第6章 磁性材料
- 格式:pptx
- 大小:729.81 KB
- 文档页数:58
磁材基本知识讲座主要内容:第一章磁物理基础第二章磁性材料的发展概况第三章钕铁硼的主要特点及应用第四章钕铁硼的主要成份组成第五章钕铁硼生产工艺及设备第六章性能参数测量原理及设备第七章机械加工工艺及设备第八章表面处理工艺及设备第九章充磁包装第一章磁物理基础1 物质的磁现象磁性材料:magnetic material钕铁硼磁铁:nd-fe-b magnet铁氧体磁铁:ferrite magnet牛磁棒:magnetic bar for cattle?磁力架:magnetic separator物质的磁性是一个历史悠久的研究领域,约在三千年前就已受到人们的注意。
中国是最早应用磁性的国家,公元前四世纪,我国制成了世界上最早的指南针,成为中国的四大发明之一。
磁学史上第一部关于磁性的专著是英国(WGilbert)吉耳伯特的《论磁石》(1600年),这本书介绍了那时书籍有关的磁性知识。
然而,磁性作为一门科学却到19世纪前半期才开始发展。
1820年,丹麦物理学家奥斯特发现电流的磁效应,拉开了磁电之间联系的序幕;1820年末,法国物理学安培证明通电圆形线圈和普通的磁铁一样具有吸引和排斥的现象。
1831年,英国科学家法拉第发现了电磁感应现象,并提出电磁感应定律,从而揭示电和磁之间的内在联系;后来,苏格兰科学家麦克斯韦,将电磁的联系建立起严密的电磁场理论。
他发展了法拉第的思想,用数学的形式总结出电场和磁场的联系,即麦克斯韦方程。
2 磁性的起源物质的磁性起源于原子磁矩。
原子物理学告诉我们,组成物质的最小单元是原子,原子又由电子和原子核组成。
电子的排布遵循三大原则:1 洪特规则,2泡利不相容规则,3 能量最低原理。
原子中的电子绕着原子核进行高速运转,电子运转时同时有两种运动形式,即电子绕原子核的轨道运动和电子绕本身轴的旋转。
前者叫电子轨道运动,后者叫电子自旋。
处于旋转运动状态的电子相当于电流闭合回路,必然伴随有磁矩的发生,电子轨道和电子自旋产生的总磁矩称为原子磁矩。
磁性材料期末复习学习资料⼀、名词解释磁矩:反映磁偶极⼦的磁性⼤⼩及⽅向的物理量,定义为磁偶极⼦等效的平⾯回路内的电流和回路⾯积的乘积µ=i.s磁化强度:定义为单位体积内磁偶极⼦具有的磁矩⽮量和,是描述宏观磁体磁性强弱的物理量磁场强度:单位正电荷在磁场中受到的⼒,⽤H表⽰磁极化强度:单位体积内磁偶极矩的⽮量和磁感应强度:⽤来描述磁场强弱和⽅向的物理量,⼤⼩等于垂直于磁场⽅向长度为1m,电流为1A的导线所受⼒的⼤⼩;可逆磁化:畴壁位移磁化过程中磁位能的降低和铁磁体内能的增加相等不可逆磁化:每个磁化状态都处于亚稳态且磁化状态不随时间改变涡流损耗:导体在⾮均匀磁场中移动或处在随时间变化的磁场中时,导体内的感⽣的电流导致的能量损耗磁滞损耗:铁磁材料在磁化过程中由磁滞现象引起的能量损耗交换作⽤:铁磁性物质中近邻原⼦之间通过电⼦间的静电交换作⽤实现的作⽤⽅式超交换作⽤:反磁性物质中的磁性离⼦以隔在中间的⾮磁性离⼦为媒介实现的交换作⽤磁化曲线:表征磁感应强度B,磁化强度M与磁场强度H之间的⾮线性关系的曲线磁滞回线:在外加磁场H从正的最⼤到负的最⼤,再回到正的最⼤这个过程中,M-H或B-H形成了⼀条闭合曲线,称为磁滞回线磁化率:置于外磁场中的磁体,其磁化率为磁化强度M与外磁场强度H的⽐值,是表征磁体磁性强弱的⼀个参量磁导率:磁导率是表征磁体的磁性,导磁率及磁化难易程度的磁学量,是磁感应强度B与外磁场强度H 的⽐值起始磁导率:磁中性化的磁性材料,当磁场强度趋近于零时磁导率的极限值最⼤磁导率:对应基本磁化曲线上各点磁导率的最⼤值退磁场:当⼀个有限⼤⼩的样品被外磁场磁化时,在他两端的⾃由磁极所产⽣的⼀个与磁化强度⽅向相反的磁场称为退磁场退磁场Hd的强度与磁体的强度及形状有关,Hd=-NM退磁因⼦:仅与材料形状有关的影响材料退磁场强度的参数铁磁性:是指物质中相邻原⼦或离⼦的磁矩由于它们的相互作⽤⽽在某些区域中⼤致按同⼀⽅向排列,当所施加的磁场强度增⼤时,这些区域的合磁矩定向排列程度会随之增加到某⼀极限值的现象。
96第6章 固体的磁性和磁性材料§6.1 固体的磁性质及磁学基本概念6.1.1 固体的磁性质某些无机固体并不像其他所有物质那样表现出抗磁性(Diamaganetism ),而是呈现出磁效应。
这些无机固体往往是以存在不成对电子为特征的,这些不成对电子又常常是处在金属阳离子中。
因此,磁行为主要限制在过渡金属和镧系金属元素的化合物上。
它们中许多金属原子具有不成对的d 和f 电子,就可能具有某些磁效应。
我们知道,电子有自旋,形成自旋磁矩。
在不同的原子中,不成对电子可以随机取向,此时材料就是顺磁的(Paramagnetic );如果不成对的电子平行地排成一列,材料就有净的磁矩,这是材料是铁磁性的(iferromagnetic );相反,不成对电子反平行排列,总磁矩为零,材料就呈现反铁磁性为(Antiferromagnetic );如果自旋子虽是反平行排列,但两种取向的数量不同,会产生净的磁矩,材料就具有亚铁磁性(Ferrimagnetic )。
图6.1就说明这些情形。
(b)(d)(c)图6.1 成单电子自旋取向和材料的磁性a 抗磁性b 铁磁性c 反铁磁性d 亚铁磁性磁性材料广泛地应用在电器、电声、磁记录和信息存储各方面,可以说,现代社会离不开磁性材料。
6.1.2 磁学基本概念1.物质在磁场中的行为97首先,我们讨论不同材料在磁场中的行为。
如果磁场强度为H ,样品单位体积的磁矩为I ,那么样品的磁力线密度,即所谓磁通量 (Magnetic induction )B 为:B = H + 4πI 6.1.1导磁率(Permeability )P 和磁化率(Susceptinity )K 定义为: P = HB = 1 + 4πK 6.1.2 K = HI 6.1.3 摩尔磁化率χ为χ= dM κ 6.1.4 式中M 是分子量,d 式样品密度。
根据、K 、χ及其与温度和磁场的依赖关系可以区分不同种类的磁行为,这总结在表6.1中。