双胶合薄透镜组消色差!!!
- 格式:ppt
- 大小:3.34 MB
- 文档页数:78
消色差胶合透镜原理小伙伴们!今天咱们来聊聊一个超有趣的光学小玩意儿——消色差胶合透镜。
这东西可神奇啦,就像是光学世界里的一个小魔法师。
咱们先得知道为啥会有消色差这么个需求呢。
你看啊,普通的透镜在折射光线的时候,就像一个调皮的小孩,对不同颜色的光有不同的态度。
白色的光其实是由好多不同颜色的光混合起来的,像彩虹里的红橙黄绿青蓝紫。
当光线通过一个普通透镜的时候,这些不同颜色的光就会走不同的路线,结果就是成像的时候会有彩色的边缘,就像照片被人胡乱涂鸦了一样,这可不好看,也不准确呀。
那消色差胶合透镜是怎么解决这个问题的呢?这就像是两个小伙伴合作来搞定这个调皮的光线。
消色差胶合透镜是由两块不同材料的透镜胶合在一起组成的。
这两块透镜就像性格互补的好朋友。
一种材料的透镜对蓝光折射得比较厉害,另一种材料的透镜呢,对红光折射得比较厉害。
当它们胶合在一起的时候,就会产生一种奇妙的平衡。
想象一下,蓝光本来在一个透镜里被过度弯曲了,但是另一个透镜就像一个小卫士,把蓝光拉回来一点;红光呢,在一个透镜里可能没被弯曲够,另一个透镜就再推它一把。
这样,不同颜色的光就能够差不多汇聚到同一个点上啦。
就好比一群乱跑的小动物,本来各跑各的,现在被两个聪明的小牧羊人合作着赶到了同一个羊圈里。
这两块透镜胶合的过程也很有意思呢。
就像是给它们举行了一场小小的“结婚仪式”,让它们紧紧地结合在一起,从此共同承担起让光线听话的任务。
而且这两种材料的选择也是很有讲究的。
就像挑选衣服一样,得找到最适合彼此的。
比如说,一种材料可能是冕牌玻璃,另一种可能是火石玻璃。
它们各自的光学特性就像是各自的小秘密,但是当它们组合在一起的时候,这些小秘密就变成了让光线乖乖听话的魔法咒语。
消色差胶合透镜在我们的生活里可发挥了大作用呢。
在望远镜里,它能让我们看到的星星更加清晰,没有那些讨厌的彩色光晕。
就像我们的眼睛戴上了一副超级精准的眼镜,可以把遥远星空的美景看得清清楚楚。
在显微镜里也是一样的道理,那些微小的细胞和微生物,在消色差胶合透镜的帮助下,能够以最真实的面貌呈现在我们眼前,不会因为颜色的错乱而让我们误解它们的结构。
Zemax光学设计:Petzval物镜的设计实例引言:Petzval物镜,它是由两个被空气分离的正透镜组构成。
1839年Joseph Petzval 设计了这个著名的“照相物镜”。
其前组是一个双胶合,后组是一个双分离,两者之间有一个光圈。
前组可以很好地校正球差,但会引入彗差。
彗差由后组校正,光阑位置校正了大部分像散。
然而,这会导致额外的场曲和晕影。
因此,FOV限制在30度以内。
f/3.6的f值是可以实现的,这比当时的其他镜头要快得多。
Petzval首次根据光学定律计算透镜的组成,而之前的光学系统则是根据经验进行磨制和抛光的。
为了计算,奥地利大公路易(炮兵司令)向匹兹瓦提供了8名炮兵和3名下士,因为火炮是进行数学计算的少数职业之一。
1.Seidel分析双片式物镜的局限性在于单组元件无法校正像散,这大大限制了它的视场角范围。
在光阑上的薄透镜组的像散为:即其总是不为零。
因此,只有一些透镜组不在光阑上,才能校正像散。
因此,两个分离的透镜组可以用于产生等量反向的像散。
这两个透镜组不一定是单透镜,也可以是消色差双片式或者更复杂的透镜组。
若我们假设光阑在第一个透镜组上,第二个透镜组和它相距一段距离,那么会有光阑平移效应。
只要第二个透镜组没有完全校正球差和彗差,那么平移第二个透镜组远离光阑一定距离,就可以产生足够的像散来校正第一个透镜组的像散。
我们可以得到任意的一个像散值S3,但是两个正透镜组都会对场曲产生贡献,即Petzval 物镜的 Petzval 和总是正值。
这意味着像面总是朝向镜头弯曲。
通常,我们想要零像散,则让总的S3为零,场曲会使子午和弧矢像重合于弯曲的像面上。
但是,还有其他选择,由弧矢像差,只要S3=-S4,我们就可以使弧矢像面为平面。
而且,若让S3=-S4/3,则就可以使子午像面为平面。
在设计 Petzval 镜头中有一个很好的准则,那就是让前组(A)的光焦度为K /2,后组(B)的光焦度为K,为保证总光焦度为K,让它们之间的距离为1/K。
两个透镜消除色差的方法引言透镜是一种常见的光学元件,广泛应用于相机、望远镜等设备中。
然而,由于透镜折射率随光波长的变化而变化,常常会引起色差问题,即不同波长的光通过透镜后会发生不同程度的偏折,导致图像模糊、色彩失真等。
为解决这一问题,科学家们提出了多种方法来消除色差。
本文将介绍两个常用的透镜消除色差的方法。
方法一:双透镜组合1.理论基础双透镜组合是一种常见的消除色差的方法,它利用两个不同材质的透镜组合来抵消色差的效应。
其中,正透镜用于纠正蓝光的散焦问题,负透镜则用于纠正红光的散焦问题。
通过精确控制透镜的形状、曲率和材质,可以实现对不同波长光的精确调节,从而消除色差。
2.工艺实现为了实现双透镜组合消除色差的效果,需要严格控制透镜的制造工艺和参数。
首先,需要选择合适的透镜材料,例如,对于正透镜可以选择具有较高折射率的材料,而对于负透镜则需要选择具有较低折射率的材料。
其次,需要精确切削透镜的形状和曲率,以使得两个透镜之间的光程差能够达到理想的消色差效果。
最后,需要进行光学涂层处理,以减少透镜表面反射和散射,提高光的透过率和清晰度。
3.应用领域双透镜组合消色差的方法广泛应用于摄影镜头、望远镜、显微镜等光学仪器中。
通过精确的透镜设计和制造工艺,可以大大提升图像的清晰度和色彩还原能力,使得用户能够获得更加真实、细致的观测体验。
方法二:折光棱镜1.理论基础折光棱镜是一种利用透镜形状和材质的差异来消除色差的方法。
它通过将入射光分成不同波长的光线,并使它们以不同的路径通过透镜,从而达到消除色差的效果。
折光棱镜可以根据光的折射率差异将不同波长的光线分离出来,使得它们被分别聚焦在不同位置上,从而消除色差。
2.工艺实现为了实现折光棱镜消除色差的效果,需要进行精确的透镜设计和制造。
首先,需要选择合适的透镜材料,以使得不同波长的光在透镜中的折射率差异达到理想的效果。
其次,需要设计适当的透镜形状和曲率,以使得不同波长的光线在透镜内部按照所需的路径进行折射。
消色差透镜分析实验消色差双合透镜分析设计实验1,实验目的掌握zemax光学设计软件,能设计和模拟光学器件,了解各种光学设计的基本分析原理,了解像差的基本概念和意义2,实验内容设计了一种用于校正球差的消色差双合透镜作为望远镜物镜R=10厘米,c1=0.002957厘米-1,c2=-0.020184厘米-1,c3=-0.00771厘米-1厚度t1=1.9厘米,t2=1.3厘米玻璃选择:第一个透镜为BaK1 (1.5725,57.55),第一个透镜为BaSF2 (1.66446,35.83)如图所示3,实验仪器计算机,自由空间光学系统设计软件Zemax4。
实验原理几何光学设计主要利用光线追迹来分析光在光学系统中的传输路径系统的一些基本参数,如焦距、孔径、入射光瞳、出射光瞳、入射窗和出射窗,可以用光线追迹法确定。
系统的像差也可以用光线追迹法进行分析。
5,实验步骤步骤1:创建一个设计,创建一个新文件,并保存它步骤2:系统参数设置1将单位设置为毫米,入瞳半径设置为100毫米方法:系统概述下图2设计计算视场,设置两个视场。
这个系统的视野影响很小,因为物体在无穷远处。
方法:系统字段下图步骤3:将输入三个面,如图所示插入光学表面的方法是:编辑-插入表面或编辑-插入后在编辑透镜数据后,可以通过分析-布局-2D布局查看透镜的光学结构第4步:系统参数计算系统数据计算方法:报表-系统数据结果通常如下图所示我们记录了几个数据:EFL,BFL,入瞳直径,出瞳位置和直径射线轨迹数据计算方法:分析-计算-射线轨迹我们只看近轴光数据,一般如下图所示步骤5:成像质量分析执行以下模拟,并对结果进行适当的分析1图像场弯曲/失真的计算?细光束亚矢状弯曲xS?表达两者的区别在于像场弯曲通常使用细光束经向弯曲xT??xT??xS?叫做散光xTS??0表示没有散光xTS计算图像场弯曲/失真的步骤是:分析-混合-场曲线/距离在该图中,横坐标是像散值,纵坐标是图像视场。
哈工大光机系统设计双胶合透镜实验报告哈工大光机系统设计双胶合透镜实验报告哈尔滨工业大学实验报告Harbin Institute of Technology 实验报告课程名称:光机系统设计实验名称:双胶合消色差物镜设计院系:电气及自动化与控制系班级:姓名:学号:哈尔滨工业大学1,实验目的设计一个双胶合消色差透镜,并绘制图形,熟悉应用光学、机械学等相关知识,掌握光机系统设计的流程。
2. 结构特性分析双胶合消色差物镜光学性能要求: 1) f / 6,焦距540mm;2) 视场角1.5°;3) 镜片材料选择BAK1 和BK7;4) 20 线对/mm 处MTF>0.4;5) 工作波长:可见光 3. 初始结构设计当物体处于无穷远时,P∞=W∞=0(孔径角消失),设计消色差系数C=0。
透镜的光焦度分配公式:通过应用光学相关知识,算的双胶合透镜的曲率半径依次为:R1 =345.231 R2 =-240.89 R3 =-1003.25 两个透镜的初始厚度设计各为7mm,透镜组到成像面的距离设计为近轴光线,由ZEMAX 计算出相应厚度调整值。
图1 双胶合透镜出结构设计图2 所示,视场90mm;如图3 所示,视场角设定为1.5°,图4 所示,入射光线为可见光;如所示为初始透镜结构图。
图2 设定视场图3 设置光场图4 设定入射光4. 系统优化设计焦距值为540mm,设定默认优化函数EFFL target 为540,权重为1,选择透镜的三个曲率半径以及相应的厚度作为优化参数,优化结果如图5所示。
图5 优化结果参数5. 像质分析由图6所示,优化后最大的波像差大约为4个波长,尚未达到衍射极限,应为焦平面上的彗差影响所致;同时可见这个透镜相对与可见光的低阶色差比较小,满足设计要求。
图8优化后光线追迹曲线如图6所示,优化后存在彗差,由图中度数可得艾里斑半径为8.595μm,而像差RMS半径为18.570μm,可见此优化结果基本达到设计要求,可以使用。
中倍消色差物镜设计摘要本次课程设计着重于用ZEMAX软件实现消色差显微物镜的设计。
ZEMAX是一个用来模拟、分析和辅助设计光学系统的软件,其界面简单易用,稍加练习就能实现互动设计。
此次所设计的物镜由两个双胶合组构成,每个双胶合组分别消色差,除了必须校正的球差和彗差以外还校正了象散,提高轴外物点的成像质量。
本文采用PW法进行显微物镜的初始结构计算,ZEMAX软件仿真并优化,所得结果满足要求。
关键词 ZEMAX PW法消色差显微物镜目录一、设计要求...................................................................... 错误!未定义书签。
二、PW法求解初始结构................................................... 错误!未定义书签。
2.1 物镜系统外部参数确定..................................... 错误!未定义书签。
2.2 初级像差求解................................................... 错误!未定义书签。
三、ZEMAX仿真及优化 .................................................. 错误!未定义书签。
四、设计体会...................................................................... 错误!未定义书签。
五、参考文献...................................................................... 错误!未定义书签。
一、设计要求要求β=-10⨯ NA=0.21,共轭距离L=210。
要求物镜本身校正球差、慧差、色差;入瞳位置在物镜上。
一、概念题(共20分,每题5分)1、辐射能2、景深3、角放大率4、正弦条件二、填空题(共33分,每空3分)1、 反映光学系统对物体不同频率成分的传递能力,一般说来高频部分反映物体的 传递情况,而低频部分则反映物体的轮廓传递情况。
2、瑞利判断是一种较为严格的像质评价方法,它主要适用于 光学系统的像质评价。
3、在物面光亮度均匀的情况下,轴外像点的光照度将随着 的增大而降低。
4、光学玻璃一般分为两大类,即冕牌玻璃和火石玻璃,通常 玻璃具有低折射率低色散,通常 玻璃具有高折射率、高色散。
5、现有一个厚度为mm d 15=,折射率5.1=n 的平行玻璃平板,若将其简化为一个等效空气平板,则等效空气平板的厚度为 。
6、望远系统又可称为无焦光学系统,其光焦度为 。
若现有一伽利略望远镜,该系统物镜焦距mm f o 200'=,目镜焦距mm f o 25'=,则筒长为 。
7、若系统不满足等晕条件,用以描述等晕条件偏离程度的值为 。
8、有一相对孔径为1:2的照相物镜,若入射光的波长为nm 555=λ,则其物镜的分辨率为 。
三、回答问题(共32分,每题8分)1、请画出开普勒望远镜的原理光路图,并画图说明该望远镜出射光瞳的位置及大小。
2、采用⨯-=1β的对称式光学系统能够校正哪几种几何像差?为什么?3、如何理解显微镜的有效放大率?若一显微物镜上标明17.0/170mm ;65.0/40,为使显微镜达到600倍的放大率,应选用多大倍率的目镜?4、请画图说明什么是位置色差?若一双胶合薄透镜两个透镜的光焦度分别为21,φφ,材料分别为2211,;,D D D D n n γγ,试写出该双胶合薄透镜组满足消色差的条件。
四、计算题(共50分,每题10分)1、已知显微镜的视觉放大率为⨯-=Γ300,目镜的焦距为mm f e 20'=,求1)显微镜物镜的放大率;2)假定人眼的极限分辨率为"60,问使用该显微镜观察时,能分辨的两物点的最小距离为多少?2、一光学系统由凹、凸两个反射镜构成,凹面反射镜A的焦距大小为mm 100,凸面反射镜B 的焦距大小为mm 250,将两反射镜相对放置且二者相距为mm 200,将一高为mm 40的物体置于两反射镜之间,并垂直于光轴放置,且物体C 离反射镜A 的距离为mm 150,如图1所示,求物体先后经过A 、B 反射镜反射后所成像的大小及位置。