生物制药 发酵工程制药
- 格式:ppt
- 大小:1.25 MB
- 文档页数:81
生物制药和制药工程的区别有哪些生物制药和制药工程的区别生物制药与制药工程的区别,在于两者的研究方向不同。
生物工程,一般认为是以生物学(特别是其中的微生物学、遗传学、生物化学和细胞学)的理论和技术为基础,结合化工、机械、电子计算机等现代工程技术,充分运用分子生物学的最新成就,自觉地操纵遗传物质,定向地改造生物或其功能,短期内创造出具有超远缘性状的新物种,再通过合适的生物反应器对这类“工程菌”或“工程细胞株”进行大规模的培养,以生产大量有用代谢产物或发挥它们独特生理功能一门新兴技术。
生物工程包括五大工程,即遗传工程(基因工程)、细胞工程、微生物工程(发酵工程)、酶工程(生化工程)和生物反应器工程。
制药工程主要指能在医药、农药、精细化工和生物化工等部门从事医药产品的生产、科技开发、应用研究和经营管理等方面的高级工程技术人才。
生物制药和制药工程的就业前景生物制药专业前景:生物制药专业特色是生物制药已成为国际和国内增长最快的行业之一,21世纪是生物技术的世纪,生物制药已成为侦破中国高新技术发展的重点。
在全球金融危机的阴影下,新兴国家医药市场却表现得风光这边独好,中国作为“金砖四国”之一,生物制药市场也分外亮丽。
国家发展改革委安排新增中央投资4.42亿元,支持生物医药、生物育种、生物医学工程高技术产业化专项以及国家生物产业基地公共服务条件建设专项的建设。
此举为今后生物制药的发展注入了新的动力。
虽然经过多年的发展,中国生物医药产业已经有了一个良好的基础,但是与世界先进国家的生物医药产业相比,中国生物医药产业还存在不少差距。
中国生物医药产业的发展从科研到产业化,将是一条艰难的路。
从国家到地方各级政府不断加大力度支持生物医药产业的发展。
到_年,中国将基本实现工业化,建成完善的社会主义市场经济体制和更具活力、更加开放的经济体制。
同时社会保障体系比较健全,将形成比较完善的现代医疗卫生体系。
这两个因素将为生物医药产业创造巨大的市场空间和良好的发展环境。
生物技术制药复习知识点第一章绪论1.生物制药的研究内容包括基因工程制药, 细胞工程制药, 酶工程制药和发酵工程制药。
2.生物技术制药, 是采用现代生物技术人为地创造一些条件, 借助某些微生物、植物或动物来生产所需的医药品。
3.生物技术药物, 是采用DNA 重组技术、单克隆抗体技术或其它生物新技术研制的蛋白质、治疗性抗体或核酸类药物。
4.生物药物, 指包括生物制品在内的生物体的初级和次级代谢产物或生物体的某一组成部分, 甚至整个生物体用作诊断和治疗的医药品。
5.现代生物药物四种类型: ①应用DNA重组技术制造的基因重组多肽、蛋白质类治疗剂。
②基因药物, 如基因治疗剂、基因疫苗、反义药物和核酶等。
③来自动植物和微生物的天然生物药物。
④合成与部分合成的生物药物。
6.生物药物按功能用途分为三类: 治疗药物, 预防药物和诊断药物。
7.生物技术药物的特性:分子结构复杂, 具种属特异性, 治疗针对性强、疗效高, 稳定性差, 基因稳定性, 免疫原性、重复给药会产生抗体, 体内半衰期短, 受体效应, 多效性和网络效应, 质量控制的特殊性, 生产系统的复杂性。
8.生物技术制药特征:高技术, 高投入, 长周期, 高风险, 高收益。
9.基因诊断: 指采用分子生物学的方法在DNA水平或RNA水平对基因的结构和功能进行分析从而对特定的疾病进行诊断。
第二章基因工程制药1.利用基因工程技术生产药品的优点: (1)可以大量生产过去难以获得的生理活性蛋白和多肽(如胰岛素、干扰素、细胞因子等), 为临床使用提供有效的保障;(2)可以提供足够数量的生理活性物质, 以便对其生理、生化和结构进行深入的研究, 从而扩大这些物质的应用范围;(3)利用基因工程技术可以发现、挖掘更多的内源性生理活性物质;(4)内源性生理活性物质在作为药物使用时存在的不足之处, 可通过基因工程和蛋白质工程进行改造和去除;(5)利用基因工程技术可获得新型化合物, 扩大药物筛选来源。
生物制药发酵工程药物制造的一般流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!生物制药发酵工程在药物制造中的一般流程生物制药发酵工程是现代药物制造领域的重要技术,它利用微生物、动植物细胞或者其酶系统,在控制的条件下进行大规模培养,以生产药物或药物中间体。
生物技术制药复习知识点第一章绪论1.生物制药的研究内容包括基因工程制药,细胞工程制药,酶工程制药和发酵工程制药。
2.生物技术制药,是采用现代生物技术人为地创造一些条件,借助某些微生物、植物或动物来生产所需的医药品。
3.生物技术药物,是采用DNA 重组技术、单克隆抗体技术或其它生物新技术研制的蛋白质、治疗性抗体或核酸类药物。
4.生物药物,指包括生物制品在内的生物体的初级和次级代谢产物或生物体的某一组成部分,甚至整个生物体用作诊断和治疗的医药品。
5.现代生物药物四种类型:①应用DNA重组技术制造的基因重组多肽、蛋白质类治疗剂。
②基因药物,如基因治疗剂、基因疫苗、反义药物和核酶等。
③来自动植物和微生物的天然生物药物。
④合成与部分合成的生物药物。
6.生物药物按功能用途分为三类:治疗药物,预防药物和诊断药物。
7.生物技术药物的特性:分子结构复杂,具种属特异性,治疗针对性强、疗效高,稳定性差,基因稳定性,免疫原性、重复给药会产生抗体,体内半衰期短,受体效应,多效性和网络效应,质量控制的特殊性,生产系统的复杂性。
8.生物技术制药特征:高技术,高投入,长周期,高风险,高收益。
9.基因诊断:指采用分子生物学的方法在DNA水平或RNA水平对基因的结构和功能进行分析从而对特定的疾病进行诊断。
第二章基因工程制药1.利用基因工程技术生产药品的优点:(1)可以大量生产过去难以获得的生理活性蛋白和多肽(如胰岛素、干扰素、细胞因子等),为临床使用提供有效的保障;(2)可以提供足够数量的生理活性物质,以便对其生理、生化和结构进行深入的研究,从而扩大这些物质的应用范围;(3)利用基因工程技术可以发现、挖掘更多的内源性生理活性物质;(4)内源性生理活性物质在作为药物使用时存在的不足之处,可通过基因工程和蛋白质工程进行改造和去除;(5)利用基因工程技术可获得新型化合物,扩大药物筛选来源。
2.基因工程技术就是将目的基因插入载体,拼接后转入新的宿主细胞,构建工程菌(或细胞),实现遗传物质的重新组合,并使目的基因在工程菌内进行复制和表达的技术。
生物发酵工程在制药中的应用生物发酵工程是利用微生物代谢产生的基于生物化学反应来制造化学产品的过程。
这是一种应用广泛的技术,在制药业中应用较多。
生物发酵工程可以将微生物的天然代谢能力转化为制造药物或其他生物化学产品的能力。
本文将详细探讨生物发酵工程在制药中的应用。
一、利用发酵生产药剂生物发酵工程最常见的应用之一是制造药剂。
通过下列步骤可以制造出许多种不同的药物:1.获得微生物:制造药物的第一步是获得适当的微生物。
对于某些药物,采用常规的微生物如大肠杆菌或酵母菌就可以了。
但是,对于其他药物如抗生素,可能需要获得天然源微生物。
2.培养微生物:成功获得适当微生物之后,必须选择合适的培养条件来生长它们。
这些条件可能是液体培养基中的营养物和温度。
3.收获发酵产物:培养微生物并鼓励其发酵后,药品通常生成在液体或固体培养基中。
文献报道了多种方法来收获这些产物,其中最流行的方法是废除悬液物(如细菌)和培养基液(用于生长微生物)之间的界面。
为达到这个目标,可能需要使用离心或过滤。
4.纯化产物:最后一步是纯化药剂,以达到所需的纯度和生物活性。
该步骤通常涉及离心、过滤或电泳等方法,这些方法可以分离出目标药物,去除杂质。
二、应用生物反应器生物反应器是在控制条件下执行生物发酵的设备。
生物反应器已经有效地应用于制造药物。
在这种反应器中,生物材料在给定的环境下分解成更有用的产物。
生物反应器通常需要严格的控制,以保持所需的生长条件,达到预期的生产率和产物纯度。
这些条件包括光照,温度,压力和氧气浓度等。
三、将生物发酵技术与传统制药技术相结合除了单独使用生物发酵技术外,还有许多制药公司将传统制药技术与生物发酵工程相结合。
生物发酵技术可以为现有药品的制造提供额外的技术步骤,其中印度次枝杆菌曲霉素就是一个例子。
生物技术生产的生物制品也可以通过与小分子化学分离和精制序列、多肽抗体及类似物相结合来减少成本并增加产量。
四、生物发酵工程在制药业中的前景随着生物科技日益发展,认真研究微生物和应用生物反应器的发展速度也在不断加快。
生物制药工程的基础和应用生物制药工程的基础与应用生物制药是利用生物体系统合成、改造具有药用价值的高分子化合物,并进行制剂化,以获得安全、有效的药品的生产过程。
它与化学合成不同,能够获得更加纯净和活性更高的药品,所以生物制药已经成为当今制药工业发展的主要方向。
而新药研制面临不断增长的临床需求和欧美严格的审批制度,高成本和长周期,因此,在生物制药领域,生物工程技术的发展应用可以提高新药研究和开发的效率,是制药业长期发展的重要途径。
一、生物制药工程技术的基础发酵工程:发酵工程是生物制药工程制造的的关键步骤。
在这一流程中,我们要利用微生物(包括细菌、真菌、藻类等)进行大规模生长和分泌重要的药物蛋白。
然而,与普通的食品工艺生产相比,生物药物的研发和生产更加复杂,因为药物需要极高的纯度和高度的特异性,而且往往需要进行复杂的后处理和全面的质量控制。
另外,生物反应器的设计和优化,能够有效的影响发酵工程的效率,包括有效地控制侧底洋流和微生物的强弱。
目前,最常用的为固定床发酵反应器。
细胞培养:与发酵过程不同的是,细胞培养涉及到人体细胞的培养;由于人类神经系统的复杂性和带有个体化的特征,寻找能够更好代表患者自身特征的细胞株,是一种迫切需要解决的问题。
细胞培养技术的快速发展和繁荣,已经为生物制药领域的新药发现、基因工程引入了一种新的方向。
随着基因编辑技术、细胞培养条件和媒体优化的不断完善,增强疗效、提高药品质量已经变得更加容易。
生物信息学:生物信息学是一门学习生物和其分子信息的科学,同时也是生物制药技术的支撑科学之一。
这一学科通过计算、统计、模拟的方法,分析生物体有机大分子的结构、基因组、蛋白质组,解析差异表达基因和蛋白质的变异,从而探究各种信号通路的作用机制,为生物制药的开发和给药策略的设计提供重要依据。
二、生物制药工程的应用单抗制备:单克隆抗体是当今制药领域的一个重要的研究方向。
当一种疾病发生时,克隆抗体能够针对其发作特异性的分子和蛋白质结构,来抑制和减缓疾病的发展。
药物:预防、诊断、治疗疾病,改善生活质量和影响人体生物学进程的物质。
包括:化学药物、中药、生物药物生物药物:利用生物体、生物组织或其成分、综合应用多门学科的原理和方法进行加工、制造而成的一大类药物的总称。
包括:发酵工程制药、生化工程制药、基因工程制药、细胞工程制药、酶工程制药生物药物的分类:核酸类药物、基因重组多肽/蛋白、半合成生物药物、天然生化药物半合成生物药物:以天然生物药物为母体,经化学或生物方法进行结构修饰合成的药物;基因药物,即以DNA,RNA为基础,研究而成的基因治疗剂、基因疫苗,反义药物和核酶等生物药物的分类:天然生化药物、微生物药物、基因工程蛋白药物、核酸类药物、医学生物制品肝素是从猪粘膜中提取的一类多糖,肝素钙与小分子量肝素是肝素的系列药物,主要作为抗凝血药。
微生物药物:由微生物代谢所产生的药物以及借助微生物转化产生的用化学方法难以合成的药物或中间体。
主要包括抗生素类、氨基酸类、维生素类及酶等;抗生素:由生物(包括微生物、植物和动物)在其生命过程中所产生的一类在微量浓度下就能选择性抑制其它生物或细胞生长的生理活性物质。
核酸类药物:这类药物是以基因物质(DNA或RNA及其衍生物)作为治疗的物质基础,包括基因治疗用的重组目的DNA片段,反义RNA药物和核酶等。
生物制药发展历程:1 传统生物制药发展阶段;2 近代生物制药发展阶段;3 现代生物制药发展阶段生物制药工艺学是一门综合性应用技术科学,其研究内容包括生化制药工艺、微生物制药工艺、生物技术制药工艺、生物制品及相关的生物医药产品的生产工艺等。
生化制药:生化制药主要从动物、植物、微生物和海洋生物中提取、分离、纯化生物活性物质,加工制作成为生化药物。
生物技术制药:生物技术制药是利用现代生物技术(包括基因工程、细胞工程、酶工程、发酵工程和蛋白质工程等),生产多肽、蛋白质、酶和疫苗、抗体等。
生物制药的研究发展趋势:1.基因组学成果促进生物技术新药的研发2.蛋白质工程药物的开发3.新型疫苗的研制4.新的高效表达系统的研究与应用5.生物技术药物新剂型6.生物资源的综合利用与扩大开发7.抗生素和氨基酸的新型生产工艺8.中西结合创制新型生物药物第二章生物制药工艺技术基础生化制药技术工艺基础:1.生物原料与生物活性物质2.生物活性物质的提取3.生物活性物质的浓缩与干躁4 .生化物质的分离纯化方法从植物中提取的生物活性物质是生化制药重要来源。
生物工程技术在生物制药中的应用随着时代的发展,生物工程技术得到广泛应用,尤其是在生物制药领域中,其应用更是得到了不断的推广。
生物工程技术是指利用生物学原理和方法,进行研究、开发、设计和制造生物分子及其相关产物的一项科技。
它的应用已经带来了许多的好处,能够改变传统药物制剂的短板,大大提高药物的疗效和质量。
本文将着重介绍生物工程技术在生物制药中的应用。
一、基因重组技术基因重组技术在生物制药中的应用十分广泛。
通过改变生物体内部的某些基因结构,使得其能够产生预期的蛋白质生物制品,这是现代生物工程技术最主要的一种应用。
基因重组技术可以通过将具有特定功能的基因片段插入到宿主细胞中,使得宿主细胞能够表达目标基因,从而产生所需的蛋白生物制品。
例如,生产胰岛素、人生长激素、白细胞介素等。
同时,基于基因重组技术的蛋白质生物制品也能够显著的提高药物的质量和安全性,减少了因为使用动物组织源而可能出现的微生物感染的风险。
因此,在生物制药领域中,基因重组技术是至关重要的手段之一。
二、发酵工程技术发酵工程技术是生物制药生产中的重要手段,通过微生物在生产中的代谢活动,产生所需的目标物质。
这项技术大大提高了生物制药的产量及其质量,促进了生物制药行业的发展。
在发酵过程中,微生物菌株的筛选、发酵条件的控制以及菌体纯化等关键技术的创新,都为生物制药的生产提供了技术支持。
例如,曲霉素、青霉素等抗生素的制备、利用真菌生产免疫抑制剂等,发酵工程技术在其中都有重要的应用。
三、细胞培养技术细胞培养技术与基因重组技术紧密相连,是指将已重组的人工合成细胞系、细胞株在无菌条件下进行培养,继而得到细胞发酵产生所需要的目标生物分子。
通过不断的细胞培养,可获得体外细胞较大规格的生物制药生产,能够满足大规模生产的需求,并且减少了药物生产中由于使用人血源而可能带来的健康隐患。
目前,这项技术不仅能够对肿瘤细胞进行细胞培养,得到的重组蛋白生物制品品质高、稳定性好、副作用小。
生物技术在制药中的运用1生物技术(biotechnology)(生物工程)的理念生物技术(biotechnology),也被人们称作为生物工程,以现代生命科学为核心基础,结合其他类别的基础科学,并采用极为先进的科学技术手段,根据计划,对生物体进行改造或者是加工生物原料,进而生产人们所需要的产品。
生物技术(biotechnology),利用动植物体以及微生物对物质原料进行加工,并生产处相关产品,为社会服务。
其主要分成现代生物技术以及发酵技术两大类别。
生物技术可以说是,现代生物学的发展以及和相关科学融合的产物,以DNA重组技术为根本,并包括了细胞工程、生化工程以及微生物工程和生物制品等。
2生物技术在制药中的应用2.1细胞工程制药就目前我国的生物技术(biotechnology)来讲,有关于细胞工程还没有一个统一的定义以及范围,通常认为,细胞工程就是根据分子生物学和细胞生物学的原理,并采用细胞的培养技术,对细胞进行水平的遗传操作。
细胞工程大致上可以分为细胞质工程以及染色体工程和细胞融合工程这三种。
而归根结底,细胞工程就是利用动物以及植物的细胞培养进而生产药物的技术。
例如,利用动物细胞培养可身缠人类生理活性因子以及苗和单克隆抗体等产品;再如利用植物细胞培养可以大量的生产经济价值极高的植物有效成分,提取药材精华,也可以生产人类活性因子以及苗等重新组合DNA产品。
值得注意的是植物细胞培养并不会受到客观的地理以及环境的影响,次级代谢的产物在产量上比较高。
例如,人身皂苷在该组织培养中含量占干重的27%,而全株只有可怜的1.5%.现在不少药用植物,如三七和人参等的培养已经有了系统化的研究,并且充分优化了培养条件。
值得庆贺的是人参细胞培养物的化学成分以及药理活性,相比于种植人参并没有明显的差异。
关于细胞工程制药技术,在国外一些相关的细胞工程制药已经达到了商业化的生产水平,例如美国的Phyto公司的紫杉醇的生产商已经达到了75000L的生产规模,而日本植物细胞培养反应器的规模达到了4000L~20000L的惊人地步。
发酵工程在医药领域的应用1. 引言嘿,朋友们,今天咱们聊聊一个听起来可能有点“高大上”的话题——发酵工程!别担心,咱不讲那些晦涩难懂的理论,而是把它说得轻松又有趣。
你知道吗,其实发酵工程可不仅仅是用来做酸奶和啤酒的,它在医药领域的应用简直就像是“神兵天降”,帮助我们攻克不少医疗难题。
2. 发酵工程的基础2.1 什么是发酵工程?首先,咱得弄清楚发酵工程到底是个啥。
简单来说,就是利用微生物(比如细菌、酵母等)在缺氧的环境中,把某些原料转化成我们想要的产物。
听起来是不是很神奇?就像一位厨师,把简单的食材变成一顿丰盛的美餐一样。
它可以用来生产各种各样的药物、维生素,甚至疫苗。
2.2 发酵的“神奇之处”你可别小看发酵的力量!发酵不仅能增加药物的产量,还能改善药物的效果。
很多新药的开发过程中,发酵技术都发挥了不可或缺的作用。
就像《西游记》里的孙悟空,个个都说他是个“齐天大圣”,但要真打起来,他的金箍棒才是他最大的法宝。
发酵就是药物开发中的“金箍棒”!3. 医药领域的实际应用3.1 抗生素的生产说到发酵工程,首先就得提提抗生素。
大家都知道青霉素吧?它可是用发酵法生产的!没错,当年亚历山大·弗莱明在实验室里发现了青霉菌,后来通过发酵技术大规模生产青霉素,这才让我们在抗击细菌感染上迎来了革命性的变化。
想想看,如果没有青霉素,我们可能在打喷嚏的时候就要小心翼翼,生怕感染上什么可怕的细菌。
3.2 生物制药的崛起再来聊聊生物制药。
随着科技的发展,发酵技术不仅仅局限于传统的药物生产,现代生物制药如胰岛素、单克隆抗体等,都离不开发酵工程的支持。
这些药物的背后,都是微生物在辛勤工作,像是在进行一场看不见的“生产赛”。
不夸张地说,这简直就是医疗界的“黑科技”!4. 发酵工程的未来4.1 持续创新未来,发酵工程在医药领域的应用只会越来越广泛。
科学家们正在不断研究新的微生物,以期能够生产出更多种类的药物。
就像玩拼图,一块一块地拼起来,最后形成一幅美丽的画卷。
发酵工程与生物制药发酵工程在生物制药领域扮演着至关重要的角色。
通过利用微生物、细胞培养和生物催化等技术,发酵工程帮助我们生产出了许多重要的生物制药产品。
本文将介绍发酵工程在生物制药中的应用,并探讨其在药物生产中的重要性。
一、发酵工程在生物制药中的应用在现代生物制药过程中,发酵工程被广泛应用于药物的生产和制造。
其主要涉及三个方面:微生物发酵、细胞培养和生物催化。
1. 微生物发酵:微生物发酵是一种常见且重要的生物制药生产方式。
在该过程中,微生物(如细菌或真菌)通过在合适条件下生长和繁殖,合成所需的药物分子。
例如,青霉素的生产就是基于青霉菌的发酵过程。
通过将青霉菌培养在合适的培养基中,提供适当的营养物质和温度,使其合成青霉素。
这种微生物发酵技术不仅生产出高质量的药物,还有较低成本和高效率的优势。
2. 细胞培养:细胞培养是一种利用细胞生物学技术进行药物生产的方法。
这一过程中,细胞(如哺乳动物细胞、细菌或真核细胞)在合适的营养基中培养和繁殖,合成所需的药物分子。
细胞培养技术广泛应用于生产重组蛋白药物、抗体药物等生物制药产品。
通过调节培养条件、改进培养基配方和优化发酵过程,可以提高产品的产量和纯度,满足市场需求。
3. 生物催化:生物催化是指利用微生物、酶或细胞等生物催化剂来促进药物合成的过程。
这种方法具有选择性高、反应条件温和等优点,广泛应用于药物合成中。
生物催化可以通过提供合适的底物和酶催化剂来增加反应速率和选择性,从而生产出高效、高纯度的药物。
二、发酵工程在药物生产中的重要性发酵工程在药物生产中具有重要的作用,其重要性主要体现在以下几个方面:1. 高效性:发酵工程利用微生物或细胞培养技术,使药物的生产过程大大加快。
通过优化发酵条件和培养工艺,可以提高产量和产出速度,从而满足市场的需求。
2. 降低成本:与传统的化学合成方法相比,发酵工程具有较低的成本。
微生物和细胞培养可以在相对低成本的条件下产生药物,从而降低了生产成本。