【经典】智能算法-蚁群算法
- 格式:ppt
- 大小:371.00 KB
- 文档页数:10
蚁群算法内容简介蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法群算法是由意大利学者Dorigo等人于20世纪90年代初期通过模拟自然界中蚂蚁集体寻经的行为而提出的一种基于种群的启发式随机搜索算法,蚁群算法具有并行性、鲁棒性、正反馈性等特点。
蚁群算法最早成功应用于解决著名的旅行商问题以及二次分配问题、车间任务调度问题、图的着色问题、网络路由等许多复杂的组合问题。
蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质.针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值。
随着人们对效益的要求越来越高,人们发现组合优化的各种方法,但在一些复杂度比较高的问题上,一些传统的方法显示了他的限制,列如计算量上升太快,时间复杂度很高,这就需要一些新的方法来解决这些问题,从而有效地克服传统蚁群算法中容易陷入局部最优解和收敛速度慢的现象。
蚁群系统(Ant Colony System),这种算法是目前国内外启发式算法中的研究热点和前沿课题,被成功地运用于旅行商问题的求解,蚁群算法在求解复杂优化问题方面具有很大的优越性和广阔的前景。
但是,根据观察实验发现,蚁群中的多个蚂蚁的运动是随机的,在扩散范围较大时,在较短时间内很难找出一条较好的路径,在算法实现的过程中容易出现停滞现象和收敛速度慢现象。
在这种弊端的情况下,学者们提出了一种自适应蚁群算法,通过自适应地调整运行过程中的挥发因子来改变路径中信息素浓度,从而有效地克服传统蚁群算法中容易陷入局部最优解和收敛速度慢的现象。
下面是一些最常用的变异蚁群算法精英蚂蚁系统全局最优解决方案在每个迭代以及其他所有的蚂蚁的沉积信息素。
最大最小蚂蚁系统(MMAS)添加的最大和最小的信息素量[ τmax ,τmin ],只有全局最佳或迭代最好的巡逻沉积的信息素。
蚁群算法目录1 蚁群算法基本思想 (1)1.1蚁群算法简介 (1)1.2蚁群行为分析 (1)1.3蚁群算法解决优化问题的基本思想 (2)1.4蚁群算法的特点 (2)2 蚁群算法解决TSP问题 (3)2.1关于TSP (3)2.2蚁群算法解决TSP问题基本原理 (3)2.3蚁群算法解决TSP问题基本步骤 (5)3 案例 (6)3.1问题描述 (6)3.2解题思路及步骤 (6)3.3MATLB程序实现 (7)3.1.1 清空环境 (7)3.2.2 导入数据 (7)3.3.3 计算城市间相互距离 (7)3.3.4 初始化参数 (7)3.3.5 迭代寻找最佳路径 (7)3.3.6 结果显示 (7)3.3.7 绘图 (7)1 蚁群算法基本思想1.1 蚁群算法简介蚁群算法(ant colony algrothrim ,ACA )是由意大利学者多里戈(Dorigo M )、马聂佐( Maniezzo V )等人于20世纪90初从生物进化的机制中受到启发,通过模拟自然界蚂蚁搜索路径的行为,提出来的一种新型的模拟进化算法。
该算法用蚁群在搜索食物源的过程中所体现出来的寻优能力来解决一些系统优化中的困难问题,其算法的基本思想是模仿蚂蚁依赖信息素,通过蚂蚁间正反馈的方法来引导每个蚂蚁的行动。
蚁群算法能够被用于解决大多数优化问题或者能够转化为优化求解的问题,现在其应用领域已扩展到多目标优化、数据分类、数据聚类、模式识别、电信QoS 管理、生物系统建模、流程规划、信号处理、机器人控制、决策支持以及仿真和系统辩识等方面。
蚁群算法是群智能理论研究领域的一种主要算法。
1.2 蚁群行为分析EABCDF d=3d=2 m=20 t=0AB C Dd=3d=2 m=10 m=10t=11.3 蚁群算法解决优化问题的基本思想用蚂蚁的行走路径表示待优化问题的可行解,整个蚂蚁群体的所有路径构成待优化问题的解空间。
路径较短的蚂蚁释放的信息量较多,随着时间的推进,较短路径上积累的信息浓度逐渐增高,选择该路径的蚂蚁个数愈来愈多。
蚁群算法的基本原理蚁群算法 (Ant Colony Optimization, ACO) 是一种基于群体智能的优化算法,模拟了蚂蚁在寻找食物时候的行为,被广泛应用于求解组合优化问题、路径规划等领域。
蚁群算法的基本思路蚁群算法的基本思路是通过模拟蚂蚁在寻找食物的过程中释放信息素来获取全局最优解。
具体过程如下:1.初始化信息素: 首先,需要在所有可行解的路径上放置一些信息素。
在开始时,信息素值可以选择为等量的值或一些默认值。
2.蚁群搜索: 一开始,所有的蚂蚁都分别随机选择一个节点作为起点,并开始在网络中搜索。
蚂蚁行动的过程中,会根据路径上信息素浓度的大小来选择下一步的方向。
同时,每只蚂蚁都会记录其所经过的路径和信息素值。
3.信息素更新: 每只蚂蚁到达终点之后,计算其所经过路径的费用,然后根据一定的规则更新路径上的信息素。
较优的路径上将会添加更多的信息素,使下一次蚂蚁选择该路径的概率更大。
4.重复搜索: 重复上面的步骤,直到满足一个停止条件为止。
一种常见的停止条件是达到预定的迭代次数。
蚁群算法的优势蚁群算法在解决组合优化问题时,具有以下的优势:1.全局优化能力极强: 因为每只蚂蚁都只关注自己所经过的路径上的信息素值,所以可以同时搜索并更新多个路径,从而有可能找到全局最优解。
2.能够避免陷入局部最优: 蚁群算法可以通过信息素的挥发、说长存、信息素值的启发式更新等手段来避免陷入局部最优解。
3.易于扩展和并行化: 蚁群算法通常是一种并行的算法,可以很轻松地应用于分布式计算环境中。
蚁群算法的应用蚁群算法在解决组合优化问题、路径规划、调度等方面有着广泛的应用,如下所示:1.旅行商问题: 蚁群算法可以用于解决旅行商问题。
2.线性规划问题: 蚁群算法可以用于求解线性规划问题。
3.路径规划问题: 蚁群算法可以用于车辆路径规划问题。
4.调度问题: 蚁群算法可以用于作业车间调度问题。
蚁群算法是一种基于群体智能的优化算法,模拟了蚂蚁在寻找食物时候的行为。
蚁群算法同进化算法(进化算法是受⽣物进化机制启发⽽产⽣的⼀系列算法)和⼈⼯神经⽹络算法(神经⽹络是从信息处理⾓度对⼈脑的神经元⽹络系统进⾏了模拟的相关算法)⼀样,群智能优化算法也属于⼀种⽣物启发式⽅法,它们三者可以称为是⼈⼯智能领域的三驾马车(实际上除了上述三种算法还有⼀些智能算法应⽤也很⼴泛,⽐如模拟⾦属物质热⼒学退⽕过程的模拟退⽕算法(Simulated Algorithm,简称SA),模拟⼈体免疫系统在抗原刺激下产⽣抗体过程的⼈⼯免疫系统算法(Artificial Immune System,简称AIS)等,但是相对三者⽽⾔,模拟退⽕算法和⼈⼯免疫系统算法已逐渐处于低潮期)。
群智能优化算法主要是模拟了昆⾍,兽群、鸟群和鱼群的群集⾏为,这些群体按照⼀种合作的⽅式寻找⾷物,群体中的每个成员通过学习它⾃⾝的经验和其他成员的经验来不断地改变搜索的⽅向。
群体智能优化算法的突出特点就是利⽤了种群的群体智慧进⾏协同搜索,从⽽在解空间内找到最优解。
常见的群体智能优化算法主要有如下⼏类:蚁群算法(Ant Colony Optimizatio,简称ACO)【1992年提出】;粒⼦群优化算法(Particle Swarm Optimization,简称PSO)【1995年提出】菌群优化算法(Bacterial Foraging Optimization,简称BFO)【2002年提出】蛙跳算法(Shuffled Frog Leading Algorithm,简称SFLA)【2003年提出】⼈⼯蜂群算法(Artificial Bee Colony Algorithm,简称ABC)【2005年提出】除了上述⼏种常见的群体智能算法以外,还有⼀些并不是⼴泛应⽤的群体智能算法,⽐如萤⽕⾍算法,布⾕鸟算法,蝙蝠算法以及磷虾群算法等等。
蚁群算法蚂蚁寻找⾷物的过程单只蚂蚁的⾏为及其简单,⾏为数量在10种以内,但成千上万只蚂蚁组成的蚁群却能拥有巨⼤的智慧,这离不开它们信息传递的⽅式———信息素。
蚁群算法公式范文蚁群算法(Ant Colony Optimization, ACO)是一种仿生智能算法,源于对蚂蚁在寻找食物过程中的观察和分析。
蚁群算法通过模拟蚂蚁在寻找食物的过程,来优化解决各种优化问题。
在蚁群算法中,蚂蚁使用信息素和启发式信息来进行,并通过信息素更新和路径选择机制来不断优化过程。
蚂蚁在寻找食物的过程中会释放一种被称为“信息素”的化学物质。
当蚂蚁在条路径上行走时,会释放信息素,而其他蚂蚁通过检测到信息素的浓度来选择路径。
信息素的浓度越高,路径上的蚂蚁越多,其他蚂蚁就更有可能选择这条路径。
蚂蚁在行走结束后,会按照规定的方式更新路径上的信息素浓度。
蚂蚁选择路径的依据除了信息素,还有启发式信息。
启发式信息是根据蚂蚁当前所处位置与目标位置之间的距离进行计算的。
蚂蚁更倾向于选择距离目标位置更近的路径。
启发式信息对蚂蚁的路径选择起到了一定的引导作用。
蚁群算法中的公式主要涉及到信息素的更新和路径选择机制。
下面是蚁群算法中常用的公式:1.信息素的更新公式:τij(t+1) = (1-ρ) * τij(t) + Δτij(t)其中,τij(t+1)为第i只蚂蚁在第j条路径上的信息素浓度更新后的值;τij(t)为第i只蚂蚁在第j条路径上的当前信息素浓度;Δτij(t)为第i只蚂蚁在第j条路径上释放的信息素量;ρ为信息素蒸发系数,用于控制信息素的挥发速度。
2.蚂蚁选择路径的概率公式:Pij(t) = (τij(t)^α) * (ηij(t)^β) / Σ(τik(t)^α) * (ηik(t)^β)其中,Pij(t)为第i只蚂蚁在第j条路径上的选择概率;τij(t)为第i只蚂蚁在第j条路径上的信息素浓度;ηij(t)为第i只蚂蚁在第j条路径上的启发式信息;α和β分别为信息素和启发式信息的重要程度参数。
3.蚂蚁更新路径的公式:Δτij(t) = Q / Lk其中,Δτij(t)为第i只蚂蚁在第j条路径上释放的信息素量;Q为常数,表示每只蚂蚁释放的信息素总量;Lk为第k只蚂蚁的路径长度。
蚁群算法公式蚁群算法(AntColonyAlgorithm)是一种基于自然生态的数学优化模型,是一个迭代的搜索算法,用来解决动态规划问题。
这种算法是在蚂蚁群体行为的理论的基础上发展出来的,通过模拟蚂蚁如何寻找最佳的路径来寻找最优解。
它是一种用于解决复杂优化问题的自然计算算法,它可以分析解决复杂系统中大量变量和限制条件所建立的非线性优化问题。
蚁群算法是一种基于概率的搜索算法,它采用“相互学习”的方式,通过种群间的信息共享,形成一个多维度的相互关联的搜索空间。
由于蚁群算法可以获得更多关于搜索空间的信息,它比传统的优化算法更有效地搜索最优解。
蚁群算法是一种非治疗性的优化算法,它可以用来解决多种复杂的优化问题,如全局优化、组合优化、最佳化框架优化以及机器学习等。
蚁群算法是基于规则的智能算法,它包括四个主要部分:蚁群、时间、规则和变量。
在运行蚁群算法的过程中,先生成一组初始解,再根据算法的规则(也可称为搜索引擎)进行蚁群迭代,每次迭代会更新解的模型和搜索空间的参数,直到达到最优解。
蚁群算法的核心公式如下:第一步:更新ij:ρij = (1-ρ)*ij +*Δρij其中,ρji表示节点i到j转移的概率ρ为一个参数,表示蚂蚁搜索行为的一致性Δρji为一个参数,表示节点i到j路径的通过数量第二步:更新ρij:Δρij = q/Lij + (1-q)*Δρij其中,Lij表示节点i到j路径的长度q为一个参数,表示蚂蚁搜索行为的一致性Δρji为一个参数,表示节点i到j路径的通过数量第三步:更新tij:tij = (1-ρ)*tij +*Δtij其中,tji表示节点i到j转移的概率ρ为一个参数,表示蚂蚁搜索行为的一致性Δtij为一个参数,表示节点i到j路径的通过次数以上就是蚁群算法的核心公式,它结合了蚂蚁的行为,通过迭代的方式,找到最佳的路径,路径的长度由节点之间转移的概率决定,路径的变化则由节点之间通过的次数来决定。
群体智能与优化算法群体智能(Swarm Intelligence)是一种模拟自然界群体行为的计算方法,借鉴了群体动物或昆虫在协作中展现出来的智能。
在群体智能中,个体之间相互通信、相互协作,通过简单的规则和局部信息交流来实现整体上的智能行为。
而优化算法则是一类用于解决最优化问题的数学方法,能够在大量搜索空间中找到最优解。
在现代计算领域,群体智能和优化算法常常结合使用,通过模拟自然界群体行为,寻找最佳解决方案。
接下来将分析几种典型的群体智能优化算法。
1. 蚁群算法(Ant Colony Optimization):蚁群算法源于对蚂蚁寻找食物路径行为的模拟。
蚁群算法通过模拟蚁群在环境中的寻找和选择过程,来寻找最优解。
算法中蚂蚁在搜索过程中会释放信息素,其他蚂蚁则根据信息素浓度选择路径,最终形成一条最佳路径。
2. 粒子群算法(Particle Swarm Optimization):粒子群算法源于对鸟群觅食过程的模拟。
在算法中,每个“粒子”代表一个潜在的解,粒子根据自身经验和周围最优解的经验进行位置调整,最终寻找最优解。
3. 遗传算法(Genetic Algorithm):遗传算法源于对生物进化过程的模拟。
通过模拟自然选择、交叉和变异等操作,来搜索最优解。
遗传算法在优化问题中有着广泛的应用,能够在复杂的搜索空间中找到较好的解决方案。
4. 蜂群算法(Artificial Bee Colony Algorithm):蜂群算法源于对蜜蜂群食物搜寻行为的模拟。
在算法中,蜜蜂根据花粉的量和距离选择食物来源,通过不断地试探和挑选来找到最佳解。
总体来说,群体智能与优化算法的结合,提供了一种高效且鲁棒性强的求解方法,特别适用于在大规模、高维度的优化问题中。
通过模拟生物群体的智能行为,这类算法能够在短时间内找到全局最优解或者较好的近似解,应用领域覆盖机器学习、数据挖掘、智能优化等多个领域。
群体智能与优化算法的不断发展,将进一步推动计算领域的发展,为解决实际问题提供更加有效的方法和技术。