理论力学-第13章 动力学普遍方程和第二类拉格朗日方程
- 格式:ppt
- 大小:1.63 MB
- 文档页数:54
2、第二类拉格朗日方程的应用例1质量为m 1的物块C 以细绳跨过定滑轮B 联于点A, A ,B 两轮皆为均质圆盘,半径为R ,质量为m 2, 弹簧刚度为k ,质量不计。
ACOxAOCx例2已知:如图所示的运动系统中,重物M 1的质量为m 1,可沿光滑水平面移动。
摆锤M 2的质量为m 2,两个物体用长为l 的无重杆连接。
M 1M 2φC 求:此系统的运动微分方程。
2、第二类拉格朗日方程的应用解:系统有两个自由度,选M 1的水平坐标x 1和φ为广义坐标, 并将质点位置用广义坐标表示:111212,0;sin ,cos x x y x x l y l j j===-=将上式两端对时间t 求导数得:111212,0;cos sin x x yx x l y l j j j j ===-=-&&&&&&&&,系统的动能为:222122211()22T m x m x y =++&&&22212111()(2cos )22m l m m x l x j j j =++-&&&&选质点M 2在最低处时的位置为系统的零势能位置,则系统的势能为:)cos 1(2j -=gl m V 系统的主动力为有势力,此为保守系统,可写出系统的动势,运用保守系统的拉格朗日方程求解,此处我们运用一般形式的第二类拉格朗日方程求解。
d 0(12)d k T TQ k N t q q æö¶¶--==ç÷¶¶L &,,,注意:零势能位置的选取不是唯一的。
选取原则:计算方便代入拉格朗日方程得到:1212110()cos T Tm m xm l x xj j ¶¶==+-¶¶&&&,2121221d ()()cos sin d T m m x m l m l t x j j j j¶=+-+×¶&&&&&&10x V Q x ¶=-=¶先计算)cos 1(2j -=gl m V 22212111()(2cos )22m l T m m x l xj j j =++-&&&&221221sin cos T T m lx m l mlx j j jj j j¶¶==-¶¶&&&&&,222121d ()cos sin d T m l m lx m lx t jj j j j ¶=-+×¶&&&&&&&2sin V Q m gl j j j¶=-=-¶212122()cos sin 0m m xm l m l j j j j +-+×=&&&&&(cos sin )sin 0m l l x x m gl jj j j j -+×+=&&&&&&2、第二类拉格朗日方程的应用x 1φ再计算如果质点M 2摆动很小,可以近似地认为1cos sin »»j j j ,且可以忽略含和的高阶小量,2j &1xj &&微分方程可改写为:1212()0m m xm l j +-=&&&&1l x g jj -=-&&&&从以上两式中消去,得到1x&&1210m m gm lj j ++=&&这是自由振动的微分方程,其通解为:)sin(0q w j +=t A 固有角频率:lgm m m 1210+=w 摆动周期:如果21m m >>则质点M 1的位移x 1将很小,质点M 2的摆动周期将趋于普通单摆的周期:1lim 2m T ®¥=也可以从微分方程中消去,得到:j&&可见质点M 1沿x 方向也作自由振动。
习题13-1图*第13章动力学普遍方程和第二类拉格朗日方程13-1图示均质细杆OA 长为l ,重力为P ,在重力作用下可在铅垂平面内摆动,滑块O 质量不计,斜面倾角θ,略去各处摩擦,若取x 及ϕ为广义坐标,试求对应于x 和ϕ的广义力。
解:应用几何法,令0δ=x ;0δ≠ϕ则:ϕϕϕϕϕϕsin 21δδ2sin δδPl lP W Q -=-='=令0δ≠x ;0δ=ϕ则:θθsin δδsin δδP xxP x W Q x -=-=''=13-2图示在水平面内运动的行星齿轮机构,已知固定齿轮半径为R ,均质行星齿轮半径为r ,质量为m ,均质杆OA 质量为m 1,杆受矩为M 的力偶作用而运动,若取ϕ为广义坐标,试求相应的广义力。
解:应用几何法,设对应于ϕ的虚位移0δ≠ϕ则:M M W Q ===ϕϕϕϕδδδδ13-3在图示系统中,已知:均质圆柱A 的质量为M 、半径为R ,物块B 的质量为m ,光滑斜面的倾角为β,滑轮质量忽略不计,并假设斜绳段平行斜面。
若以θ 和y 为广义坐标,试分别用动力学普遍方程和第二类拉格朗日方程求:(1)系统运动微分方程;(2)圆柱A 的角加速度和物块B 的加速度。
解:(1)在系统上施加惯性力如图(a )所示。
其中:)(I θ R y M F A -=;y m F B=I θθ2I 21MR J M A A ==应用动力学普遍方程,δ)sin (δ)sin (I I I I +-+---θββR Mg M R F y Mg F F mg A A A B 可得系统运动微分方程:0sin )(=----βθMg R y M y m mg 0sin 21)(2=+--R Mg MR R R yM βθθ 整理后有:0)sin ()(=-+-+g m M MR yM m βθ 0sin 23=--βθg yR习题13-2图习题13-3图F应用第二类拉格朗日方程:2222)(21212121θθ R y M MR y m T -+⋅+=;)(sin θβR y Mg mgy V -+-==-=V T L 2222)(21212121θθ R y M MR y m -+⋅+)(sin θβR y Mg mgy --+)(d d θ R yM y m y L t -+=∂∂;βsin Mg mg y L -=∂∂0d d =∂∂-∂∂y L y L t ;0)sin ()(=-+-+g m M MR y M m βθ (a ))(21d d 2θθθ R y RM MR L t --=∂∂;R Mg L βθsin =∂∂0d d =∂∂-∂∂θθL L t;0sin 23=--βθg y R (b )(2)求圆柱A 的角加速度和物块B 的加速度。