【题型】填空【解析】积的最后4个数字都是0,说明乘数里至少有4个因数2和4个因数5.9755539=⨯⨯,共有3个5,2个2,所以方=⨯⨯,9355187=⨯,97222243框内至少是22520⨯⨯=.【答案】22520⨯⨯=【例 2】从50到100的这51个自然数的乘积的末尾有多少个连续的0?【考点】整除之2、5系列【难度】4星【题型】解答【解析】首先,50、60、70、80、90、100中共有7个0.其次,55、65、85、95和任意偶数相乘都可以产生一个0,而75乘以偶数可以产生2个0,50中的因数5乘以偶数又可以产生1个0,所以一共有742114+++=个0.【答案】14个连续的0【例 3】把若干个自然数1、2、3、……连乘到一起,如果已知这个乘积的最末十三位恰好都是零,那么最后出现的自然数最小应该是多少?【考点】整除之2、5系列【难度】4星【题型】解答【解析】乘积末尾的零的个数是由乘数中因数2和5的个数决定的,有一对2和5乘积末尾就有一个零.由于相邻两个自然数中必定有一个是2的倍数,而相邻5个数中才有一个5的倍数,所以我们只要观察因数5的个数就可以了.551=⨯,=⨯,1052=⨯,……,发现只有25、50、75、100、……=⨯,30561553=⨯,2054=⨯,2555这样的数中才会出现多个因数5,乘到55时共出现11213+=个因数5,所以至少应当写到55。
数的整除之四大判断法综合运用
数的整除之四大判断法
2系列:被2整除只需看末位能否被2整除
被4整除只需看末两位能否被4整除
被8整除只需看末三位能否被8整除,依此类推
5系列:被5整除只需看末位是否为0或5
被25整除只需看末两位能否被25整除,即只可能是00,25,50,75
被125整除只需看末三位能否被125整除,即只可能是000,125,250…
3系列:被3整除只需看各位数字之和能否被3整除
被9整除只需看各位数字之和能否被9整除
判断7、11、13整除特征的方法
⑴如果该数是1001的倍数,则必然能被7、11、13整除;
⑵末三位一段,用前面的数减去末三位或末三位减去前面的数,如果差是7或11或13的倍数,这个
数也能被7或11或13整除;
⑶从末三位开始,三位为一段,如果奇数段数之和与偶数段数之和的差能被7或11或13整除,则该数也能被7或11或13整除。
特殊的11:奇数位数字之和与偶数位数字之和的差能否被11整除。
【例 1】将自然数N接写在任意一个自然数的右面,如果得到的新整数能被N整除,那么称N为“魔术数”。
问小于1996的自然数中有多少个魔术数?
【例 2】用1,9,8,8这四个数字能排成几个被11除余8的四位数?
【例 3】在六位数ABCDEF中,不同的字母表示不同的数字,且满足A,AB,ABC,ABCD ,
ABCDE,ABCDEF依次能被2,3,5,7,11,13整除。
则ABCDEF的最小值是,最大值是。
〖答案〗
【例 1】14个
【例 2】共有4种可能的排法:1988,1889,8918,8819
【例 3】210769,840736。
1.了解整除的性质;2.运用整除的性质解题; 3. 整除性质的综合运用.一、常见数字的整除判定方法 1. 一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;2. 一个位数数字和能被3整除,这个数就能被3整除;一个数各位数数字和能被9整除,这个数就能被9整除;3. 如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除.4. 如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除.5.如果一个数能被99整除,这个数从后两位开始两位一截所得的所有数(如果有偶数位则拆出的数都有两个数字,如果是奇数位则拆出的数中若干个有两个数字还有一个是一位数)的和是99的倍数,这个数一定是99的倍数。
【备注】(以上规律仅在十进制数中成立.)二、整除性质性质1 如果数a 和数b 都能被数c 整除,那么它们的和或差也能被c 整除.即如果c ︱a ,c ︱b ,那么c ︱(a ±b ).性质2 如果数a 能被数b 整除,b 又能被数c 整除,那么a 也能被c 整除.即如果b ∣a ,c ∣b ,那么c ∣a .用同样的方法,我们还可以得出:性质3 如果数a 能被数b 与数c 的积整除,那么a 也能被b 或c 整除.即如果bc ∣a ,那么b ∣a ,c ∣a .性质4 如果数a 能被数b 整除,也能被数c 整除,且数b 和数c 互质,那么a 一定能被b与c 的乘积整除.即如果b ∣a ,c ∣a ,且(b ,c )=1,那么bc ∣a .例如:如果3∣12,4∣12,且(3,4)=1,那么(3×4) ∣12.性质5 如果数a 能被数b 整除,那么am 也能被bm 整除.如果 b |a ,那么bm |am (m 为非0整数);性质6 如果数a 能被数b 整除,且数c 能被数d 整除,那么ac 也能被bd 整除.如果 b |a ,且d |c ,那么bd |ac ;例题精讲知识点拨 教学目标5-2-1.数的整除之四大判断法综合运用(一)模块一、2、5系列【例 1】975935972⨯⨯⨯□,要使这个连乘积的最后4个数字都是0,那么在方框内最小应填什么数?【考点】整除之2、5系列【难度】2星【题型】填空【解析】积的最后4个数字都是0,说明乘数里至少有4个因数2和4个因数5.9755539=⨯⨯,共有3个5,2个2,所以方框内至少=⨯⨯,9355187=⨯,97222243是22520⨯⨯=.【答案】22520⨯⨯=【例 2】从50到100的这51个自然数的乘积的末尾有多少个连续的0?【考点】整除之2、5系列【难度】4星【题型】解答【解析】首先,50、60、70、80、90、100中共有7个0.其次,55、65、85、95和任意偶数相乘都可以产生一个0,而75乘以偶数可以产生2个0,50中的因数5乘以偶数又可以产生1个0,所以一共有742114+++=个0.【答案】14个连续的0【例 3】把若干个自然数1、2、3、……连乘到一起,如果已知这个乘积的最末十三位恰好都是零,那么最后出现的自然数最小应该是多少?【考点】整除之2、5系列【难度】4星【题型】解答【解析】乘积末尾的零的个数是由乘数中因数2和5的个数决定的,有一对2和5乘积末尾就有一个零.由于相邻两个自然数中必定有一个是2的倍数,而相邻5个数中才有一个5的倍数,所以我们只要观察因数5的个数就可以了.551=⨯,=⨯,2054=⨯,1052=⨯,1553=⨯,……,发现只有25、50、75、100、……这样的数中才会出现多个因2555=⨯,3056数5,乘到55时共出现11213+=个因数5,所以至少应当写到55。
千里之行,始于足下。
数的整除之四大判断法综合运用数的整除之四大判断法2系列:被2整除只需看末位能否被2整除被4整除只需看末两位能否被4整除被8整除只需看末三位能否被8整除,依此类推5系列:被5整除只需看末位是否为0或5被25整除只需看末两位能否被25整除,即只可能是00,25,50,75被125整除只需看末三位能否被125整除,即只可能是000,125,250…3系列:被3整除只需看各位数字之和能否被3整除被9整除只需看各位数字之和能否被9整除判断7、11、13整除特征的主意⑴倘若该数是1001的倍数,则必然能被7、11、13整除;⑵末三位一段,用前面的数减去末三位或末三位减去前面的数,倘若差是7或11或13的倍数,这个数也能被7或11或13整除;⑶从末三位开始,三位为一段,倘若奇数段数之和与偶数段数之和的差能被7或11或13整除,则该数也能被7或11或13整除。
异常的11:奇数位数字之和与偶数位数字之和的差能否被11整除。
【例 1】将天然数N接写在随意一个天然数的右面,倘若得到的新整数能被N整除,那么称N为“魔术数”。
问小于1996的天然数中有多少个魔术数?第 1 页/共 3 页朽木易折,金石可镂。
【例 2】用1,9,8,8这四个数字能排成几个被11除余8的四位数?【例 3】在六位数ABCDEF中,不同的字母表示不同的数字,且满意A,AB,ABC,ABCD,ABCDE,ABCDEF依次能被2,3,5,7,11,13整除。
则ABCDEF的最小值是,最大值是。
〖答案〗【例 1】14个【例 2】共有4种可能的排法:1988,1889,8918,8819千里之行,始于足下。
【例 3】210769,840736第 3 页/共 3 页。
5-2-1.数的整除之四大判断法综合运用教学目标1.了解整除的性质;2.运用整除的性质解题;3.整除性质的综合运用.知识点拨一、常见数字的整除判定方法1. 一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;2. 一个位数数字和能被3整除,这个数就能被3整除;一个数各位数数字和能被9整除,这个数就能被9整除;3. 如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除.4. 如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除.5.如果一个数能被99整除,这个数从后两位开始两位一截所得的所有数(如果有偶数位则拆出的数都有两个数字,如果是奇数位则拆出的数中若干个有两个数字还有一个是一位数)的和是99的倍数,这个数一定是99的倍数。
【备注】(以上规律仅在十进制数中成立.)二、整除性质性质1 如果数a和数b都能被数c整除,那么它们的和或差也能被c整除.即如果c︱a,c︱b,那么c︱(a±b).性质2 如果数a能被数b整除,b又能被数c整除,那么a也能被c整除.即如果b∣a,c∣b,那么c∣a.用同样的方法,我们还可以得出:性质3如果数a能被数b与数c的积整除,那么a也能被b或c整除.即如果bc∣a,那么b∣a,c∣a.性质4如果数a能被数b整除,也能被数c整除,且数b和数c互质,那么a一定能被b 与c的乘积整除.即如果b∣a,c∣a,且(b,c)=1,那么bc∣a.例如:如果3∣12,4∣12,且(3,4)=1,那么(3×4) ∣12.性质5 如果数a能被数b整除,那么am也能被bm整除.如果b|a,那么bm|am(m为非0整数);性质6如果数a能被数b整除,且数c能被数d整除,那么ac也能被bd整除.如果b|a,且d|c,那么bd|ac;例题精讲综合系列【例 1】甲、乙两个三位数的乘积是一个五位数,这个五位数的后四位为1031.如果甲数的数字和为10,乙数的数字和为8,那么甲乙两数之和是_________.【例 2】有5个不同的正整数,它们中任意两数的乘积都是12的倍数,那么这5个数之和的最小值是________.【例 3】173□是个四位数字。