小学数学 猎狗追兔问题.教师版
- 格式:doc
- 大小:590.11 KB
- 文档页数:5
猎狗追兔问题巧解猎狗追兔问题是行程问题中比较典型的一类题,该类问题除考察追及问题的基本公式外,还要综合运用比例、份数等手段解决。
解题思想是将两种动物单位化为统一,然后用路程差除以速度差得到追及时间,或者由速度比得出路程比,再引入份数思想,进而解决问题。
以下题为例:【例1】一猎狗正在追赶前方20米远兔子,已知狗一跳前进3米,而兔子一跳前进2.1米,但狗跳3次的时间兔子可以跳4次,问猎狗跑多少米能追上兔子?【李老师分析】狗跳3次的时间兔子可以跳4次,设都等于一秒则狗速度为9米/秒,兔速度为8.4米/秒,狗和兔子的速度都得以确定,接下来将是一个非常简单的追及问题,路程差为20米,可列式子20÷(9-8.4)=100/3(秒)能够追上兔子。
用时20/(9-8.4)秒时间追上,即狗跑了9×100/3=300米从以上例题我们可以看出,解决此类问题的关键在于:根据时间相同,将其设为单位时间(1秒),问题简单解决。
我们再看下一道题:【例2】猎狗前面26步远有一只野兔,猎狗追之,兔跑8步的时间狗跑5步,兔跑9步的距离等于狗跑4步的距离,问:兔跑多少步后被猎狗抓获?此时猎狗跑了多少米?【李老师分析】兔8步的时间狗跑5步,设都为1秒………………………(一次设数)再根据兔跑9步的距离等于狗跑4步的距离设兔子一步4米,狗一步9米………………………………………(二次设数)从而得出狗速度为45米/秒,兔速度为32米/秒进而狗兔相距26×9=234米,追及时间为234÷(45-32)=18(秒)兔子一秒跑8步,总共跑了9×18=144步狗一秒跑45米,总共跑了45×18=810米此题不同于第一道题的地方在于并未直接告诉我们狗与兔的步长,而给出两者步长的关系,解决问题时可再一次设数,将狗与兔的数据调换,作为其步长,问题转化同例1.根据以上两道例题,李老师做以下总结,称之为“两次设数法”:猎狗追兔问题“两次设数法”:①设单位时间,得出每秒几步;②设步长,从而得出各自速度;之后运用追及基本公式解决。
猎狗追兔问题是行程问题中比较典型的一类题,该类问题除考察追及问题的基本公式外,还要综合运用比例、份数等手段解决。
解题思想是将两种动物单位化为统一,然后用路程差除以速度差得到追及时间,或者由速度比得出路程比,再引入份数思想,进而解决问题。
以下题为例:【例1】一猎狗正在追赶前方20米远兔子,已知狗一跳前进3米,而兔子一跳前进2.1米,但狗跳3次的时间兔子可以跳4次,问猎狗跑多少米能追上兔子?【李老师分析】狗跳3次的时间兔子可以跳4次,设都等于一秒则狗速度为9米/秒,兔速度为8.4米/秒,狗和兔子的速度都得以确定,接下来将是一个非常简单的追及问题,路程差为20米,可列式子20(9-8.4)=100/3(秒)能够追上兔子。
用时20/(9-8.4)秒时间追上,即狗跑了9100/3=300米从以上例题我们可以看出,解决此类问题的关键在于:根据时间相同,将其设为单位时间(1秒),问题简单解决。
我们再看下一道题:【例2】猎狗前面26步远有一只野兔,猎狗追之,兔跑8步的时间狗跑5步,兔跑9步的距离等于狗跑4步的距离,问:兔跑多少步后被猎狗抓获?此时猎狗跑了多少米?【李老师分析】兔8步的时间狗跑5步,设都为1秒(一次设数)再根据兔跑9步的距离等于狗跑4步的距离设兔子一步4米,狗一步9米(二次设数)从而得出狗速度为45米/秒,兔速度为32米/秒进而狗兔相距269=234米,追及时间为234(45-32)=18(秒)兔子一秒跑8步,总共跑了918=144步狗一秒跑45米,总共跑了4518=810米此题不同于第一道题的地方在于并未直接告诉我们狗与兔的步长,而给出两者步长的关系,解决问题时可再一次设数,将狗与兔的数据调换,作为其步长,问题转化同例1.根据以上两道例题,李老师做以下总结,称之为两次设数法:猎狗追兔问题两次设数法:①设单位时间,得出每秒几步;②设步长,从而得出各自速度;之后运用追及基本公式解决。
但要注意开始时的距离是步长还是米,以及最终所问的是米还是狗步或兔步。
小学数学行程知识学习:猎狗追兔习题三1.猎犬发现在离它9米远的前方有一只奔跑的兔子,立刻追赶,猎犬步子大.它跑5步的路程,兔子跑9步,但兔子动作快,猎犬跑2步的时间,兔子跑3步,猎犬至少跑多少米才能追上兔子?思路一:狗5步=兔子9步步幅之比=9:5狗2步时间=兔子3步时间步频之比=2:3则速度之比是 9×2:5×3=6: 5这个9米应该是9步单位好像错了是指狗的9步距离6×9/(6-5)=54步思路二:速度=步频×步幅猎犬:兔子=2×9:3×5=18:15,18-15=3,9÷3=318×3=542.猎狗发现离它110米处有一只奔跑的兔子,马上紧追上去,猎狗跑5步的距离兔子要跑9步,猎狗跑2步的时间兔子要跑3步,问猎狗跑多远才能追上兔子?答案:设狗的步进为L1,兔子为L2,狗的跑步频率为f1,兔子为f2,显然有: L1/L2 = 9/5,f1/f2 = 2/3 又设狗的速度为v1,兔子为v2,则 v1/v2 = (L1*f1)/(L2*f2) = 6/5 设狗跑了x米追上兔子,则因为时间相等,有: x/v1 = 110/(v1-v2) 所以:x = 110*v1/(v1-v2) = 110/(1-v2/v1)=660 狗要跑660米设:猎狗跑1步的距离x米,兔子跑1步的距离y米,猎狗跑a米远才能追上兔子∵猎狗跑5步的距离兔子要跑9步∴ 5x=9y ∵猎狗跑2步的时间兔子要跑3步,而猎狗与兔子跑的时间相等∴a/2x=a-110/3y 解┌5x=9y └a/2x=a-110/3y 得(步骤略) a=660 答:猎狗跑660米远才能追上兔子。
3.猎狗前面26步远的地方有一野兔,猎狗追之。
兔跑8步的时间狗只跑5步,但兔跑9步的距离仅等于狗跑4步的距离。
问兔跑几步后,被狗抓获?答案:解法一:设兔的步长为1,则狗的步长为9/4 ,兔跑一步的时间为1,则狗跑一步的时间为8/5 。
猎狗追兔问题问题在旷野上有一只野兔和一条猎狗,猎狗发现了野兔并开始追踪,同时野兔也发现了猎狗,开始向兔穴跑去。
设兔穴位于坐标原点,野兔和猎狗的初始位置分别为(0,)(0,60)b =-和00(,)(70,15)x y =,假定猎狗的追踪方向始终对着野兔,猎狗和野兔的奔跑速度分别为 u =5m/s 和 v =3m/s 。
问:猎狗能否在野兔进洞前抓住野兔?分析:在时刻t 时,兔子位于(0,)b vt +,设猎狗位于(,)x y ,由于猎狗的追踪方向始终对着野兔,故有d ()d y y b vt x x-+= 猎狗在 [0, t ]内走过的路程为x x x xut x x ==⎰⎰消去t 后可得'x xv xy y b x u =--⎰两边求导"xy =初始条件:00000(), '()y by x y y x x -==计算x =0时y 的值,若小于0,则表示能追上兔子,否则表示没追上。
令'z y =, 记/a v u =,则原方程化为'xz =即d x ax=两边取积分可得(ln ln()z a x c =+故11112a a z c x x c -⎛⎫=- ⎪⎝⎭其中 10c >两边再取积分可得111211121(1)a a c y x x c a a c +-+⎛⎫=-+ ⎪+-⎝⎭其中 10c >将初值条件00()y x y =和0000()'()y bz x y x x -==代入可得1100a c x y b --⎛=-+⎝,111200011121(1)a a c c y x x a a c +-+⎛⎫=-- ⎪+-⎝⎭当0x =时, 6.0080y ≈-<,故猎狗在野兔进洞前追上了野兔。
小学数学行程知识学习:猎狗追兔习题三1.猎犬发现在离它9米远的前方有一只奔跑的兔子,立刻追赶,猎犬步子大.它跑5步的路程,兔子跑9步,但兔子动作快,猎犬跑2步的时间,兔子跑3步,猎犬至少跑多少米才能追上兔子?思路一:狗5步=兔子9步步幅之比=9:5狗2步时间=兔子3步时间步频之比=2:3则速度之比是 9×2:5×3=6: 5这个9米应该是9步单位好像错了是指狗的9步距离6×9/(6-5)=54步思路二:速度=步频×步幅猎犬:兔子=2×9:3×5=18:15,18-15=3,9÷3=318×3=542.猎狗发现离它110米处有一只奔跑的兔子,马上紧追上去,猎狗跑5步的距离兔子要跑9步,猎狗跑2步的时间兔子要跑3步,问猎狗跑多远才能追上兔子?答案:设狗的步进为L1,兔子为L2,狗的跑步频率为f1,兔子为f2,显然有: L1/L2 = 9/5,f1/f2 = 2/3 又设狗的速度为v1,兔子为v2,则 v1/v2 = (L1*f1)/(L2*f2) = 6/5 设狗跑了x米追上兔子,则因为时间相等,有: x/v1 = 110/(v1-v2) 所以:x = 110*v1/(v1-v2) =110/(1-v2/v1)=660 狗要跑660米设:猎狗跑1步的距离x米,兔子跑1步的距离y米,猎狗跑a 米远才能追上兔子∵猎狗跑5步的距离兔子要跑9步∴ 5x=9y ∵猎狗跑2步的时间兔子要跑3步,而猎狗与兔子跑的时间相等∴ a/2x=a-110/3y 解┌5x=9y └a/2x=a-110/3y 得(步骤略)a=660 答:猎狗跑660米远才能追上兔子。
3.猎狗前面26步远的地方有一野兔,猎狗追之。
兔跑8步的时间狗只跑5步,但兔跑9步的距离仅等于狗跑4步的距离。
问兔跑几步后,被狗抓获?答案:解法一:设兔的步长为1,则狗的步长为9/4 ,兔跑一步的时间为1,则狗跑一步的时间为8/5 。
猎狗追兔问题教学目标1.通过本讲学习要学生学会对行程问题中单位进行统一;2.追及问题在分数应用题的理解与应用;3.能够理解比例及相关知识的初步引入;4.解题中追及问题公式、比例(或份数)等知识点的结合;5.统一及转化思想的应用。
知识精讲一、猎狗追兔的出题背景猎狗追兔是奥数中行程问题的一种,它与一般的行程问题有着某种相通性。
解题关键:行程单位要统一是猎狗追兔的解题关键。
通常我们遇到的题给的都是通用单位,如米、公里等等,这类题中会涉及狗步与兔步两个不同的单位,关键就在于将这两者统一,作行程问题最好能够脱离题海,要多注意总结,体会思想方法!很多看似无关的题目,实质思想是相通的!二、猎狗追兔问题问题叙述:兔子动作快、步子小;猎狗动作慢、步子大。
通常我们遇到的行程问题给的路程都是通用单位:米或千米等,但这类题中狗步与兔步是不一样的单位,解题关键在于统一单位,然后利用追及问题公式“路程差÷速度差=追及时间”求解。
单位的统一:在猎狗追兔的问题中,狗步与兔步之间在距离上有一定关系。
例如:相同路程内,猎狗跑四步(狗步)=兔子跑七步(兔步),据此可以求出狗步与兔步的比,相同时间内(可以认为单位时间内)兔子跑3步(兔步),猎狗跑2步(狗步)进而可以求出兔子与猎狗的速度,即单位时间内分别跑多少兔步(或狗步)关键:具体是统一为狗步或兔步,要视路程差的单位而定,若路程差的单位为狗步则速度要统一为狗步,反之统一为兔步。
若路程差为米或千米,则统一成狗步或兔步都行。
例题精讲【例 1】猎狗前面26步远有一只野兔,猎狗追之. 兔跑8步的时间狗跑5步,兔跑9步的距离等于狗跑4步的距离.问:兔跑多少步后被猎狗抓获?此时猎狗跑了多少步?【考点】行程问题之猎狗追兔【难度】3星【题型】解答【解析】方法一:“猎狗前面26步……”显然指的是猎狗的26步。
因为题目中出现“兔跑8步的时间……”和“兔跑9步的距离……”,8与9的最小公倍数是72,所以可以统一在“兔跑72步”这个情况下考虑.兔跑72步的时间狗跑45步,兔跑72步的距离等于狗跑32步距离,所以在兔跑72步的时间里,狗比兔多跑了45—32=13(步)的路程,这个13步是猎狗的13步. 由此推知,要追上26(狗)步,兔跑了72×(26÷13)=144(步),此时猎狗跑了5×(144÷8)=90(步).方法二:设狗跑一步为1个长度单位,则兔跑一步为49个长度单位;在相同时间内,狗的速度为515⨯=,兔的速度为432899⨯=,根据题意有3226(5)189÷-=(个单位时间).猎狗追上兔时跑了51890⨯=(个单位长度),所以狗跑了90190÷=(步),此时兔跑了3218649⨯=(个单位长度),故兔跑了4641449÷=(步). 方法三:统一为“兔跑72步”的情况:兔跑72步的时间里狗比兔多跑了594813⨯-⨯=(步)的路程,这里的步是狗步.由此推知,要追上26狗步,兔跑了72(2613)144⨯÷=(步),此时猎狗跑了5(1448)90⨯÷=(步).【答案】90步【巩固】 猎犬发现在离它9步远的前方有一只奔跑的兔子,立刻追赶,猎犬步子大.它跑5步的路程,兔子跑9步,但兔子动作快,猎犬跑2步的时间,兔子跑3步,猎犬至少跑多少步才能追上兔子?【考点】行程问题之猎狗追兔 【难度】3星 【题型】解答【解析】 狗5步=兔子9步,步幅之比=9:5;狗2步时间=兔子3步时间,步频之比=2:3;则速度之比是 9×2:5×3=6:5;这个9步是指狗的9步距离。
猎狗追兔问题教学目标1.通过本讲学习要学生学会对行程问题中单位进行统一;2.追及问题在分数应用题的理解与应用;3.能够理解比例及相关知识的初步引入;4.解题中追及问题公式、比例(或份数)等知识点的结合;5.统一及转化思想的应用。
知识精讲一、猎狗追兔的出题背景猎狗追兔是奥数中行程问题的一种,它与一般的行程问题有着某种相通性。
解题关键:行程单位要统一是猎狗追兔的解题关键。
通常我们遇到的题给的都是通用单位,如米、公里等等,这类题中会涉及狗步与兔步两个不同的单位,关键就在于将这两者统一,作行程问题最好能够脱离题海,要多注意总结,体会思想方法!很多看似无关的题目,实质思想是相通的!二、猎狗追兔问题问题叙述:兔子动作快、步子小;猎狗动作慢、步子大。
通常我们遇到的行程问题给的路程都是通用单位:米或千米等,但这类题中狗步与兔步是不一样的单位,解题关键在于统一单位,然后利用追及问题公式“路程差÷速度差=追及时间”求解。
单位的统一:在猎狗追兔的问题中,狗步与兔步之间在距离上有一定关系。
例如:相同路程内,猎狗跑四步(狗步)=兔子跑七步(兔步),据此可以求出狗步与兔步的比,相同时间内(可以认为单位时间内)兔子跑3步(兔步),猎狗跑2步(狗步)进而可以求出兔子与猎狗的速度,即单位时间内分别跑多少兔步(或狗步)关键:具体是统一为狗步或兔步,要视路程差的单位而定,若路程差的单位为狗步则速度要统一为狗步,反之统一为兔步。
若路程差为米或千米,则统一成狗步或兔步都行。
【例 1】猎狗前面26步远有一只野兔,猎狗追之. 兔跑8步的时间狗跑5步,兔跑9步的距离等于狗跑4步的距离.问:兔跑多少步后被猎狗抓获?此时猎狗跑了多少步?【考点】行程问题之猎狗追兔【难度】3星【题型】解答【解析】方法一:“猎狗前面26步……”显然指的是猎狗的26步。
因为题目中出现“兔跑8步的时间……”和“兔跑9步的距离……”,8与9的最小公倍数是72,所以可以统一在“兔跑72步”这个情况下考虑.兔跑72步的时间狗跑45步,兔跑72步的距离等于狗跑32步距离,所以在兔跑72步的时间里,狗比兔多跑了45—32=13(步)的路程,这个13步是猎狗的13步. 由此推知,要追上26(狗)步,兔跑了72×(26÷13)=144(步),此时猎狗跑了5×(144÷8)=90(步).方法二:设狗跑一步为1个长度单位,则兔跑一步为49个长度单位;在相同时间内,狗的速度为515⨯=,兔的速度为432899⨯=,根据题意有3226(5)189÷-=(个单位时间).猎狗追上兔时跑了51890⨯=(个单位长度),所以狗跑了90190÷=(步),此时兔跑了3218649⨯=(个单位长度),故兔跑了4641449÷=(步).方法三:统一为“兔跑72步”的情况:兔跑72步的时间里狗比兔多跑了594813⨯-⨯=(步)的路程,这里的步是狗步.由此推知,要追上26狗步,兔跑了72(2613)144⨯÷=(步),此时猎狗跑了5(1448)90⨯÷=(步).【答案】90步【巩固】猎犬发现在离它9步远的前方有一只奔跑的兔子,立刻追赶,猎犬步子大.它跑5步的路程,兔子跑9步,但兔子动作快,猎犬跑2步的时间,兔子跑3步,猎犬至少跑多少步才能追上兔子?【考点】行程问题之猎狗追兔【难度】3星【题型】解答例题精讲【解析】狗5步=兔子9步,步幅之比=9:5;狗2步时间=兔子3步时间,步频之比=2:3;则速度之比是9×2:5×3=6:5;这个9步是指狗的9步距离。
特殊行程之猎狗追兔问题
知识清单
1.基本公式
(1)追及时间=路程差÷速度差
(2)时间相等,路程和速度成正比例,即:S甲:S乙=V甲:V乙
2.基本类型
(1)统一单位,即将两种动物的步子单位统一为一种动物的步子单位,然后用路程差除以速度差得到追及时间。
(2)单位化为统一后,由于追及时间相同,可求出两种运动的速度比,进而求出路程比,再引入份数思想得到路程差的份数,最后根据要求求解。
例题1
老虎发现在它的前方有一只奔跑的小狗,马上追上去,老虎的步子大,它跑7步的路程,小狗要跑11步。
但小狗动作快,小狗跑4步的时间,老虎只能跑3步。
老虎能否追上小狗?
例题2
猎狗发现前方10米处有一只奔跑着的兔子,马上去追。
一只兔
子跑9步的距离相当于猎狗的5步;猎狗跑5步的时间兔子能跑3步。
问:猎狗追上兔子时,共跑了多少米?
例题3
一只狗追一只兔子,狗跑4步的时间兔子只跑了3步,狗跑5步与兔子跑8步的距离相等,兔子跑出34米后狗开始在后面追,问:兔子再跑出多少路程后被狗追上?。
猎狗追兔问题教学目标1.通过本讲学习要学生学会对行程问题中单位进行统一;2.追及问题在分数应用题的理解与应用;3.能够理解比例及相关知识的初步引入;4.解题中追及问题公式、比例(或份数)等知识点的结合;5.统一及转化思想的应用。
知识精讲一、猎狗追兔的出题背景猎狗追兔是奥数中行程问题的一种,它与一般的行程问题有着某种相通性。
解题关键:行程单位要统一是猎狗追兔的解题关键。
通常我们遇到的题给的都是通用单位,如米、公里等等,这类题中会涉及狗步与兔步两个不同的单位,关键就在于将这两者统一,作行程问题最好能够脱离题海,要多注意总结,体会思想方法!很多看似无关的题目,实质思想是相通的!二、猎狗追兔问题问题叙述:兔子动作快、步子小;猎狗动作慢、步子大。
通常我们遇到的行程问题给的路程都是通用单位:米或千米等,但这类题中狗步与兔步是不一样的单位,解题关键在于统一单位,然后利用追及问题公式“路程差÷速度差=追及时间”求解。
单位的统一:在猎狗追兔的问题中,狗步与兔步之间在距离上有一定关系。
例如:相同路程内,猎狗跑四步(狗步)=兔子跑七步(兔步),据此可以求出狗步与兔步的比,相同时间内(可以认为单位时间内)兔子跑3步(兔步),猎狗跑2步(狗步)进而可以求出兔子与猎狗的速度,即单位时间内分别跑多少兔步(或狗步)关键:具体是统一为狗步或兔步,要视路程差的单位而定,若路程差的单位为狗步则速度要统一为狗步,反之统一为兔步。
若路程差为米或千米,则统一成狗步或兔步都行。
例题精讲【例1】猎狗前面26步远有一只野兔,猎狗追之.兔跑8步的时间狗跑5步,兔跑9步的距离等于狗跑4步的距离.问:兔跑多少步后被猎狗抓获?此时猎狗跑了多少步?【考点】行程问题之猎狗追兔【难度】3星【题型】解答【解析】方法一:“猎狗前面26步……”显然指的是猎狗的26步。
因为题目中出现“兔跑8步的时间……”和“兔跑9步的距离……”,8与9的最小公倍数是72,所以可以统一在“兔跑72步”这个情况下考虑.兔跑72步的时间狗跑45步,兔跑72步的距离等于狗跑32步距离,所以在兔跑72步的时间里,狗比兔多跑了45—方法二:设狗跑一步为1 个长度单位,则兔跑一步为个长度单位;在相同时间内,狗的速 ,根据题意有 26 ÷ (5 - ) = 18 (个单位时间).猎狗追 0 0 ⨯18 = 64 (个单位长度),故兔跑了 64 ÷ = 144 (步).“32=13(步)的路程,这个 13 步是猎狗的 13 步. 由此推知,要追上 26(狗)步,兔跑 了 72×(26÷13)=144(步),此时猎狗跑了 5×(144÷8)=90(步).49度为 5 ⨯ 1 = 5 ,兔的速度为 8 ⨯ 4 32 32=9 9 9上 兔 时 跑 了 5 ⨯ 1 8= 9 ( 个 单 位 长 度 ) , 所 以 狗 跑 了 9 0÷ 1= 9 ( 步 ) , 此 时 兔 跑 了3294 9方法三:统一为“兔跑 72 步”的情况:兔跑 72 步的时间里狗比兔多跑了 5 ⨯ 9 - 4 ⨯ 8 = 13 (步) 的路程,这里的步是狗步.由此推知,要追上 26 狗步,兔跑了 72 ⨯ (26 ÷ 13) = 144 (步),此 时猎狗跑了 5 ⨯ (144 ÷ 8) = 90 (步). 【答案】 90 步【巩固】 猎犬发现在离它 9 步远的前方有一只奔跑的兔子,立刻追赶,猎犬步子大.它跑 5步的路程,兔子跑 9 步,但兔子动作快,猎犬跑 2 步的时间,兔子跑 3 步,猎犬至少跑 多少步才能追上兔子?【考点】行程问题之猎狗追兔 【难度】3 星 【题型】解答【解析】狗 5 步=兔子 9 步,步幅之比=9:5;狗 2 步时间=兔子 3 步时间,步频之比=2:3;则速度之比是 9×2:5×3=6:5;这个 9 步是指狗的 9 步距离。
今天早上看到一题猎犬追兔子的题,用以前常用的比例法去秒杀,怎么也杀不出答案,后来仔细研究了一下,发现这题跟平常在做的题有一些区别,写出来大家一起看一下猎犬发现在离它10米远的前方有一只奔跑着的野兔,马上紧追上去,猎犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的动作快,猎犬跑2步的时间,兔子却要跑3步。
猎犬至少跑多少米才能追上兔子?--------------------------------------------------------------------------------------------这是常见的那题方法一:设猎犬跑5步的路程(兔子9步)为1米,猎犬跑2步的时间(兔子3步)的时间为1秒S犬=1/5(米/步),S兔=1/9(米/步)T犬=1/2(秒/步),T兔=1/3(秒/步)V犬=2/5(米/秒),V兔=1/3(米/秒)句子与猎犬的速度差为2/5-1/3=1/15米追上要用时间10/(/15)=150秒狗跑S=T*V=150*2/5=60米方法二:步长比:9:5频率比:2:3速度比:18:15 (注意这里比出来是以米作为单位的,具体可以参考方法一)18:15=6:5=60:50猎人带着猎犬去打猎,发现兔子的瞬间(此时猎人、猎犬、兔子位于同一点上),猎人迟疑了一下才发出了让猎犬追捕的命令,这时兔子已经跑出了6步。
已知猎犬的步子大,它跑5步的路程,兔子要跑9步;但兔子动作快,猎犬跑2步的时间,兔子能跑3步。
那么猎犬跑多少步才能追上兔子?A. 25B. 54C. 49D. 20----------------------------------------------------------------------------------------------------------这是我早上碰到的那题,区别就是把米改成了步方法一:设猎犬跑5步的路程(兔子9步)为1米,猎犬跑2步的时间(兔子3步)的时间为1秒S犬=1/5(米/步),S兔=1/9(米/步)T犬=1/2(秒/步),T兔=1/3(秒/步)V犬=2/5(米/秒),V兔=1/3(米/秒)兔子跑6步跑动的距离:s=6*(1/9)=2/3(米)猎犬要追上这段距离需要用时:t=s/(V犬-V兔)=10(秒)10秒钟猎犬跑的步数为:10*2=20(步)方法二:也可以用比例来做步长比:9:5频率比:2:3速度比:18:15 (注意这里比出来是以米作为单位的,具体可以参考方法一)接下去,要把步换作米兔子跑6步跑动的距离:s=6*(1/9)=2/3(米) 换成2/3后,就跟第一题的方法一样了18:15=6:5=12/3:10/3=4:10/3狗要跑4米才能追上,而S犬=1/5(米/步)所以狗要跑4/(1/5)=20步掌握了这两题,以后这种类型的题就可以秒杀了。
数学实验报告—猎狗追赶兔子模型实验一.实验问题有一只猎狗在B点位置发现了一只兔子在正东北方距离它200米的地方O处,此时兔子开始以8米/秒的速度向正西北方距离为120米的洞口A全速跑去,假设猎狗在追赶兔子的时候始终朝着兔子的方向全速奔跑,用计算机仿真法等多种方法完成下面的实验:(1) 问猎狗能追上兔子的最小速度是多少?(2) 在猎狗能追上兔子的情况下,猎狗跑过的路程是多少?(3) 画出猎狗追赶兔子奔跑的曲线图。
(4) 假设在追赶过程中,当猎狗与兔子之间的距离为30米时,兔子由于害怕,奔跑的速度每秒减半,而猎狗却由于兴奋奔跑的速度每秒增加0.1倍,在这种情况下,再按前面的(1)—(3)完成实验任务。
一.问题的分析模型求解(1)求解析解有方程:{√1+p2=r dxx,p(c)=0解该变量分离方程得p+√1+p2=(xc)r, 等价地亦可转换为P -√1+p 2=−(c x )r从而可得{dy dx =12[(x c )r −(c x )r ]y (c )=01)当r<1时,方程的解为y =c 2[11+r (x c )r −11−r (c x )1−r ]+cr 1−r 2, 此为猎狗追赶兔子的路线函数。
当x=0时,猎狗追上兔子,猎狗走过的距离为 y =cr 1−r 2,追赶时间为t =y a =cr a(1−r 2)=bc(b 2−a 2).2)当r=1时,方程的解为Y=12(x 2−c 22c −c ln x c ),3)当 r>1时,方程的解为 y =c 2[11+r (x c )1+r +1r−1(c x )r−1]−cr r 2−1, (2)用MATLAB 软件求解析解在MATLAB 软件命令窗中执行命令Dsolve(‘Dy=1/2*((x/c)^r-(c/x)^r)’,’y(c)=0’,’x ’)得方程的解析解为ans=1/2*exp(-r*(log(c)-log(x)))*c^r*(1/c)^r/(r+1)*x+1/2*exp(r*(log(c)-log(x)))/((-1+r)*x-1/2*c*(-(1/c)^r*c^r+c^r*(1/c)^r*r+r+1)/(r^2-1)(3)用MATLAB 软件求数值解先生成初值问题的函数文件。
小学数学行程知识学习:猎狗追兔最佳解题方法
小学数学行程知识学习:猎狗追兔最佳解题方法猎犬发现在离它10米远的前方有一只奔跑着的野兔,马上紧追上去,猎犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的动作快,猎犬跑2步的时间,兔子却要跑3步。
猎犬至少跑多少米才能追上兔子?
这是常见的题
方法一:
设猎犬跑5步的路程(兔子9步)为1米,猎犬跑2步的时间(兔子3步)的时间为1秒
S犬=1/5(米/步),S兔=1/9(米/步)
T犬=1/2(秒/步),T兔=1/3(秒/步)
V犬=2/5(米/秒),V兔=1/3(米/秒)
句子与猎犬的速度差为2/5-1/3=1/15米
追上要用时间10/(/15)=150秒
狗跑S=T*V=150*2/5=60米
方法二:
步长比:9:5
频率比:2:3
速度比:18:15 (注意这里比出来是以米作为单位的,具体可以参考方法一)
18:15=6:5=60:50
猎人带着猎犬去打猎,发现兔子的瞬间(此时猎人、猎犬、
兔子跑6步跑动的距离:s=6*(1/9)=2/3(米) 换成2/3后,就跟第一题的方法一样了
18:15=6:5=12/3:10/3=4:10/3
狗要跑4米才能追上,而S犬=1/5(米/步)
所以狗要跑4/(1/5)=20步
掌握了这两题,以后这种类型的题就可以秒杀了。
小学数学行程知识学习:猎狗追兔习题三1.猎犬发现在离它9米远的前方有一只奔跑的兔子,立刻追赶,猎犬步子大.它跑5步的路程,兔子跑9步,但兔子动作快,猎犬跑2步的时间,兔子跑3步,猎犬至少跑多少米才能追上兔子?思路一:狗5步=兔子9步步幅之比=9:5狗2步时间=兔子3步时间步频之比=2:3则速度之比是 9×2:5×3=6:5这个9米应该是9步单位好像错了是指狗的9步距离6×9/(6-5)=54步思路二:速度=步频×步幅猎犬:兔子=2×9:3×5=18:15,18-15=3,9÷3=318×3=542.猎狗发现离它110米处有一只奔跑的兔子,马上紧追上去,猎狗跑5步的距离兔子要跑9步,猎狗跑2步的时间兔子要跑3步,问猎狗跑多远才能追上兔子?答案:设狗的步进为L1,兔子为L2,狗的跑步频率为f1,兔子为f2,显然有: L1/L2 = 9/5,f1/f2 = 2/3 又设狗的速度为v1,兔子为v2,则 v1/v2 = (L1*f1)/(L2*f2) = 6/5 设狗跑了x米追上兔子,则因为时间相等,有: x/v1 = 110/(v1-v2) 所以:x = 110*v1/(v1-v2) = 110/(1-v2/v1)=660 狗要跑660米设:猎狗跑1步的距离x米,兔子跑1步的距离y米,猎狗跑a米远才能追上兔子∵猎狗跑5步的距离兔子要跑9步∴ 5x=9y ∵猎狗跑2步的时间兔子要跑3步,而猎狗与兔子跑的时间相等∴a/2x=a-110/3y 解┌5x=9y └a/2x=a-110/3y 得(步骤略) a=660 答:猎狗跑660米远才能追上兔子。
3.猎狗前面26步远的地方有一野兔,猎狗追之。
兔跑8步的时间狗只跑5步,但兔跑9步的距离仅等于狗跑4步的距离。
问兔跑几步后,被狗抓获?答案:解法一:设兔的步长为1,则狗的步长为9/4 ,兔跑一步的时间为1,则狗跑一步的时间为8/5 。
猎狗追兔问题教学目标1.通过本讲学习要学生学会对行程问题中单位进行统一;2.追及问题在分数应用题的理解与应用;3.能够理解比例及相关知识的初步引入;4.解题中追及问题公式、比例(或份数)等知识点的结合;5.统一及转化思想的应用。
知识精讲一、猎狗追兔的出题背景猎狗追兔是奥数中行程问题的一种,它与一般的行程问题有着某种相通性。
解题关键:行程单位要统一是猎狗追兔的解题关键。
通常我们遇到的题给的都是通用单位,如米、公里等等,这类题中会涉及狗步与兔步两个不同的单位,关键就在于将这两者统一,作行程问题最好能够脱离题海,要多注意总结,体会思想方法!很多看似无关的题目,实质思想是相通的!二、猎狗追兔问题问题叙述:兔子动作快、步子小;猎狗动作慢、步子大。
通常我们遇到的行程问题给的路程都是通用单位:米或千米等,但这类题中狗步与兔步是不一样的单位,解题关键在于统一单位,然后利用追及问题公式“路程差÷速度差=追及时间”求解。
单位的统一:在猎狗追兔的问题中,狗步与兔步之间在距离上有一定关系。
例如:相同路程内,猎狗跑四步(狗步)=兔子跑七步(兔步),据此可以求出狗步与兔步的比,相同时间内(可以认为单位时间内)兔子跑3步(兔步),猎狗跑2步(狗步)进而可以求出兔子与猎狗的速度,即单位时间内分别跑多少兔步(或狗步)关键:具体是统一为狗步或兔步,要视路程差的单位而定,若路程差的单位为狗步则速度要统一为狗步,反之统一为兔步。
若路程差为米或千米,则统一成狗步或兔步都行。
例题精讲【例 1】猎狗前面26步远有一只野兔,猎狗追之. 兔跑8步的时间狗跑5步,兔跑9步的距离等于狗跑4步的距离.问:兔跑多少步后被猎狗抓获?此时猎狗跑了多少步?【考点】行程问题之猎狗追兔【难度】3星【题型】解答【解析】方法一:“猎狗前面26步……”显然指的是猎狗的26步。
因为题目中出现“兔跑8步的时间……”和“兔跑9步的距离……”,8与9的最小公倍数是72,所以可以统一在“兔跑72步”这个情况下考虑.兔跑72步的时间狗跑45步,兔跑72步的距离等于狗跑32步距离,所以在兔跑72步的时间里,狗比兔多跑了45—32=13(步)的路程,这个13步是猎狗的13步. 由此推知,要追上26(狗)步,兔跑了72×(26÷13)=144(步),此时猎狗跑了5×(144÷8)=90(步). 方法二:设狗跑一步为1个长度单位,则兔跑一步为49个长度单位;在相同时间内,狗的速度为515⨯=,兔的速度为432899⨯=,根据题意有3226(5)189÷-=(个单位时间).猎狗追上兔时跑了51890⨯=(个单位长度),所以狗跑了90190÷=(步),此时兔跑了3218649⨯=(个单位长度),故兔跑了4641449÷=(步). 方法三:统一为“兔跑72步”的情况:兔跑72步的时间里狗比兔多跑了594813⨯-⨯=(步)的路程,这里的步是狗步.由此推知,要追上26狗步,兔跑了72(2613)144⨯÷=(步),此时猎狗跑了5(1448)90⨯÷=(步).【答案】90步【巩固】 猎犬发现在离它9步远的前方有一只奔跑的兔子,立刻追赶,猎犬步子大.它跑5步的路程,兔子跑9步,但兔子动作快,猎犬跑2步的时间,兔子跑3步,猎犬至少跑多少步才能追上兔子?【考点】行程问题之猎狗追兔 【难度】3星 【题型】解答【解析】 狗5步=兔子9步,步幅之比=9:5;狗2步时间=兔子3步时间,步频之比=2:3;则速度之比是 9×2:5×3=6:5;这个9步是指狗的9步距离。
郭瑞特老师详解猎狗追兔问题
1,一只猎狗正在追赶前方20米处的兔子,已知狗一跳前进3米,兔子一跳前进2.1米,狗跳3次的时间兔子可以跳4次,问:兔子跑出多远将被猎狗追上?
2,猎狗前面26步远有一只野兔,猎狗追之,兔跑8步的时间狗跑5步,兔跑9步的距离等于狗跑4步的距离,问:兔跑多少步后被猎狗抓获?此时猎狗跑了多少米?
3,野兔逃出80步后猎狗才开始追,野兔跑7步的路程猎狗只需跑3步,野兔跑9步的时间猎狗只能跑5步,问:猎狗至少跑多少步才能追上野兔?
答案:
1.狗跳3次的时间兔子可以跳4次,设都等于一秒
则狗速度为9米每秒,兔速度为8.4米每秒
用时20/(9-8.4)秒时间追上
狗跑了9*20/(9-8.4)=300米。
实验三实验问题:如图所示,有一个猎狗在B 点位置发现了一只兔子正东北方距离它200米的地方O 处,此时兔子开始一8米/秒的速度正西北方距离位120米的洞口A 全速跑去,假设猎狗在追逐兔子的时候始终朝着兔子的方向全速奔跑,,按要求完成下面的实验:(1) 问猎狗能追上兔子的最小速度是多少?(2) 在猎狗能追上兔子的情况下,猎狗跑过的路程是多少?(3) 画出猎狗追赶兔子奔跑的曲线图。
(4) 假设在追赶过程中,当猎狗与兔子之间的距离为30米时,兔子由于害怕, 奔跑的速度每秒减半,而猎狗却由于兴奋奔跑的速度每秒增加0.1倍,在这种情况下,再按前面的(1)—(3)完成实验任务。
问题分析:此题是以缉私船追赶走私船为背景的一道数学追击问题。
理论基础:设t 时刻狗的位置: ,兔子的位置是:(k x ,k y )追赶方向可用方向余弦表示为:22)()(cos k k k k k k k y y x x x x -+--=α),(k k y x22)()(sin k k k k k k k y y x y y x -+--=α取时间步长为△t ,则在t+△t 时,狗的位置),(11++k k y x ,可表示为:之后比较追击点的纵坐标与兔子洞的纵坐标,以判断是否可以追上。
在第一问中,利用狗的速度的循环,以是否能在规定范围内追击到为限制条件,找出能追击到的最小速度,作为狗的最小速度。
在循环的过程中,避免超出界限而造成无限循环。
运用了if 语句,对是否可以追击到进行了选择,以达到预期的筛选目标。
程序设计流程图:⑴.建立狗与兔子的横纵坐标的数组对兔子和狗的坐标赋初值并赋值变量按照狗速度的可能值设定循环范围循环的条件(即追击住的条件)按照数学理论基础编写循环内容判断是否能在入洞追击住①是,则退出循环,此时的速度即为狗的最小速度②否,速度递加,再次进行循环输出狗的最小速度 ⑵输入狗的速度对坐标以及一些重要的变量进行初始化赋值进入循环,循环的条件是是否追击上兔子并且循环中追击的纵坐标不超过兔子洞的纵坐标按照数学理论基础编写循环内容循环结束if 语句判断追击情况①追击过程中追击的纵坐标超过兔子洞的纵坐标,说明在规定距离没有追上,则输出速度太小②追击点的纵坐标不超过兔子洞的纵坐标,说明在规定距离内兔子被追到了,则输∆≈∆=-+,cos 1k k k k t b x x x αk k k k t b y y y αsin 1∆≈∆=-+出追击时间与兔子的逃跑路程⑶根据上面运算时的得到的四个数组,可以画出追击图来程序内容:第一问:a=8;dogxa=[];cabbitxa=[];dogya=[];cabbitya=[];d=1;dogx=-100*sqrt(2);dogy=-100*sqrt(2);cabbitx=0;cabbity=0;t=0;dt=0.01;for b=10:0.5:40dogx=-100*sqrt(2);dogy=-100*sqrt(2);cabbitx=0;cabbity=0;t=0;while(sqrt((dogx-cabbitx)^2+(dogy-cabbity)^2)>d&cabbity<200)t=t+dt;dogx=dogx+b*dt*(cabbitx-dogx)/sqrt((dogx-cabbitx)^2+(dogy -cabbity)^2);dogy=dogy+b*dt*(cabbity-dogy)/sqrt((dogx-cabbitx)^2+(dogy -cabbity)^2);cabbitx=-a*cos(pi/4)*t;cabbity=a*sin(pi/4)*t;endif cabbity<=60*sqrt(2)breakendendfprintf('the minspeed of dog id:%2f',b);第二问:a=8;b=17;d=0.1;dogxb=[];cabbitxb=[];dogyb=[];cabbityb=[];dogx=-100*sqrt(2);dogy=-100*sqrt(2);cabbitx=0;cabbity=0;t=0;dt=0.01;s=0;while(sqrt((dogx-cabbitx)^2+(dogy-cabbity)^2)>d)t=t+dt;dogx0=dogx;dogy0=dogy;dogx=dogx+b*dt*(cabbitx-dogx)/sqrt((cabbitx-dogx)^2+(cabbity-do gy)^2);dogxb=[dogxb,dogx];dogy=dogy+b*dt*(cabbity-dogy)/sqrt((cabbitx-dogx)^2+(cabbity-do gy)^2);dogyb=[dogyb,dogy];cabbitx=-a*cos(pi/4)*t;cabbity=a*sin(pi/4)*t;cabbitxb=[cabbitxb,cabbitx];cabbityb=[cabbityb,cabbity];s=s+sqrt((dogx0-dogx)^2+(dogy0-dogy)^2);endfprintf('the length dog run is:%.1f',s);第三问:plot(dogxb,dogyb,cabbitxb,cabbityb,'*')第四问:①a=8;dogxa=[];cabbitxa=[];dogya=[];cabbitya=[];d=1;dogx=-100*sqrt(2);dogy=-100*sqrt(2);cabbitx=0;cabbity=0;t=0;dt=0.01;for b=8:0.5:40dogx=-100*sqrt(2);dogy=-100*sqrt(2);cabbitx=0;cabbity=0; t=0;c=b;a=8;while(sqrt((dogx-cabbitx)^2+(dogy-cabbity)^2)>d&cabbity<60*sqrt (2))if(sqrt((dogx-cabbitx)^2+(dogy-cabbity)^2)<=30)b=b*1.1^dt;a=a*0.5^dt;endt=t+dt;dogx=dogx+b*dt*(cabbitx-dogx)/sqrt((dogx-cabbitx)^2+(dogy-cabbi ty)^2);dogy=dogy+b*dt*(cabbity-dogy)/sqrt((dogx-cabbitx)^2+(dogy-cabbi ty)^2);cabbitx=cabbitx-a*dt*cos(pi/4);cabbity=cabbity+a*sin(pi/4)*dt;;endif (cabbity<=60*sqrt(2))b=c;breakendendfprintf('the minspeed of dog is:%2f',b);②a=8;b=15.5;dogxb=[];cabbitxb=[];dogyb=[];cabbityb=[];dogx=-100*sqrt(2);dogy=-100*sqrt(2);cabbitx=0;cabbity=0;t=0;dt=0.01;s=0;while(sqrt((dogx-cabbitx)^2+(dogy-cabbity)^2)>d)t=t+dt;if(sqrt((dogx-cabbitx)^2+(dogy-cabbity)^2)<=30)b=b*1.1^dt;a=a*0.5^dtenddogx0=dogx;dogy0=dogy;dogx=dogx+b*dt*(cabbitx-dogx)/sqrt((cabbitx-dogx)^2+(cabbity-do gy)^2);dogxb=[dogxb,dogx];dogy=dogy+b*dt*(cabbity-dogy)/sqrt((cabbitx-dogx)^2+(cabbity-dogy)^2);dogyb=[dogyb,dogy];cabbitx=cabbitx-a*dt*cos(pi/4);cabbity=cabbity+a*sin(pi/4)*dt;cabbitxb=[cabbitxb,cabbitx];cabbityb=[cabbityb,cabbity];s=s+sqrt((dogx0-dogx)^2+(dogy0-dogy)^2); endfprintf('the length dog run is:%.1f',s);③plot(dogxb,dogyb,cabbitxb,cabbityb,'*')结果:第一问:第二问:第三问:第四问:结果分析与结论:狗的最小速度为17米/秒,路程为110.5m。
猎狗追兔问题教学目标1.通过本讲学习要学生学会对行程问题中单位进行统一;2.追及问题在分数应用题的理解与应用;3.能够理解比例及相关知识的初步引入;4.解题中追及问题公式、比例(或份数)等知识点的结合;5.统一及转化思想的应用。
知识精讲一、猎狗追兔的出题背景猎狗追兔是奥数中行程问题的一种,它与一般的行程问题有着某种相通性。
解题关键:行程单位要统一是猎狗追兔的解题关键。
通常我们遇到的题给的都是通用单位,如米、公里等等,这类题中会涉及狗步与兔步两个不同的单位,关键就在于将这两者统一,作行程问题最好能够脱离题海,要多注意总结,体会思想方法!很多看似无关的题目,实质思想是相通的!二、猎狗追兔问题问题叙述:兔子动作快、步子小;猎狗动作慢、步子大。
通常我们遇到的行程问题给的路程都是通用单位:米或千米等,但这类题中狗步与兔步是不一样的单位,解题关键在于统一单位,然后利用追及问题公式“路程差÷速度差=追及时间”求解。
单位的统一:在猎狗追兔的问题中,狗步与兔步之间在距离上有一定关系。
例如:相同路程内,猎狗跑四步(狗步)=兔子跑七步(兔步),据此可以求出狗步与兔步的比,相同时间内(可以认为单位时间内)兔子跑3步(兔步),猎狗跑2步(狗步)进而可以求出兔子与猎狗的速度,即单位时间内分别跑多少兔步(或狗步)关键:具体是统一为狗步或兔步,要视路程差的单位而定,若路程差的单位为狗步则速度要统一为狗步,反之统一为兔步。
若路程差为米或千米,则统一成狗步或兔步都行。
例题精讲【例 1】猎狗前面26步远有一只野兔,猎狗追之. 兔跑8步的时间狗跑5步,兔跑9步的距离等于狗跑4步的距离.问:兔跑多少步后被猎狗抓获?此时猎狗跑了多少步?【考点】行程问题之猎狗追兔【难度】3星【题型】解答【解析】方法一:“猎狗前面26步……”显然指的是猎狗的26步。
因为题目中出现“兔跑8步的时间……”和“兔跑9步的距离……”,8与9的最小公倍数是72,所以可以统一在“兔跑72步”这个情况下考虑.兔跑72步的时间狗跑45步,兔跑72步的距离等于狗跑32步距离,所以在兔跑72步的时间里,狗比兔多跑了45—32=13(步)的路程,这个13步是猎狗的13步. 由此推知,要追上26(狗)步,兔跑了72×(26÷13)=144(步),此时猎狗跑了5×(144÷8)=90(步).方法二:设狗跑一步为1个长度单位,则兔跑一步为49个长度单位;在相同时间内,狗的速度为515⨯=,兔的速度为432899⨯=,根据题意有3226(5)189÷-=(个单位时间).猎狗追上兔时跑了51890⨯=(个单位长度),所以狗跑了90190÷=(步),此时兔跑了3218649⨯=(个单位长度),故兔跑了4641449÷=(步).方法三:统一为“兔跑72步”的情况:兔跑72步的时间里狗比兔多跑了594813⨯-⨯=(步)的路程,这里的步是狗步.由此推知,要追上26狗步,兔跑了72(2613)144⨯÷=(步),此时猎狗跑了5(1448)90⨯÷=(步).【答案】90步【巩固】猎犬发现在离它9步远的前方有一只奔跑的兔子,立刻追赶,猎犬步子大.它跑5步的路程,兔子跑9步,但兔子动作快,猎犬跑2步的时间,兔子跑3步,猎犬至少跑多少步才能追上兔子?【考点】行程问题之猎狗追兔【难度】3星【题型】解答【解析】狗5步=兔子9步,步幅之比=9:5;狗2步时间=兔子3步时间,步频之比=2:3;则速度之比是9×2:5×3=6:5;这个9步是指狗的9步距离。
6×9/(6-5)=54步。
【答案】54步【例 2】野兔逃出80步后猎狗才开始追,野兔跑7步的路程猎狗只需跑3步,野兔跑9步的时间猎狗只能跑5步.问:猎狗至少跑多少步才能追上野兔?【考点】行程问题之猎狗追兔【难度】3星【题型】解答【解析】“野兔跑7步的路程猎狗只需跑3步,野兔跑9步的时间猎狗只能跑5步.”讲条件转化为:“野兔跑35步的路程猎狗只需跑15步,野兔跑27步的时间猎狗只能跑15步.”在猎狗跑15步的时间内,猎狗比野兔多跑35-27=8(兔步). 猎狗追上野兔需跑:15×(80÷8)=150(步).【答案】150步【巩固】森林里有一对兔子兄弟赛跑,弟弟先跑10步,然后哥哥开始追赶,若弟弟跑4步的时间等于哥哥跑3步的时间,哥哥跑5步的距离等于弟弟跑7步的距离,那么兔子哥哥跑__________步才能追上弟弟。
【考点】行程问题之猎狗追兔【难度】3星【题型】填空【关键词】希望杯,4年级,1试【解析】设哥哥一步跑7,那么弟弟一步跑5,那么哥哥跑21的距离,弟弟跑20,两人路程差是50,所以哥哥要跑50个21才能追上。
就是150步。
【答案】150步【巩固】一只野兔逃出100步后猎狗才开始追它,野兔跑8步的路程猎狗只需跑3步,猎狗跑4步的时间兔子能跑9步,猎狗至少要跑步才能追上野兔。
【考点】行程问题之猎狗追兔【难度】3星【题型】解答【解析】240步【答案】240步【巩固】猎狗追野兔。
在相等的时间里,猎狗跳6次,野兔跳7次;而猎狗跳4次的距离等于野兔跳5次的距离。
当猎狗发现野兔时,野兔已跳出离猎狗10步远的距离。
问猎狗跳出多少次以后才能追上野兔?【考点】行程问题之猎狗追兔【难度】3星【题型】解答【解析】120次【巩固】一只野兔逃出80步后猎狗才追它,野兔跑8步的路程猎狗只需跑3步,猎狗跑4步的时间兔子能跑9步。
猎狗至少要跑多少步才能追上野兔?【考点】行程问题之猎狗追兔【难度】3星【题型】解答【解析】猎狗每步相当于8833÷=(兔步),猎狗的速度比兔子快85(49)4312⨯-÷=(兔步),58019212÷=(步)即猎狗至少要跑192步才能追上兔子。
【答案】192步【例 3】狼和狗是死对头,见面就要相互撕咬.一天,它们同时发现了对方,它们之间的距离狼要跑568步.如果狼跑9步的时间狗跑7步,狼跑5步的距离等于狗跑4步的距离,那么从它们同时奔向对方到相遇,狗跑了多少步?狼跑了多少步?【考点】行程问题之猎狗追兔【难度】3星【题型】解答【解析】由题目条件知,狼跑45步的时间狗跑35步,狼跑45步的距离等于狗跑36步的距离,也就是说,在相同的时间里,狼跑狗的36步,狗跑35步,所以,狼与狗的速度比是36:35.相遇时,狼跑了365682883635⨯=+(步),狗跑了28897224÷⨯=(步).【答案】224步【巩固】小明家的猫和狗是死对头,见面就要相互打架。
一天,它们同时发现了对方,它们之间的距离猫要跑260步.如果猫跑9步的时间狗跑5步,猫跑5步的距离等于狗跑3步的距离,那么从它们同时奔向对方到相遇,猫跑了多少步?【考点】行程问题之猎狗追兔【难度】3星【题型】解答【解析】135步【答案】135步【例 4】猎狗追赶前方15米处的野兔.猎狗跑3步的时间野兔跑5步,猎狗跑4步的距离野兔要跑7步.猎狗至少跑出多少米才能追上野兔?【考点】行程问题之猎狗追兔【难度】3星【题型】解答【解析】“猎狗跑3步的时间野兔跑5步,猎狗跑4步的距离野兔要跑7步.”将条件转化为:“猎狗跑12步的时间野兔跑20步,猎狗跑12步的距离野兔要跑21步.”我们也就可以这样认为:在一个单位时间内(猎狗跑12步的时间),猎狗跑了野兔的21步,野兔跑了20步,速度差为野兔的1步.追击时间=15÷野兔的1步,所以猎狗追击的距离=(15÷野兔的1步)×野兔的21步=315(米). 【答案】315米【巩固】猎狗追赶前方30米处的野兔.猎狗步子大,它跑4步的路程兔子要跑7步,但是兔子动作快,猎狗跑3步的时间兔子能跑4步.猎狗至少跑出多远才能追上野兔?【考点】行程问题之猎狗追兔【难度】3星【题型】解答【解析】猎狗跑12步的路程兔子要跑21步,猎狗跑12步的时间兔子要跑16步,在猎狗跑12步这个单位时间内,两者的速度差为兔子的5步,所以猎狗追击距离为:30÷5×21=126(米).【答案】126米【巩固】一只猎狗正在追赶前方20米处的兔子,已知狗一跳前进3米,兔子一跳前进2.1米,狗跳3次的时间兔子可以跳4次。
问:兔子跑出多远将被猎狗追上?【考点】行程问题之猎狗追兔【难度】3星【题型】解答【解析】在一个单位时间里,狗跑3×3=9(米),兔子跑4×2.1=8.4(米),所以兔子跑的距离为:[20÷(9-8.4)]×8.4=280(米).【巩固】 猎狗发现在离它10米远的地方有一只奔跑着的兔子,马上紧追上去,猎狗的步子大,它跑5步的路程,兔子要跑9步。
但是兔子动作快,猎狗跑2步的时间,兔子却能跑3步。
【考点】行程问题之猎狗追兔 【难度】3星 【题型】解答【解析】 兔子9步=狗5步,兔子3步所用时间=狗2步所用时间,所以兔子的速度:狗的速度=5:6。
所以狗跑的距离=狗的速度x 追击时间=狗的速度x (相差距离:速度差)=6乘以10:(6-5)=60米。
【答案】60米【巩固】 猎人带猎狗去捕猎,发现兔子刚跑出40米,猎狗去追兔子。
已知猎狗跑2步的时间兔子跑3步,猎狗跑4步的距离与兔子跑7步的距离相等,求兔子再跑多远,猎狗可以追上它?【考点】行程问题之猎狗追兔 【难度】3星 【题型】解答【解析】 设狗跑2步的时间为1(分钟),兔跑3步的时间也为1(分钟);再设狗的步长为7(米),则兔的步长为4(米),推出狗的速度是2×7=14,兔的速度是3×4=12。
用40÷(14-12)=20,20为追击时间。
再用兔的速度乘上追击时间可得兔跑的路程,即 12×20=240(米)。
【答案】240米【巩固】 猎狗发现前方150米处有一只兔子正在逃跑,拔腿就追。
兔子逃跑的速度是每秒14米,猎狗追赶的速度是每秒18米。
在兔子前方520米处是一片灌木丛,如果兔子能钻进灌木丛,猎狗就捉不到它了。
猎狗究竟能不能抓住兔子呢?【考点】行程问题之猎狗追兔 【难度】3星 【题型】解答【解析】 追不上。
【答案】追不上【例 5】 已知猫跑5步的路程与狗跑3步的路程相同;猫跑7步的路程与兔跑5步的路程相同.而猫跑3步的时间与狗跑5步的时间相同;猫跑5步的时间与兔跑7步的时间相同,猫、狗、兔沿着周长为300米的圆形跑道,同时同向同地出发.问当它们出发后第一次相遇时各跑了多少路程?【考点】行程问题之猎狗追兔 【难度】5星 【题型】解答【解析】 方法一:由题意,猫与狗的速度之比为9:25,猫与兔的速度之比为25:49.设单位时间内猫跑1米,则狗跑259米,兔跑4925米. 狗追上猫一圈需25675300194⎛⎫÷-= ⎪⎝⎭单位时间, 兔追上猫一圈需496253001252⎛⎫÷-= ⎪⎝⎭单位时间. 猫、狗、兔再次相遇的时间,应既是6754的整数倍,又是6252的整数倍. 6754与6252的最小公倍数等于两个分数中,分子的最小公倍数除以分母的最大公约数,即]()675,62567562516875,8437.5424,22⎡⎡⎤⎣===⎢⎥⎣⎦. 上式表明,经过8437.5个单位时间,猫、狗、兔第一次相遇.此时,猫跑了8437.5米,狗跑了258437.523437.59⨯=米,兔跑了498437.516537.525⨯=米. 方法二:根据题意,猫跑35步的路程与狗跑21步的路程、兔跑25步的路程相等;而猫跑15步的时间与狗跑25步、兔跑21步的时间相同. 所以猫、狗、兔的速度比为152521::352125,它们的最大公约数为()[]15,25,211525211,,35212535,21,253557⎛⎫== ⎪⨯⨯⨯⎝⎭, 即设猫的速度为151225353557÷=⨯⨯⨯,那么狗的速度为251625213557÷=⨯⨯⨯,则兔的速度为211441253557÷=⨯⨯⨯. 于是狗每跑3300(625225)4÷-=单位时追上猫; 兔每跑25300(441225)18÷-=单位时追上猫. 而[]()3,2532575,4184,182⎡⎤==⎢⎥⎣⎦,所以猫、狗、兔跑了752单位时,三者相遇. 猫跑了752258437.52⨯=米,狗跑了7562523437.52⨯=米,兔跑了7544116537.52⨯=米. 【答案】16537.5米。