时间序列分析-第六章 ARMA模型的参数估计
- 格式:ppt
- 大小:1.63 MB
- 文档页数:205
时间序列arma模型建立的流程时间序列ARMA模型建立的流程1. 引言时间序列分析是一种对时间序列数据进行建模、预测和分析的统计方法。
ARMA模型是一种常用的时间序列模型,它可以描述时间序列数据中的自相关和移动平均关系。
本文将从数据准备、模型选择、参数估计和模型诊断等方面,介绍建立时间序列ARMA模型的完整流程。
2. 数据准备1.收集时间序列数据,确保数据具有一定的观测频率,并且包含足够的历史观测值。
2.对数据进行可视化分析,绘制时间序列图和自相关图,初步了解数据的趋势和周期性。
3. 模型选择1.确定时间序列数据是否平稳。
对于非平稳数据,需要进行差分运算,直到得到平稳的时间序列数据。
2.根据平稳时间序列数据的自相关和偏自相关图,选择合适的ARMA模型阶数。
通过观察自相关图的截尾性和偏自相关图的截尾性,确定ARMA(p, q)模型中的p和q。
4. 参数估计1.通过最大似然估计或最小二乘法,估计ARMA模型中的参数。
最大似然估计假定模型误差服从正态分布,而最小二乘法假定误差服从零均值正态分布。
2.通过估计的参数,建立ARMA模型。
5. 模型诊断1.对残差进行自相关和偏自相关分析,验证模型的残差序列是否为纯随机序列,即不存在自相关和异方差性。
2.对模型的残差序列进行Ljung-Box检验,验证残差的独立性。
3.对模型的残差序列进行正态性检验,验证模型的残差是否符合正态分布。
4.对模型的残差序列进行异方差性检验,验证模型的残差是否存在异方差现象。
6. 模型评估和预测1.使用信息准则(如AIC、BIC)评价模型的拟合程度。
较小的AIC和BIC值表示模型的拟合程度较好。
2.使用估计的ARMA模型对未来的数据进行预测,得到预测值和置信区间。
7. 结论建立时间序列ARMA模型的流程包括数据准备、模型选择、参数估计和模型诊断等环节。
通过该流程,我们能够对时间序列数据进行建模和预测,为相关领域的决策提供科学依据。
以上为时间序列ARMA模型建立的流程,希望对读者有所帮助。
ARMA模型AR模型是一种线性预测,即已知N个数据,可由模型推出第N点前面或后面的数据(设推出P点),AR模型-模型简介所以其本质类似于插值,其目的都是为了增加有效数据,只是AR模型是由N点递推,而插值是由两点(或少数几点)去推导多点,所以AR模型要比插值方法效果更好。
ARMA模型(Auto-Regressive and Moving Average Model)是研究时间序列的重要方法,由自回归模型(简称AR模型)与滑动平均模型(简称MA模型)为基础"混合"构成。
在市场研究中常用于长期追踪资料的研究,如:Panel研究中,用于消费行为模式变迁研究;在零售研究中,用于具有季节变动特征的销售量、市场规模的预测等。
ARMA模型的基本原理将预测指标随时间推移而形成的数据序列看作是一个随机序列,这组随机变量所具有的依存关系体现着原始数据在时间上的延续性。
一方面,影响因素的影响,另一方面,又有自身变动规律,假定影响因素为x1,x2,…,xk,由回归分析,其中Y是预测对象的观测值,e为误差。
作为预测对象Yt受到自身变化的影响,其规律可由下式体现,模型原理误差项在不同时期具有依存关系,由下式表示,模型原理图由此,获得ARMA模型表达式模型原理图模型原理总图模型预测模型-常见预测模型预测是对未来作出的估计和推断,为了达到这一目的,往往要对现实世界(或称研究对象)进行模仿或抽象,这一过程称之为建模;用建模手段获得现实世界(对象)的一种表示和体现就称为模型。
一切客观存在的事物及其运动形态我们统称为现实;现实和未来是不一样的,但是通过对于现实的研究可以预见未来,这就是预测。
从信息运动的角度看,现实之中包含着未来,孕育着未来。
因此,一个"好"的模型不仅能表达现实而且应该能准确的反映现实的发展规律。
时至今日,预测模型已多达一百余种,常用的也有二三十种。
任何预测模型都有它自身的优缺点;至今,还没有一种既有极高的预测精度,又适用于任何现实问题(研究对象)的预测模型。
实验一ARMA模型建模一、实验目的学会检验序列平稳性、随机性。
学会分析时序图与自相关图。
学会利用最小二乘法等方法对ARMA模型进行估计,以及掌握利用ARMA模型进行预测的方法。
学会运用Eviews软件进行ARMA模型的识别、诊断、估计和预测和相关具体操作。
二、基本概念宽平稳:序列的统计性质不随时间发生改变,只与时间间隔有关。
AR模型:AR模型也称为自回归模型。
它的预测方式是通过过去的观测值和现在的干扰值的线性组合预测,自回归模型的数学公式为:乂2『t2 川p y t p t式中:p为自回归模型的阶数i(i=1,2,,p)为模型的待定系数,t为误差,yt 为一个平稳时间序列。
MA模型:MA模型也称为滑动平均模型。
它的预测方式是通过过去的干扰值和现在的干扰值的线性组合预测。
滑动平均模型的数学公式为:y t t 1 t 1 2 t 2 川q t q式中:q为模型的阶数;j(j=1,2,,q)为模型的待定系数;t为误差;yt为平稳时间序列。
ARMA模型:自回归模型和滑动平均模型的组合,便构成了用于描述平稳随机过程的自回归滑动平均模型ARMA,数学公式为:y t 1 y t 1 2 y t 2 p y t p t 1 t 1 2 t 2 q t q三、实验内容(1)通过时序图判断序列平稳性;(2)根据相关图,初步确定移动平均阶数q 和自回归阶数p;(3)对时间序列进行建模四、实验要求学会通过各种手段检验序列的平稳性;学会根据自相关系数和偏自相关系数来初步判断ARMA模型的阶数p和q,学会利用最小二乘法等方法对ARMA 模型进行估计,学会利用信息准则对估计的ARMA 模型进行诊断,以及掌握利用ARMA 模型进行预测。
五、实验步骤1.模型识别(1)绘制时序图在Eviews 软件中,建立一个新的工作文件, 500个数据。
通过Eviews 生成随机序列“ e,再根据“ x=*x(-1)*x(-2)+e ”生成AR(2)模型序列“ x” 默认x(1)=1, x(2)=2,得到下列数据,由于篇幅有限。
1点腐蚀的回归—时间序列混合模型 (2)1.1残差的ARMA(p,q)模型 (3)1.2ARMA模型的定阶 (4)1.3ARMA模型的参数估计 (4)2应用分析 (5)3首先建立确定性模型。
(5)4结论 (6)5参考文献 (6)应用时间序列分析法预测油气管线点腐蚀深度扩展摘要:腐蚀影响油气管线寿命的重要因素,测油气管线点腐蚀深度扩展行为是评点预价管线剩余寿命的关键步骤之一。
基于时间序列分析处理动态数据的特性,立了点腐蚀观测建数据时间序列分析模型,结合实例对方法有效性进行了分析,结果表明,用时间序列分析并结合预测油气管线点腐蚀深度扩展是切实可行的。
点腐蚀缺陷的扩展行为显得比较困难,时间序列分析方法能够在环境信息十分复杂,物理结构不完全清楚的情况下,利用不完全的理论信息去指定一族合适的数学函数,并用来分析和预测物理现象的发展趋势。
突出特点是通过时间序列的历史数据解释现象随时间变化的规律,并对现象的未来作出预测。
因此,应用时间序列分析方法可以掌握点腐蚀的扩展规律,实现对油气管线点腐蚀深度扩展趋势的预测。
关键词:油气管线:点腐蚀;深度扩展;时间序列分析。
Using time series analysis method for prediction of oil-gas pipeline corrosion depth extensionsAbstract: the corrosion of important factors affecting service life of oil and gas pipelines, oil and gas pipeline corrosion depth behavior is measured comments on pre-one of the key steps of the remaining life of the pipeline. Handling characteristics of dynamic data based on time series analysis, vertical observation building data model for time series analysis of pitting corrosion, effectiveness analysis with instance methods, results showed that, with a combination of time-series analysis and prediction of oil-gas pipeline corrosion depth extension is feasible.Corrosion behavior was difficult, time-series analysis to environmental information are complex, the physical structure are not fully aware of the circumstances, using the theory of incomplete information to specify a suitable mathematical function, and to analyze trends and predicting physical phenomena. Features through the time series of historical data to explain phenomena over time rules, and make predictions about the future. Therefore, using time series analysis method to master the propagation of pitting corrosion, enabling the prediction of oil and gas pipeline corrosion depth extended trend.Keywords: oil and gas pipelines: pitting corrosion; depth extensions, and time series analysis.前言:在油气生产中,了解整个管线的腐蚀情况、预测管线的剩余寿命一直是点腐蚀缺陷扩展变化趋势是评价管线剩余寿命的关键步骤之一。