人教版八年数学第十二章导学案
- 格式:doc
- 大小:1.16 MB
- 文档页数:27
第十二章全等三角形12.1 全等三角形一、课前预习(一)全等形1.定义:能够完全_____的两个图形.2.特点:_____和_____完全相同.二、全等三角形1.定义:能够完全_____的两个三角形.2.对应元素:两个全等的三角形重合在一起有如下对应元素(1)对应顶点:_____的顶点.(2)对应边:_____的边.(3)对应角:_____的角.3.表示方法:(1)表示:△ABC和△DEF全等,记作△ABC___△DEF.(2)注意:记两个三角形全等时,把表示对应顶点的字母写在_____位置上.4.性质:(1)全等三角形的_______相等.(2)全等三角形的_______相等.思维诊断(打“√”或“×”)(1)两个形状相同的图形是全等形.( )(2)比例尺相同的两张中国地图是全等形.( )(3)所有的正方形都是全等形.()(4)全等三角形的面积相等.()(5)两个三角形全等时,两个三角形中最长的边是对应边. ()二、课内探究知识点 1 找全等三角形的对应元素【例1】如图所示,△ABC≌△EDA,∠BAC与∠DEA是对应角,AB与ED是对应边,写出其他对应边及对应角.【解题探究】1.两个三角形全等时,对应角所对的边是对应边,由∠BAC与∠DEA是对应角可得的一组对应边是什么?2.AB与ED是一组对应边,那么另一组对应边是什么?3.根据对应边所对的角是对应角,可知这两个三角形中未知的两组对应角是什么?【互动探究】此题还有另外的方法找对应边和对应角吗?提示:可以根据所给字母的顺序确定对应关系.【总结提升】确定两个全等三角形对应边、对应角的方法(1)确定对应边的“三种方法”①若全等三角形中有公共边,则公共边是对应边.②若已知对应角或对应顶点,则对应角或对应顶点所对的边为对应边.③若已知全等三角形中有最长(或最短)边,则一对最长(或最短)边是对应边.(2)确定对应角的“四种方法”①若全等三角形中有公共角,则公共角为对应角.②若全等三角形中有对顶角,则对顶角为对应角.③若已知全等形的对应顶点,则以对应顶点为顶点的角为对应角.④若已知全等三角形中有最大(或最小)角,则一组最大(或最小)角是对应角.知识点 2 全等三角形性质的应用【例2】如图所示,已知△ABD≌△ACE,AD=6 cm,AC=4 cm,∠ABD=50°,∠E=30°,求BE的长及∠COD的度数.【思路点拨】△ABD≌△ACE→求AE,AB的长→BE的长;根据∠ABD和∠E的大小→∠BOE的大小→∠COD的大小【总结提升】全等三角形性质的两点应用(1)求线段:全等三角形的对应边相等,可以直接确定对应边的数量关系,也可以间接求解相关线段的长度等.(2)求角:全等三角形的对应角相等,可以直接确定对应角的数量关系,也可以间接求解相关角的大小等.三、限时练习1.一个图形经过下列变换得到的图形与原图形不全等的是( )A.平移B.旋转C.翻折D.放大2.下列四个图形中,与图1全等的是( )3.如图所示,△ABC≌△CDA,且AB与CD是对应边,那么下列说法错误的是( )A.∠1与∠2是对应角B.∠B与∠D是对应角C.BC与AC是对应边D.AC与CA是对应边3题4题5题6题4.如图,小强利用全等三角形的知识测量池塘两端M,N的距离,如果△PQO≌△NMO,则只需测出其长度的线段是( )A.POB.QPC.MOD.MQ5.如图所示,沿直线AC对折,△ABC与△ADC重合,则△ABC≌______,AB的对应边是______,AC的对应边是______,∠B的对应角是______,∠BCA的对应角是______.6.如图,△ABC≌△ADE,写出其对应顶点、对应边、对应角.7.△ABC与△DEF的边长均为整数,且△ABC≌△DEF,若AB=2,BC=4,△DEF的周长为奇数,则DF的取值为( )A.3B.4C.3或5D.3或4或58.如图,△ABC绕点A旋转到△ADE,则下列说法不正确的是( )A. AB与DE是对应边B. △ABC≌△ADEC. ∠BAD=∠CAED. AC=AE9.如图,△ABC≌△DEF,BE=4,AE=1,则DE的长是( )A.5B.4C.3D.210.如图,将长方形ABCD沿AE折叠,使点D落在BC边上的F处,如果AD=9 cm,DE=2.4 cm,∠BAF=60°,则AF=________cm,EF=________cm, ∠DAE=________.8题9题10题11题11.如图所示,将△ABC沿直线BC平移到点D,使BC=CD.(1)相等的边有________,相等的角有________.(2)∠ACE=∠E吗?为什么?四、自助练习1.如果∆ABC ≌∆ADC ,AB=AD ,∠B=70°,BC=3cm,那么∠D=____,DC=____cm.2.如果 ∆ABC ≌∆DEF,且∆ABC 的周长为100 cm,A,B 分别与D,E 对应, AB=30 cm,DF=25 cm,则BC 的长为( )A.45 cmB.55 cmC.30 cmD. 25 cm3.如图,矩形ABCD 沿AM 折叠,使D 点落在BC 上的N 点处,如果 AD=7cm,DM=5cm,则AN=___cm,NM=___cm.4.如图所示,已知△ABD ≌△ACE ,AD=6 cm ,AC=4 cm ,∠ABD=50°, ∠E=30°,求BE 的长及∠COD 的度数.5.如图,△ABD ≌△EBC ,AB=2 cm,BC=5 cm,求DE 的长.6、【想一想错在哪?】如图,△ABC ≌△DEF ,则此图中相等的线段有( ) A.1对 B.2对 C.3对 D.4对M DNBC12.2 三角形全等的判定第1课时 SSS一、课前预习1.判定三角形全等的方法: 已知:△ABC.画△A ′B ′C ′,使A ′B ′=AB,B ′C ′=BC,A ′C ′=AC. 请同学们参照下面的步骤画△A ′B ′C ′. (1)画B ′C ′=___.(2)分别以B ′,C ′为圆心,线段___,___长为半径画弧, 两弧相交于点A ′.(3)连接线段_______,_______,得△A ′B ′C ′. 请同学们把画得的△A ′B ′C ′剪下来,放到△ABC 上, 观察可发现△A ′B ′C ′与△ABC_________,即 △A ′B ′C ′___△ABC.【归纳】(1)判定方法: 分别相等的两个三角形全等. (简写成_______或____)(2)应用格式:在△ABC 和△A ′B ′C ′中,∴△ABC ≌△A ′B ′C ′(____).2.用直尺和圆规作一个角等于已知角的依据是 .(打“√”或“×”)(1)当两个三角形的三边和三角中有两个条件分别相等时,这两个三角形不一定全等.( ) (2)当两个三角形的三边和三角中有三个条件分别相等时,这两个三角形可能全等.( ) (3)当一个三角形的三边确定时,这个三角形的形状就确定了. ( ) (4)两个三角形中,只要三条边分别相等,这两个三角形就一定全等.( )AB A B ,BC B C ,AC A C ,=''⎧⎪=''⎨⎪=''⎩∵二、课内探究知识点1 应用“SSS”证明两个三角形全等【例1】如图,点B,C,D,F在同一直线上,已知AB=EC, AD=EF,BC=DF,探索AB与EC的位置关系,并说明理由.【思路点拨】先判定AB与EC的位置关系,由BC=DF先证出BD=CF,再由SSS证出△ABD与△ECF全等,得出∠B=∠ECF,从而得出答案.【总结提升】证明三角形全等的步骤及寻找边相等的方法(1)证明三角形全等的“四个步骤”①准备条件:未知的条件要先证明(公共边相等可以直接应用,不必推理说明).②写出在哪两个三角形中.③列出三个条件用大括号括起来.④写出全等结论.(2)寻找边相等的“三种方法”①图形中的隐含条件,如公共边.②利用线段中点的定义说明边相等.③多条线段共线时,利用线段的和(差)关系证明边相等.知识点2 “SSS”的实际应用【例2】如图是工人师傅自己设计的测量垂直的仪器.仪器中的AB=AC,D是BC的中点,让BC平行于地面,当铅锤经过D点时,工人师傅就断定AD垂直于地面.工人师傅的判断有道理吗?你能说明理由吗?【思路点拨】证△ABD≌△ACD→∠ADB=∠ADC→∠ADB=90°→AD⊥BC→BC∥地面→结论【总结提升】利用“SSS”解决实际问题“三步法”(1)建模:把实际问题转化为数学问题,构造两个三角形.(2)证明:利用“SSS”证明两个三角形全等.(3)应用:应用全等三角形的性质说明线段或角的大小关系.三、限时训练1.下列说法中正确的个数为( )①周长相等的两个三角形全等②周长相等的两个等腰三角形全等③周长相等的两个等边三角形全等④有三条边分别相等的两个三角形全等A.1B.2C.3D.42.如图,已知AB=AC,BD=DC,那么下列结论中不正确的是( )A.△ABD≌△ACDB.∠ADB=90°C.∠BAD是∠B的一半D.AD平分∠BAC3.如图,在△ABC中,AB=AC,EB=EC,则由“SSS”可以判定( )A.△ABD≌△ACDB.△ABE≌△ACEC.△BDE≌△CDED.以上答案都不对2题3题4题5题4.如图,若AB=AC,AD=AE,则需要______条件就可根据“SSS”判断△ABE≌△ACD.5.如图,AC=DF,BC=EF,AD=BE,∠BAC=72°,∠F=32°,则∠ABC=__________.6.如图,已知AB=DC,DB=AC,(1)求证:∠ABD=∠DCA.(注:证明过程要求给出每一步结论成立的依据.)(2)在(1)的证明过程中,需要作辅助线,它的目的是什么?7为稳固电线杆,从A处拉了两根等长的铁丝AC,AD,且C,D到杆脚B的距离相等,则有( )A.∠1>∠2B.∠1<∠2C.∠1=∠2D.∠1与∠2大小不能确定8.小明用四根竹棒扎成如图所示的风筝框架,已知AB=CD,AD=CB,下列判断不正确的是( )A.∠A=∠CB.∠ABC=∠CDAC.∠ABD=∠CDBD.∠ABD=∠C9.长为3 cm,4 cm,6 cm,8 cm的木条各两根,小明与小刚分别取了3 cm和4 cm的两根,要使两人所拿的三根木条组成的两个三角形全等,则他俩取的第三根木条应为( )A.一个人取6 cm的木条,一个人取8 cm的木条B.两人都取6 cm的木条C.两人都取8 cm的木条D. B,C中的两种取法都可以10.如图为一三角形钢架(AB=AC),为使钢架更坚固,需在点A和BC间做一个支架,且使AD⊥BC于D,但只有一把可测长度的皮尺,应如何确定点D的位置.7题8题10题四、自助练习1、如图,D ,F 是线段BC 上的两点,AB=EC ,AF=ED ,要使△ABF ≌△ECD, 还需要条件2、如图,在四边形ABCD 中AB=CD ,则∠A=∠C ,请说明理由。
新人教版八年级数学上册第十二章全等三角形导学案一、本章地位中学阶段重点研究的两个平面图形间的关系是全等和相似,本章以三角形为例研究全等.对全等三角形研究的问题和研究方法将为后面相似的学习提供思路,而且全等是一种特殊的相似,全等三角形的内容是学生学习相似三角形的重要基础.本章还借助全等三角形进一步培养学生的推理论证能力,主要包括用分析法分析条件与结论的关系,用综合法书写证明格式,以及掌握证明几何命题的一般过程.由于利用全等三角形可以证明线段、角等基本几何元素相等,所以本章的内容也是后面将学习的等腰三角形、四边形、圆等内容的基础.二、课程学习目标(1)理解全等三角形的概念,能识别全等三角形中的对应边、对应角,掌握并能运用全等三角形的性质.(2)经历探索三角形全等条件的过程,掌握判定三角形全等的基本事实(“边边边”“边角边”和“角边角”)和定理(“角角边”),能判定两个三角形全等.(3)能利用三角形全等证明一些结论.(4)探索并证明角平分线的性质定理,能运用角的平分线的性质.三、本章知识结构图四、课时安排:共安排11课时(仅供参考)12.1 全等三角形 1课时12.2 三角形全等的判定6课时12.3 角的平分线的性质 2课时数学活动小结 2课时五、教学建议1.用研究几何图形的基本思想和方法贯穿本章的教学学生在前面的几何学习中研究了相交线与平行线、三角形等几何图形,对于研究几何图形的基本问题、思路和方法形成了一定的认识,本章在教学中要充分利用学生已有的研究几何图形的思想方法,用几何思想贯穿全章的教学.2.让学生充分经历探究过程本章在编排判定三角形全等的内容时构建了一个完整的探究活动,包括探究的目标、探究的思路和分阶段的探究活动.教学中可以让学生充分经历这个探究过程,在明确探究目标、形成探究思路的前提下,按计划逐步探索两个三角形全等的条件.本章在编排中将画图与探究三角形的全等条件结合起来,既有用尺规画一个三角形与已知三角形全等,又有用技术手段根据已知数据画三角形.教学中要充分利用探索画图方法的过程对形成结论的价值,让学生自主探索画图的步骤、创设多种画法、解释作图依据等,在活动中发现结论.3.重视对学生推理论证能力的培养本章是初中阶段培养逻辑推理能力的重要内容,主要包括证明两个三角形全等,通过证明三角形全等从而证明两条线段或两个角相等.教学中要在学生已有推理论证经验的基础上,利用三角形全等的证明,进一步培养学生推理论证的能力.按照整套教科书对推理能力培养的循序渐进的目标,本章的教学重点是引导学生分析条件与结论的关系,书写严谨的证明格式,对于以文字形式给出的几何命题,从具体问题的证明中总结出证明的一般步骤.六、具体内容 12.1 全等三角形【教学重点】1.理解全等三角形的概念;2.能识别全等三角形中的对应边、对应角; 3.初步掌握并能运用全等三角形的性质. 【教学难点】在全等三角形中正确地找出对应边、对应角. 第一课时:全等三角形 【参考例题】1.下面是两个全等的三角形,按下列图形的位置摆放,指出它们的对应顶点、对应边、对应角.2.如图1,△ADC ≌△AEB , 30,43=∠=∠B A ,求ADC ∠的大小.3.如图2,△EFG ≌△NMH ,∠F 和∠M 是对应角,在△EFG 中,FG 是最长边,在△NMH 中,MH 是最长边,EF =2.1㎝,EH =1.1㎝,HN =3.3㎝.求线段MN 及线段HG 的长度.4.如图3,把△ABC 绕点C 顺时针旋转35度,得到△A ′B ′C ,A ′B ′交AC 于点D ,已知 ∠A ′DC =90°,则∠A = .o OB ACD AB C D AB CDCA B DC A BD O A BC D C BDDA B C D C A B D B C AD FE AB CD E图1 图2图3N B C A D M D F EA B C 练习:1.全等用符号 表示,读作: .2.若△ABC ≌△DEF ,则∠B = ,∠BAC = ,BC = , AC = . 3.判断题1)全等三角形的对应边相等,对应角相等.( ) 2)全等三角形的周长相等.( ) 3)全等三角形的面积不相等.( ) 4.找一找① 若△AOC ≌△BOD ,AC =_______ ∠A =______ ② ②若△ABD ≌△ACE ,BD = ∠BDA =③若△ABC ≌△CDA ,AB = ∠BAC =_____ 5.拼一拼请你利用两个全等三角形画出有公共顶点或公共边或公共角的图形. 有公共边: 有公共点: 6.如图,小强利用全等三角形的知识测量池塘两端M 、N 的距离,如果△PQO ≌△NMO ,则只需测出其长度的线段是A .POB .PQC .MOD .MQ7.如图,长方形ABCD 沿AM 折叠,使D 点落在BC 上的N 点处,AD =7cm ,DM =5cm ,∠DAM =39°,则△ABC ≌△ EFD AN =___cm , NM =___cm , ∠NAB =___. 8.△ABC ≌△FED(1)写出图中相等的线段,相等的角;(2)图中线段除相等外,还有什么关系吗.CA DBO B AC D E AD BCB HAD CA DBC12.2 三角形全等的判定 【教学重点】1.探索判定三角形全等的条件; 2.利用三角形全等进行简单的证明. 【教学难点】利用三角形全等的判定方法进行推理论证. 第二课时:三角形全等的判定SSS (一) 【参考例题】1.如图,AB =AC ,BD =CD ,BH =CH ,图中有几组全等的三角形.它们全等的条件是什么.2.如图,已知AB =CD ,BC =DA .你能说明△ABC 与△CDA 全等吗.你能说明AB ∥CD ,AD ∥BC 吗.为什么.练习:1.如图,在四边形ABCD 中,AB =AD ,CB =CD .求证:∠B =∠D . 2.如图,已知点A ,D ,C ,F 在同一条直线上,AB =DE ,BC =EF ,要使△ABC ≌△DEF ,还需要添加一个条件是A .∠BCA =∠F B. AD =CF C.BC ∥EF D. ∠A =∠EDF3.如图,等腰梯形ABCD 中,点M 是AD 的中点,且MB =MC ,若AD =4,AB =6,BC =8,则梯形ABCD 的周长为A .22B .24C .26D .28 4. (202X 广西玉林)根据图中尺规作图的痕迹,先判断得出结论: ,然后证明你的结论(不要求写已知、求证)ABCDEFDFOE 第三课时:三角形全等的判定SAS (二) 【课堂练习】练习一 :在下列图中找出全等三角形,并把它们用线连起来.【例题】1.如图,AC =BD ,∠CAB = ∠DBA ,你能判断∠C =∠D 吗.说明理由. 2.如图,有—池塘,要测池塘两端A 、B 的距离,可先在平地上取一个可以直接到达A 和B 的点C ,连接AC 并延长到D ,使CD =CA ,连接BC 并延长到E ,使CE =CB .连接DE ,那么量出DE 的长就是A 、B 的距离,为什么.练习:1.如图CE =CB ,CD =CA ,∠DCA =∠ECB ,求证:DE =AB .2.如图,AB =AE ,AD =AC ,∠BAD =∠EAC ,BC 、 DE 交于点O . 求证:∠ABC =∠AED .Ⅰر30º8 cm9 cmⅥ30º8 cm8 cmⅣ Ⅳ8cm5 cmⅡ30ºر8cm5 cmⅤ3xm8 cmⅧ8 cm5 cmر30º8cm9 cmⅦⅢر30º8cm8cmⅢ OEDCBAA BCD3.如图,在△ABC 中,AB =AC ,点D 是BC 的中点,点E 在AD 上.求证:(1)△ABD ≌△ACD ,(2)BE =CE4.小明用六根竹签做了一个如图所示的风筝,其中ED =FD ,HE =HF .小明不测量就能知道EO =FO .你知道小明是怎样想的.5. (202X 杭州)如图,在△ABC 中,已知AB =AC ,AD 平分∠BAC ,点M 、N 分别在AB 、AC 边上,AM =2MB ,AN =2NC ,求证:DM =DN6.(202X 燕山毕业)如图,点E ,F 在线段AC 上,AB ∥CD ,AB =CD ,AE =CF . 求证:BE =DF .7. (202X 丰台一模)已知:如图,点B ,F ,C ,E 在 一条直线上,BF =CE ,AC =DF ,且AC ∥DF . 求证:∠B =∠E .8. (202X 平谷一模)如图,AB =AD ,AC =AE ,∠CAD =∠EAB .求证:BC =DE .C BN M AA B C D E F F D E CB AMDECBA第四课时:三角形全等的判定ASA ,AAS (三) 【参考例题】 1.已知:点D 在AB 上,点E 在AC 上,BE 和CD 相交于点O ,AB =AC ,∠B =∠C , 求证:BD =CE . 2.在Rt △ABC 中,∠ACB =90°,BC =2cm ,CD ⊥AB ,在AC 上取一点E ,使EC =BC ,过点E 作EF ⊥AC 交CD 的延长线于点F ,若EF =5cm ,则AE = cm .3.如图,点A 、B 、D 、E 在同一直线上,AD =EB ,BC ∥DF ,∠C =∠F ,求证:AC =EF .练习:1.如图,在△AEC 和△DFB 中,∠E =∠F ,点A ,B ,C ,D 在同一直线上,有如下三个关系式:①AE ∥DF ,②AB =CD ,③CE =BF .(1)请用其中两个关系式作为条件,另一个作为结论,写出你认为正确的所有命题(用序号写出命题书写形式:“如果,,那么”) ,(2)选择(1)中你写出的一个命题,说明它正确的理由.2.如图,在△ABC 中,o90C ∠=,点D 是AB 边上一点,DM AB ⊥且DM AC =,过点M 作ME ⊥BC ,交AB 于点E .求证:△ABC ≌△MED .3. (202X 永州)如图,在△ABC 中,已知∠1=∠2,BE =CD ,AB =5,AE =2,则CE = .4. (202X 通辽)如图,四边形ABCD 中,E 点在AD 上,其中∠BAE =∠BCE =∠ACD =90°,且BC =CE ,求证:△ABC 与△DEC 全等.DB E AOCFDCBAE5.(202X 海淀一模)如图,点A ,B ,C ,D 在同一条直线上,AB=FC ,∠A =∠F ,∠EBC =∠FCB . 求证: BE=CD .6. (202X 门头沟一模)如图,点A 、B 、C 、D 在同一条直线上,BE ∥DF ,∠A =∠F ,AB =FD .求证:AE =FC .7. 如图,点O 是直线l 上一点,点A 、B 位于直线l 的两侧,且∠AOB =90°,OA =OB ,分别过A 、B 两点作AC ⊥l ,交直线l 于点C ,BD ⊥l ,交直线l 于点D .求证:AC =OD .8. (202X 西城一模)如图,∠C =∠E ,∠EAC =∠DAB ,AB=AD .求证:BC=DE .9. (202X 昌平二模)如图,AB AD ⊥,AE AC ⊥,E C ∠=∠,DE BC =. 求证:AD AB =10. (202X 海淀二模)如图,已知∠BAC =∠BCA ,∠BAE =∠BCD =90°, BE=BD .求证:∠E =∠D .11. (202X 朝阳二模)已知:如图,在△ABC 中,∠ACB =90°,AC=BC ,BE ⊥CE 于点E ,AD ⊥CE 于点D . 求证:BE=CD .EA DFB C E D C B ADA C.,,AD BC BD AC AD BD BC AC ==⊥⊥求证:如图,例第五课时 : 全等三角形的判定(四) HL 【参考例题】练习:1.如图,两根长度为12米的绳子,一端系在旗杆上, 另一端分别固定在地面两个木桩上,两个木桩离旗 杆底部的距离相等吗.请说明你的理由. 2.如图,有两个长度相同的滑梯,左边滑梯的高度 AC 与右边滑梯水 平方向的长度DF 相等,两个滑梯的倾斜角∠ABC 和∠DFE 的大小有什么关系.3.求证:有一条直角边和斜边上的高对应相等的两个直角三角形全等. 4.如图6,A ,F 和B 三点在一条直线上,CF ⊥AB 于 F , AF =FH , CF =FB .求证: BE ⊥AC . 第六课时:全等三角形的习题课 【复习小结】全等的常见图形判定两个三角形全等的方法有:______________________________________________.A CAD E D ABEFAC BDEA B OD CABODCAE FCDABED C BACD O F BCADB DCAEBAEDBEACD【练习】1.如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E、F,连接CE、BF.添加一个条件,使得△BDF≌△CDE,并加以证明.你添加的条件是.(不添加辅助线).2.在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,求AE.3.如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C.求证:BE=CD.4.如图,点B在射线AE上,∠CAE=∠DAE,∠CBE=∠DBE.求证:AC=AD.5.如图,点A、B、D、E在同一直线上,AD=EB,BC∥DF,∠C=∠F.求证:AC=EF.6.(202X宜昌)两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO=AC;③△ABD≌△CBD,其中正确的结论有()A.0个B.1个C.2个D.3个12.3 角的平分线的性质(一)【教学重点】1.探索并证明角的平分线的性质定理及其逆定理;2.能用角的平分线的性质解决简单问题.【教学难点】利用角的平分线的性质定理解题. 【参考例题】1.如图1,AB =AC ,BD =CD ,DE ⊥AB 于E ,DF ⊥AC 于F .求证:DE =DF .2.如图2,D 、E 、F 分别是△ABC 的三边上的点,CE =BF ,△DCE 和△DBF 的面积相等. 求证:AD 平分∠BAC . 练习:1.已知△ABC 中,∠A =80°,∠B 和∠C 的角平分线交于O 点,则∠BOC = .2.如图,已知相交直线AB 和CD ,及另一直线EF .如果要在EF 上找出与AB 、CD 距离相等的点,方法是 ,这样的点至少有 个,最多有 个.3.如图所示,已知△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB ,交BC 于点D ,DE ⊥AB 于点E ,且AB =6 cm ,则△DEB 的周长为 A .9 cmB .5 cmC .6 cmD .不能确定4.如图,AB //CD ,CE 平分∠ACD ,若∠1=250,那么∠2的度数 是 . 5.如图,OP 平分AOB ∠,PA OA ⊥,PB OB ⊥, 垂足分别为A ,B .下列结论中不一定成立的是E F B C A D 图1AB C D FE 图2APA .PA PB = B .PO 平分APB ∠C .OA OB =D .AB 垂直平分OP6. (202X •永州)如图,在四边形ABCD 中,AB =CD ,BA 和CD 的延长线交于点E ,若点P 使得S △P AB =S △PCD ,则满足此条件的点P ( ) A .有且只有1个 B .有且只有2个 C .组成∠E 的角平分线D .组成∠E 的角平分线所在的直线(E 点除外) 角平分线的性质(二)【复习】1.如图所示,在△ABC 中,∠A =90°,BD 平分∠ABC ,AD =2 cm ,则点D 到BC 的距离为________cm .2.如图,在△ABC 中,∠C =900,BC =40,AD 是∠BAC 的平分线交BC 于D ,且DC ∶DB =3∶5,则点D 到AB 的距离是 . 3.如图,已知BD 是∠ABC 的内角平分线,CD 是∠ACB 的外角平分线,由D 出发,作点D 到BC 、AC 和AB 的垂线DE 、DF 和DG ,垂足分别为E 、F 、G ,则DE 、DF 、DG 的关系是 . 4.AD 是△BAC 的角平分线,自D 向AB 、AC 两边作垂线,垂足为E 、F ,那么下列结论中错误的是 A .DE =DF B .AE =AF C .BD =CD D .∠ADE =∠ADF5.如图,已知AB ∥CD ,O 为∠A 、∠C 的角平分线的交点,OE ⊥AC3题图 DCBA于E ,且OE =2,则两平行线间AB 、CD 的距离等于 . 6.到三角形三条边的距离都相等的点是这个三角形的( ) A .三条中线的交点B .三条高的交点C .三条边的垂直平分线的交点D .三条角平分线的交点【例题】1.如图,已知AC ∥BD 、EA 、EB 分别平分∠CAB 和△DBA ,CD 过点E ,则AB 与AC +BD •相等吗.请说明理由.2.在△ABC 中,∠B =60°,∠A ,∠C 的角平分线AE ,CF 相交于点O , (1)如图1,若AB =BC ,求证:OE =OF ;(2)如图2,若AB ≠BC ,试判断线段OE 与OF 是否相等,并说明理由练习:1.如图,已知BD ⊥AE 于B ,DC ⊥AF 于C ,且DB =DC ,∠BAC =40o,∠ADG =130o,则∠DGF =_________(1题图) (2题图) (3题图) 2.如图,在△ABC 中,∠C =90o,AM 是∠CAB 的平分线,CM =20cm ,那么M 到AB 的距离为 .3.如图,∠B =∠C =90o,M 是BC 上一点,且∠AMD =90o,DM 平分∠ADC , 求证:AM 平分∠DAB .DCABEABCD EFGM CB AMD CBAEDFCBAFED CBAABCDEONMP CBA DCBA4.如图,BD =CD ,BF ⊥AC ,CE ⊥AB .求证:D 在∠BAC 的角平分线上.(4题图) (5题图) (6题图) 5.已知:如图,Rt △ABC 中,∠C =90o,AC =BC ,AD 为∠BAC 的平分线,AE =BC ,DE ⊥AB 垂足为E ,求证△DBE 的周长等于AB .6.如图,已知P A ⊥ON 于A ,PB ⊥OM 于B ,且P A =PB .∠MON =50o,∠OPC =30o,求∠PCA的大小.专题练习1:常见辅助线 1.倍长中线法【例1】如图,△ABC 中,AD 为中线.(1)求证:AB +AC >2AD ;(2)若AB =5,AC =3,则中线AD 的取值范围是_________________. 【例2】如图,△ABC 中,E 、F 分别在AB 、AC 上,DE ⊥DF ,D 是中点.试比较BE +CF 与EF 的大小.练习:1.已知:如图,AD 是△ABC 的中线,AB =AE , AC =AF ,∠BAE =∠F AC =90°.试探究线段AD 与EF 数量和位置关系.提示:F2.如图,已知AD 是△ABC 的中线,BE 交AC 于E , 提示:交AD 于F ,且AE =EF .求证:AC =BF2. 截长补短法【例1】如图,AD ∥BC ,EA ,EB 分别平分∠DAB ,∠ABC ,CD 过点E .求证:AB =AD +BC .【例2】如图,在四边形ABCD 中,BC >BA ,AD =CD ,BD 平分ABC ∠,求证: 180A C ︒∠+∠=.练习:1. 已知: 如图,在△ABC 中,AB = AC ,D 为△ABC 外一点, ∠ABD = 60︒,∠ADB = 90︒ -12∠BDC . 求证: AB = BD + DC提示:ABCDEFGAB CE FDDEOEDCBA3.借助角平分线造全等【例1】如图,已知在△ABC 中,∠B =60°,△ABC 的角平分线AD ,CE 相交于点O ,求证:OE =OD【例2】如图,△ABC 中,AD 平分∠BAC ,DG ⊥BC 且平分BC ,DE ⊥AB 于E ,DF ⊥AC 于F .(1) 说明BE =CF 的理由;(2)如果AB =a ,AC =b ,求AE 、BE 的长. 练习:1.已知△ABC 中,∠B =2∠A ,AB =2BC求证:△ABC 是直角三角形.提示:4.三垂直问题 基本图形:E DGFCBAA B CB 【例1】如图,∠ABC =90°,AB =BC ,D 为AC 上一点,分别过A 、C 作BD 的垂线,垂足分别为E 、F , 求证:△ABE ≌△CBF练习:如图,已知AC ⊥AB ,DB ⊥AB ,AC =BE ,AE =BD ,试猜想线段CE 与DE 的大小与位置关系,并证明你的结论. 5.共顶点的两个特殊的图形(手拉手) 基本图形【例1】 已知:如图,ABC ∆中,AB =BC ,90ABC ∠=︒,点D 在 AC 上,90DBE ∠=︒ ,BE =BD .求证:CD =AE .【例2】 如图所示,已知AE ⊥AB ,AF ⊥AC ,AE =AB ,AF =AC .求证:(1)EC =BF ,(2)EC ⊥BF练习:如图,在Rt △ABC 中,∠BAC =90°,AC =2AB ,点D 是AC 的中点,将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A 、D 重合,连结BE 、EC . 试猜想线段BE 和EC 的数量及位置关系,并证明你的猜想.A C ED B ∠1=∠2⇒∠AOC=∠BODA EB M CFAB C D E 21ODCBA七、与中考链接 (一) 基础题1.(06北京) 已知:如图,AB ∥ED ,点F 、点C 在AD 上,AB =DE ,AF =DC . 求证:BC =EF .2. (07北京)已知:如图,OP 是AOC ∠和BOD ∠的平分线,OA OC OB OD ==,.求证:AB CD =.3.(08北京) 已知:如图,C 为BE 上一点, 点A 、D 分别在BE 两侧,AB ∥ED ,AB =CE ,BC =ED . 求证:AC =CD .4.(09北京) 已知:如图,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,点E 在AC上,CE =BC ,过E 点作AC 的垂线,交CD 的延长线于点F .求证:AB =FC .5.(10北京) 已知:如图,点A B C D 、、、在同一条直线上,EA AD ⊥,FD AD ⊥,AE DF =,AB DC =.求证:ACE DBF ∠=∠.6.(11北京) 已知:如图,点A 、C 、B 、D 在同一条直线上,BE //DF ,A F ∠=∠,AB FD =.求证:AE FC =.7. (12北京) 已知:如图,点E ,A ,C 在同一直线上,AB // CD ,AB CE =,AC CD =.BC F EDAEB ACO D P求证:BC ED =.8. (13北京) 已知:如图,D 是AC 上一点,AB =DA ,DE ∥ AB ,B DAE ∠=∠.求证:BC =AE .9. (14北京) 已知:如图,点B 在线段AD 上,BC DE ∥,AB ED =,BC DB =.求证:A E ∠=∠.10.(15北京)如图,在ABC ∆中,AB AC =,AD 是BC 边上的中线,BE AC ⊥于点E .求证:CBE BAD ∠=∠.AB C D E。
第十二章《全等三角形》复习导教案追踪训练学习目标:( 1)回首全等三角形的观点、性质、判断方法||,利用全等三角形的性质和判断进行计算和证算||。
( 2)让学生经历察看、猜想、证明、概括的过程||,发展学生通情达理的推理能力||。
( 3)指引学生共同参加 ||,激发数学求知欲 ||,并养成优秀的数学学习惯 ||。
学习重难点:||。
要点:利用全等三角形的性质和判断进行计算和证明难点:全等三角形的结构与证明||。
一、建立全等三角形知识结构图二、自主学习重难点一全等三角形的对应关系例 1 如图 ||,△ OCA≌△ OBD||,C 和 B||, A 和 D 是对应极点 ||,请指出这两个三角形中相等的边和角.追踪训练1.好像△ ABC ≌△ CDA||,且 AB=CD|| ,则以下结论错误的选项是()A.AC 和 CA 是对应边B.∠B 和∠D 是对应角C.DA 和 BC 是对应边D.∠ DAC= ∠BAC重难点二全等三角形的性质例 2 已知△ ABC ≌△ A’B’C’||,且△ ABC 的周长为BC=5||,则 A’C’等于剖析:依据全等三角形对应边相等能够获得全等三角形角形全等的判定重难点四角均分线的性质重难点五文字命题的证明步骤: 1.明确命题中的已知和求证;2.依据题意画出图形||,并用数学符号表示已知和求证;3.经过剖析 ||,找出由已知推出求证的门路||,写出证明过程||。
三、合作商讨3、如图:在△ ABC 中 ||,∠C=90° ||,AC=BC|| ,过点 C 在△ ABC 外作直AM ⊥ MN 于 M|| ,BN ⊥MN 于 N||。
求证: MN=AM+BN|| 。
4、如图 ||,△ AEC 和△ DFB 中||,点 A||,B||,C||,D 在同向来线上个关系式:①AE ∥DF||,②AB=CD|| ,③CE=BF④∠ E=∠ F||,||。
(1)请用此中三个关系式作为条件 ||,另一个作为结论 ||,写出你以为正命题(用序号写出命题书写形式:“假如 ||, ||, ||,那么”);第1页/共2页(2)选择( 1)中你写出的一个命题||,说明它正确的原因 ||。
新人教版八年级上册数学第十二章《全等三角形》导学案学习目标、重点、难点【学习目标】1、知道什么是全等形、全等三角形及全等三角形的对应元素;2、知道全等三角形的性质,能用符号正确地表示两个三角形全等;3、能熟练找出两个全等三角形的对应角、对应边.【重点难点】1、找全等三角形的对应边、对应角.2、全等三角形的性质.知识概览图新课导引如右图所示,把△ABC 绕点A 旋转一定角度,得到△ADE .【问题探究】这个图形中有哪些线段相等?哪些角相等?为什么? 【解析】相等的线段:AB 和AD ,AC 和AE ,BC 和DE ,相等的角:∠B 和∠D ,∠C 和∠E .∠BAC 和∠DAE ,∠DAB 和∠EAC .教材精华知识点1全等三角形的有关概念能够完全重合的两个图形叫做全等形.能够完全重合的两个三角形叫做全等三角形.把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.“全等”用“≌”表示,读作“全等于”,如△ABC ≌△A ′B ′C ′.当两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上. 定义:能够完全重合的两个三角形叫做全等三角形对应边相等 对应角相等 全等三角形性质规律方法小结在全等三角形中找出对应角和对应边,关键是先找出对应顶点,然后按对应顶点的字母顺序记两个三角形全等,再按顺序写出对应边和对应角.全等三角形的面积一定相等,但是面积相等的两个三角形不一定是全等三角形.√常见的全等三角形的基本图形有平移型、旋转型和翻折型.(1)平移型:如图11-2和11-3所示,△ABC向右平移,得到△DEF,则△ABC≌△DEF.(2)旋转型:如图11-4所示的两对三角形的全等属于旋转型,图形的特点是:图11-4(1)的旋转中心为点A,有公共部分∠1;图11-4(2)的旋转中心为点O,有一对对顶角∠1和∠2.(3)翻折型:如图11-5所示,两对三角形的全等属于翻折型,其中图11-5(1)中有公共边AB,图11-5(2)中有公共角∠A.知识点2全等三角形的性质全等三角形的对应边相等;全等三角形的对应角相等.拓展(1)全等三角形的性质是以后我们证明线段相等或角相等的常用依据.(2)全等三角形的对应边上的中线、高线及对应角的平分线也相等.(3)全等三角形的周长和面积相等.规律方法小结在寻找全等三角形的对应边和对应角时,常用的方法有:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;(3)公共边一定是对应边,公共角一定是对应角,对顶角一定是对应角;(4)全等三角形中一对最短的边(或最小的角)是对应边(或对应角).课堂检测基本概念题1、如图11-6所示的两个三角形全等.(1)若按对应顶点写在对应位置上,应写为△ABC≌;(2)找出对应边和对应角:AB=,BC=,CA=,∠ABC=,∠ACB=,∠BAC=.基础知识应用题2、如图11-9所示,已知△ABD≌△ACE.试说明BE=CD,∠DCO=∠EBO.综合应用题3、如图所示,在△ABC中,D,E分别是边AC,BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为( )A.15°B.20°C.25°D.30°4、如图所示,△ADF≌△CBE,且点E,B,D,F在一条直线上.判断AD与BC的位置关系,并加以说明.探索创新题5、如图所示,将△ABC绕其顶点A顺时针旋转30°后,得到△AEF.(1)△ABC与△AEF的关系如何?(2)求∠EAB的度数;(3)△ABC绕其顶点A顺时针旋转多少度时,旋转后的△AEF的顶点F和△ABC的顶点C和A 在同一条直线上?体验中考1、如图11-18所示,AC,BD是长方形ABCD的对角线,过点D作DE∥AC,交BC的延长线于E,则图中与△ABC全等的三角形共有( )A.1个B.2个C.3个D.4个2、如图11-19所示,△ACB≌△A′C′B′,∠BCB′=30°,则∠ACA′的度数为( )A.20°B.30°C.35°D.40°学后反思附:课堂检测及体验中考答案课堂检测1、分析本题考查三角形全等的符号表示,以及全等三角形中的对应边、对应角.答案:(1)△CDA(2)CD DA AC∠CDA∠CAD∠DCA【解题策略】(1)对于全等三角形的书写,要注意通常把表示对应顶点的字母写在对应的位置上,再根据顶点的对应关系写对应边或对应角.(2)表示角时一般用三个大写字母.2、分析本题主要考查全等三角形的性质及应用.解:∵△ABD≌△ACE(已知).∴AD=AE,AB=AC,∠D=∠E(全等三角形的性质).∵AD-AC=AE-AB(等式的性质),即DC=BE.又∵∠DCO=∠A+∠E,∠EBO=∠A+∠D(三角形的外角的性质),∴∠DCO=∠EBO.规律·方法全等三角形的性质:(1)全等三角形的对应边相等;(2)全等三角形的对应角相等;(3)全等三角形的周长相等;(4)全等三角形的面积相等;(5)全等三角形中,对应边上的中线、对应边上的高、对应角的平分线也分别相等.3、分析本题主要考查全等三角形的性质:全等三角形的对应角相等.∵△ADB≌△EDB≌△EDC,∴∠ABD=∠EBD=∠C,∠A=∠BED=∠DEC.又∵∠BED+∠DEC=180°,∴∠BED=∠DEC=90°,∴∠A=90°.在△ABC中,∠ABD+∠DBE+∠C=90°,∴3∠C=90°,∴∠C=30°.故选D.4、分析本题主要考查全等三角形的性质与平行线的综合应用.由图形可以初步判断AD和BC的位置关系是平行,欲说明AD∥BC,需说明∠3=∠4,要说明∠3=∠4,需要利用三角形外角的性质.解:AD与BC的位置关系是AD∥BC.理由如下:∵△ADF≌△CBE(已知),∴∠1=∠2,∠F=∠E.又∵点E,B,D,F在一条直线上,∴∠3=∠1+∠F,∠4=∠2+∠E(三角形的外角的性质),∴∠3=∠4(等量代换).∴AD∥BC(内错角相等,两直线平行).5、分析本题主要考查全等三角形的定义及灵活应用.解:(1)∵△AEF是由△ABC绕其顶点A旋转形成的,∴△ABC≌△AEF(全等三角形的定义).(2)∵△ABC≌△AEF(已证),∴∠BAC=∠EAF(全等三角形的性质).∴∠BAC-∠BAF=∠EAF-∠BAF(等式的性质),即∠FAC=∠EAB.又∵∠FAC=30°(已知),∴∠EAB=30°(等量代换).(3)当△AEF的顶点F和△ABC的顶点A和C在同一条直线上时,△ABC应绕其顶点A顺时针旋转180°.体验中考1、分析本题考查全等三角形的概念.与△ABC全等的三角形共有4个,分别为△CDA,△DCB,△DCE,△BAD.故选D.2、分析本题考查全等三角形的性质.由△ACB≌△A′CB′,得∠BCA=∠B′CA′,∴∠ACA′=∠BCB′=30°.故选B12.2全等三角形的判定学习目标、重点、难点【学习目标】1、掌握两个三角形全等的判定方法SAS.2、掌握尺规作图:已知两边及夹角作三角形.3、掌握用SAS 的判定证明两个三角形全等,掌握证明三角形全等的书写格式.4、通过探索三角形全等的判定过程,体会探索研究问题的方法,培养分类讨论的数学思想.【重点难点】1、探索两个三角形全等的判定方法SAS ;2、用SAS 的方法证明两个三角形全等,进而证明角相等、线段相等与平行及证明三角形全等时的书写格式.知识概览图 新课导引由全等三角形的性质可知:当两个三角形全等时,它们的三组对应边、三组对应角分别相等. 那么,如果两个三角形△ABC 和△A ’B ’C ’满足三条边对应相等,三个角对应相等,即:AB=A ’B ’,AC=A ’C ’,BC=B ’C ’,∠A=∠A ’,∠B=∠B ’,∠C=∠C ’这六个条件,能保证这两个三角形全等吗?(能)提问:两个三角形全等,是否一定需要六个条件?如果只满足上述六个条件的一部分,是否也能保证两个三角形全等呢?(学生讨论各种情况,并加以总结) 定义:能够完全重合的两个三角形叫做全等三角形对应边相等 对应角相等 全等三角形性质A A'1、满足一个条件⎩⎨⎧一角对应相等一边对应相等)2()1(2、满足两个条件⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧角对应相等②一边及这条边所对的一个角对应相等①一边及与这边相邻的一边、一角对应相等两角对应相等两边对应相等)3()2()1(3、满足三个条件⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧对边对应相等②两角和其中一个角的应相等①两角和它们的夹边对两角及一边对应相等的角对应相等②两边及其中一边所对等①两边及其夹角对应相两边及一角对应相等三角对应相等三边对应相等)4()3()2()1( 列出一种情况,就通过画图讨论是否成立.教材精华知识点1全等三角形的判定1——SSS判定1:三边对应相等的两个三角形全等(简写:SSS ).注意:1. 证明三角形全等的书写格式. 2. 两个三角形的对应顶点应写在对应位置上.知识点2全等三角形的判定2——SAS判定2:两边和它们的夹角对应相等的两个三角形全等(简写:SAS ).② 反例:知识点3全等三角形的判定3——ASA判定3:两角和它们的公共边对应相等的两个三角形全等(简写:ASA ).AC D E注:在一个图形中,有多个垂直关系时,常用“同角或等角的余角相等”来证明两角相等,或用“等量代换”证明垂直关系.说明:(1)连结公共边是一种常用的辅助线;(2)原则是尽量不拆分待证元素.知识点4全等三角形的判定4——AAS知识点5全等三角形的判定5——HL判定:斜边和一条直角边对应相等的两个直角三角形全等(简写:HL)[强调] 1. HL只对直角三角形适用.2. 判定两个直角三角形全等的方法共有5种:SSS,SAS,ASA,AAS,HL.首选HL,再选其它方法.课堂检测基本概念题1、判定两个三角形全等的方法:、、、2、如图,Rt△ABC中,直角边是、,斜边是3、如图,AB⊥BE于C,DE⊥BE于E,(1)若∠A=∠D,AB=DE,则△ABC与△DEF (填“全等”或“不全等”)根据(用简写法)(2)若∠A=∠D,BC=EF,则△ABC与△DEF (填“全等”或“不全等”)根据(用简写法)(3)若AB=DE ,BC=EF ,则△ABC 与△DEF (填“全等”或“不全等” ) 根据 (用简写法) (4)若AB=DE ,BC=EF ,AC=DF则△ABC 与△DEF (填“全等”或“不全等” ) 根据 (用简写法)基础知识应用题例1、如图,△ABC 是一个钢架,AB=AC ,AD 是连接点A 与BC 中点D 的支架. 求证:△ABD ≌△ACD证明:∵D 是BC 中点(已知) …… (1)准备条件 ∴BD=CD (中点定义)在△ABD 和△ACD 中, …… (2)指明范围⎪⎩⎪⎨⎧===(公共边)(已证)(已知)AD AD CD BD AC AB …… (3)列齐条件∴ △ABD ≌△ACD (SSS )…… (4)得出结论提问:此题还能得到哪些结论?① 三组角对应相等;② AD 平分∠BAC ;③ AD ⊥BC. 注意:1. 证明三角形全等的书写格式. 2. 两个三角形的对应顶点应写在对应位置上. 例2、如图,AC=EF ,BC=DE ,点A 、D 、B 、F 在一条直线上,AD=FB. 求证:∠C=∠E证明:∵AD=FB (已知) …… (1)准备条件 ∴AD+DB=FB+DB 即AB=FD在△ABC 和△FDE 中, …… (2)指明范围⎪⎩⎪⎨⎧===(已证)(已知)(已知)FD AB DE BC EF AC …… (3)列齐条件ABFECD ACD∴△ABC ≌△FDE (SSS ) …… (4)得出结论 ∴∠C=∠E (全等三角形的对应角相等)提问:此题还能得到哪些结论?① 另两组角对应相等;② AC ∥EF ;③BC ∥DE.小结:证明分别属于两个三角形的线段相等或角相等的问题,常常通过证明这两个三角形全等来解决.例2、如图,AD=AE ,点D 、E 在BC 上,BD=CE ,∠1=∠2. 求证:∠B=∠C分析:先看∠B 、∠C 分别在哪两个三角形中,再证那两个三角形全等.证明:方法1、(证△ABE ≌△ACD ,过程略) 方法2、(证△ABD ≌△ACE ) ∵D 、E 在BC 上∴∠1+∠3=180º,∠2+∠4=180º(邻补角定义) ∵∠1=∠2(已知)∴∠3=∠4(等角的补角相等) 在△ABD 和△ACE 中⎪⎩⎪⎨⎧=∠=∠=(已知)(已证)(已知)CE BD 43AE AD ∴△ABD ≌△ACE(SAS)∴∠B=∠C (全等三角形的对应角相等)提问:此题还能得到哪些结论?①AB=AC ;②∠BAD=∠CAE ;③∠BAE=∠CAD.例1、如图,AC ⊥BC ,BD ⊥AD ,AC=BD. 求证:BC=AD.证明:∵AC ⊥BC ,BD ⊥AD (已知)∴∠C=∠D=90º(垂直定义) 在Rt △ABC 和Rt △BAD 中,3421BADEADC⎩⎨⎧==(已知)(公共边)BD AC BA AB∴ Rt △ABC ≌Rt △BAD (HL ) ∴ BC=AD (全等三角形的对应边相等)例2、已知:如图,在△ABC 和△A ’B ’C ’中,∠ACB=∠A ’C ’B ’,CD 和C ’D ’都是高,且AC=A ’C ’,CD=C ’D ’. 求证:△ABC ≌△A ’B ’C ’ 证明:∵CD 和C ’D ’是高 ∴∠ADC=∠A ’D ’C ’=90º 在Rt △ADC 和Rt △A ’D ’C ’中⎩⎨⎧==(已知)(已知)'D'C CD 'C 'A AC∴ Rt △ADC ≌Rt △A ’D ’C ’(HL ) ∴∠A=∠A ’ 在△ABC 和△A ’B ’C ’中⎪⎩⎪⎨⎧∠=∠=∠=∠'A A 'C 'A AC 'B 'C 'A ACB∴△ABC ≌△A ’B ’C ’ (ASA )综合应用题1、已知:如图,AD =BE ,AC =BC ,CD =CE. 求证:△AEC ≌△BDC证明:AD BE = AD DE BE DE ∴+=+ 即AE BD =在AEC ∆和BDC ∆中AE BD AC BC CE CD =⎧⎪=⎨⎪=⎩ AEC BDC ∴∆≅∆ (SSS ) *还能得到什么结论(相等关系)? 2、已知:如图,AB=DC ,AD=BC. 求证:(1)∠A=∠C ;CABABCDA'B'C'D'D CB A(2) AB ∥CD ,AD ∥BC .分析:连BD (或AC )证三角形全等即可,只需证明ABD CDB ∆≅∆ (SSS ) 即可得A C ∠=∠(全等三角形对应角相等)说明:(1)连结公共边是一种常用的辅助线;(2)原则是尽量不拆分待证元素.例1、如图,有一池塘,要测池塘两端A 、B 的距离,可先在平地上取一个可以直接到达A 和B的点C ,连接AC 并延长到D ,使CD=CA. 连接BC 并延长到E ,使CE=CB. 连接DE ,那么量出DE 的长就是A 、B 的距离. 为什么?分析:要证AB=DE ,只需证△ABC ≌△DEC. 在△ABC 和△DEC 中,已知CA=CD ,CB=CE ,又隐含了∠1=∠2,故全等条件具备,可证. 证明:在△ABC 和△DEC 中,⎪⎩⎪⎨⎧=∠=∠=(已知)(对顶角相等)(已知)CE CB 21CD CA ∴ △ABC ≌△DEC (SAS )∴ AB=DE (全等三角形的对应边相等)提问:此题还能得到哪些结论?①另两组角对应相等;②AB ∥DE.小结:1、SAS ——两边及夹角对应相等. 大括号中的条件应按SAS 的顺序书写.2、证明分别属于两个三角形的线段相等或角相等的问题,常常通过证明这两个三角形全等来解决.3、在实际生活中,常利用三角形全等原理,把不能直接度量的物体“移到”可以直接度量的位置上来度量.例2、如图,AD=AE ,点D 、E 在BC 上,BD=CE ,∠1=∠2. 求证:∠B=∠C分析:先看∠B 、∠C 分别在哪两个三角形中,再证那两个三角形全等.证明:方法1、(证△ABE ≌△ACD ,过程略) 方法2、(证△ABD ≌△ACE )BA21C3421ACDE∵D 、E 在BC 上∴∠1+∠3=180º,∠2+∠4=180º(邻补角定义) ∵∠1=∠2(已知)∴∠3=∠4(等角的补角相等) 在△ABD 和△ACE 中⎪⎩⎪⎨⎧=∠=∠=(已知)(已证)(已知)CE BD 43AE AD ∴△ABD ≌△ACE(SAS)∴∠B=∠C (全等三角形的对应角相等)提问:此题还能得到哪些结论?①AB=AC ;②∠BAD=∠CAE ;③∠BAE=∠CAD.如图,B 、E 、F 、C 在同一直线上,AF ⊥BC 于F ,DE ⊥BC 于E , AB=DC ,BE=CF ,你认为AB 平行于CD 吗?说说你的理由答: 理由:∵ AF ⊥BC ,DE ⊥BC (已知)∴ ∠AFB=∠DEC= °(垂直的定义) 在Rt △ 和Rt △ 中⎩⎨⎧==_______________________________ ∴ ≌ ( )[中@#国教育出~&版*网] ∴∠ = ∠ ( ) ∴ (内错角相等,两直线平行)例3、如图,线段AC 、BD 交于点O ,AB=CD ,BF ⊥AC 于F ,DE ⊥AC 于E ,AE=CF.求证:BO=OD 证明:(以图1为例)∵BF ⊥AC ,DE ⊥AC (已知)∴∠1=∠2=90º(垂直定义)AFBE CO 4321∵AE=CF (已知) ∴AE+EF=CF+EF 即AF=CE在Rt △ABF 和Rt △CDE 中,⎩⎨⎧==(已证)(已知)CE AF CD AB∴ Rt △ABF ≌Rt △CDE (HL ) ∴ BF=DE (全等三角形的对应边相等)在△BFO 和△DEO 中,⎪⎩⎪⎨⎧=∠=∠∠=∠(已证)(对顶角相等)(已证)DE BF 4321 ∴ △BFO ≌△DEO (AAS ) ∴ BO=DO (全等三角形的对应边相等)例1、如图,DC=EA ,EC=BA ,DC ⊥AC ,BA ⊥AC ,垂足分别是C 、A. 求证:BE ⊥DE.证明:∵DC ⊥AC ,BA ⊥AC (已知)∴∠A=∠C=90º(垂直定义) 在△AEB 和△CDE 中⎪⎩⎪⎨⎧=∠=∠=(已知)(已证)(已知)DC EA C A EC BA ∴△AEB ≌△CDE(SAS)∴∠B=∠2(全等三角形的对应角相等) ∵∠A =90º ∴∠B+∠1=90º ∵∠B=∠2(已证) ∴∠1+∠2=90º(等量代换) ∵∠AEC=180º ∴∠BED=90º∴BE ⊥DE (垂直定义)例2、如图,在Rt △ABC 中,AB=AC ,∠BAC=90º,AN 是过A 的任一条直线,BD ⊥AN 于D ,CE ⊥AN 于E. 求证:DE=BD -CE. 证明:∵BD ⊥ANAFBECDO 653421图1图2AD32AEDBC21∴∠ADB =90º(垂直定义) ∴∠1+∠2=90º ∵∠BAC=90º∴∠2+∠3=90º∴∠1=∠3(同角的余角相等) ∵BD ⊥AN ,CE ⊥AN∴∠ADB=∠CEA=90º(垂直定义) 在△ABD 和△CAE 中⎪⎩⎪⎨⎧=∠=∠∠=∠(已知)(已证)(已证)C A B A EA C DB A 31 ∴△ABD ≌△CAE (AAS)∴AE=BD ,CE=AD (全等三角形的对应边相等)∵DE=AE -AD∴DE=BD -CE (等量代换)注:在一个图形中,有多个垂直关系时,常用“同角或等角的余角相等”来证明两角相等,或用“等量代换”证明垂直关系.例3、如图,两条直线AC 、BD 相交于O ,AB ∥CD ,AB=CD ,直线EF 过点O 且分别交BC 、AD 于点E 、F. 求证:OE=OF 证明:∵AB ∥CD (已知)∴∠B=∠D (两直线平行,内错角相等) 在△ABO 和△CDO 中,⎪⎩⎪⎨⎧=∠=∠∠=∠(已知)(对顶角相等)(已证)CD AB COD AOB D B∴ △ABO ≌△CDO (AAS )∴ BO=DO (全等三角形的对应边相等) 在△EBO 和△FDO 中,EBD AFOC21⎪⎩⎪⎨⎧∠=∠=∠=∠(对顶角相等)(已证)(已证)21DO BO D B∴△EBO ≌△FDO (ASA )∴OE=OF (全等三角形的对应边相等)例4、如图,AB=CD ,AD=BC ,DE=BF. 求证:BE=DF 分析:可连接公共边构造全等. 证明:连接DB在△ABD 和△CDB 中⎪⎩⎪⎨⎧===(公共边)(已知)(已知)BD DB CD AB CB AD∴△ABD ≌△CDB (SSS )∴∠ADB=∠CBD (全等三角形的对应角相等) ∵∠ADB+∠EDB=180°,∠CBD+∠FBD=180° ∴∠EDB=∠FBD (等角的补角相等) 在△EDB 和△FBD 中⎪⎩⎪⎨⎧=∠=∠=(公共边)(已证)(已知)BD DB FBD EDB BF DE∴△EDB ≌△FBD (SAS )∴BE=DF (全等三角形的对应边相等)注:连接公共边构造全等是一种常用的添加辅助线的方法.探索创新题2、已知:如图,AB=AC ,AD=AE ,∠1=∠2.A B21CBADEF求证:△ABD ≌△ACE(本题主要是让学生能结合图形挖掘“公共角”的隐含条件,为证明全等提供依据)3、已知:如图,AD 为ABC ∆的中线.求证:2AB AC AD +>. 证明:延长AD 至E ,使DE AD =. 则有ADC EDB ∆≅∆ (SAS ) BE AC ∴=在ABE ∆中,AB BE AE +>,即2AB AC AD +>例2、求证:两边及其中一边上的中线对应相等的两个三角形全等.(P27 12)已知:在△ABC 和△A ’B ’C ’中,AB=A ’B ’,BC=B ’C ’,AD 、A ’D ’分别是BC 、B ’C ’边上的中线,AD=A ’D ’.求证:△ABC ≌△A ’B ’C ’证明:∵AD 、A ’D ’分别是BC 、B ’C ’边上的中线∴BD=21BC ,B ’D ’=21B ’C ’∵BC=B ’C ’ ∴BD=B ’D ’在△ABD 和△A ’B ’D ’中⎪⎩⎪⎨⎧===(已知)(已证)(已知)'D 'A AD 'D 'B BD 'B 'A AB ∴△ABD ≌△A ’B ’D ’(SSS )∴∠B=∠B ’(全等三角形的对应角相等) 在△ABC 和△A ’B ’C ’中ADC BEABCDA'B'C'D'⎪⎩⎪⎨⎧=∠=∠=(已知)(已证)(已知)'C 'B BC 'B B 'B 'A AB ∴△ABC ≌△A ’B ’C ’(SAS ) 小结:证明几何命题的的一般步骤:(P21)①明确命题中的已知和求证;②根据题意,画出图形,并结合图形,用数学符号表示已知和求证; ③经过分析,找出由已知推出求证的途径,写出证明的过程.例3、已知如图,ΔABC 中,D 是BC 中点,DE ⊥DF ,试判断BE +CF 与EF 的大小关系,并证明你的结论.分析:有中点,就有等长的线段, 故可通过旋转180°构造全等.结论:BE +CF>EF证明:延长FD 至点G ,使DG=DF ,连接EG 、BG. ∵D 是BC 中点∴BD=DC在△BGD 和△CFD 中⎪⎩⎪⎨⎧=∠=∠=DF DG CDF BDG CD BD ∴△BGD ≌△CFD (SAS) ∴BG=CF∵DE ⊥DF ∴∠EDG=∠EDF=90° 在△EDG 和△EDF 中⎪⎩⎪⎨⎧=∠=∠=DF DG EDF EDG EDED∴△EDG ≌△EDF ∴EG=EFFDAC EHF D ABCE∵在△EBG中,BE+BG>EG ∴BE+CF>EF 注:有中点、中线时,可通过旋转180°构造全等体验中考学后反思12.3等腰三角形学习目标、重点、难点【学习目标】1、等腰三角形的定义、性质和判定;2、等边三角形的定义、性质和判定;3、直角三角形的性质; 【重点难点】1、等腰三角形的定义、性质和判定;2、等边三角形的定义、性质和判定;3、直角三角形的性质;知识概览图新课导引如右图所示,在海上A ,B 两处的两艘救生船接到O 处遇险船只的报警,当时测得∠A =∠B ,如果这两艘救生船以同样的速度同时出发,能不能同时赶到出事地点(不考虑风浪因素)?【问题探究】 若想判断能否同时到达出事地点,就是要判断OA 与OB 是否相等,如何判断OA 与OB 的大小呢?【解析】 如右图所示,过点O 作OC ⊥AB ,C 为垂足,则在△AOC 与△BOC 中,⎪⎩⎪⎨⎧=∠=∠∠=∠,,,OC OC BCO ACO B A 故△AOC ≌△BOC (AAS),故AD =BO .定义:有两条边相等的三角形,叫做等腰三角形 (1)等腰三角形的两个底角相等(等边对等角)(2)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(三线合一)判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)等边三角形直角三角形的性质:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半定义:三条边都相等的三角形,叫做等边三角形性质:等边三角形的三个内角都相等,并且每一个角都等于60° (1)三个角都相等的三角形是等边三角形 (2)有一个角是60°的等腰三角形是等边三角形等腰三角形性质判定教材精华知识点1等腰三角形的概念有两条边相等的三角形,叫做等腰三角形,相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.知识点2等腰三角形的性质性质1:等腰三角形是轴对称图形.性质2:等腰三角形的两个底角相等(简写成“等边对等角”).性质3:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(简称等腰三角形“三线合一”).拓展(1)当等腰三角形的顶角为90°时,则此等腰三角形为等腰直角三角形,它的两条直角边相等,两个锐角都是45°.(2)利用等腰三角形的性质2,可以证明两个角相等.(3)利用等腰三角形“三线合一”可以证明线段相等、垂直或角相等.(4)另外,等腰三角形还有以下性质:①等腰三角形两腰上的中线、高线相等.②等腰三角形两底角的平分线相等.③等腰三角形底边上任一点到两腰的距离之和等于一腰上的高.知识点3 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).拓展(1)等腰三角形的判定有以下几种方法:①定义.②判定定理.③垂直平分线的性质.(2)“等边对等角”是等腰三角形的性质,先有边相等,进而得出角相等.“等角对等边”是判定三角形为等腰三角形的依据,先有角相等,进而得出边相等,即为等腰三角形.“等边对等角”或“等角对等边”只限于在同一个三角形中,若在两个不同的三角形中,此结论不成立.(3)等腰三角形的底角只能是锐角,顶角可以是锐角、直角或钝角.(4)由三角形两边之和大于第三边可知等腰三角形的腰长大于底边的一半.知识点4 等边三角形定义:三条边都相等的三角形叫做等边三角形.性质:等边三角形的三边都相等,三个内角都相等,并且每一个角都等于60°.判定:(1)三边都相等的三角形是等边三角形.(2)三个角都相等的三角形是等边三角形.(3)有两个角是60°的三角形是等边三角形.(4)有一个角是60°的等腰三角形是等边三角形.拓展等边三角形的判定条件不相同,选择的方法也不相同.四种方法要灵活选用.知识点5 含30°角的直角三角形的性质在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.拓展此性质的大前提是“在直角三角形中”,如果没有这个条件,即使有30°角,结论也不成立.课堂检测基础知识应用题1、已知一个等腰三角形两内角的度数之比为1∶4,则这个等腰三角形顶角的度数为()A.20°B.120°C.20°或120°D.36°2、已知等腰三角形ABC中,AB=AC,∠B=60°,则∠A=.综合应用题3、如图12-74所示.在等腰三角形ABC中,CH是底边上的高线.点P 是线段CH上不与端点重合的任意一点.连接AP交BC于点E,连接BP交AC 于点F.(1)求证∠CAE=∠CBF;(2)求证AE=BF;(3)以线段AE,BF和AB为边构成一个新的三角形ABG(点E与点F重合于点G).记△ABC和△ABG的面积分别为S△ABC 和S△ABG,如果存在点P,能使得S△ABC=S△ABG,求∠ACB的取值范围.探索创新题4、如图12-78所示,在△ABC中,∠ACB=90°,BD=BC,AE=AC.判断∠DCE的大小是否与∠A有关.如果有关,说明理由;如果无关,求∠DCE的度数.体验中考1、如图所示,△ABC中,AB=AC=x,BC=6,则腰长x的取值范围是( )A.0<x<3 B.x>3C.3<x<6 D.x>62、下列性质中,等腰三角形具有而直角三角形不一定具有的是( )A .两边之和大于第三边B .有一个角的平分线垂直于这个角的对边C .有两个锐角的和等于90°D .内角和等于180°3、如图所示,在等边三角形ABC 的AC 边上取中点D ,在BC 的延长线上取一点E ,使CE =CD .求证BD =DE .学后反思附: 课堂检测及体验中考答案 课堂检测1、分析 此题应分两种情况:当顶角与底角度数之比为1∶4时,三个角的度数之比为1∶4∶4,因此三个内角分别为180°×91=20°,180°×94=80°,180°×94=80°.当顶角与底角度数之比为4∶1时,同理可求得三个内角度数分别为120°,30°,30°.因此这个等腰三角形的顶角为120°或20°.故选C .本题考查了三角形内角和定理以及等腰三角形的性质,也可用排除法,因为有两种情况,所以可直接选C .2、分析 本题考查等腰三角形的性质和三角形内角和定理的综合应用.因为AB =AC ,所以∠B =∠C =60°,因为∠A =180°-∠B -∠C ,所以∠A =180°-60°-60°=60°.故填60°.3、分析本题考查了等腰三角形与全等三角形的综合应用.第(3)问应注意进行分类讨论. 证明:(1)∵△ABC 是等腰三角形,CH 是底边上的高线, ∴AC =BC ,∠ACP =∠BCP .又∵CP =CP ,∴△ACP ≌△BCP , ∴∠CAP =∠CBP ,即∠CAE =∠CBF .(2)∵∠ACE =∠BCF ,∠CAE =∠CBF ,AC =BC , ∴△ACE ≌△BCF ,∴AE =BF .解:(3)由(2)知△ABG 是以AB 为底边的等腰三角形, ∴S △ABC =S △ABG 等价于AE =AC .①当∠ACB 为直角或钝角时,在△ACE 中,不论点P 在CH 何处,均有AE >AC ,∴结论不成立.②当∠ACB 为锐角时,∠BAC =90°-21∠ACB ,而∠CAE <∠BAC , 要使AE =AC ,只需使∠ACB =∠CEA , 此时,∠CAE =180°-2∠ACB , 只需180°-2∠ACB <90°-21∠ACB , 解得60°<∠ACB <90°.4、分析 本题主要考查利用等腰三角形的性质探索问题的能力. 解:∠DCE 的大小与∠A 无关,∠DCE =45°.理由如下: ∵BD =BC ,∴∠BDC =∠BCD . ∴∠BDC =21 (180°-∠B )=90°-21∠B . 又∵AE =AC ,∴∠AEC =∠ACE .∴∠AEC =21 (180°-∠A )=90°-21∠A . ∴∠AEC +∠BDC =(90°-21∠A )+(90°-21∠B )=180°-21(∠A +∠B ). 又∵∠ACB =90°,∴∠BDC +∠AEC =180°-21×90°=135°. ∴∠DCE =45°.体验中考1、分析 本题考查等腰三角形中三边之间的关系,由底边BC =6,两腰长为x 可知2x >6,所以x >3.故选B .2、分析 本题主要考查等腰三角形特有的“三线合一”的性质,选项A 和选项D 是所有三角形都具有的;选项C 是直角三角形独有的;选项B 是等腰三角形独有的.故选B .3、分析 本题主要考查等边三角形的性质和等腰三角形的判定. 证明:∵△ABC 为等边三角形,∴∠ABC =∠ACB =60°. ∵D 是AC 的中点,∴BD 平分∠ABC .∴∠CBD =21∠ABC =21×60°=30°. ∵CD =CE ,∴∠E =∠CDE .又∵∠E +∠CDE =∠ACB =60°,∴∠E =30°.∴∠CBD =∠E .∴BD =DE .12.3角的平分线的性质学习目标、重点、难点【学习目标】1、熟练掌握角平分线的尺规作图.2、能应用三角形全等的知识,解释尺规作角平分线的原理.3、掌握几种基本的三角形作图.【重点难点】1、利用尺规作已知角的平分线.2、角平分线的性质.知识概览图新课导引如右图所示,需在S 区建一个集贸市场,使它到公路、铁路的距离相等,并且使集贸市场离公路与铁路交叉点A 处500米.则这个集贸市场应建在何处(在图上标出它的位置,比例尺为1∶20000)?【问题探究】要使集贸市场到公路、铁路的距离相等,则可连接S 区与公路、铁路的交叉点,利用三角形全等的知识找到两个全等的直角三角形,进而找到集贸市场的位置,可证出连接集贸市场与公路、铁路交叉点A 的直线平分公路与铁路的夹角,问题可求.【解析】作出公路与铁路夹角的平分线,以其顶点为端点,作出一条长为2.5厘米的线段,则这条线段的另一端点即为所求.教材精华知识点1 角平分线的作法已知∠AOB ,求作∠AOB 的平分线.作法:(1)以O 为圆心,适当长为半径画弧,交OA 于M ,交OB 于N . (2)分别以M ,N 为圆心,大于21MN 的长为半径画弧,两弧在∠AOB 的内部交于点C .(3)画射线OC ,射线OC 即为∠AOB 的平分线.拓展 (1)这是最常见的尺规作图,也是最基本的作图之一,必须掌握.(条件) 点在角的平分线上(结论) (结论) 点到角的两边的距离相等 (条件)判定性质。
全等三角形全章复习与巩固(基础)【学习目标】1.了解全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素;2.探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式;3.会作角的平分线,了解角的平分线的性质,能利用三角形全等证明角的平分线的性质,会利用角的平分线的性质进行证明.【知识网络】【要点梳理】【高清课堂:全等三角形单元复习,知识要点】要点一、全等三角形的判定与性质要点二、全等三角形的证明思路要点三、角平分线的性质 1.角的平分线的性质定理角的平分线上的点到这个角的两边的距离相等. 2.角的平分线的判定定理角的内部到角的两边距离相等的点在角的平分线上. 3.三角形的角平分线三角形角平分线交于一点,且到三边的距离相等. 4.与角平分线有关的辅助线在角两边截取相等的线段,构造全等三角形; 在角的平分线上取一点向角的两边作垂线段. 要点四、全等三角形证明方法全等三角形是平面几何内容的基础,这是因为全等三角形是研究特殊三角形、四边形、相似图形、圆等图形性质的有力工具,是解决与线段、角相关问题的一个出发点.运用全等三角形,可以证明线段相等、线段的和差倍分关系、角相等、两直线位置关系等常见的几何问题.可以适当总结证明方法. 1. 证明线段相等的方法:(1)证明两条线段所在的两个三角形全等.(2)利用角平分线的性质证明角平分线上的点到角两边的距离相等. (3)等式性质. 2. 证明角相等的方法:(1)利用平行线的性质进行证明. (2)证明两个角所在的两个三角形全等. (3)利用角平分线的判定进行证明. (4)同角(等角)的余角(补角)相等.SAS HL SSS AAS SAS ASA AAS ASA AAS ⎧→⎧⎪⎪→⎨⎪⎪⎪→⎩⎪⎪→→⎧⎪⎪→⎧⎪⎪⎨⎨⎪→⎨⎪⎪⎪⎪⎪→⎩⎩⎪⎪→⎧⎪⎨→⎪⎩⎪⎩找夹角已知两边找直角找另一边边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一边(5)对顶角相等.3.证明两条线段的位置关系(平行、垂直)的方法;可通过证明两个三角形全等,得到对应角相等,再利用平行线的判定或垂直定义证明.4.辅助线的添加:(1)作公共边可构造全等三角形;(2)倍长中线法;(3)作以角平分线为对称轴的翻折变换全等三角形;(4)利用截长(或补短)法作旋转变换的全等三角形.5.证明三角形全等的思维方法:(1)直接利用全等三角形判定和证明两条线段或两个角相等,需要我们敏捷、快速地发现两条线段和两个角所在的两个三角形及它们全等的条件.(2)如果要证明相等的两条线段或两个角所在的三角形全等的条件不充分时,则应根据图形的其它性质或先证明其他的两个三角形全等以补足条件.(3)如果现有图形中的任何两个三角形之间不存在全等关系,此时应添置辅助线,使之出现全等三角形,通过构造出全等三角形来研究平面图形的性质.例1.下列每组中的两个图形,是全等图形的为()A.B.C.D.类型二、全等三角形的对应边,对应角例2.如图,△ABN≌△ACM,∠B和∠C是对应角,AB与AC是对应边,写出其他对应边和对应角.【解析】对应边:AN与AM,BN与CM对应角:∠BAN与∠CAM,∠ANB与∠AMC例3.已知:如图所示,Rt△EBC中,∠EBC=90°,∠E=35°.以B为中心,将Rt△EBC 绕点B逆时针旋转90°得到△ABD,求∠ADB的度数.解:∵Rt△EBC中,∠EBC=90°,∠E=35°,∴∠ECB=________°.∵将Rt△EBC绕点B逆时针旋转90°得到△ABD,∴△________≌△_________.∴∠ADB=∠________=________°.【思路点拨】由旋转的定义,△ABD≌△EBC,∠ADB与∠ECB是对应角,通过计算得出结论.【答案】55;ABD,EBC;ECB,55【解析】旋转得到的图形是全等形,全等三角形对应边相等,对应角相等.【总结升华】根据全等三角形的性质来解题.。
人教版数学八年级上全章导学案 第12章全等三角形全章导学案人教版数学八年级上导学案 12.1 全等三角形学习目标1.知道什么是全等形、全等三角形及全等三角形的对应元素;2.知道全等三角形的性质,能用符号正确地表示两个三角形全等; 3.能熟练找出两个全等三角形的对应角、对应边.学习重点全等三角形的性质. 学习难点找全等三角形的对应边、对应角. 学习方法:自主学习与小组合作探究 学习过程:一.获取概念:阅读教材内容,完成下列问题:(1)能够完全重合的两个图形叫做全等形,则______________________ 叫做全等三角形。
(2)全等三角形的对应顶点: 、对应角: 、对应边: 。
(3)“全等”符号: 读作“全等于”(4)全等三角形的性质:(5)如下图:这两个三角形是完全重合的,则△ABC △ A 1B 1C 1..点A 与 A 点是对应顶点;点B 与 点 是对应顶点;点C 与 点 是对应顶点. 对应边:对应角: 。
C 11CABA 1二 观察与思考:1.将△ABC 沿直线BC 平移得△DEF ;将△ABC 沿BC 翻折180°得到△DBC ;将△ABC 旋转180°得△AED .甲DCABFE 乙DCAB丙DCABE议一议:各图中的两个三角形全等吗?即 ≌△DEF ,△ABC ≌ ,△ABC ≌ .(书写时对应顶点字母写在对应的位置上)启示:一个图形经过平移、翻折、旋转后,位置变化了,•但 、 都没有改变,所以平移、翻折、旋转前后的图形 ,这也是我们通过运动的方法寻求全等的一种策略. 2 . 说出乙、丙图中两个全等三角形的对应元素。
三、自学检测1、如图1,△OCA ≌△OBD ,C 和B ,A 和D 是对应顶点,•则这两个三角形中相等的边 。
相等的角 。
D CABODC ABE C ABEO2如图2,已知△ABE ≌△ACD ,∠ADE=∠AED ,∠B=∠C ,指出其它的对应角对应边:AB AE BE 3.已知如图3,△ABC ≌△ADE ,试找出对应边 对应角 .4.如图4,,DBE ABC ∆≅∆AB 与DB ,AC 与DE 是对应边,已知: 30,43=∠=∠A B ,求BED ∠。
第十二章全等三角形12.1 全等三角形学习目标:1.了解全等形、全等三角形的概念,能正确识别全等三角形的对应元素.2.掌握全等三角形对应边相等、对应角相等的性质.3.能够利用全等三角形的性质解决一些简单的实际问题.重点:全等三角形的性质.难点:找全等三角形的对应边、对应角.一、知识链接1.已知△ABC.(1)画出△ABC向右平移1 cm后的△DEF.(2)△ABC和△DEF的形状______,大小_______;对应点分别为__________________,对应边分别为_____________________,对应角分别为_______________________.二、新知预习1.观察下列一组图片,思考问题.问题:图中有形状和大小都相同的图形吗?试把它们指出来.它们能够完全重合吗?你能再举出一些类似的例子吗?2.自主归纳:(1)能够完全重合的两个图形叫做________,则________________叫做全等三角形.(2)“全等”符号:________读作“全等于”.(3)全等三角形的性质:________________. (4)如图:这两个三角形是完全重合的,则△ABC_____△A 1B 1C 1.点A 与A 1点是对应顶点,点B 与点___是对应顶点,点C 与点___是对应顶点;对应边:________________;对应角:________________. 3.全等变换的方式有________,_______和________. 三、自学自测如图,△OCA≌△OBD,C 和B ,A 和D 是对应顶点,则这两个三角形中相等的边有 ;相等的角有 ; 有____个三角形,分别记作:_______________________.DCABO C 1B 1CAB A 1四、我的疑惑_______________________________________________________________ _______________________________________________________________ ______________________一、要点探究探究点1:全等三角形的定义及性质问题1:观察思考:每组中的两个图形有什么特点?问题2:观察下面两组图形,它们是不是全等图形?为什么?归纳总结:全等形定义:能够________的两个图形叫做全等形.全等形性质:如果两个图形全等,它们的_____和_____一定都相等.找一找:下面哪些图形是全等形?要点归纳:全等三角形:能够完全重合的两个三角形叫_______________.全等三角形的对应元素:把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.如图,点A和,点B和,点C和是对应顶点.AB和,BC和,AC和是对应边.∠A和,∠B和,∠C和是对应角.全等的表示方法:△ABC≌△FDE“全等”用符号“≌”表示,读作“全等于”.注意:记两个三角形全等时,通常把表示对应顶点的字母写在对应的位上.例1:如图,若△BOD≌△COE,指出这两个全等三角形的对应边;若△ADO≌△AEO,指出这两个三角形的对应角.找一找下列全等图形的对应元素?要点归纳:寻找对应元素的规律:1.有公共边的,公共边一般是对应边;2.有公共角的,公共角一般是对应角;3.有对顶角的,对顶角一般是对应角;4.两个全等三角形最大的边是对应边,最小的边也是对应边;5.两个全等三角形最大的角是对应角,最小的角也是对应角.探究点2:全等三角形的性质想一想:把一个三角形平移、旋转、翻折,变换前后的两个三角形全等吗?要点归纳:全等变化:一个图形经过平移、翻折、旋转后,变化了,但和都没有改变,即平移、翻折、旋转前后的两个图形.全等三角形的性质:全等三角形的对应边相等,对应角相等.全等三角形的性质的几何语言:∵△ABC≌△FDE,∴AB=FD,AC=FE,BC=DE,(全等三角形对应边相等)∠A=∠F,∠B=∠D,∠C=∠E.(全等三角形对应角相等)如图,△ABC与△ADC全等,请用数学符号表示出这两个三角形全等,并写出相等的边和角.例2 如图,△ABC≌△DEF,∠A=70°,∠B=50°,BF=4,EF=7,求∠E的度数和CF的长.例3 如图,△EFG≌△NMH,EF=2.1 cm,EH=1.1 cm,NH=3.3 cm.(1)试写出两个三角形的对应边、对应角;(2)求线段NM及HG的长度;(3)观察图形中对应线段的数量或位置关系,试提出一个正确的结论并说明理由.想一想:你还能得出其他结论吗?1.如图,△ABC≌△BAD,如果AB=4 cm, BD=3 cm,AD=5 cm,那么BC 的长是()A.5 cm B.4 cm C.3 cm D.无法确定2.在上题中,∠CAB的对应角是()A.∠DAB B.∠DBA C.∠DBC D.∠CAD3.如图,已知△ABC≌△BAD请指出图中的对应边和对应角.变式:如图:平移后△ABC≌△EFD,若AB=6,AE=2.你能求出AF的长吗?说说你的理由.解:∵△≌△,∴AB==,∴AB-=EF-.∴AF=EB=.4.如图,已知△ABC≌△AED,请指出图中对应边和对应角.变式:如图,已知△ABC≌△AED,若AB=6,AC=2,∠B=25°,你还能说出△ADE中其他角的大小和边的长度吗?5.如图,长方形ABCD沿AM折叠,使D点落在BC上的N点处,AD=7 cm,DM=5 cm,∠DAM=35.5°,则△ANM≌△ADM,AN= cm,NM= cm,∠NAB=.6.如图△ABC≌△DEF,边AB和DE在同一条直线上,试说明图中有哪些线段平行,并说明理由.摆一摆:利用平移,翻折,旋转等变换所得到的三角形与原三角形组成各种各样新的图形,你还能拼出什么不同的造型吗?比一比看谁更有创意!参考答案自主学习一、知识链接1.(1)图略.(2)相同相等点A和点D,点B和点E,点C和点FAB和DE,BC和EF,AC和DF ∠A和∠D,∠B和∠E,∠C和∠F 二、新知预习1.略2.(1)全等形能够完全重合的两个三角形(2)≌(3)全等三角形的对应边相等,全等三角形的对应角相等(4)≌ B1 C1 AB和A1B1,BC和B1C1,AC和A1C1∠A和∠A1,∠B和∠B1,∠C和∠C13.平移翻折旋转三、自学自测AC和DB,OC和OB,OA和OD ∠A和∠D,∠C和∠B,∠AOC和∠DOB 两△OCA,△OBD课堂探究二、要点探究探究点1:全等三角形的定义及性质问题1 每组中的两个图形的形状、大小相等.问题2 它们不是全等图形,因为它们的形状和大小都不相等.要点归纳完全重合形状大小找一找(2)和(7),(3)和(9),(5)和(12),(6)和(10)要点归纳全等三角形点D 点E 点F DE EF DF ∠D ∠E ∠F例1 解:△BOD与△COE的对应边为:BO与CO,OD与OE,BD与CE;△ADO与△AEO的对应角为:∠DAO与∠EAO,∠ADO与∠AEO,∠AOD与∠AOE.探究点2:全等三角形的性质要点归纳位置形状大小全等解:△ABC≌△ADC;相等的边为:AB=AD,AC=AC,BC=DC;相等的角为:∠BAC=∠DAC,∠B=∠D,∠ACB=∠ACD.例2 解:∵△ABC≌△DEF,∠A=70°,∠B=50°,BF=4,EF=7,∴∠E=∠B=50°,BC=EF=7,∴CF=BC-BF=7-4=3.例3 解:(1)对应边有EF和NM,FG和MH,EG和NH;对应角有∠E和∠N,∠F和∠M,∠EGF和∠NHM.(2)∵△EFG≌△NMH,∴NM=EF=2.1 cm,EG=NH=3.3 cm.∴HG=EG–EH=3.3-1.1=2.2(cm).(3)结论:EF∥NM.证明如下:∵△EFG≌△NMH,∴∠E=∠N.∴EF∥NM.当堂检测1.A 2.B3.BA BD AD ∠ABD ∠BAD ∠D变式:ABC EFD EF 6 AE AE 6-2 44.AE AD ED ∠A ∠E ∠ADE变式:解:∵△ABC≌△AED,∴∠E=∠B=25°(全等三角形对应角相等),AD=AC=2,AE=AB=6(全等三角形对应边相等).5.7 5 196.解:AC∥DF,BC∥EF.理由如下:∵△ABC≌△DEF,∴∠A=∠2,∠1=∠E,(全等三角形对应角相等)∴AC∥DF,BC∥EF.摆一摆:。
人教版八年级数学上册第十二章12.1 全等三角形导学案教学目标1.知道什么是全等形、全等三角形及全等三角形的对应元素.2.知道全等三角形的性质,能用符号正确地表示两个三角形全等.3.能熟练找出两个全等三角形的对应角、对应边.预习反馈阅读教材P31~32,完成下列内容.1.全等形、全等三角形的概念:能够完全重合的两个图形叫做全等形;能够完全重合的两个三角形叫做全等三角形.如下列图形中的全等形是e与h、d与g.2.把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.如图,△ABC与△DEF能重合,则记作:△ABC≌△DEF,对应顶点:点A与点D、点B 与点E、点C与点F;对应边:AB与DE、AC与DF、BC与EF;对应角:∠A与∠D、∠B与∠E、∠C与∠F.3.全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等.如上图,△ABC≌△DEF,则AB=DE,AC=DF,BC=EF;∠A=∠D,∠B=∠E,∠C=∠F.例题讲解类型1 全等形的识别例1如图,在4个正方形图案中,与如图所示正方形图案全等的图案是(C)【方法归纳】判断全等形的方法:两个图形同时满足形状相同和大小相同才能称为全等形,并且全等形与它们的位置和方向无关.【跟踪训练1】在下列每组图形中,是全等形的是(C)类型2 找全等三角形的对应元素例2 如图,△ABC≌△DEF,点A与点D,点B和点E是对应顶点,写出这两个三角形的对应边和对应角.解:由△ABC≌△DEF可得AC的对应边是DF,BC的对应边是EF,AB的对应边是DE,∠ABC的对应角是∠DEF,∠A的对应角是∠D,∠ACB的对应角是∠DFE.【方法归纳】确定全等三角形对应元素的三种方法:1.字母顺序法:根据书写规范,按照对应顶点确定对应边,对应角.如:△ABC≌△DEF,则AB与DE,AC与DF,BC与EF是对应边,∠A和∠D,∠B和∠E,∠C和∠F是对应角.2.图形位置法:①公共边一定是对应边;②公共角一定是对应角;③对顶角一定是对应角.3.图形大小法:两个全等三角形的最大的边(角)是对应边(角),最小的边(角)是对应边(角).【跟踪训练2】如图,△ABN≌△ACM,∠B和∠C是对应角,AB与AC是对应边,写出其他对应边和对应角.解:对应边:AN与AM,BN与CM;对应角:∠BAN与∠CAM,∠ANB与∠AMC.类型3 运用全等三角形的性质解决问题例3 如图所示,△ABC绕着点B顺时针旋转90°得到△DBE,且∠ABC=90°.(1)△ABC和△DBE是否全等?若全等,指出对应边和对应角;(2)直线CD,DE有怎样的位置关系?解:(1)∵△ABC绕着点B沿顺时针方向旋转90°得到△DBE,∴△ABC≌△DBE.∴∠BAC的对应角为∠BDE,∠ACB的对应角为∠DEB,∠ABC的对应角为∠DBE;AB的对应边为DB,BC的对应边为BE,AC的对应边为DE.(2)AC⊥DE.理由:延长AC,交DE于点F.∵∠ABC=90°,∴∠A+∠1=90°.又∵△ABC≌△DBE,∴∠D=∠A.又∵∠2=∠1,∴∠2+∠D=90°.∴AC⊥DE.【方法归纳】全等三角形的性质的用途全等三角形的性质⎩⎪⎨⎪⎧角相等⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫证两角相等求某角的度数判断两直线的位置关系边相等⎩⎪⎨⎪⎧证线段相等求线段的长度【跟踪训练3】 如图,把△ABC 沿直线BA 翻折至△ABD ,那么△ABC 和△ABD 是全等图形(填“是”或“不是”).若CB =5,则DB =5;若△ABC 的面积为10,则△ABD 的面积为10.巩固训练1.下列关于全等三角形的说法,不正确的是(A)A .形状相同的三角形是全等三角形B .全等三角形的形状相同C .全等三角形的大小相等D .全等三角形的对应边相等2.如图,已知△ABC ≌△CDE ,其中AB =CD ,那么下列结论中,不正确的是(C)A .AC =CEB .∠BAC =∠ECD C .∠ACB =∠ECDD .∠B =∠D3.如图,若△OAD ≌△OBC ,∠COD =65°,∠C =20°,则∠OAD 的度数为(D)A .65°B .75°C .85°D .95°4.已知△ABC≌△A′B′C′,点A与A′,点B与B′是对应点,△A′B′C′周长为9 cm,AB=3 cm,BC=4 cm,则A′C′=2__cm.5.如图,在图中的两个三角形是全等三角形,其中点A和D、点B和E是对应点.(1)用符号表示两个三角形全等,并写出图中相等的线段;(2)写出图中一组平行的线段,并说明理由.解:(1)△ABC≌△DEF,AB=DE,BC=EF,AC=DF,AF=DC.(2)∵△ABC≌△DEF,∴∠A=∠D,∴AB∥DE.6.如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F.若DE=7,BC=4,∠D=35°,∠C=60°.(1)求线段AE的长;(2)求∠DFA的度数.解:(1)∵△ABC≌△DEB,∴DE=AB,BE=BC.∵AE=AB-BE,∴AE=DE-BC=7-4=3.(2)∵△ABC≌△DEB,∴∠A=∠D,∠C=∠DBE.∴∠DEA=∠D+∠DBE=95°.∴∠DFA=∠DEA+∠A=130°.课堂小结1.全等三角形的概念:能够完全重合的两个图形叫做全等形.平移、翻折、旋转前后的图形全等.2.全等三角形:能够完全重合的两个三角形叫做全等三角形.对应元素:把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.表示方法:“全等”用“≌”表示,读作“全等于”,表示两个三角形全等时,通常把表示对顶点的字母写在对应的位置上.3.全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等.。
第十二章全等三角形小结导学案一、学习目标:1. 复习全等形与全等三角形的概念、全等三角形的判定定理,以及角平分线的作图方法和角平分线的性质等知识,建立知识系统;2. 使学生总结寻找全等三角形及其全等条件的方法、归纳常见辅助线的作法,使学生掌握分析问题的方法,提升解题能力。
二、学习重点、难点:学习重点:将所学知识科学地组织起来,将其纳入已有的知识结构中。
学习难点:提升分析问题、解决问题的能力。
三、本章知识结构图:。
四、回顾与思考:1、请你举一些生活中的全等形。
2、全等三角形的概念及性质;3、三角形全等的判定;4、 角平分线的性质及判定5、你能举例说明证明一个几何命题的一般过程吗?知识点一:证明三角形全等的思路通过对问题的分析,将解决的问题归结到证明某两个三角形的全等后,采用哪个全等判定定理加以证明,可以按下图思路进行分析:⎧→⎧⎪⎪→⎨⎪⎪⎪→⎩⎪⎪→→⎧⎪⎪→⎧⎪⎪⎨⎨⎪→⎨⎪⎪⎪⎪⎪→⎩⎩⎪⎪→⎧⎪⎨→⎪⎩⎪⎩SAS SSS HL AAS SAS ASA AAS ASA AAS 找夹角已知两边找第三边找直角边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一对边 切记:“有三个角对应相等”和“有两边及其中一边的对角对应相等”的两个三角形不一定全等。
例1. 如图,,,,A F E B 四点共线,AC CE ⊥,BD DF ⊥,AE BF =,AC BD =。
求证:ACF BDE ∆≅∆。
思路分析:从结论ACF BDE ∆≅∆入手,全等条件只有AC BD =;由AE BF =两边同时减去EF 得到AF BE =,又得到一个全等条件。
还缺少一个全等条件,可以是CF DE =,也可以是A B ∠=∠。
知识点二:构造全等三角形例2. 如图,在ABC ∆中,BE 是∠ABC 的平分线,AD BE ⊥,垂足为D 。
求证:21C ∠=∠+∠。
思路分析:直接证明21C ∠=∠+∠比较困难,我们可以间接证明,即找到α∠,证明2α∠=∠且1C α∠=∠+∠。
第十二章全等三角形12.1 全等三角形一、导学1.导入课题:观察下列几组图形:你能发现这几组图片中两个图形有什么关系吗?今天我们开始学习最简单的全等形——全等三角形.2.学习目标:(1)知道全等形及全等三角形的概念.(2)能够准确辨认全等三角形的对应元素.(3)知道全等三角形的性质,并能灵活运用全等三角形的性质解决相应的几何问题.3.学习重、难点:重点:全等三角形的性质.难点:运用全等三角形的性质解决几何问题.4.自学指导:(1)自学内容:探究三角形全等的意义和一个图形经过几何变换前后的关系.(2)自学时间:10分钟.(3)自学方法:操作、观察、比较、归纳.(4)探究提纲:①取一张纸,将自己事先准备好的三角板按在纸上,画下图形,照图形裁下来.②通过上面的操作可以得到全等形的概念:能够完全重合的两个图形叫做全等形;全等三角形的概念:能够完全重合的两个三角形叫做全等三角形.③列举日常生活中两个图形全等的例子.学校教室的前后门,前后窗户.④观察下面甲、乙、丙三个图形的位置变化.如图甲将△ABC沿直线BC平移得△DEF;如图乙将△ABC沿BC 翻折180°得到△DBC;如图丙将△ABC绕A旋转180°得△AED.a.各图中的两个三角形全等吗?你能找出图中全等三角形的对应线段(边)和对应角吗?b.根据对应顶点放在对应位置上的方法,图甲记作:△ABC ≌△DEF;图乙记作:△ABC ≌△DBC;图丙记作△ABC ≌△AED.c.一个图形经过平移、翻折、旋转后,形状和大小不变,即:平移、翻折、旋转前后的图形全等.⑤从全等的实际意义中你认为全等三角形有哪些性质吗?对应边相等,对应角相等.二、自学学生可结合自学指导进行自学.三、助学1.师助生:(1)明了学情:对于图甲这种类型的图形,学生能顺利地寻找出对应元素;但对于图乙、图丙这种有重合部分的图形,学生寻找对应元素会存在一定的难度,教师应予以重点关注.(2)差异指导:a.对于图乙、图丙,教师加强动画演示,引导学生观察图形经过翻折、旋转变换后的对应元素的位置;b.引导学生运用几何语言描述全等三角形的性质,用几何语言表示两个三角形全等的时候,一定要强调对应顶点放在对应位置上;c.教师强调同一组图形的记法并不唯一.2.生助生:学生相互交流帮助.四、强化1.基本概念:全等形、全等三角形、对应顶点、对应角、对应边,以及有关的数学符号.记作:△ABC≌△A′B′C′,符号“≌”读作“全等于”.(注意强调书写时对应顶点字母写在对应的位置上)2.全等三角形的性质是对应边相等,对应角相等.3.练习:(1)如图,△OCA≌△OBD,C和B,A和D是对应顶点,说出这两个三角形中相等的边和角.若∠A=20°,∠AOC=75°,你能求出∠B的度数吗?解:OC=OB,OA=OD,CA=BD,∠COA=∠BOD,∠C=∠B,∠A=∠D.∠B=∠C=180°-∠A-∠AOC=85°.(2)如图,已知△ABE≌△ACD,∠ADE=∠AED,∠B=∠C,指出其他的对应边和对应角.若BD=2cm,DE=3cm,你能求出DC的长吗?解:AB=AC,AE=AD,BE=CD,∠BAE=∠CAD.DC=BE=BD+DE=5cm.五、评价1.学生的自我评价:学生相互交谈自己的收获和困惑.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、方法、成果和不足进行点评.(2)纸笔评价:课堂评价检测.3.教师自我评价(教学反思):本课时通过学生在做模型、画图、动手操作等活动中的体验,完成对三角形全等的认识,重点在对“三角形全等”“对应”等含义的理解.对“全等三角形”的认识,可让学生采用复写纸、手撕、剪纸、扎针眼等方式获取,并鼓励学生间互相交流动手过程中的体验.教学过程中,强调学生自主探索和合作交流,经历观察、实验、归纳、类比、直觉、数据处理等思维过程,从中获得数学知识与技能,体验教学活动的方法,同时升华学生的情感、态度和价值观.一、基础巩固(第1题20分,第2题50分,共70分)1.判断题:(1)全等三角形的对应边相等,对应角相等.(√)(2)全等三角形的周长相等,面积也相等.(√)(3)面积相等的三角形是全等三角形.(×)(4)周长相等的三角形是全等三角形.(×)2.填空:(1)如图,点O是平行四边形ABCD的对角线的交点,△AOB绕O 旋转180°,可以与△COD重合,这说明△AOB≌△COD.这两个三角形的对应边是AO与CO,OB与OD,BA与DC;对应角是∠AOB 与∠COD,∠OBA与∠ODC,∠BAO与∠DCO.(2)如图,△ABC≌△ADE,则,AB=AD,∠E=∠C.若∠BAE=120°,∠BAD=40°,则∠BAC=80°.(3)△ABC≌△DEF且△ABC的周长为12,若AB=3,EF=4,则AC=5.(4)△ABC≌△BAD,A和B,C和D是对应顶点,如果AB=8cm,BD=6cm,AD=5cm,BC=5cm.(5)如图,△ABE≌△ACD,AB=AC,BE=CD,∠B=50°,∠AEC=120°,则∠DAC的度数等于70°.二、综合应用(每题10分,共20分)3.已知:△DEF≌△MNP,EF=NP,∠F=∠P,∠D=48°,∠E =52°,MN=12cm,求:∠P的度数及DE的长.解:∵△DEF≌△MNP,EF=NP,∠F=∠P,∴∠M=∠D=48°,∠N=∠E=52°,DE=MN=12 cm.又∠M+∠N+∠P=180°∴∠P=80°4.在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是(A)A.∠AB.∠BC.∠CD.∠B或∠C三、拓展延伸(10分)5.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是(C)A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBDD.AD∥BC,且AD=BC12.2 三角形全等的判定第1课时边边边一、新课导入1.导入课题:通过上节课的学习,大家知道:两个三角形全等时,三条对应边相等,三组对应角相等,那么判定两个三角形全等,是否一定需要满足六个条件呢?如果只满足上述六个条件中的一部分,是否也能保证两个三角形全等呢?从这节课开始,我们来探究全等三角形的判定.2.学习目标:(1)通过三角形的稳定性,体验三角形全等的“边边边”条件.(2)会运用“边边边”定理判定两个三角形的全等.3.学习重、难点:重点:寻求三角形全等的条件的方法.难点:寻求三角形全等的条件的依据.二、分层学习1.自学指导:(1)自学内容:探究1:两个三角形的六个对应元素中满足一个或两个对应元素相等的两个三角形是否一定全等.探究2:三条边对应相等的两个三角形是否一定全等.(2)自学时间:10分钟.(3)自学方法:按探究中的要求画三角形、剪三角形、重叠三角形,并观察归纳得出自己的结论.(4)探究提纲:动手画出符合给出条件的两个三角形,小组内比较一下,看画出的图形是否全等.a.小组长任意给出一个条件(一条边或一个角),小组的所有成员动手画出符合条件的三角形,小组内比较一下,你们画出的图形一样吗?b.小组长任意给出两个条件画三角形时,有几种可能的情况,每种情况下作出的三角形一定全等吗?发现按这些条件画出的两个三角形不能保证一定全等.c.给出三个条件画三角形,画画看有几种可能的情况.d.已知一个三角形的三条边长分别为6cm、8cm、10cm.你能画出这个三角形吗?把你画的三角形剪下与同伴画的三角形进行比较,它们全等吗?你能得出什么结论?通过上面的操作,你得出的结论:三边分别相等的两个三角形全等简写为“边边边”或“SSS”.2.自学:学生结合探究提纲进行探究式学习.3.助学:(1)师助生:①明了学情:学生对自学提纲中的a、b两种情形,能够很快得出不全等的结论,但对于自学参考提纲中的c情形,学生可以得出很多结论,因此教师在肯定学生的前提下,不要过多的停留在这个问题上,要迅速引导学生回到今天探讨的重点上.②差异指导:根据学生学习中存在的问题予以分类指导.(2)生助生:在动手画图的过程中,小组之内需要合作探究,相互交流帮助.4.强化:(1)定理的文字表述:三边分别相等的两个三角形全等.(2)定理的几何表述:如图,在△ABC和△DEF中,∵AB=DE,AC=DF,BC=EF,∴△ABC≌△DEF.(特别注意对应的顶点写在对应的位置上.)1.自学指导:(1)自学内容:教材第36页例1到教材第37页探究3前的内容.(2)自学时间:5分钟.(3)自学方法:认真阅读教材上的内容,思考回答自学提纲中的问题.(4)自学参考提纲:①判定两个三角形全等,今天学习了什么方法?SSS②图中D是BC的中点,你可以得出哪个结论?等腰三角形“三线合一”.③你学会了证明两个三角形全等的基本格式了吗?④请仿照课本作图:已知∠AOB.a.求作:∠A′O′B′,使∠A′O′B′=∠AOB,认真阅读作法,理解什么是尺规作图?然后写出这样作图的理论依据.依据:三边分别相等的两个三角形全等(SSS).b.剪下△COD和△C′O′D′,重叠地放置在一起,看一看有什么结果?全等.2.自学:学生可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:重点了解学生对证明的符号语言的运用及作图中的作法表述规范完整.②差异指导:a.指导学生的证明过程;b.纠正学生尺规作图的作法不当之处;c.引导说明每步作图的目的和依据.(2)生助生:对尺规作图的理论依据及规范操作进行交流,对困难学生予以帮助.4.强化:(1)结论、方法、要领:①用:“SSS”判定两个三角形全等的依据.②用“SSS”证明两个三角形全等的表达格式.③符号“∵”“∴”表示的意义.④公共边是对应边.⑤等量的运用:等式性质.(2)练习:如图,A、D、B、F在一条直线上,BC=DE,AC=EF,BF=AD,求证:△ABC≌△FDE.证明:∵BF=AD,∴BF+BD=AD+DB,即DF=AB.在△ABC和△FDE中,BC=DE,AC=FE,AB=FD,∴△ABC=△FDE(SSS).三、评价1.学生的自我评价:通过本节课的学习,让学生代表谈谈自己的收获或困惑.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、学习方法和收获进行点评.(2)纸笔评价:课堂评价检测.3.教师自我评价(教学反思):本课时教学时应抓住以下重点:(1)分类问题:教师让学生从实践入手,给定三角形三边,学生在薄纸上画,然后小组的同学看所画三角形是否重合,探索归纳、形成结论.(2)教师可用多媒体展示现实生活中的实际例子:如桥梁、铁塔、自行车的三角架等,从中体验三角形的稳定性,认识“边边边”可作为三角形全等的判定依据.(3)强调思路分析和书写规范.一、基础巩固(第1、2、3题每题10分,第4题20分,共50分)1.下面判断两个三角形全等的条件中,正确的是(D)A.一条边对应相等B.两条边对应相等C.三个角对应相等D.三边对应相等2.如图,△ABC中,AB=AC,EB=EC,则由SSS可以判定(B)A.△ABD≌△ACDB.△ABE≌△ACEC.△BDE≌△CDED.以上答案都不对3.如图,AB=AC,EB=CD,要使△ABE≌△ACD,依据SSS,则还需要添加条件AE=AD.4.如图,AB=AD,CB=CD,△ABC 与△ADC全等吗?为什么?解:全等.∵AB=AD,CB=CD,AC=AC,∴△ABC≌△ADC(SSS).二、综合应用(每题15分,共30分)5.如图,C是AB的中点,AD=CE,CD=BE,求证△ACD≌△CBE证明:∵C是AB的中点,∴AC=CB.在△ACD和△CBE中,AC=CB,AD=CE,CD=BE,∴△ACD≌△CBE(SSS).6.如图,点B、E、C、F在一条直线上,AB=DE,AC=DF,BE=CF,求证:∠A=∠D.证明:∵BE=CF,∴BE+EC=CF+EC,即BC=EF,在△ABC和△DEF 中,AB=DE,AC=DF,BC=EF,∴△ABC≌△DEF(SSS).∴∠A=∠D.三、拓展延伸(20分)7.已知∠AOB,点C是OB边上的一点,用尺规作图,画出经过点C与OA平行的直线.解:作图如图所示:作法:(1)以点O为圆心,任意长为半径画弧,分别交OA,OB 于点D,E;(2)以点C为圆心,OD长为半径画弧,交OB于点F;(3)以点F为圆心,DE长为半径画弧,与第2步中所画的弧相交于点P;(4)过C,P两点作直线,直线CP即为要求作的直线.12.2三角形全等的判定第2课时边角边一、新课导入1.导入课题:上一节课,我们探究了三条边对应相等的两个三角形全等.如果两个三角形有两条边和一个角分别对应相等,这两个三角形会全等吗?——这就是本节课我们要探讨的课题.2.学习目标:(1)能说出“边角边”判定定理.(2)会用“边角边”定理证明两个三角形全等.3.学习重、难点:重点:“边角边”定理及其应用.难点:“边角边”定理的应用.二、分层学习1.自学指导:(1)自学内容:探究有两条边和它们的夹角对应相等的两个三角形是否全等.(2)自学时间:5分钟.(3)自学方法:根据探究提纲进行操作,并观察归纳得出结论.(4)探究提纲:①如果两个三角形有两条边和一个角分别对应相等,有几种可能的情形?②画△ABC和△A′B′C′,使AB=A′B′,BC=B′C′,∠A=∠A′,剪下两个三角形,相互交流一下,看△ABC与△A′B′C′是否一定能重合?不一定③画△ABC和△A′B′C′, 使A′B′=AB,∠A′=∠A,A′C′=AC,剪下△ABC和△A′B′C′,大家试一试,△A′B′C′与△ABC能重合吗?能a.由上面的探究得到判定两个三角形全等的方法是两边和它们的夹角分别相等的两个三角形全等(简写成边角边或SAS).b.将上述结论写成几何语言:∵AB=A′B′,∠BAC=∠B′A′C′,AC=A′C′,∴△ABC≌△A′B′C′(SAS)④寻找题目中的隐含条件.a.如图(a),AB、CD相交于点O,且AO=OB.观察图形,图中已具备的另一个相等的条件是∠AOC=∠BOD;联想SAS公理,只需补充条件OC=OD,则有△AOC≌△BOD.b.如图(b),AB⊥AC,AD⊥AE,AB=AC, AD=AE.能得出△DAC ≌△EAB吗?能.∵AB⊥AC,AD⊥AE,∴∠BAC=∠DAE=90°,∴∠BAC+∠CAE=∠DAE+∠CAE,即∠EAB=∠DAC.在△DAC和△EAB中,AC=AB,∠DAC=∠EAB,∴△DAC≌△EAB(SAS)AD=AEc.如图(c),AB=CD,∠ABC=∠DCB,能判定△ABC≌△DCB 吗?解:∵AB=CD,∠ABC=∠DCB,BC=CB,∴△ABC≌△DCB(SAS).2.自学:学生结合探究提纲进行探究学习.3.助学:(1)师助生:①明了学情:部分学生在归纳结论上会存在一定的困难,特别是“夹角”的理解及表述上.②差异指导:根据学生学习中存在的问题予以分类指导.(2)生助生:探究提纲中的问题可以由小组合作学习,相互交流帮助寻找出题目条件或隐含条件和说明方式.4.强化:(1)已知两边和夹角,会用尺规作图画三角形.(2)边角边公理内容及几何语言的表达.(3)边角边公理是判定两个三角形全等的第二个方法,现在一共学习了两个判定三角形全等的方法:SSS、SAS,结合条件可以选用这两个判定方法证明三角形全等.(4)强化练习:①下列条件中,能用SAS判定△ABC≌△DEF的条件是(B)A.AB=DE,∠A=∠D,BC=EFB.AB=DE,∠B=∠E,BC=EFC.AB=EF,∠A=∠D,AC=DFD.BC=EF,∠C=∠F,AB=DF②已知△ABC中,AB=BC≠AC,作与△ABC只有一条公共边,且与△ABC全等的三角形,这样的三角形一共能作出7个.1.自学指导:(1)自学内容:教材第38页例2到教材第39页练习前的“思考”.(2)自学时间:10分钟.(3)自学指导:结合自学参考提纲,阅读教材.(4)自学参考提纲:①看懂例题题意,对照定理,在证明过程的后面注上理由.②此题证明△ABC≌△DEC的理论依据是什么?SAS③归纳:线段相等或者角相等,可以通过什么方法得到?证明三角形全等,再根据全等三角形的性质得到.④思考:定理中为什么要强调“夹角”?因为只有满足“两边及夹角”的两个三角形才能全等,否则不一定全等.动手操作:把一长一短的两根木棍的一端固定在一起,摆出△ABC,固定住长木棍,转动短木棍,得到△ABD,这个实验说明了什么?两边相等,夹角不相等的两个三角形不一定全等.2.自学:学生可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:第二层次的学习是教会学生证明角、线段相等的方法是构造全等三角形,学生在初次接触到这种方法,应用起来会比较生疏.②差异指导:a.指导学生构造全等三角形来证明角或者边相等;b.引导学生理解“两边及一角对应相等是不是一定可以得到两个三角形全等?”(2)生助生:小组共同探讨帮助认知例题的证明方法及教材第39页的思考所反映的问题.4.强化:(1)判定两个三角形全等到目前学习的方法有“SSS”、“SAS”,注意没有“SSA”或“ASS”(特殊情形除外).(2)证明三角形全等的方法和步骤.(3)课堂练习:①课本教材第39页练习.练习1:相等,根据边角边定理,△BAD≌△BAC,∴DA=CA.练习2:证明:∵BE=FC,∴BE+EF=FC+EF,即BF=CE,又AB=DC,∠B=∠C,∴△ABF≌DCE,∴∠A=∠D.②如图,在四边形ABCD中,AD∥BC,AD=BC,你能得出AB=CD 吗?若能,试说明理由.解:连接AC.∵AD∥BC,∴∠DAC=∠BCA.在△ABC和△CDA 中,AD=BC,∠DAC=∠BCA,AC=CA,∴△ABC≌△CDA(SAS).∴AB=CD.三、评价1.学生的自我评价:学生交谈自己的学习收获及学习中的困惑.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、方法、成果及存在的不足进行点评.(2)纸笔评价(课堂评价检测).3.教师的自我评价(教学反思):本节课的引入,可采用探究的方式,引导学生通过操作、观察、探索、交流、发现思索的过程,得出判定三角形全等的“SAS”条件,同时利用一个联系生活实际的问题——测量池塘两端的距离,对得到的知识加以运用,最后再通过实际图形让学生认识到“两边及其中一边的对角对应相等”的条件不能判定两个三角形全等.一、基础巩固(第1、2题每题10分,第3、4题每题20分,共60分)1.下列命题错误的是(D)A.周长相等的两个等边三角形全等B.两条直角边对应相等的两个直角三角形全等C.有两条边对应相等的两个等腰三角形不一定全等D.有两条边和一个角对应相等的两个三角形全等2.如图,AB=AC,若想用“SAS”判定△ABD≌△ACE,则需补充一个条件AD=AE.第2题图第3题图第4题图3.如图,给出5个等量关系:①AD=BC;②AC=BD;③CE=DE;④∠D=∠C;⑤∠DAB=∠CBA.请你以其中两个为条件,另三个中的一个为结论,组成一个正确的命题(用“若……则……”的形式表述)(只需写出一个),并加以证明.解:命题:若AD=BC,∠DAB=∠CBA,则AC=BD.证明如下:在△ABD和△BAC中,AD=BC,∠DAB=∠CBA,AB=BA,∴△ABD ≌△BAC(SAS).∴AC=BD.4.如图,点B,E,C,F在同一直线上,AB=DE,∠B=∠DEF,BE=CF.求证:AC=DF.证明:∵BE=CF,∴BE+EC=CF+EC,即BC=EF.在△ABC和△DEF中,AB=DE,∠B=∠DEF,∴△ABC≌△DEF(SAS).∴AC=DF.BC=EF二、综合应用(20分)5.已知:如图AB=AC,AD=AE,∠BAC=∠DAE,求证:△ABD≌△ACE.证明:∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△ABD和△ACE中,AB=AC,∠BAD=∠CAE,∴△ABD≌△ACE(SAS),AD=AE,三、拓展延伸(20分)6.小明做了一个如图所示的风筝,测得DE=DF,EH=FH,由此你能推出哪些正确结论?并说明理由.解:结论:(1)DH平分∠EDF和∠EHF.(2)DH垂直平分EF.理由.(1)在△EDH和△FDH中,DE=DF,EH=FH,DH=DH,∴△EDH ≌△FDH(SSS).∴∠EDH=∠FDH,∠EHD=∠FHD.即DH平分∠EDF和∠EHF.(2)由(1)知,在△EOD和△FOD中,ED=DF,∠EDO=∠FDO,OD=OD,∴△EOD≌△FOD(SAS).∴EO=OF,∠EOD=∠FOD=90°,∴DH垂直平分EF.12.2三角形全等的判定第3课时角边角和角角边一、新课导入1.导入课题:一张教学用的三角形硬纸板不小心被撕坏了,如图,你能制作一张与原来形状大小相同的三角形硬纸板吗?下面我带着这个问题学习——三角形的又一个重要的判定方法.2.学习目标:(1)能述出“角边角”定理.(2)能运用“角边角”定理解决简单的推理证明问题.3.学习重、难点:重点:“角边角”定理及其应用.难点:灵活运用三角形全等条件证明三角形全等.二、分层学习1.自学指导:(1)自学内容:探究有两个角和它们的夹边对应相等的两个三角形是否全等.(2)自学时间:5分钟.(3)自学方法:参考探究提纲进行实验操作,并进行观察、思考,得出你的结论.有困难的学生可以合作学习.(4)探究提纲:①动手操作:三角形的两个内角分别是60°和80°,它们的夹边为4 cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么结论?②将你发现的结论写下来:两角和它们的夹边分别相等的两个三角形全等(简写成“角边角”或“ASA”).③将上述结论用几何语言表示为:在△ABC和△A′B′C′中∵∠A=∠A′,AB=A′B′,∠B=∠B′,∴△ABC≌△A′B′C′(ASA)2.自学:学生结合探究提纲进行探究学习.3.助学:(1)师助生:①明了学情:观察学生动手情况,特别是结论的归纳及表述是否正确、简洁.②差异指导:对学生学习中存在的问题予以分类指导.(2)生助生:针对个别学生学习中存在的疑点进行互助交流.4.强化:“ASA”的文字表述及符号表述.1.自学指导:(1)学习内容:教材第40页例3到教材第41页“练习”前面的内容.(2)自学时间:10分钟.(3)自学方法:结合图形,对照条件寻找符合“ASA”的对应元素.(4)自学参考提纲:①例3中,要证明AD=AE,可通过证明哪两个三角形全等得到?根据条件采用哪种判定方法?△ACD≌△ABE(ASA).证明中对应相等的元素排列次序有讲究吗?公共角(公共边)是∠A.②认真阅读例4a.已知条件中的两个角是边的夹角吗?不是b.仔细阅读例题的证明过程,该题的证明是用我们学过哪个定理来证明的?三角形内角和定理c.该例题得出了一个什么结论?结论:两角分别相等且其中一组等角的对边相等的两个三角形全等(简写为:角角边或AAS)将上述结论用几何语言表示为:在△ABC和△DEF中∵∠A=∠D,∠B=∠E,BC=EF∴△ABC≌△DEF(AAS)③小组合作完成教材第41页上面的思考.a.小组长给出任意三个角的度数,小组内的所有成员动手画一画,然后比一比,画出的三角形全等吗?b.通过“思考”的学习,我们明白了什么道理?结论:三个角分别相等的两个三角形不一定全等.c.归纳交流:判定两个三角形全等的方法有哪些?2.自学:学生可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:对于例4的证明,学生对条件的转换容易混淆,教材第41页的思考在小组合作下学习,部分学生也会存在一定的困难.②差异指导:对学生存在的问题予以启发指导.(2)生助生:对教材第41页的“思考”由小组共同合作交流相互帮助完成.4.强化:(1)有两个角及一边对应相等的两个三角形全等,其对应关系有两种情况:“ASA”、“AAS”(2)练习:①如图,EA⊥AB,DB⊥AB,∠ACE=∠BDC,AE=BC,试判断CE与CD的关系.解:∵EA⊥AB,DB⊥AB,∴∠A=∠B=90°,在△ACE和△BDC中,∠ACE=∠BDC,∠A=∠B,AE=BC,∴△ACE≌△BDC(AAS).∴CE=CD.②判断:a.有两条边和一个角对应相等的两个三角形全等.(×)b.有两个角和一条边对应相等的两个三角形全等.(√)三、评价1.学生的自我评价:学生相互交流自己的学习收获和困惑.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、方法、成果和不足进行点评.(2)纸笔评价(课堂评价检测).3.教师的自我评价(教学反思):本课时教学以“自主探究——合作交流”为主体形式,先给学生独立思考的时间,提供学生创新的空间与可能,再给不同层次的学生提供一个交流合作的机会,培养学生独立探究,合作学习的能力.同时,注重让学生用自己的语言归纳和表达发现的规律,指引学生对知识与方法进行回顾总结,形成良好的反思习惯,获取优秀的学习方法.一、基础巩固(每题10分,共50分)1.在△ABC和△A′B′C′中,从下列各组条件中,选取的三个条件不能保证△ABC≌△A′B′C′的是(B)①AB=A′B′②BC=B′C′③A C=A′C′④∠A=∠A′⑤∠B=∠B′⑥∠C=∠C′A.①②③B.①②④C.③④⑤D.具备②③⑥2.如果两个三角形中两条边和其中一边所对的角相等,那么这两个三角形(C)A.全等B.不全等C.不一定全等D.以上答案均不对3.如图,已知AB=DC,AD=BC,E、F是DB上的两点且BF =DE.若∠AEB=120°,∠ADB=30°,则∠BCF= (D)A.150°B.40°C.80°D.90°4.如图,若△ABC≌△ADE,∠EAC=35°,则∠BAD=35度.5.如图,AB∥CD,AD∥BC,OE=OF,图中全等三角形共有6对.二、综合运用(每题15分,共30分)6.已知:如图,∠ABC=∠DEF,AB=DE,要证明△ABC≌△DEF,(1)若以“SAS”为依据,还须添加的一个条件为BC=EF.(2)若以“ASA”为依据,还须添加的一个条件为∠A=∠D.(3)若以“AAS”为依据,还须添加的一个条件为∠ACB=∠F.7.如图,AB∥CD,AD∥BC,那么AD=BC,AB=DC,你能说明其中的道理吗?(可添加辅助线)解:连接AC.∵AB∥CD,AD∥BC,∴∠BAC=∠DCA,∠DAC=∠BCA,又AC=CA,∴△BAC≌△DCA(ASA).∴AD=BC,AB=DC.三、拓展延伸(20分)8.如图,E、F在BD上,且AB=CD,BF=DE,AE=CF,求证:AC与BD互相平分.证明:∵BF=DE,∴BF-EF=DE-EF,即BE=DF.在△ABE和△CDF中,AB=CD,AE=CF,BE=DF,∴△ABE≌△CDF.∴∠B=∠D.∴AB∥CD.∴∠BAO=∠DCO.在△ABO和△CDO中,∠B=∠D,AB=CD,∠BAO=∠DCO,∴△ABO≌△CDO,∴BO=DO,AO=CO,即AC与BD互相平分.12.2三角形全等的判定第4课时斜边、直角边一、新课导入1.导入课题:对于两个直角三角形,除了直角相等的条件,还要满足哪些条件,这两个直角三角形就全等呢?本节课我们探讨直角三角形全等的判定方法.2.学习目标:(1)探究直角三角形全等的判定方法.(2)能运用三角形全等的判定方法判断两个直角三角形全等.3.学习重、难点:重点:直角三角形全等的判定方法.难点:两个直角三角形全等判定的应用.二、分层学习1.自学指导:(1)自学内容:探究斜边和一条直角边对应相等的两个三角形全等.(2)自学时间:10分钟(3)自学方法:结合探究提纲进行探究.(4)探究提纲:①判定两个三角形全等的方法:SSS、SAS、ASA、AAS.②①中几个判定方法对于直角三角形是否适用?适用③如图,AB⊥BE于点B,DE⊥BE于点E,。
新人教版八年级上册数学 导学案第12章 全等三角形12.1 全等三角形学习目标:1、能说出怎样的两个图形是全等形,并会用符号语言表示两个三角形全等。
2、能在全等三角形中正确地找出对应顶点、对应边、对应角。
3、能说出全等三角形的对应边、对应角相等的性质。
学习重点:探究全等三角形的性质学习难点: 掌握两个全等三角形的对应边、对应角 课前预习阅读课本,解决下列问题阅读课本内容,回答课本思考问题,并完成下面填空: 1、能够完全重合的两个图形叫做 .全等图形的特征:全等图形的 和 都相同. 2、全等三角形注意记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。
课内探究全等三角形F EDABC定义能够 的两个三角形。
表示 用 表示,左图记作:△ABC △DEF 读法读作:对应边全等三角形____的边,如左图,AB 与 __,BC 与 __,AC 与 __。
对应 顶点 全等三角形____的顶点,如左图, 点A 与 __,点B 与 __,点C 与 __。
对应角全等三角形____的角,∠A 与__, ∠B 与__,∠C 与∠__。
第(3)题图BACDE第(1)题图F DEC BAEFD C AB第(2)题图DACB ECABD活动一:观察下列各组的两个全等三角形,并回答问题:如图(1) (1)△ABC ≌△DEF ,BC 的对应边是 ,即可记为BC = 。
∠A 对应角是 即可记为∠A = 。
(2) 如图(2)△ABC ≌△DEF ,△ABC 的边AC 的对应边是 ,即可记为AC = 。
(3) 如图(3)△ABC ≌△ ,∠ABC 对应角是 即可记为∠= ∠ 。
(4)如图(4)△ABC ≌△ ,△ABC 的∠BAC 的对应角是 即可记为∠ = ∠ 。
(5) △ABC ≌与△DEF ,AB =DE ,AC =DF ,BC =EF ,写出所有对应角相等的式子。
【拓展延伸】1、如图,已知ABC ∆≌EBD ∆,求证:21∠=∠2、如图,,ACD ABE ∆≅∆AB 与AC ,AD 与AE 是对应边,已知:οο30,43=∠=∠B A ,求ADC ∠的大小。
全等三角形12.1-12.2复习课
一、全等三角形:____________________________________________________________________
二、全等三角形的性质:______________________________________________________________
三、全等三角形的判定
特殊方法:直角三角形( )
四、基础训练:
2. 如图,在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别为D 、E ,AD 、CE 交于点H ,请你添加一个适当的条件:_________,使△AEH ≌△CDH .
4.已知:如图,AB=AC,AD=AE, ∠1=
∠3,那么∠E=∠D 吗?为什么? 5. 如图,AC 与BD 相交于点O ,且
AC=BD ,DA ⊥AC ,BC ⊥BD ,垂足分别是A ,B.求证:AD=BC.
6. 如图,BE ⊥AE ,CF ⊥AE ,垂足分别是E 、F ,D 是EF 的中点,△BED 与△CFD 全等吗?为什么?
五、能力提升
如图,△ABC 中,AB =AC ,∠BAC =90°,DE 是过点A 的直线,BD ⊥DE 于D ,CE ⊥DE 于E ,
(1)若B 、C 在DE 的同侧(如图1),求证:DE =DB +EC
第4题图
H E D C B A
(2)若B、C在DE的两侧(如图2),其他条件不变,DE、DB、EC三条线段之间满足什么关系?写出你的猜测,并说明你的理由.
图1 图2。
《第十二章 全等三角形》学案一、阅读课本,回忆知识点 考点1 全等三角形的定义及性质定义:能够 的两个三角形叫做全等三角形。
性质:1.全等三角形中,对应边 ,对应角 。
(对边、对角的区别) 2.全等三角形的对应线段(对应边上的中线,对应边上的高,对应角的平分线)__ 。
3.全等三角形的周长 ,面积 。
考点2 全等三角形的判定一般图形:1.“边边边”( ): 分别相等的两个三角形全等。
2.“边角边”( ): 分别相等的两个三角形全等。
3.“角边角”( ): 分别相等的两个三角形全等。
4.“角角边”( ): 分别相等的两个三角形全等。
全等三角形的证明思路:(1)已知两边:①找 →SAS ①找 →SSS (2)已知一边一角:①边角相对→找另外任一角→①边角相邻→ ⎪⎩⎪⎨⎧→→→找边的对角找边的另一邻角找角的另一邻边考点3 直角三角形的判定全等三角形的判定:(1)一般三角形全等的判定: 。
(2)直角三角形全等的判定: 。
考点4 角的平分线的性质和判定(如上图)1.角的平分线的性质定理是___________________。
符号语言 2.角的平分线的判定定理是___________________。
符号语言 温馨提示:证明两条线段相等或两个角相等以及两条线平行时,通常通过证明全等得到答案。
证明两个三角形全等,必须要有一对边相等,否则不能得到全等。
考点5 全等三角形的综合应用利用全等三角形可以测出不能(或不易)直接测量长度的线段长,例如,河宽,或利用全等测量小口瓶的内径等。
第5题第4题第3题二、基础训练1.在下面的推理中填写需要的条件(1)在①AOB 和①DOC 中 (2)在①AOB 和①DOC 中 (3)在①AOB 和①DOC 中AO =DO (已知) = (已知) = (已知) ①AOB = ( ) A O =DO (已知) = (已知) = (已知) = ( ) BC = ( ) ①①AOB ①①DOC (SAS ) ①①AOB ①①DOC (ASA ) ①①AOB ①①DOC (AAS )2.如图所示,AB ①BC ,AD ①DC ,AB =AD ,求证:①1=①2。
课题: 12.1 全等三角形导学案班级:姓名:【学习目标】1、了解全等形、全等三角形的概念,明确全等三角形对应边、对应角相等。
2、在列举生活中常见的的全等图形的过程中,学会判断对应边、对应角的方法。
3、积极投入,激情展示,做最佳自己。
【教学重点】:全等三角形的性质及寻找全等三角形的对应边、对应角。
【教学难点】:寻找全等三角形的对应边、对应角。
【学习过程】一、自主学习1、全等形。
回忆:举出现实生活中能够完全重合的图形的例子 ? 同一张底片洗出的同大小照片是能够完全重合的(如图);能够完全重合的两个图形叫做.(1)一个图形经过平移,翻转,旋转后,位置变化了,但和都没有改变,即平移,翻转,旋转前后的图形。
(2)如果两个图形全等,它们的形状大小一定都相同吗?全等形的特征是和2、全等三角形。
能够完全重合的两个三角形叫做(如下图)。
A A 1B C B1C1“全等”用符号“≌”来表示,读作“全等于”,如上图记作△ABC≌△ A1 B1C1叫对应顶点, A←→ A1 ,B ←→ B1,C←→ C1叫对应边, AB←→ A1B1,AC←→,←→ B1C1叫对应角 , ∠ A←→∠ A1, ∠B←→∠ ,∠C←→∠注意:书写全等式时要求把对应顶点字母放在的位置上。
3、全等三角形的性质。
全等三角形的相等,相等。
用符号表示为∵△ ABC≌△ A1 B1C1∴AB=A1 B1, BC=B1 C1, AC=A1C1(全等三角形的)∴ ∠A= ∠A1,∠B=∠B1,∠ C= ∠C1(全等三角形的)AA1B CB C11二、学以致用1、如图△ ABC≌ △ ADE,若∠ D=∠ B,∠C= ∠ AED,则∠ DAE=;∠DAB=。
2、如图 , △ABC≌△ AED,AB是△ ABC的最大边,AE是△ AED的最大边 ,∠BAC与∠ EAD对应角,且∠ BAC=25°,∠ B=35° ,AB=3cm,BC=1cm,求出∠ E, ∠ ADE 的度数和线段 DE,AE 的长度。
人教版八年级数学上册第十二章《三角形全等的判定-SAS》学习任务单及作业设计【学习目标】1.探索并掌握判定三角形全等的“SAS”条件.2.经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.3.能运用“SAS”证明简单的三角形全等问题.【课前学习任务】复习 SSS 的判定方法。
【课上学习任务】学习任务一:先任意画出一个△ABC,再画一个△A′B′C′,使 A′B′=AB,∠A'=∠A, C′A′= CA (即两边和它们的夹角分别相等).把画好的△A′B′C′剪下来,放到△ABC 上,它们全等吗?归纳:________判定方法:____________________________________________.符号语言表达:学习任务二:用所学的知识解决下列问题.例1. 下列图形中有没有全等三角形,并说明全等的理由.例 2. 如图,有一池塘,要测池塘两端 A、B 的距离,可先在平地上取一个不经过池塘可以直接到达点 A 和 B 的点 C,连接 AC 并延长至 D,使 CD =CA,连接 BC 并延长至 E,使 CE =CB,连接 ED,那么量出 DE 的长就是 A,B 的距离.为什么?例 3.如图,两车从南北方向的路段 AB 的 A 端出发,分别向东、向西行进相同的距离,到达 C,D 两地.此时 C,D 到 B 的距离相等吗?为什么?例 4.如图,点 E、F 在 BC 上,BE=CF,AB=DC,∠B=∠C,求证:∠A=∠D练习 1. 如图,CD=CA,∠1=∠2,EC=BC,求证:△ABC≌△DEC.练习 2. 如图,AC=AE,BC=DE,求证:∠C=∠E【学习资源】阅读课本第37页到第39页相关内容,并在教科书上圈画出本节课的主要知识点【作业设计】1.已知:如图,AD∥BC,AD=CB,求证:△ADC≌△CBA.2. 已知:AD=CD,BD 平分∠ADC,求证:(1)AB=BC;(2)∠A=∠C.【参考答案】1.由 AD//BC 可知,∠DAC=∠ACB.又 AD=CB,AC=AC,所以△ADC≌△CBA(SAS).2.由 BD 平分∠ADC 可知,∠ADB=∠CDB.又 AD=CD,BD=BD,所以△ADB≌△CDB(SAS).所以 AB=BC,∠A=∠C.。
八年级数学上册《第12章全等三角形》导学案(新版)新人教版【学习目标】知识与技能:掌握全等形、全等三角形及相关概念和全等三角形性质。
过程与方法:理解“平移、翻折、旋转”前后的图形全等,确定全等三角形的对应元素。
情感态度与价值观:培养学生对三角形的认识及推理论证能力。
【学习重点】掌握全等形、全等三角形及相关概念。
【学习难点】全等三角形性质。
【自学展示】自学课本P31-32页,完成下列要求:1、理解并背诵全等形及全等三角形的定义。
2、注意全等中对应点位置的书写。
3、理解并记忆全等三角形的性质。
4、自学后完成展示的内容,20分钟后,进行展示。
【合作学习】1、________相同的图形放在一起能够____。
这样的两个图形叫做____。
2、能够_____的两个三角形叫做全等三角形。
3、一个图形经过__、__、__后位置变化了,但形状‘大小都没有改变,即平移、翻折‘旋转前后的图形____。
4、______叫做对应顶点。
_______叫做对应边。
_____叫做对应角。
5、全等三角形的对应边__。
____相等。
【质疑导学】1、课本P32练习1、22、如图1,若△ABC≌△EFC,且CF=3cm,∠EFC=64,则BC=_____cm,∠B=___、毛图1 图23、如图2,△ABC≌△DEF,求证:AD=BE、【学习检测】1、如图1,△ABC≌△DEF,对应顶点是____对应角是____________,对应边是__________2、如图2,△ABC≌△CDA,AB和CD,BC和DA是对应边,写出其他对应边及对应角________________3、如图3,△ABN≌△ACM,∠B=∠C,AC=AB,则BN=____,∠BAN=______,_____=AN,_____= ∠AMC、图3 图44、如图4,△ABC≌△DEC,CA和CD,CB和CE是对应边,∠ACD和∠BCE相等吗?为什么?【学后反思】板书设计:课题:12、2三角形全等的判定(1)【学习目标】知识与技能:掌握三角形全等的判定(SSS)过程与方法:初步体会尺规作图,掌握简单的证明格式情感态度与价值观:初步体会三角形全等的认识,从而提高对几何图形的推理论证能力。
第4题 (A) (B ) (C ) (D ) 第十二章 轴对称 12.1.1轴对称(21课时)学习目标1.通过展示轴对称图形的图片,初步认识轴对称图形;2.通过试验,归纳出轴对称图形概念,能用概念判断一个图形是否是轴对称图形; 3.培养良好的动手试验能力、归纳能力和语言表述能力。
重点:理解轴对称图形的概念 难点:判断图形是否是轴对称图形 一、预习新知P291、观察课本中的7副图片,你能找出它们的共同特征吗?2、你能列举出一些现实生活中具有这种特征的物体和建筑物吗?3、动手做一做:把一张纸对折,然后从折叠处剪出一个图形,展开后会是一个什么样的图形?它有什么特征?4、如果一个图形沿一条__________折叠,________两旁的部分能够完全________.这个图形就叫做轴对称图形,这条________就是它的对称轴,这时,我们也说这个图形关于这条_________(成轴) 对称.做下面的题,检验你预习的结果5、轴对称图形的对称轴是一条___________ A 直线 B 射线 C 线段 6、课本P30练习题。
7、下面的图形是轴对称图形吗?如果是,指出对称轴。
二、课堂展示例1.我国的文字非常讲究对称美,分析图中的四个图案,图案( )有别于其余三个图案.思路分析:所用知识点:例2.如图是我国几家银行的标志,在这几个图案中是轴对称图形的有哪些?它们各有几条对称轴,你能画出来吗?(小组讨论完成)思路分析:三、随堂练习A组:1、要求同学们找出所剪的图案的对称轴,并且用直尺把它画出来。
2、课本P36习题1,3、课本P63复习题1B组:1、找出英文26个大写字母中哪些是轴对称图形?2、你能举出三个是轴对称图形的汉字吗3、练习册习题C组:1、用两个圆、两个三角形、两条平行线构造轴对称图形,别忘了要加上一两句贴切、诙谐的解说词。
2、小练习册习题12.1.2轴对称(22课时)学习目标1、通过动手实验,掌握关于某条直线成轴对称的两个图形的对应线段相等、对应角相等;2、理解轴对称图形和两个图形成轴对称这两个概念的区别与联系。
3、能够判别两个图形是否成轴对称。
重点:轴对称图形的对应线段相等、对应角相等。
难点:两个图形成轴对称与轴对称图形两个概念的区别与联系。
(A ) (B ) (C ) (D ) 一、预习新知P30-----P311、试验:在纸上滴上墨水,把纸张对折,随后打开,看看形成的两块墨迹是不是关于折痕对称?它的对称轴是哪一条?把它画出来。
2、观察课本中的三幅图形,并试着沿虚线折叠,每对图形有什么共同特征?3、一个图形沿着某条直线折叠,如果他能够与________重合,那么就说_______关于这条直线对称,这条直线叫做__________,折叠后________叫做对称点.4、在课本中的第三幅图中,(1)标出A 、B 、C 的对称点,∠A 、∠B 、∠C 的对应角,(2)连接AA ′,BB ′,CC ′,你发现这三条线段有什么关系?你找到规律了吗? 5、成轴对称的两个图形全等吗?为什么?6、全等的两个图形成轴对称吗?试举例说明。
(可以画图说明)7、课本P31练习题 二、课堂展示例1、李芳同学球衣上的号码是253,当他把镜子放在号码的正左边时,镜子中的号码是( )例2、观察规律并填空:例3、参照下图说明轴对称图形与两个图形成轴对称有什么区别与联系? (小组讨论回答) 思路分析:所用知识点:三、随堂练习 A 组1.下面哪些选项的右边图形与左边图形成轴对称?2、课本P36习题2,3 B 组1、课本P63复习题92.如图,若沿虚线对折,左边部分与右边部分重合,请找出图中A、B、C的对称点,并说出图中有哪些角相等?哪些线段相等?C组1、你能运用学过的知识把下面这个数学中不可能的式子变为可能吗?2、如图,四边形ABCD与四边形EFGH关于MN对称。
(1)A、B、C、D的对称点分别是,线段AC、AB的对应线段分别是,CD= ,∠CBA= ,∠ADC=.(2)AE与BF平行吗?为什么?(3)AE与BF平行,能说明轴对称图形对称点的连线一定互相平行吗?(4)延长线段BC、FG,交于点P,延长线段AB、EF,交于点Q,,你有什么发现吗?12.1.3线段的垂直平分线1(23课时)学习目标:1、通过动手试验掌握线段的垂直平分线的定义2、理解线段垂直平分线与对称轴的关系3、掌握线段垂直平分线的性质重点:线段垂直平分线上的点到线段两端的距离相等。
难点:运用线段垂直平分线性质解决问题。
教学过程一、预习新知P31----P331、线段是轴对称图形吗?通过折叠的方法作出线段AB的对称轴l,交AB与O1)点A的对称点是_______2)量出AO与BO的长度,它们有什么关系?3)AB与直线l在位置上有什么关系?2、经过线段________并且______于这条线段的________,叫做这条线段的垂直平分线.3、观察课本P31思考中的图,线段AA′,BB′,CC′与直线MN的关系是________由上可得:对称轴与对应点所连线段的垂直平分线有什么关系?4、已知直线l垂直平分线段AB,交AB与O.点C是l上任意一点,连接AC,BC.1)量出AC,BC的长度,它们有什么关系?2)另在l上任找一点D,量出AD,DB的长度,它们有什么关系?3)由1),2),你得到什么猜想?4)用我们以前学过的只是证明你的猜想。
6、线段垂直平分线上的点与这条线段两个端点的__________。
7、.课本P34练习题1.二、课堂展示例1、已知互不平行的两条线段AB, A′B′关于直线l对称,AB, A′B′所在的直线交于点P,判断下列正误。
1)AB=A′B′()2)点P在直线l上()3)若A, A′是对称点,则l垂直平分线段A A′()4)若B, B′是对称点,则PB=P B′( )例2.如右图所示,△ABC中,BC=10,边BC的垂直平分线分别交AB、BC于点E、D,BE=6,求△BCE的周长。
思路分析:所用知识点:三、随堂练习A组:1.如右图所示,直线MN和DE分别是线段AB、BC的垂直平分线,它们交于P点,请问PA和PC相等吗?为什么?B组:1、如图,△ABC中,AB=AC=18cm,BC=10cm,AB的垂直平分线ED交AC于D点,求:△BCD的周长。
C 组:课本P63复习题512.1.4 线段的垂直平分线2(24课时)学习目标:1、 进一步理解线段垂直平分线的性质,并能灵活运用。
2、 掌握线段垂直平分线的判定3、 运用线段垂直平分线的判定解决问题 重点:探索并理解线段垂直平分线的判定 难点:运用线段垂直平分线的判定解决问题 一、预习新知P331、用一根木棒和一根弹性均匀的橡皮筋,做一个简易的弓,箭通过木棒中央的孔射出去。
(1) (2) 1)如图(1)要使CO 垂直于AB ,需要添加什么条件?为什么? 那么点C 在_____________上。
2)如图(2),拉动C ,到达D 的位置,若AD=DB ,那么点D 在__________上。
3)由1),2),你得到什么猜想?4)用学过的知识证明你的猜想。
A B OCDABODECBAODECO2、与一条线段两个端点距离________的点,在这条线段的______________上。
3、课本P34练习题2 二、课堂展示例、如图所示,已知Rt △ABC 中,∠C =90°,沿过B 点的一条直线BE 折叠这个三角形,使C 点落在AB 边上的点D .要使点D 恰为AB 的中点,问还要添加什么条件?根据你添加的条件,你能证明出D 为AB 的中点吗?思路分析:所用知识点: 三、随堂练习A 组1、如图:已知直线l 和l 异侧的两点A 、B ,在直线l 上求作一点P ,使PA=PB.2、 如图:已知,OD=OC,ED=EC,那么直线OE 是线段 CD 的______________,你能写出证明过程吗/B 组 已知:E 是∠AOB 的平分线上一点,EC ⊥OA ,ED ⊥OB ,垂足分别为C 、D . 求证:(1)∠ECD=∠EDC ;(2)OE 是CD 的垂直平分线.C 组 课本P38习题12BCAED·A ·B12.1.5 轴对称(25课时)学习目标:1、掌握用“连结对称点的线段被对称轴垂直平分”2、熟练画出轴对称图形的对称轴。
3、培养良好的动手实践能力。
重点:验证一个图形是不是轴对称图形难点:画轴对称图形的对称轴。
一、预习新知P34—P351、如图:不通过折叠的方法,你能验证出这两个四边形是否关于直线MN对称吗?2、设A、B两点关于直线MN对称,则______垂直平分________.3、轴对称图形的对称轴与对应点所连线段的垂直平分线有什么关系?4、作轴对称图形的对称轴就是做作出一对对应点所连线段_____________5、只用圆规和直尺(不量长度)你能作出线段AB垂直平分线吗?根据下面的做法试一试。
作法:(1)分别以点A、B为圆心,以大于1/2AB的长为半径画弧,两弧相交于点C、D;(2)作直线CD所以直线CD就的垂直平分线,也是线段AB的对称轴。
问:这样所作的直线为什么是线段的垂直平分线?6、课本P35练习题1、2三、课堂展示例1、试着画出下边两个轴对称图形的对称轴。
例2、下面是我们学过的一些几何图形,说出下面图形是不是轴对称图形,并完成下表。
长方形正方形三角形等腰三角形等边三角形平行四边形任意梯形等腰梯形圆图形长方形正方形三角形等腰三角形等边三角形平行四边任意梯形等腰梯形圆形对称轴的条数三、随堂练习A组1:画出以下图形的对称轴2课本P35练习题33、课本P37习题5B组1:下面的虚线,哪些是图形的对称轴,哪些不是?2、课本P37习题7,9C组1、课本P38习题112、小练习册12.2.1 轴对称变换(26课时)学习目标1.能够按要求作出简单平面图形经过一次对称后的图形。
2、能设计简单的轴对称图案。
3、通过画轴对称图形,增强学生学习几何的趣味感,培养审美情操。
:重点:利用对称轴作轴对称图形。
难点:利用对称轴进行图案设计。
教学过程一、预习新知P39---P411、如图:你能做出它关于虚线的对称图形吗?ABC l(1)找到点A的对称点A′(2) A A ′与对称轴有什么关系?(3)在图中另找一对对称点,连接对称点的线段与对称轴还有上述关系吗?2、连接任意一对对称点的线段被对称轴____________3、如图,已知点A和直线l,试画出点A关于直线l的对称点A′。
请说说你的画法lA·4、作△ABC关于直线l的对称的图形△A′B′C′5、课本P41练习题1二、课堂展示例1、已知△ABC,及点A的对称点A′,请作出对称轴直线l,并画出△ABC关于直线l的对称图形。